AD620BRZ-REEL [ADI]

暂无描述;
AD620BRZ-REEL
型号: AD620BRZ-REEL
厂家: ADI    ADI
描述:

暂无描述

仪表放大器
文件: 总24页 (文件大小:602K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision, Dual-Channel  
Instrumentation Amplifier  
AD8222  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
Two channels in small 4 mm × 4 mm LFCSP  
Gain set with 1 resistor per amplifier (G = 1 to 10,000)  
Low noise  
16 15 14 13  
AD8222  
8 nV/√Hz @ 1 kHz  
0.25 μV p-p (0.1 Hz to 10 Hz)  
1
2
3
4
12  
11  
10  
9
–IN1  
RG1  
RG1  
+IN1  
–IN2  
RG2  
RG2  
+IN2  
High accuracy dc performance (B grade)  
60 μV maximum input offset voltage  
0.3 μV/°C maximum input offset drift  
1.0 nA maximum input bias current  
126 dB minimum CMRR (G = 100)  
Excellent ac performance  
150 kHz bandwidth (G = 100)  
13 μs settling time to 0.001%  
Differential output option (single channel)  
Fully specified  
5
6
7
8
Figure 1. 4mm × 4 mm LFCSP  
Table 1. In Amps and Differential Amplifier by Category  
Digital  
High  
Low  
High  
Voltage Grade Power  
AD85531 AD628  
AD6231  
AD629  
Mil  
Low  
Prog  
Gain  
Performance Cost  
Adjustable common-mode output  
Supply range: 2.3 V to 18 V  
AD8221  
AD82201  
AD8222  
AD620 AD6271 AD85551  
AD621  
AD524  
AD526  
AD624  
AD85561  
AD85571  
APPLICATIONS  
Multichannel data acquisition for  
ECG and medical instrumentation  
Industrial process controls  
Wheatstone bridge sensors  
Differential drives for  
1 Rail-to-rail output.  
High resolution input ADCs  
Remote sensors  
GENERAL DESCRIPTION  
The AD8222 maintains a minimum CMRR of 80 dB to 4 kHz  
for all grades at G = 1. High CMRR over frequency allows the  
AD8222 to reject wideband interference and line harmonics,  
greatly simplifying filter requirements. The AD8222 also has a  
typical CMRR drift over temperature of just 0.07 μV/V/°C at G = 1.  
The AD8222 is a dual-channel, high performance instrumentation  
amplifier that requires only one external resistor per amplifier  
to set gains of 1 to 10,000.  
The AD8222 is the first dual-instrumentation amplifier in the  
small 4 mm × 4mm LFCSP. It requires the same board area as a  
typical single instrumentation amplifier. The smaller package  
allows a 2× increase in channel density and a lower cost per  
channel, all with no compromise in performance.  
The AD8222 operates on both single and dual supplies and only  
requires 2.2 mA maximum supply current for both amplifiers. It  
is specified over the industrial temperature range of −40°C to  
+85°C and is fully RoHS compliant.  
The AD8222 can also be configured as a single-channel,  
differential output instrumentation amplifier. Differential  
outputs provide high noise immunity, which can be useful when  
the output signal must travel through a noisy environment, such  
as with remote sensors. The configuration can also be used to  
drive differential input ADCs.  
For a single-channel version, see the AD8221.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
 
AD8222  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Layout .......................................................................................... 16  
Solder Wash................................................................................. 17  
Input Bias Current Return Path ............................................... 17  
Input Protection ......................................................................... 17  
RF Interference ........................................................................... 18  
Common-Mode Input Voltage Range..................................... 18  
Applications..................................................................................... 19  
Differential Output .................................................................... 19  
Driving a Differential Input ADC............................................ 20  
Precision Strain Gauge .............................................................. 20  
Driving Cabling.......................................................................... 21  
Outline Dimensions....................................................................... 22  
Ordering Guide .......................................................................... 22  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
Theory of Operation ...................................................................... 15  
Amplifier Architecture .............................................................. 15  
Gain Selection............................................................................. 15  
Reference Terminal .................................................................... 16  
REVISION HISTORY  
7/06—Revision 0: Initial Version  
Rev. 0 | Page 2 of 24  
 
AD8222  
SPECIFICATIONS  
VS = 15 V, VREF = 0 V, TA = 25°C, G = 1, RL = 2 kΩ, unless otherwise noted.  
Table 2. Single-Ended and Differential1 Output Configuration  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Unit  
COMMON-MODE REJECTION  
RATIO (CMRR)  
VCM = –10 V to +10 V  
CMRR DC to 60 Hz  
G = 1  
G = 10  
1 kΩ source imbalance  
80  
86  
dB  
dB  
dB  
dB  
100  
120  
130  
106  
126  
140  
G = 100  
G = 1000  
CMRR at 4 kHz  
G = 1  
80  
80  
dB  
G = 10  
G = 100  
G = 1000  
CMRR Drift  
NOISE  
90  
100  
100  
100  
110  
110  
dB  
dB  
dB  
μV/V/°C  
T = −40°C to +85°C, G = 1  
0.07  
0.07  
Voltage Noise, 1 kHz  
Input Voltage Noise, eNI  
Output Voltage Noise, eNO  
RTI  
RTI Noise = √(eNI2 + (eNO/G)2)  
VIN+, VIN−, VREF = 0 V  
VIN+, VIN−, VREF = 0 V  
8
75  
8
75  
nV/√Hz  
nV/√Hz  
f = 0.1 Hz to 10 Hz  
G = 1  
G = 10  
G = 100 to 1000  
Current Noise  
2
2
μV p-p  
μV p-p  
μV p-p  
fA/√Hz  
pA p-p  
0.5  
0.25  
40  
6
0.5  
0.25  
40  
6
f = 1 kHz  
f = 0.1 Hz to 10 Hz  
RTI VOS = (VOSI) + (VOSO/G)  
VS = 5 V to 15 V  
T = −40°C to +85°C  
VOLTAGE OFFSET  
Input Offset, VOSI  
Overtemperature  
Average TC  
Output Offset, VOSO  
Overtemperature  
Average TC  
120  
150  
0.4  
500  
0.8  
9
60  
80  
0.3  
350  
0.5  
5
μV  
μV  
μV/°C  
μV  
mV  
VS = 5 V to 15 V  
T = −40°C to +85°C  
μV/°C  
Offset RTI vs. Supply (PSR)  
G = 1  
G = 10  
G = 100  
G = 1000  
VS = 2.3 V to 18 V  
90  
110  
120  
130  
140  
94  
110  
130  
140  
150  
dB  
dB  
dB  
dB  
110  
124  
130  
114  
130  
140  
INPUT CURRENT (PER CHANNEL)  
Input Bias Current  
Over temperature  
Average TC  
Input Offset Current  
Overtemperature  
Average TC  
0.5  
2.0  
3.0  
0.2  
1.0  
1.5  
nA  
nA  
pA/°C  
nA  
nA  
T = −40°C to +85°C  
T = −40°C to +85°C  
1
0.2  
1
0.1  
1
1.5  
0.5  
0.6  
2
1
0.5  
pA/°C  
REFERENCE INPUT  
RIN  
IIN  
Voltage Range  
Gain to Output  
20  
50  
20  
50  
kΩ  
μA  
V
VIN+, VIN−, VREF = 0 V  
60  
+VS  
60  
+VS  
−VS  
−VS  
V/V  
1 ± 0.0001  
1 ± 0.0001  
Rev. 0 | Page 3 of 24  
 
 
AD8222  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Unit  
GAIN  
G = 1 + (49.4 kΩ/RG)  
Gain Range  
1
10000  
1
10000  
V/V  
Gain Error  
VOUT 10 V  
G = 1  
G = 10  
G = 100  
G = 1000  
0.05  
0.3  
0.3  
0.02  
0.15  
0.15  
0.15  
%
%
%
%
0.3  
Gain Nonlinearity  
G = 1  
G = 10  
VOUT = –10 V to +10 V  
3
7
7
10  
20  
20  
1
7
7
5
20  
20  
ppm  
ppm  
ppm  
G = 100  
Gain vs. Temperature  
G = 1  
G > 12  
3
10  
−50  
2
5
−50  
ppm/°C  
ppm/°C  
INPUT  
Input Impedance  
Differential  
100||2  
100||2  
100||2  
100||2  
GΩ||pF  
GΩ||pF  
V
V
V
V
Common Mode  
Input Operating Voltage Range3  
Overtemperature  
Input Operating Voltage Range3  
Overtemperature  
OUTPUT  
VS = 2.3 V to 5 V  
T = −40°C to +85°C  
VS = 5 V to 18 V  
T = −40°C to +85°C  
RL = 10 kΩ  
−VS + 1.9  
−VS + 2.0  
−VS + 1.9  
−VS + 2.0  
+VS − 1.1 −VS + 1.9  
+VS − 1.2 −VS + 2.0  
+VS − 1.2 −VS + 1.9  
+VS − 1.2 −VS + 2.0  
+VS − 1.1  
+VS − 1.2  
+VS − 1.2  
+VS − 1.2  
Output Swing  
Overtemperature  
Output Swing  
Overtemperature  
Short-Circuit Current  
POWER SUPPLY  
Operating Range  
Quiescent Current (per Amplifier)  
Overtemperature  
TEMPERATURE RANGE  
Specified Performance  
Operational4  
VS = 2.3 V to 5 V  
T = −40°C to +85°C  
VS = 5 V to 18 V  
T = −40°C to +85°C  
−VS + 1.1  
−VS + 1.4  
−VS + 1.2  
−VS + 1.6  
+VS − 1.2 −VS + 1.1  
+VS − 1.3 −VS + 1.4  
+VS − 1.4 −VS + 1.2  
+VS − 1.5 −VS + 1.6  
+VS − 1.2  
+VS − 1.3  
+VS − 1.4  
+VS − 1.5  
V
V
V
V
18  
18  
mA  
VS = 2.3 V to 18 V  
T = −40°C to +85°C  
2.3  
18  
1.1  
2.3  
18  
1.1  
1.2  
V
mA  
mA  
0.9  
1
0.9  
1
1.2  
−40  
−40  
+85  
+125  
−40  
−40  
+85  
+125  
°C  
°C  
1 Refers to differential configuration shown in Figure 49.  
2 Does not include the effects of external resistor RG.  
3 One input grounded. G = 1.  
4 See Typical Performance Characteristics for expected operation between 85°C to 125°C.  
Rev. 0 | Page 4 of 24  
 
 
AD8222  
VS = 15 V, VREF = 0 V, TA = 25°C, RL = 2 kΩ, unless otherwise noted.  
Table 3. Single-Ended Output Configuration—Dynamic Performance (Both Amplifiers)  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Unit  
DYNAMIC RESPONSE  
Small Signal −3 dB Bandwidth  
G = 1  
1200  
750  
140  
15  
1200  
750  
140  
15  
kHz  
kHz  
kHz  
kHz  
G = 10  
G = 100  
G =1000  
Settling Time 0.01%  
G = 1 to 100  
G = 1000  
Settling Time 0.001%  
G = 1 to 100  
G = 1000  
10 V step  
10 V step  
10  
80  
10  
80  
μs  
μs  
13  
110  
13  
110  
μs  
μs  
Slew Rate  
G = 1  
G = 5 to 1000  
1.5  
2
2
2.5  
1.5  
2
2
2.5  
V/μs  
V/μs  
Table 4. Differential Output Configuration1—Dynamic Performance  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Unit  
DYNAMIC RESPONSE  
Small Signal −3 dB Bandwidth  
G = 1  
1000  
650  
140  
15  
1000  
650  
140  
15  
kHz  
kHz  
kHz  
kHz  
G = 10  
G = 100  
G =1000  
Settling Time 0.01%  
G = 1 to 100  
G = 1000  
Settling Time 0.001%  
G = 1 to 100  
G = 1000  
10 V step  
10 V step  
15  
80  
15  
80  
μs  
μs  
18  
110  
18  
110  
μs  
μs  
Slew Rate  
G = 1  
G = 5 to 1000  
1.5  
2
2
2.5  
1.5  
2
2
2.5  
V/μs  
V/μs  
1 Refers to differential configuration shown in Figure 49.  
Rev. 0 | Page 5 of 24  
 
 
AD8222  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Parameter  
THERMAL RESISTANCE  
Rating  
Table 6.  
Supply Voltage  
18 V  
Thermal Pad  
θJA  
48  
86  
Unit  
°C/W  
°C/W  
Output Short-Circuit Current  
Input Voltage (Common Mode)  
Differential Input Voltage  
Storage Temperature Range  
Operational Temperature Range  
Package Glass Transition Temperature (TG)  
ESD (Human Body Model)  
ESD (Charge Device Model)  
Indefinite  
VS  
VS  
−65°C to +130°C  
−40°C to +125°C  
130°C  
1 kV  
1 kV  
Soldered to Board  
Not Soldered to Board  
The θJA values in Table 6 assume a 4-layer JEDEC standard  
board. If the thermal pad is soldered to the board, then it is  
also assumed it is connected to a plane. θJC at the exposed pad  
is 4.4°C/W.  
Maximum Power Dissipation  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions may affect device reliability.  
The maximum safe power dissipation for the AD8222 is limited  
by the associated rise in junction temperature (TJ) on the die. At  
approximately 130°C, which is the glass transition temperature,  
the plastic changes its properties. Even temporarily exceeding  
this temperature limit may change the stresses that the package  
exerts on the die, permanently shifting the parametric performance  
of the amplifiers. Exceeding a temperature of 130°C for an  
extended period can result in a loss of functionality.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. 0 | Page 6 of 24  
 
 
AD8222  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
12  
11  
–IN1 1  
RG1 2  
RG1 3  
+IN1 4  
–IN2  
RG2  
INDICATOR  
AD8222  
TOP VIEW  
10 RG2  
+IN2  
9
Figure 2. Pin Configuration  
Table 7. Pin Function Descriptions  
Pin No  
Mnemonic  
−IN1  
RG1  
RG1  
+IN1  
+VS  
Description  
1
2
3
4
Negative Input In-Amp 1  
Gain Resistor In-Amp 1  
Gain Resistor In-Amp 1  
Positive Input In-Amp 1  
Positive Supply  
5
6
7
8
REF1  
REF2  
−VS  
Reference Adjust In-Amp 1  
Reference Adjust In-Amp 2  
Negative Supply  
9
+IN2  
RG2  
RG2  
−IN2  
−VS  
OUT2  
OUT1  
+VS  
Positive Input In-Amp 2  
Gain Resistor In-Amp 2  
Gain Resistor In-Amp 2  
Negative Input In-Amp 2  
Negative Supply  
Output In-Amp 2  
Output In-Amp 1  
Positive Supply  
10  
11  
12  
13  
14  
15  
16  
Rev. 0 | Page 7 of 24  
 
AD8222  
TYPICAL PERFORMANCE CHARACTERISTICS  
N = 1713  
500  
800  
600  
400  
200  
0
400  
300  
200  
100  
0
–50 –40 –30 –20 –10  
0
10  
20  
30  
40  
50  
–2.0  
–1.5  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
CMRR (µV/V)  
I
(nA)  
OFFSET  
Figure 6. Typical Distribution of Input Offset Current  
Figure 3. Typical Distribution for CMRR (G = 1)  
15  
10  
5
N = 1713  
300  
250  
200  
150  
100  
10  
V
= ±15V  
S
0
V
= ±5V  
S
–5  
–10  
–15  
0
–100 80  
60  
40  
20  
0
20  
40  
60  
80  
100  
–15  
–10  
–5  
0
5
10  
15  
V
(µV)  
OSI  
OUTPUT VOLTAGE (V)  
Figure 4. Typical Distribution of Input Offset Voltage  
Figure 7. Input Common-Mode Range vs. Output Voltage, G = 1  
15  
10  
N = 1713  
700  
600  
500  
400  
300  
200  
100  
0
V
= ±15V  
S
5
0
V
= ±5V  
S
–5  
–10  
–15  
–15  
–2.0  
–1.5  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
–10  
–5  
0
5
10  
15  
I
(nA)  
BIAS  
OUTPUT VOLTAGE (V)  
Figure 5. Typical Distribution of Input Bias Current  
Figure 8. Input Common-Mode Range vs. Output Voltage, G = 100  
Rev. 0 | Page 8 of 24  
 
 
 
 
AD8222  
200  
150  
100  
50  
160  
150  
140  
130  
120  
110  
100  
90  
BANDWIDTH  
LIMITED  
V
= ±15V  
= ±5V  
S
GAIN = 1000  
0
80  
GAIN = 100  
GAIN = 10  
GAIN = 1  
V
70  
S
–50  
–100  
–150  
–200  
60  
50  
40  
30  
20  
10  
0
–15  
–10  
–5  
0
5
10  
15  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
COMMON-MODE VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 12. Positive PSRR vs. Frequency, RTI (G = 1 to 1000)  
Figure 9. IBIAS vs. Common-Mode Voltage  
160  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
150  
140  
130  
120  
110  
100  
90  
GAIN = 1000  
GAIN = 100  
80  
70  
60  
50  
40  
GAIN = 10  
GAIN = 1  
30  
20  
10  
0
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
0
2
4
6
8
10  
FREQUENCY (Hz)  
WARM-UP TIME (Minutes)  
Figure 10. Change in Input Offset Voltage vs. Warm-Up Time  
Figure 13. Negative PSRR vs. Frequency, RTI (G = 1 to 1000)  
1000  
10k  
800  
600  
NEGATIVE  
1k  
100  
10  
400  
GAIN = 1  
GAIN = 10 GAIN = 100  
200  
POSITIVE  
0
OFFSET CURRENT  
–200  
–400  
–600  
–800  
–1000  
GAIN = 1000  
1
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
TEMPERATURE (°C)  
SOURCE RESISTANCE ()  
Figure 11. Input Bias Current and Offset Current vs. Temperature  
Figure 14. Total Drift vs. Source Resistance  
Rev. 0 | Page 9 of 24  
AD8222  
70  
20  
15  
GAIN = 1000  
60  
50  
GAIN = 100  
GAIN = 10  
GAIN = 1  
10  
40  
30  
5
EXAMPLE PART 1  
EXAMPLE PART 2  
20  
0
10  
–5  
0
–10  
–20  
–30  
–40  
–10  
–15  
–20  
100  
1k  
10k  
100k  
1M  
10M  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 15. Gain vs. Frequency  
Figure 18. ΔCMR vs. Temperature, G = 1  
160  
150  
140  
130  
120  
110  
100  
90  
+V –0  
S
GAIN = 1000  
GAIN = 100  
–0.4  
–0.8  
–1.2  
–1.6  
–2.0  
FROM +V  
GAIN = 10  
GAIN = 1  
BANDWIDTH  
LIMITED  
+2.0  
+1.6  
+1.2  
+0.8  
+0.4  
FROM –V  
80  
70  
60  
50  
–V +0  
S
40  
0.1  
2
6
10  
14  
18  
1
10  
100  
1k  
10k  
100k  
1M  
SUPPLY VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 16. CMRR vs. Frequency, RTI  
Figure 19. Input Voltage Limit vs. Supply Voltage, G = 1  
160  
150  
140  
130  
120  
110  
100  
90  
+V –0  
S
GAIN = 1000  
–0.4  
–0.8  
–1.2  
–1.6  
R
L
= 10k  
GAIN = 100  
GAIN = 10  
R
R
= 2kΩ  
= 2kΩ  
L
BANDWIDTH  
LIMITED  
+1.6  
+1.2  
+0.8  
+0.4  
L
80  
70  
GAIN = 1  
60  
R
L
= 10kΩ  
50  
–V +0  
S
40  
0.1  
2
6
10  
14  
18  
1
10  
100  
1k  
10k  
100k  
1M  
SUPPLY VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 17. CMRR vs. Frequency, RTI, 1 kΩ Source Imbalance  
Figure 20. Output Voltage Swing vs. Supply Voltage, G = 1  
Rev. 0 | Page 10 of 24  
AD8222  
30  
20  
10  
0
40  
30  
20  
2kLOAD  
10  
0
600LOAD  
–10  
–20  
–30  
–40  
10kLOAD  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
1
10  
100  
1k  
10k  
V
(V)  
LOAD RESISTANCE ()  
OUT  
Figure 24. Gain Nonlinearity, G = 100  
Figure 21. Output Voltage Swing vs. Load Resistance  
1k  
100  
10  
+V –0  
S
–1  
–2  
–3  
SOURCING  
GAIN = 1  
GAIN = 10  
GAIN = 100  
+3  
+2  
+1  
GAIN = 1000  
SINKING  
GAIN = 1000  
BW LIMIT  
1
–V +0  
S
1
10  
100  
1k  
10k  
100k  
0
1
2
3
4
5
6
7
8
9
10 11 12  
FREQUENCY (Hz)  
OUTPUT CURRENT (mA)  
Figure 25. Voltage Noise Spectral Density vs. Frequency (G = 1 to 1000)  
Figure 22. Output Voltage Swing vs. Output Current, G = 1  
4
3
2
1
10kLOAD  
0
2kLOAD  
–1  
600LOAD  
–2  
–3  
–4  
2µV/DIV  
1s/DIV  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
V
(V)  
OUT  
Figure 23. Gain Nonlinearity, G = 1  
Figure 26. 0.1 Hz to 10 Hz RTI Voltage Noise (G = 1)  
Rev. 0 | Page 11 of 24  
AD8222  
30  
25  
20  
15  
10  
5
GAIN = 10, 100, 1000  
GAIN = 1  
0
1k  
0.1µV/DIV  
1s/DIV  
10k  
100k  
FREQUENCY (Hz)  
1M  
Figure 27. 0.1 Hz to 10 Hz RTI Voltage Noise (G = 1000)  
Figure 30. Large Signal Frequency Response  
1k  
100  
10  
5V/DIV  
7.4µs TO 0.01%  
8.3µs TO 0.001%  
0.002%/DIV  
20µs/DIV  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 31. Large Signal Pulse Response and Settling Time (G = 1)  
Figure 28. Current Noise Spectral Density vs. Frequency  
5V/DIV  
4.8µs TO 0.01%  
6.6µs TO 0.001%  
0.002%/DIV  
20µs/DIV  
5pA/DIV  
1s/DIV  
Figure 32. Large Signal Pulse Response and Settling G = 10)  
Figure 29. 0.1 Hz to 10 Hz Current Noise  
Rev. 0 | Page 12 of 24  
AD8222  
5V/DIV  
9.2µs TO 0.01%  
16.2µs TO 0.001%  
0.002%/DIV  
20mV/DIV  
4µs/DIV  
20µs/DIV  
Figure 33. Large Signal Pulse Response and Settling Time (G = 100)  
Figure 36. Small Signal Response, G = 10, RL = 2 kΩ, CL = 100 pF  
5V/DIV  
83µs TO 0.01%  
112µs TO 0.001%  
0.002%/DIV  
20mV/DIV  
10µs/DIV  
200µs/DIV  
Figure 34. Large Signal Pulse Response and Settling Time (G = 1000)  
Figure 37. Small Signal Response, G = 100, RL = 2 kΩ, CL = 100 pF  
20mV/DIV  
4µs/DIV  
20mV/DIV  
100µs/DIV  
Figure 38. Small Signal Response, G = 1000, RL = 2 kΩ, CL = 100 pF  
Figure 35. Small Signal Response, G = 1, RL = 2 kΩ, CL = 100 pF  
Rev. 0 | Page 13 of 24  
AD8222  
15  
60  
40  
GAIN = 1000  
GAIN = 100  
10  
20  
SETTLED TO 0.001%  
GAIN = 10  
GAIN = 1  
0
SETTLED TO 0.01%  
5
–20  
–40  
0
0
5
10  
15  
20  
100  
1k  
10k  
100k  
1M  
10M  
OUTPUT VOLTAGE STEP SIZE (V)  
FREQUENCY (Hz)  
Figure 39. Settling Time vs. Step Size (G = 1)  
Figure 42. Differential Output Configuration: Gain vs. Frequency  
1k  
100  
10  
100  
V
DIFF_OUT  
CMR  
= 20 log  
OUT  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
CM_OUT  
LIMITED BY  
MEASUREMENT  
SYSTEM  
SETTLED TO 0.001%  
SETTLED TO 0.01%  
1
1
10  
100  
1k  
1
10  
100  
1k  
10k  
100k  
1M  
GAIN  
FREQUENCY (Hz)  
Figure 40. Settling Time vs. Gain for a 10 V Step  
Figure 43. Differential Output Configuration:  
Common-Mode Output vs. Frequency  
200  
SOURCE  
= 20V p-p  
SOURCE V  
OUT  
SMALLER TO  
V
OUT  
AVOID SLEW  
RATE LIMIT  
180  
160  
140  
120  
100  
80  
GAIN = 1000  
THERMAL CROSSTALK  
VARIES WITH LOAD  
GAIN = 1  
60  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 41. Channel Separation vs. Frequency, RL = 2 kΩ, Source Channel at G = 1  
Rev. 0 | Page 14 of 24  
AD8222  
THEORY OF OPERATION  
V
I
I
B
A1  
A2  
I
COMPENSATION  
I
COMPENSATION  
B
B
10k  
C1  
C2  
+V  
–V  
S
10kΩ  
10kΩ  
OUTPUT  
A3  
+V  
–V  
S
+V  
S
+V  
–V  
R1 24.7kΩ  
R2 24.7kΩ  
+V  
S
S
400Ω  
+V  
400Ω  
S
S
Q2  
–IN  
Q1  
+IN  
REF  
10kΩ  
R
G
–V  
S
S
S
–V  
–V  
S
S
Figure 44. Simplified Schematic  
AMPLIFIER ARCHITECTURE  
GAIN SELECTION  
The two instrumentation amplifiers of the AD8222 are based on  
the classic three op amp topology. Figure 44 shows a simplified  
schematic of one of the amplifiers. Input Transistors Q1 and Q2  
are biased at a fixed current. Any differential input signal forces  
the output voltages of A1 and A2 to change so that the differential  
voltage also appears across RG. The current that flows through  
RG must also flow through R1 and R2, resulting in a precisely  
amplified version of the differential input signal between the  
outputs of A1 and A2. Topologically, Q1, A1, and R1 and Q2,  
A2, and R2 can be viewed as precision current feedback  
amplifiers. The common-mode signal and the amplified  
differential signal are applied to a difference amplifier that  
rejects the common-mode voltage. The difference amplifier  
employs innovations that result in low output offset voltage as  
well as low output offset voltage drift.  
Placing a resistor across the RG terminals sets the gain of the  
AD8222, which can be calculated by referring to Table 8 or by  
using the following gain equation.  
49.4 kꢀ  
RG =  
G 1  
Table 8. Gains Achieved Using 1% Resistors  
1% Standard Table Value of RG (Ω)  
Calculated Gain  
49.9 k  
12.4 k  
5.49 k  
2.61 k  
1.00 k  
499  
1.990  
4.984  
9.998  
19.93  
50.40  
100.0  
249  
199.4  
100  
49.9  
495.0  
991.0  
Because the input amplifiers employ a current feedback  
architecture, the gain-bandwidth product of the AD8222  
increases with gain, resulting in a system that does not suffer  
from the expected bandwidth loss of voltage feedback  
architectures at higher gains.  
The AD8222 defaults to G = 1 when no gain resistor is used.  
The tolerance and gain drift of the RG resistor should be added  
to the AD8222’s specifications to determine the total gain  
accuracy of the system. When the gain resistor is not used,  
gain error and gain drift are kept to a minimum.  
The transfer function of the AD8222 is  
V
OUT = G(VIN+ VIN−) + VREF  
where  
49.4 kꢀ  
G =1+  
RG  
Rev. 0 | Page 15 of 24  
 
 
 
AD8222  
Thermal Pad  
REFERENCE TERMINAL  
The AD8222s 4 mm × 4 mm LFCSP comes with a thermal pad.  
This pad is connected internally to −VS. The pad can either be  
left unconnected or connected to the negative supply rail.  
The output voltage of the AD8222 is developed with respect to  
the potential on the reference terminal. This is useful when the  
output signal needs to be offset to a precise midsupply level. For  
example, a voltage source can be tied to the REF pin to level-  
shift the output so that the AD8222 can drive a single-supply  
ADC. The REF pin is protected with ESD diodes and should  
not exceed either +VS or −VS by more than 0.3 V.  
To preserve maximum pin compatibility with future dual  
instrumentation amplifiers, leave the pad unconnected. This  
can be done by not soldering the paddle at all or by soldering  
the part to a landing that is a not connected to any other net.  
For high vibration applications, a landing is recommended.  
For best performance, source impedance to the REF terminal  
should be kept below 1 Ω. As shown in Figure 44, the reference  
terminal, REF, is at one end of a 10 kꢀ resistor. Additional  
impedance at the REF terminal adds to this 10 kꢀ resistor and  
results in amplification of the signal connected to the positive  
input. The amplification from the additional RREF can be  
computed by  
Because the AD8222 dissipates little power, heat dissipation is  
rarely an issue. If improved heat dissipation is desired (for example,  
when driving heavy loads), connect the thermal pad to the  
negative supply rail. For the best heat dissipation performance,  
the negative supply rail should be a plane in the board. See  
the section for thermal coefficients with and without the pad  
soldered.  
2
(
10 kꢀ + RREF  
20 kꢀ + RREF  
)
Common-Mode Rejection over Frequency  
The AD8222 has a higher CMRR over frequency than typical  
in-amps, which gives it greater immunity to disturbances, such  
as line noise and its associated harmonics. A well-implemented  
layout is required to maintain this high performance. Input  
source impedances should be matched closely. Source resistance  
should be placed close to the inputs so that it interacts with as  
little parasitic capacitance as possible.  
Only the positive signal path is amplified; the negative path is  
unaffected. This uneven amplification degrades the amplifiers  
CMRR.  
INCORRECT  
CORRECT  
CORRECT  
AD8222  
AD8222  
AD8222  
V
V
Parasitics at the RGx pins can also affect CMRR over frequency.  
The PCB should be laid out so that the parasitic capacitances at  
each pin match. Traces from the gain setting resistor to the RGx  
pins should be kept short to minimize parasitic inductance.  
REF  
REF  
V
REF  
+
+
AD8222  
OP2177  
Reference  
Errors introduced at the reference terminal feed directly to the  
output. Care should be taken to tie REF to the appropriate local  
ground.  
Figure 45. Driving the Reference Pin  
LAYOUT  
The AD8222 is a high precision device. To ensure optimum  
performance at the PC board level, care must be taken in the  
design of the board layout. The AD8222 pinout is arranged in a  
logical manner to aid in this task.  
Power Supplies  
A stable dc voltage should be used to power the instrumentation  
amplifier. Noise on the supply pins can adversely affect  
performance.  
Package Considerations  
The AD8222 has two positive supply pins (Pin 5 and Pin 16)  
and two negative supply pins (Pin 8 and Pin 13). While the part  
functions with only one pin from each supply pair connected,  
both pins should be connected for specified performance and  
optimum reliability.  
The AD8222 comes in a 4 mm × 4 mm LFCSP. Beware of  
blindly copying the footprint from another 4 mm × 4 mm  
LFCSP part; it may not have the same thermal pad size and  
leads. Refer to the Outline Dimensions section to verify that  
the PCB symbol has the correct dimensions. Space between the  
leads and thermal pad should be kept as wide as possible for the  
best bias current performance.  
Rev. 0 | Page 16 of 24  
 
AD8222  
INCORRECT  
+V  
CORRECT  
+V  
The AD8222 should be decoupled with 0.1 μF bypass capacitors,  
one for each supply. The positive supply decoupling capacitor  
should be placed near Pin 16, and the negative supply  
decoupling capacitor should be placed near Pin 8. Each supply  
should also be decoupled with a 10 μF tantalum capacitor. The  
tantalum capacitor can be placed further away from the  
AD8222 and can generally be shared by other precision integrated  
circuits. Figure 46 shows an example layout.  
S
S
AD8222  
AD8222  
REF  
REF  
REF  
REF  
–V  
–V  
S
S
TRANSFORMER  
TRANSFORMER  
+V  
+V  
S
S
0.1µF  
AD8222  
AD8222  
REF  
16  
15  
14  
13  
10M  
AD8222  
–V  
–V  
S
S
12  
11  
10  
9
1
2
3
4
THERMOCOUPLE  
THERMOCOUPLE  
R
R
G
+V  
S
+V  
S
G
C
C
C
R
1
fHIGH-PASS  
=
AD8222  
2πRC  
AD8222  
5
6
7
8
C
REF  
R
–V  
–V  
S
S
CAPACITIVELY COUPLED  
CAPACITIVELY COUPLED  
0.1µF  
Figure 47. Creating an IBIAS Path  
INPUT PROTECTION  
All terminals of the AD8222 are protected against ESD (1 kV—  
human body model). In addition, the input structure allows for  
dc overload conditions of about 2½ V beyond the supplies.  
Figure 46. Example Layout  
SOLDER WASH  
Input Voltages Beyond the Rails  
The solder process can leave flux and other contaminants on  
the board. When these contaminants are between the AD8222  
leads and thermal pad, they can create leakage paths that are  
larger than the AD8222s bias currents. A thorough washing  
process removes these contaminants and restores the AD8222’s  
excellent bias current performance.  
For larger input voltages, an external resistor should be used in  
series with each input to limit current during overload conditions.  
The AD8222 can safely handle a continuous 6 mA current. The  
limiting resistor can be computed from  
VIN VSUPPLY  
RLIMIT  
400 ꢀ  
6 mA  
INPUT BIAS CURRENT RETURN PATH  
The input bias current of the AD8222 must have a return path  
to common. When the source, such as a thermocouple, cannot  
provide a return current path, one should be created, as shown  
in Figure 47.  
For applications where the AD8222 encounters extreme overload  
voltages, such as cardiac defibrillators, external series resistors  
and low leakage diode clamps, such as the BAV199L, the FJH1100s,  
or the SP720, should be used.  
Rev. 0 | Page 17 of 24  
 
 
 
AD8222  
+15V  
Differential Input Voltages at High Gains  
When operating at high gain, large differential input voltages  
can cause more than 6 mA of current to flow into the inputs.  
This condition occurs when the differential voltage exceeds  
the following critical voltage  
0.1µF  
10µF  
C
1nF  
C
R
+IN  
R1  
4.02k  
V
C
D
10nF  
OUT  
V
CRITICAL = (400 + RG) × (6 mA)  
AD8222  
499Ω  
R
REF  
This is true for differential voltages of either polarity.  
–IN  
4.02kΩ  
C
C
1nF  
The maximum allowed differential voltage can be increased by  
adding an input protection resistor in series with each input.  
The value of each protection resistor should be  
0.1µF  
10µF  
–15V  
R
PROTECT = (VDIFF_MAX VCRITICAL)/6 mA  
Figure 48. RFI Suppression  
RF INTERFERENCE  
Figure 48 shows an example where the differential filter  
frequency is approximately 2 kHz, and the common-mode filter  
frequency is approximately 40 kHz.  
RF rectification is often a problem when amplifiers are used in  
applications where there are strong RF signals. The disturbance  
can appear as a small dc offset voltage. High frequency signals  
can be filtered with a low-pass, RC network placed at the input  
of the instrumentation amplifier, as shown in Figure 48. The  
filter limits the input signal bandwidth according to the  
following relationship.  
Values of R and CC should be chosen to minimize RFI.  
Mismatch between the R × CC at the positive input and the  
R × CC at negative input degrades the CMRR of the AD8222. By  
using a value of CD 10× larger than the value of CC, the effect of  
the mismatch is reduced and performance is improved.  
1
FilterFreqDiff =  
2π R(2CD + CC)  
COMMON-MODE INPUT VOLTAGE RANGE  
The three op amp architecture of the AD8222 applies gain and  
then removes the common-mode voltage. Therefore, internal  
nodes in the AD8222 experience a combination of both the  
gained signal and the common-mode signal. This combined  
signal can be limited by the voltage supplies even when the  
individual input and output signals are not. Figure 7 and Figure 8  
show the allowable common-mode input voltage ranges for  
various output voltages, supply voltages, and gains.  
1
FilterFreqCM =  
2π RCC  
where CD ≥ 10CC.  
Rev. 0 | Page 18 of 24  
 
 
AD8222  
APPLICATIONS  
DIFFERENTIAL OUTPUT  
Setting the Common-Mode Voltage  
The output common-mode voltage is set by the average of +IN2  
and REF2. The transfer function is  
The differential configuration of the AD8222 has the same  
excellent dc precision specifications as the single-ended output  
configuration and is recommended for applications in the  
frequency range of dc to 100 kHz.  
V
CM_OUT = (V+OUT + V−OUT)/2 = (V+IN2 + VREF2)/2  
+IN2 and REF2 have different properties that allow the  
reference voltage to be easily set for a wide variety of applications.  
+IN2 has high impedance but cannot swing to the supply rails  
of the part. REF2 must be driven with a low impedance but can  
go 300 mV beyond the supply rails.  
The circuit configuration is shown in Figure 49. The differential  
output specification in Table 2 and Table 4 refer to this  
configuration only. The circuit includes an RC filter that maintains  
the stability of the loop.  
The transfer function for the differential output is:  
A common application sets the common-mode output voltage  
to the midscale of a differential ADC. In this case, the ADC  
reference voltage would be sent to the +IN2 terminal, and  
ground would be connected to the REF2 terminal. This would  
produce a common-mode output voltage of half the ADC  
reference voltage.  
V
DIFF_OUT = V+OUT V−OUT = (V+IN V−IN) × G  
where  
49.4 kꢀ  
G =1 +  
RG  
2-Channel Differential Output Using a Dual Op Amp  
+IN  
+
Another differential output topology is shown in Figure 50.  
Instead of a second in-amp, ½ of a dual OP2177 op amp creates  
the inverted output. Because the OP2177 comes in an MSOP,  
this configuration allows the creation of a dual channel,  
precision differential output in-amp with little board area.  
R
+OUT  
AD8222  
G
10k  
–IN  
100pF  
AD8222  
+
+IN2  
Errors from the op amp are common to both outputs and are  
thus common mode. Errors from mismatched resistors also  
create a common-mode dc offset. Because these errors are  
common mode, they will likely be rejected by the next device  
in the signal chain.  
REF2  
–OUT  
Figure 49. Differential Circuit Schematic  
+IN  
+OUT  
AD8222  
–IN  
4.99kΩ  
REF  
V
REF  
+
4.99kΩ  
OP2177  
–OUT  
Figure 50. Differential Output Using Op Amp  
Rev. 0 | Page 19 of 24  
 
 
 
AD8222  
+12V  
+
10µF  
0.1µF  
+5V  
100pF  
NPO  
5%  
0.1µF  
1kΩ  
+IN  
–IN  
1kΩ  
1kΩ  
VDD  
+OUT  
–OUT  
IN+  
IN–  
AD8222  
AD7688  
GND REF  
1000pF  
(DIFF OUT)  
1kΩ  
2200pF  
2200pF  
REF2  
+IN2  
100pF  
NPO  
5%  
10µF  
X5R  
+12V  
+5V REF  
–12V  
0.1µF  
10µF  
0.1µF  
+
V
IN  
V
+5V REF  
OUT  
0.1µF  
ADR435  
GND  
Figure 51. Driving a Differential ADC  
The 1 kΩ resistors can also protect an ADC from overvoltages.  
Because the AD8222 runs on wider supply voltages than a  
typical ADC, there is a possibility of overdriving the ADC. This  
is not an issue with a PulSAR® converter, such as the AD7688.  
Its input can handle a 130 mA overdrive, which is much higher  
than the short-circuit limit of the AD8222. However, other  
converters have less robust inputs and may need the added  
protection.  
DRIVING A DIFFERENTIAL INPUT ADC  
The AD8222 can be configured in differential output mode  
to drive a differential analog-to-digital converter. Figure 51  
illustrates several of the concepts.  
First Antialiasing Filter  
The 1 kΩ resistor, 1000 pF capacitor, and 100 pF capacitors in  
front of the in-amp form a 76 kHz filter. This is the first of two  
antialiasing filters in the circuit and helps to reduce the noise of  
the system. The 100 pF capacitors protect against common-  
mode RFI signals. Note that they are 5% COG/NPO types.  
These capacitors match well over time and temperature, which  
keeps the system’s CMRR high over frequency.  
Reference  
The ADR435 supplies a reference voltage to both the ADC and  
the AD8222. Because REF2 on the AD8222 is grounded, the  
common-mode output voltage is precisely half the reference  
voltage, exactly where it needs to be for the ADC.  
Second Antialiasing Filter  
PRECISION STRAIN GAUGE  
A 1 kΩ resistor and 2200 pF capacitor are located between each  
AD8222 output and ADC input. They create a 72 kHz low-pass  
filter for another stage of antialiasing protection.  
The low offset and high CMRR over frequency of the  
AD8222 make it an excellent candidate for both ac and dc  
bridge measurements. As shown in Figure 52, the bridge can  
be connected to the inputs of the amplifier directly.  
These four elements also help distortion performance. The  
2200 pF capacitor provides charge to the switched capacitor  
front end of the ADC, while the 1 kΩ resistor shields the  
AD8222 from driving any sharp current changes. If the  
application requires a lower frequency antialiasing filter and is  
distortion sensitive, increase the value of the capacitor rather  
than the resistor.  
5V  
10µF  
0.1µF  
350Ω  
350Ω  
350Ω  
350Ω  
+IN  
–IN  
+
R
AD8222  
G
2.5V  
Figure 52. Precision Strain Gauge  
Rev. 0 | Page 20 of 24  
 
 
 
AD8222  
DRIVING CABLING  
AD8222  
All cables have a certain capacitance per unit length, which  
varies widely with cable type. The capacitive load from the cable  
may cause peaking in the AD8222s output response. To reduce  
the peaking, use a resistor between the AD8222 and the cable.  
Because cable capacitance and desired output response vary  
widely, this resistor is best determined empirically. A good  
starting point is 50 Ω.  
(DIFF OUT)  
AD8222  
(SINGLE OUT)  
The AD8222 operates at a low enough frequency that  
transmission line effects are rarely an issue; therefore, the  
resistor need not match the characteristic impedance of  
the cable.  
Figure 53. Driving a Cable  
Rev. 0 | Page 21 of 24  
 
AD8222  
OUTLINE DIMENSIONS  
0.50  
0.40  
0.30  
4.00  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
1
12  
13  
16  
PIN 1  
INDICATOR  
2.65  
2.50 SQ  
2.35  
3.75  
BSC SQ  
EXPOSED  
PAD  
4
8
5
0.65  
BSC  
9
0.25 MIN  
TOP VIEW  
1.95 BCS  
BOTTOM VIEW  
12° MAX  
0.80 MAX  
0.65 TYP  
1.00  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
SEATING  
PLANE  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VGGC.  
Figure 54. 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
4 mm × 4 mm Body, Very Thin Quad  
(CP-16-13)  
Dimensions are shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
−40°C to +85°C  
Product Description  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
Evaluation Board  
Package Option  
CP-16-13  
CP-16-13  
CP-16-13  
CP-16-13  
AD8222ACPZ-R71  
AD8222ACPZ-RL1  
AD8222ACPZ-WP1  
AD8222BCPZ-R71  
AD8222BCPZ-RL1  
AD8222BCPZ-WP1  
AD8222-EVAL  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
CP-16-13  
CP-16-13  
1 Z = Pb-free part.  
Rev. 0 | Page 22 of 24  
 
 
 
AD8222  
NOTES  
Rev. 0 | Page 23 of 24  
AD8222  
NOTES  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05947-0-7/06(0)  
Rev. 0 | Page 24 of 24  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY