AD621ACHIPS [ADI]

Low Drift, Low Power Instrumentation Amplifier; 低漂移,低功耗仪表放大器
AD621ACHIPS
型号: AD621ACHIPS
厂家: ADI    ADI
描述:

Low Drift, Low Power Instrumentation Amplifier
低漂移,低功耗仪表放大器

仪表放大器
文件: 总16页 (文件大小:665K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Drift, Low Power  
Instrumentation Amplifier  
a
AD621  
CONNECTION DIAGRAM  
8-Pin Plastic Mini-DIP (N), Cerdip (Q)  
and SOIC (R) Packages  
FEATURES  
EASY TO USE  
Pin-Strappable Gains of 10 & 100  
All Errors Specified for Total System Performance  
Higher Performance than Discrete In-Amp Designs  
Available in 8-Pin DIP and SOIC  
Low Power, 1.3 mA max Supply Current  
Wide Power Supply Range (؎2.3 V to ؎18 V)  
8
G=10/100  
1
2
3
4
G=10/100  
–IN  
AD621  
7
6
5
+V  
S
OUTPUT  
REF  
+IN  
EXCELLENT DC PERFORMANCE  
0.15% max, Total Gain Error  
؎5 ppm/؇C, Total Gain Drift  
–V  
S
TOP VIEW  
125 V max, Total Offset Voltage  
1.0 V/؇C max, Offset Voltage Drift  
pin strapping. The AD621 is fully specified as a total system,  
therefore, simplifying the design process.  
LOW NOISE  
9 nV/Hz, @ 1 kHz, Input Voltage Noise  
0.28 V p-p Noise (0.1 Hz to 10 Hz}  
For portable or remote applications, where power dissipation,  
size and weight are critical, the AD621 features a very low sup-  
ply current of 1.3 mA max and is packaged in a compact 8-pin  
SOIC, 8-pin plastic DIP or 8-pin cerdip. The AD621 also  
excels in applications requiring high total accuracy, such as pre-  
cision data acquisition systems used in weigh scales and trans-  
ducer interface circuits. Low maximum error specifications  
including nonlinearity of 10 ppm, gain drift of 5 ppm/°C, 50 µV  
offset voltage and 0.6 µV/°C offset drift (“B” grade), make pos-  
sible total system performance at a lower cost than has been pre-  
viously achieved with discrete designs or with other monolithic  
instrumentation amplifiers.  
EXCELLENT AC SPECIFICATIONS  
800 kHz Bandwidth (G = 10}, 200 kHz (G = 100}  
12 s Settling Time to 0.01%  
APPLICATIONS  
Weigh Scales  
Transducer Interface & Data Acquisition Systems  
Industrial Process Controls  
Battery Powered and Portable Equipment  
PRODUCT DESCRIPTION  
The AD621 is an easy to use, low cost, low power, high accu-  
racy instrumentation amplifier which is ideally suited for a wide  
range of applications. Its unique combination of high perfor-  
mance, small size and low power, outperforms discrete in amp  
implementations. High functionality, low gain errors and low  
gain drift errors are achieved by the use of internal gain setting  
resistors. Fixed gains of 10 and 100 can be easily set via external  
When operating from high source impedances, as in ECG and  
blood pressure monitors, the AD621 features the ideal combina-  
tion of low noise and low input bias currents. Voltage noise is  
specified as 9 nV/Hz at 1 kHz and 0.28 µV p-p from 0.1 Hz to  
10 Hz. Input current noise is also extremely low at 0.1 pA/Hz.  
The AD621 outperforms FET input devices with an input bias  
current specification of 1.5 nA max over the full industrial tem-  
perature range.  
30,000  
10,000  
25,000  
3 - OP AMP  
IN-AMPS  
TYPICAL STANDARD  
1,000  
BIPOLAR INPUT  
20,000  
(3 OP 07'S)  
IN-AMP  
15,000  
100  
AD621A  
10,000  
10  
AD621 SUPERßETA  
5,000  
0
BIPOLAR INPUT  
IN-AMP  
1
10  
5
15  
20  
SUPPLY CURRENT – mA  
0.1  
10k  
100k  
SOURCE RESISTANCE –  
10M  
100M  
1k  
1M  
Three Op Amp IA Designs vs. AD621  
Total Voltage Noise vs. Source Resistance  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 617/329-4700  
Fax: 617/326-8703  
AD621–SPECIFICATIONS  
(typical @ +25؇C, V =  
؎
15 V, and RL = 2 k  
, unless otherwise noted)  
Gain = 10  
S
AD621A  
Typ  
AD621B  
AD620S1  
Typ  
Model  
Conditions  
Min  
Max  
Min  
Typ  
Max  
Min  
Max  
Units  
GAIN  
Gain Error  
Nonlinearity,  
VOUT = ±10 V  
0.15  
0.05  
0.15  
%
VOUT = –10 V to +10 V RL = 2 kΩ  
2
10  
2
10  
2
10  
ppm of FS  
Gain vs. Temperature  
–1.5  
±5  
–1.5  
±5  
–1  
±5  
ppm/°C  
TOTAL VOLTAGE OFFSET  
Offset (RTI)  
VS = ±15 V  
VS = ±5 V to ±15 V  
VS = ±5 V to ±15 V  
75  
250  
400  
2.5  
50  
125  
215  
1.5  
75  
250  
500  
2.5  
µV  
µV  
µV/°C  
Over Temperature  
Average TC  
1.0  
120  
0.6  
120  
1.0  
120  
Offset Referred to the  
Input vs. Supply (PSR)2 VS = ±2.3 V to ± 18 V 95  
100  
95  
dB  
Total NOISE  
Voltage Noise (RTI)  
RTI  
Current Noise  
1 kHz  
0.1 Hz to 10 Hz  
f = 1 kHz  
13  
17  
13  
17  
0.8  
13  
17  
0.8  
nV/Hz  
µV p-p  
fA/Hz  
pA p-p  
0.55  
100  
10  
0.55  
100  
10  
0.55  
100  
10  
0.1 Hz–10 Hz  
INPUT CURRENT  
Input Bias Current  
Over Temperature  
Average TC  
Input Offset Current  
Over Temperature  
Average TC  
VS = ±15 V  
0.5  
2.0  
2.5  
0.5  
1.0  
1.5  
0.5  
2
4
nA  
nA  
pA/°C  
nA  
nA  
3.0  
0.3  
3.0  
0.3  
8.0  
0.3  
1.0  
1.5  
0.5  
0.75  
1.0  
2.0  
1.5  
1.5  
8.0  
pA/°C  
INPUT  
Input Impedance  
Differential  
Common-Mode  
Input Voltage Range3  
Over Temperature  
10ʈ2  
10ʈ2  
10ʈ2  
10ʈ2  
10ʈ2  
10ʈ2  
GʈpF  
GʈpF  
V
V
V
V
VS = ±2.3 V to ± 5 V  
VS = ±5 V to ±l8 V  
–VS + 1.9  
–VS + 2.1  
–VS + 1.9  
–VS + 2.1  
+VS – 1.2 –VS + 1.9  
+VS – 1.3 –VS + 2.1  
+VS – 1.4 –VS + 1.9  
+VS – 1.4 –VS + 2.1  
+VS – 1.2 –VS + 1.9  
+VS – 1.3 –VS + 2.1  
+VS – 1.4 –VS + 1.9  
+VS – 1.4 –VS + 2.3  
+VS – 1.2  
+VS – 1.3  
+VS – 1.4  
+VS – 1.4  
Over Temperature  
Common-Mode Rejection  
Ratio DC to 60 Hz with  
1 kSource Imbalance VCM = 0 V to ± 10 V  
OUTPUT  
Output Swing  
93  
110  
100  
110  
93  
110  
dB  
RL = 10 k,  
VS = ±2.3 V to ± 5 V  
–VS + 1.1  
–VS + 1.4  
–VS + 1.2  
–VS + 1.6  
+VS – 1.2 –VS + 1.1  
+VS – 1.3 –VS + 1.4  
+VS – 1.4 –VS + 1.2  
+VS – 1.5 –VS + 1.6  
+VS – 1.2 –VS + 1.1  
+VS – 1.3 –VS + 1.6  
+VS – 1.4 –VS + 1.2  
+VS – 1.5 –VS + 2.3  
+VS – 1.2  
+VS – 1.3  
+VS – 1.4  
+VS – 1.5  
V
V
V
V
Over Temperature  
VS = ±5 V to ±18 V  
Over Temperature  
Short Current Circuit  
±18  
±18  
±18  
mA  
DYNAMIC RESPONSE  
Small Signal,  
–3 dB Bandwidth  
Slew Rate  
Settling Time to 0.01%  
800  
1.2  
12  
800  
1.2  
12  
800  
1.2  
12  
kHz  
V/µs  
µs  
0.75  
0.75  
0.75  
10 V Step  
REFERENCE INPUT  
RIN  
IIN  
20  
+50  
20  
+50  
20  
+50  
kΩ  
µA  
V
VIN +, VREF = 0  
+60  
+60  
+60  
+VS – 1.6  
Voltage Range  
Gain to Output  
–VS + 1.6  
+VS – 1.6 –VS + 1.6  
+VS – 1.6 VS + 1.6  
1 ± 0.0001  
1 ± 0.0001  
1 ± 0.0001  
POWER SUPPLY  
Operating Range  
Quiescent Current  
Over Temperature  
±2.3  
±18  
1.3  
1.6  
±2.3  
±18  
1.3  
1.6  
±2.3  
±18  
1.3  
1.6  
V
mA  
mA  
VS = ±2.3 V to ±18 V  
0.9  
1.1  
0.9  
1.1  
0.9  
1.1  
TEMPERATURE RANGE  
For Specified Performance  
–40 to +85  
–40 to +85  
–55 to +125  
°C  
NOTES  
1See Analog Devices military data sheet for 883B tested specifications.  
2This is defined as the supply range over which PSRR is defined.  
3Input Voltage Range = CMV + (Gain × VDIFF).  
Specifications subject to change without notice.  
–2–  
REV. A  
AD621  
(typical @ +25  
؇
C, VS =  
؎
15 V, and RL = 2 k, unless otherwise noted)  
Gain = 100  
AD621A  
AD621B  
Typ  
AD620S1  
Typ  
Model  
Conditions  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
Units  
GAIN  
Gain Error  
Nonlinearity,  
VOUT = ±10 V  
0.15  
0.05  
0.15  
%
VOUT = –10 V to +10 V RL = 2 kΩ  
2
10  
2
10  
2
10  
ppm of FS  
Gain vs. Temperature  
–1  
±5  
–1  
±5  
–1  
±5  
ppm/°C  
TOTAL VOLTAGE OFFSET  
Offset (RTI)  
VS = ±15 V  
VS = ±5 V to ±15 V  
VS = ±5 V to ±15 V  
35  
125  
185  
1.0  
25  
50  
215  
0.6  
35  
125  
225  
1.0  
µV  
µV  
µV/°C  
Over Temperature  
Average TC  
0.3  
140  
0.1  
140  
0.3  
140  
Offset Referred to the  
Input vs. Supply (PSR)2 VS = ±2.3 V to ±18 V 110  
120  
110  
dB  
Total NOISE  
Voltage Noise (RTI)  
RTI  
Current Noise  
1 kHz  
0.1 Hz to 10 Hz  
f = 1 kHz  
9
13  
9
13  
0.4  
9
13  
0.4  
nV/Hz  
µV p-p  
fA/Hz  
pA p-p  
0.28  
100  
10  
0.28  
100  
10  
0.28  
100  
10  
0.1 Hz–10 Hz  
INPUT CURRENT  
Input Bias Current  
Over Temperature  
Average TC  
Input Offset Current  
Over Temperature  
Average TC  
VS = ±15 V  
0.5  
2.0  
2.5  
0.5  
1.0  
1.5  
0.5  
2
4
nA  
nA  
pA/°C  
nA  
nA  
3.0  
0.3  
3.0  
0.3  
8.0  
0.3  
1.0  
1.5  
0.5  
0.75  
1.0  
2.0  
1.5  
1.5  
8.0  
pA/°C  
INPUT  
Input Impedance  
Differential  
Common-Mode  
Input Voltage Range3  
Over Temperature  
10ʈ2  
10ʈ2  
10ʈ2  
10ʈ2  
10ʈ2  
10ʈ2  
GʈpF  
GʈpF  
V
V
V
V
VS = ±2.3 V to ±5 V  
VS = ±5 V to ±l8 V  
–VS + 1.9  
–VS + 2.1  
–VS + 1.9  
–VS + 2.1  
+VS – 1.2 –VS + 1.9  
+VS – 1.3 –VS + 2.1  
+VS – 1.4 –VS + 1.9  
+VS – 1.4 –VS + 2.1  
+VS – 1.2 –VS + 1.9  
+VS – 1.3 –VS + 2.1  
+VS – 1.4 –VS + 1.9  
+VS – 1.4 –VS + 2.3  
+VS – 1.2  
+VS – 1.3  
+VS – 1.4  
+VS – 1.4  
Over Temperature  
Common-Mode Rejection  
Ratio DC to 60 Hz with  
1 kSource Imbalance VCM = 0 V to ±10 V  
OUTPUT  
Output Swing  
110  
130  
120  
130  
110  
130  
dB  
RL = 10 k,  
VS = ±2.3 V to ±5 V  
–VS + 1.1  
–VS + 1.4  
–VS + 1.2  
–VS + 1.6  
+VS – 1.2 –VS + 1.1  
+VS – 1.3 –VS + 1.4  
+VS – 1.4 –VS + 1.2  
+VS – 1.5 –VS + 1.6  
+VS – 1.2 –VS + 1.1  
+VS – 1.3 –VS + 1.6  
+VS – 1.4 –VS + 1.2  
+VS – 1.5 –VS + 2.3  
+VS – 1.2  
+VS – 1.3  
+VS – 1.4  
+VS – 1.5  
V
V
V
V
Over Temperature  
VS = ±5 V to ±18 V  
Over Temperature  
Short Current Circuit  
±18  
±18  
±18  
mA  
DYNAMIC RESPONSE  
Small Signal,  
–3 dB Bandwidth  
Slew Rate  
Settling Time to 0.01%  
200  
1.2  
12  
200  
1.2  
12  
200  
1.2  
12  
kHz  
V/µs  
µs  
0.75  
0.75  
0.75  
10 V Step  
REFERENCE INPUT  
RIN  
IIN  
20  
+50  
20  
+50  
20  
+50  
kΩ  
µA  
V
VIN +, VREF = 0  
+60  
+60  
+60  
+VS – 1.6  
Voltage Range  
Gain to Output  
–VS + 1.6  
+VS – 1.6 –VS + 1.6  
+VS – 1.6 VS + 1.6  
1 ± 0.0001  
1 ± 0.0001  
1 ± 0.0001  
POWER SUPPLY  
Operating Range  
Quiescent Current  
Over Temperature  
±2.3  
±18  
1.3  
1.6  
±2.3  
±18  
1.3  
1.6  
±2.3  
±18  
1.3  
1.6  
V
mA  
mA  
VS = ±2.3 V to ±18 V  
0.9  
1.1  
0.9  
1.1  
0.9  
1.1  
TEMPERATURE RANGE  
For Specified Performance  
–40 to +85  
–40 to +85  
–55 to +125  
°C  
NOTES  
1See Analog Devices military data sheet for 883B tested specifications.  
2This is defined as the supply range over which PSEE is defined.  
3Input Voltage Range = CMV + (Gain × VDIFF).  
Specifications subject to change without notice.  
REV. A  
–3–  
AD621  
ABSOLUTE MAXIMUM RATINGS1  
ESD SUSCEPTIBILITY  
ESD (electrostatic discharge) sensitive device. Electrostatic  
charges as high as 4000 volts, which readily accumulate on the  
human body and on test equipment, can discharge without de-  
tection. Although the AD621 features proprietary ESD protec-  
tion circuitry, permanent damage may still occur on these  
devices if they are subjected to high energy electrostatic dis-  
charges. Therefore, proper ESD precautions are recommended  
to avoid any performance degradation or loss of functionality.  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
Internal Power Dissipation2 . . . . . . . . . . . . . . . . . . . . .650 mW  
Input Voltage (Common Mode) . . . . . . . . . . . . . . . . . . . . ±VS  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . ±25 V  
Output Short Circuit Duration . . . . . . . . . . . . . . . . . Indefinite  
Storage Temperature Range (Q) . . . . . . . . . .65°C to +150°C  
Storage Temperature Range (N, R) . . . . . . . .65°C to +125°C  
Operating Temperature Range  
AD621 (A, B) . . . . . . . . . . . . . . . . . . . . . . 40°C to +85°C  
AD621 (S) . . . . . . . . . . . . . . . . . . . . . . . . 55°C to +125°C  
Lead Temperature Range  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Option1  
(Soldering 10 seconds) . . . . . . . . . . . . . . . . . . . . . . . +300°C  
Model  
NOTES  
1Stresses above those listed under “Absolute Maximum Ratings” may cause perma-  
nent damage to the device. This is a stress rating only and functional operation of  
the device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2Specification is for device in free air:  
AD621AN  
AD621BN  
AD621AR  
AD621BR  
40°C to +85°C 8-Pin Plastic DIP  
40°C to +85°C 8-Pin Plastic DIP  
N-8  
N-8  
40°C to +85°C 8-Pin Plastic SOIC R-8  
40°C to +85°C 8-Pin Plastic SOIC R-8  
AD621SQ/883B2 55°C to +125°C 8-Pin Cerdip  
AD621ACHIPS –40°C to +85°C Die  
Q-8  
8-Pin Plastic Package: θJA = 95°C/Watt  
8-Pin Cerdip Package: θJA = 110°C/Watt  
8-Pin SOIC Package: θJA = 155°C/Watt  
NOTES  
1N = Plastic DIP; Q = Cerdip; R = SOIC.  
2See Analog Devices' military data sheet for 883B specifications.  
METALIZATION PHOTOGRAPH  
Dimensions shown in inches and (mm).  
Contact factory for latest dimensions.  
–4–  
REV. A  
Typical Characteristics–AD621  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
SAMPLE SIZE = 90  
SAMPLE SIZE = 90  
–800  
–400  
0
+400  
+800  
–200  
–100  
0
+100  
+200  
INPUT BIAS CURRENT – pA  
INPUT OFFSET VOLTAGE – µV  
Figure 4. Typical Distribution of Input Bias Current  
Figure 1. Typical Distribution of VOS, Gain = 10  
2
1.5  
1
50  
SAMPLE SIZE = 90  
40  
30  
20  
10  
0
0.5  
0
–80  
–40  
0
+40  
+80  
0
1
2
3
4
5
INPUT OFFSET VOLTAGE – µV  
WARM-UP TIME – Minutes  
Figure 2. Typical Distribution of VOS, Gain = 100  
Figure 5. Change in Input Offset Voltage vs. Warm-Up Time  
50  
1000  
SAMPLE SIZE = 90  
40  
30  
20  
10  
0
100  
GAIN = 10  
10  
GAIN = 100  
1
–400  
–200  
0
+200  
+400  
10k  
1
100  
1k  
100k  
10  
INPUT OFFSET CURRENT – pA  
FREQUENCY – Hz  
Figure 3. Typical Distribution of Input Offset Current  
Figure 6. Voltage Noise Spectral Density  
REV. A  
–5–  
AD621  
1000  
1s  
100mV  
100  
90  
100  
10  
0%  
10  
1
10  
100  
FREQUENCY – Hz  
1000  
Figure 9. 0.1 Hz to 10 Hz Current Noise, 5 pA per Vertical  
Div, 1 Second per Horizontal Div  
Figure 7. Current Noise Spectral Density vs. Frequency  
100,000  
10,000  
FET INPUT  
IN-AMP  
1000  
100  
AD621A  
TIME – 1 sec/div  
10  
1k  
10k  
100k  
1M  
10M  
SOURCE RESISTANCE –  
Figure 10. Total Drift vs. Source Resistance  
Figure 8a. 0.1 Hz to 10 Hz RTI Voltage Noise, Gain = 10  
+160  
+140  
GAIN = 100  
+120  
GAIN = 10  
+100  
+80  
+60  
+40  
+20  
0
TIME – 1 sec/div  
0.1  
1M  
1
10  
100  
1k  
10k  
100k  
FREQUENCY – Hz  
Figure 11. CMR vs. Frequency, RTI, for a Zero to 1 k  
Source Imbalance  
Figure 8b. 0.1 Hz to 10 Hz RTI Voltage Noise, G = 100  
–6–  
REV. A  
AD621  
35  
180  
160  
G = 10 & 100  
30  
25  
G = 100  
G = 10  
140  
120  
20  
15  
100  
80  
10  
5
60  
40  
0
20  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 12. Positive PSR vs. Frequency  
Figure 15. Large Signal Frequency Response  
180  
160  
+V –0.0  
s
–0.5  
–1.0  
–1.5  
G = 100  
G = 10  
140  
120  
100  
80  
+1.5  
+1.0  
+0.5  
60  
40  
20  
0.1  
+0.0  
–Vs  
1
10  
100  
1k  
10k  
100k  
1M  
0
5
10  
15  
20  
FREQUENCY – Hz  
SUPPLY VOLTAGE ± Volts  
Figure 13. Negative PSR vs. Frequency  
Figure 16. Input Voltage Range vs. Supply Voltage  
1000  
100  
10  
–0.0  
–0.5  
+V  
s
R = 10kΩ  
L
–1.0  
–1.5  
R = 2kΩ  
L
+1.5  
+1.0  
+0.5  
R = 2kΩ  
L
1
R = 10kΩ  
L
–V +0.0  
s
0.1  
100  
5
10  
15  
20  
0
1k  
10k  
100k  
1M  
10M  
SUPPLY VOLTAGE ± Volts  
FREQUENCY – Hz  
Figure 17. Output Voltage Swing vs. Supply Voltage,  
G = 10  
Figure 14. Closed-Loop Gain vs. Frequency  
REV. A  
–7–  
AD621  
30  
1mV  
5V  
10µs  
100  
90  
V
= ± 15V  
S
G = 10  
20  
10  
0
10  
0%  
0
100  
1k  
10k  
LOAD RESISTANCE – Ω  
Figure 21. Large Signal Pulse Response and Settling  
Figure 18. Output Voltage Swing vs. Resistive Load  
Time, G = 100 (0.5 mV = 0.1%), RL = 2 k, CL = 100 pF  
10µs  
20mV  
5V  
10µs  
1mV  
100  
90  
100  
90  
10  
10  
0%  
0%  
Figure 22. Small Signal Pulse Response, G = 100,  
RL = 2 k, CL = 100 pF  
Figure 19. Large Signal Pulse Response and Settling  
Time Gain, G = 10 (0.5 mV = 0.01%), RL = 1 k ,  
CL = 100 pF  
20  
10µs  
20mV  
TO 0.01%  
100  
90  
15  
TO 0.1%  
10  
10  
5
0
0%  
0
5
10  
15  
20  
OUTPUT STEP SIZE – Volts  
Figure 20. Small Signal Pulse Response, G = 10,  
RL = 1 k , CL = 100 pF  
Figure 23. Settling Time vs. Step Size, G = 10  
–8–  
REV. A  
AD621  
20  
15  
10  
100µV  
2V  
TO 0.01%  
100  
90  
TO 0.1%  
10  
5
0
0%  
0
5
10  
15  
20  
OUTPUT STEP SIZE – Volts  
Figure 27. Gain Nonlinearity, G = 10, RL = 10 k, Vertical  
Scale: 100 µV/Div = 100 ppm/Div, Horizontal Scale:  
2 Volts/Div  
Figure 24. Settling Time vs. Step Size, Gain = 100  
2.0  
10k  
1%  
1kΩ  
10T  
10kΩ  
1%  
1.5  
INPUT  
20V p-p  
100kΩ  
0.1%  
+IB  
VOUT  
1.0  
0.5  
G=10  
+VS  
7
G=100  
2
1
11kΩ  
0.1%  
1kΩ  
0.1%  
IB  
0
G=100  
G=10  
–0.5  
6
AD621  
5
–1.0  
–1.5  
–2.0  
4
8
3
–VS  
–125  
–75  
–25  
25  
75  
125  
175  
TEMPERATURE – °C  
Figure 25. Input Bias Current vs. Temperature  
Figure 28. Settling Time Test Circuit  
0PW 0  
VZR 0  
100µV  
2V  
100  
90  
10  
0%  
0 WFM  
20 WFM AQR WARNING  
Figure 26. Gain Nonlinearity, G = 100, RL = 10 k,  
CL = 0 pF. Vertical Scale: 100 µV/Div = 100 ppm/Div  
Horizontal Scale: 2 Volts/Div  
REV. A  
–9–  
AD621  
+V  
S
input voltage across the gain-setting resistor, RG, which equals  
R5 at a gain of 10 or the parallel combination of R5 and R6 at a  
gain of 100.  
7
V
I1  
20µA  
B
20µA  
I2  
This creates a differential gain from the inputs to the A1/A2  
outputs given by G = (R1 + R2) / RG + 1. The unity-gain sub-  
tracter A3 removes any common-mode signal, yielding a single-  
ended output referred to the REF pin potential.  
A1  
A2  
10kΩ  
C1  
C2  
10kΩ  
10kΩ  
OUTPUT  
The value of RG also determines the transconductance of the  
preamp stage. As RG is reduced for larger gains, the transcon-  
ductance increases asymptotically to that of the input transis-  
tors. This has three important advantages: (a) Open-loop gain is  
boosted for increasing programmed gain, thus reducing gain-re-  
lated errors. (b) The gain-bandwidth product (determined by  
C1, C2 and the preamp transconductance) increases with pro-  
grammed gain, thus optimizing frequency response. (c) The in-  
put voltage noise is reduced to a value of 9 nV/Hz, determined  
mainly by the collector current and base resistance of the input  
devices.  
A3  
6
10kΩ  
25k  
25k  
R5  
5555.6Ω  
R1  
R2  
R3  
400Ω  
REF  
5
Q1  
Q2  
– IN  
2
+IN  
3
R4  
400Ω  
R6  
555.6Ω  
1
8
G=100  
G=100  
4
–V  
S
Figure 29. Simplified Schematic of AD621  
THEORY OF OPERATION  
The AD621 is a monolithic instrumentation amplifier based on  
a modification of the classic three op amp circuit. Careful layout  
of the chip, with particular attention to thermal symmetry builds  
in tight matching and tracking of critical components, thus pre-  
serving the high level of performance inherent in this circuit, at a  
low price.  
Make vs. Buy: A Typical Bridge Application Error Budget  
The AD621 offers improved performance over discrete three op  
amp IA designs, along with smaller size, fewer components and  
10 times lower supply current. In the typical application, shown  
in Figure 30, a gain of 100 is required to amplify a bridge out-  
put of 20 mV full scale over the industrial temperature range  
of –40°C to +85°C. The error budget table below shows how  
to calculate the effect various error sources have on circuit  
accuracy.  
On chip gain resistors are pretrimmed for gains of 10 and 100.  
The AD621 is preset to a gain of 10. A single external jumper  
(between Pins 1 and 8) is all that is needed to select a gain of  
100. Special design techniques assure a low gain TC of 5 ppm/°C  
max, even at a gain of 100.  
Regardless of the system it is being used in, the AD621 provides  
greater accuracy, and at low power and price. In simple systems,  
absolute accuracy and drift errors are by far the most significant  
contributors to error. In more complex systems with an intelli-  
gent processor, an auto-gain/auto-zero cycle will remove all ab-  
solute accuracy and drift errors leaving only the resolution errors  
of gain nonlinearity and noise, thus allowing full 14-bit accuracy.  
Figure 29 is a simplified schematic of the AD621. The input  
transistors Q1 and Q2 provide a single differential-pair bipolar  
input for high precision, yet offer 10× lower Input Bias Current,  
thanks to Superβeta processing. Feedback through the Q1-A1-R1  
loop and the Q2-A2-R2 loop maintains constant collector cur-  
rent of the input devices Q1 and Q2, thereby impressing the  
Note that for the discrete circuit, the OP07 specifications for in-  
put voltage offset and noise have been multiplied by 2. This is  
because a three op amp type in amp has two op amps at its in-  
puts, both contributing to the overall input error.  
+10V  
10k*  
10k*  
OP07D  
R = 350Ω  
R = 350Ω  
R = 350Ω  
R = 350Ω  
10k**  
10k**  
AD621A  
100**  
OP07D  
REFERENCE  
OP07D  
10k*  
10k*  
AD621A MONOLITHIC  
INSTRUMENTATION  
AMPLIFIER, G=100  
3 OP-AMP IN-AMP, G=100  
*0.02% RESISTOR MATCH, 3PPM/°C TRACKING  
**DISCRETE 1% RESISTOR, 100PPM/°C TRACKING  
PRECISION BRIDGE TRANSDUCER  
SUPPLY CURRENT = 15mA MAX  
SUPPLY CURRENT = 1.3mA MAX  
Figure 30. Make vs. Buy  
–10–  
REV. A  
AD621  
+5V  
20k  
10k  
7
3
8
3k  
3k  
3k  
3k  
REF  
IN  
6
AD621B  
DIGITAL  
DATA  
OUTPUT  
5
ADC  
1
2
4
AGND  
AD705  
20k  
0.6mA  
MAX  
1.3mA  
MAX  
1.7mA  
0.10mA  
Figure 31. A Pressure Monitor Circuit which Operates on a +5 V Power Supply  
Pressure Measurement  
presence of large, unwanted common-mode signals or offsets.  
Many monolithic in amps achieve low total input drift and noise  
errors only at relatively high gains (~100). In contrast the  
AD621’s low output errors allow such performance at a gain of  
10, thus allowing larger input signals and therefore greater  
dynamic range. The circuit of Figure 32 (±15 V supply, G = 10)  
has only 2.5 µV/°C max. VOS drift and 0.55 µ/V p-p typical  
0.1 Hz to 10 Hz noise, yet will amplify a ±0.5 V differential sig-  
nal while suppressing a ±10 V common-mode signal, or it will  
amplify a ±1.25 V differential signal while suppressing a 1 V  
offset by use of the DAC driving the reference pin of the  
AD621. An added benefit, the offsetting DAC connected to the  
reference pin allows removal of a dc signal without the associ-  
ated time-constant of ac coupling. Note the representations of a  
differential and common-mode signal shown in Figure 32 such  
that a single-ended (or normal mode) signal of +1 V would be  
composed of a +0.5 V common-mode component and a +1 V  
differential component.  
Although useful in many bridge applications such as weigh-  
scales, the AD621 is especially suited for higher resistance pres-  
sure sensors powered at lower voltages where small size and low  
power become more even significant.  
Figure 31 shows a 3 kpressure transducer bridge powered  
from +5 V. In such a circuit, the bridge consumes only 1.7 mA.  
Adding the AD621 and a buffered voltage divider allows the sig-  
nal to be conditioned for only 3.8 mA of total supply current.  
Small size and low cost make the AD621 especially attractive for  
voltage output pressure transducers. Since it delivers low noise  
and drift, it will also serve applications such as diagnostic  
noninvasion blood pressure measurement.  
Wide Dynamic Range Gain Block Suppresses Large Common-  
Mode and Offset Signals  
The AD621 is especially useful in wide dynamic range applica-  
tions such as those requiring the amplification of signals in the  
Table I. Make vs. Buy Error Budget  
AD621 Circuit  
Calculation  
Discrete Circuit  
Calculation  
Error, ppm of Full Scale  
Error Source  
AD621  
Discrete  
ABSOLUTE ACCURACY at TA = +25°C  
Input Offset Voltage, µV  
Output Offset Voltage, µV  
Input Offset Current, nA  
CMR, dB  
125 µV/20 mV  
N/A  
2 nA × 350 /20 mV  
(150 µV × 2/20 mV  
((150 µV × 2)/100)/20 mV  
(6 nA × 350 )/20 mV  
16,250  
N/A  
12,118  
12,791  
15,000  
12,150  
121,53  
14,988  
110 dB3.16 ppm, × 5 V/20 mV (0.02% Match × 5 V)/20 mV  
Total Absolute Error  
17,558  
20,191  
DRIFT TO +85°C  
Gain Drift, ppm/°C  
Input Offset Voltage Drift, µV/°C  
Output Offset Voltage Drift, µV/°C  
5 ppm × 60°C  
1 µV/°C × 60°C/20 mV  
N/A  
100 ppm/°C Track × 60°C  
(2.5 µV/°C × 2 × 60°C)/20 mV  
(2.5 µV/°C × 2 × 60°C)/100/20 mV  
13,300  
13,000  
N/A  
12,600  
15,000  
12,150  
Total Drift Error  
13,690  
15,750  
RESOLUTION  
Gain Nonlinearity, ppm of Full Scale  
Typ 0.1 Hz–10 Hz Voltage Noise, µV p-p 0.28 µV p-p/20 mV  
40 ppm  
40 ppm  
(0.38 µV p-p × √2)120 mV  
12,140  
121,14  
12,140  
12,127  
Total Resolution Error  
Grand Total Error  
121,54  
11,472  
121,67  
36,008  
G = 100, VS = ±15 V.  
(All errors are min/max and referred to input.)  
REV. A  
–11–  
AD621  
INPUT A:  
±10V CM  
+
VDIFF  
±0.5V  
+
Optional  
VCOM  
±10V–  
2
1
10kΩ  
VOUT1  
x10  
AD621  
6
2
1
G = 10  
8
3
5
VOUT2  
x10  
AD621  
6
8
3
TOTAL GAIN = 100  
10kΩ  
5
INPUT B:  
DAC  
0 TO ±10V  
±1V  
OFFSET  
+
VDIFF + VOFFSET  
±(1.25V + 1V)  
Use this in place of the DAC for zero suppression function.  
TO  
TO  
VOUT1  
REF  
C
R
2
3
6
AD548  
Figure 32. Suppressing a Large Common-Mode or Offset Voltage in Order to Measure a Small Differential Signal  
(VS = ±15 V)  
The AD621, as well as many other monolithic instrumentation  
amplifiers, is based on the “three op amp” in amp circuit (Fig-  
ure 33) amplifier. Since the input amplifiers (A1 and A2) have a  
common-mode gain of unity and a differential gain equal to the  
set gain of the overall in amp, the voltages V1 and V2 are de-  
fined by the equations  
The AD621’s input amplifiers can provide output voltage within  
2.5 V of the supplies. To avoid saturation of the input amplifier  
the input voltage must therefore obey the equations:  
VCM + G × VDIFF/2 (Upper Supply – 2.5 V)  
VCM – G × VDIFF/2 (Lower Supply + 2.5 V)  
Figure 34 shows the trade-off between common-mode and  
differential-mode input for ±15 V supplies and G = 10.  
V1 = VCM + G × VDIFF/2  
V2 = VCM G × VDIFF/2  
By cascading with use of the optional AD621, the circuit of Fig-  
ure 32 will provide ±1 V of zero suppression at gains of 10 and  
100 (at VOUT1 and VOUT2 respectively) with maximum TCs of  
±4 ppm/°C and ±8 ppm/°C, respectively. Therefore, depending  
on the magnitude of the differential input signal, either VOUT1 or  
The common-mode voltage will drive the outputs of amplifiers  
A1 and A2 to the differential-signal voltage, multiplied by the  
gain, spreads them apart. For a +10 V common-mode +0.1 V  
differential input, V1 would be at +10.5 V and V2 at +9.5 V.  
VOUT2 may be used as the output.  
INPUT AMPLIFIER  
OUTPUT AMPLIFIER  
DIFFERENTIAL GAIN = 10  
COMMON MODE GAIN = 1  
DIFFERENTIAL GAIN = 1  
COMMON MODE GAIN = 1/1000  
±1.2  
±1.0  
±0.8  
±0.6  
±0.4  
±0.2  
0
10k  
V1  
A1  
10kΩ  
20kΩ  
4.44kΩ  
20kΩ  
A3  
10kΩ  
A2  
V2  
10kΩ  
Figure 33. Typical Three Op Amp Instrumentation  
Amplifier, Differential Gain = 10  
0
±2  
±4  
±6  
– Volts  
±8  
±10  
±12  
V
CM  
Figure 34. Trade-Off Between VCM and VDIFF Range (VS =  
±15 V, G = 10), for Reference Pin at Ground  
–12–  
REV. A  
AD621  
INPUT OVERLOAD CONSIDERATIONS  
Precision V-I Converter  
Failure of a transducer, faults on input lines, or power supply  
sequencing can subject the inputs of an instrumentation ampli-  
fier to voltages well beyond their linear range, or even the supply  
voltage, so it is essential that the amplifier handle these over-  
loads without being damaged.  
The AD621 along with another op amp and two resistors make  
a precision current source (Figure 35). The op amp buffers the  
reference terminal to maintain good CMR. The output voltage  
VX of the AD621 appears across R1 which converts it to a cur-  
rent. This current less only the input bias current of the op amp  
then flows out to the load.  
The AD621 will safely withstand continuous input overloads of  
±3.0 volts (±6.0 mA). This is true for gains of 10 and 100, with  
power on or off.  
+VS  
7
VIN+  
3
2
The inputs of the AD621 are protected by high current capacity  
dielectrically isolated 400 thin-film resistors R3 and R4 (Fig-  
ure 29) and by diodes which protect the input transistors Q1  
and Q2 from reverse breakdown. If reverse breakdown occurred,  
there would be a permanent increase in the amplifier’s input  
current.  
+ Vx  
R1  
6
AD621  
5
VIN–  
4
IL  
–VS  
The input overload capability of the AD621 can be easily in-  
creased while only slightly degrading the noise, common-mode  
rejection and offset drift of the device by adding external resis-  
tors in series with the amplifier’s inputs as shown in Figure 36.  
AD705  
(VIN+ ) – (VIN– ) G  
R1  
Vx  
IL=  
=
R1  
LOAD  
Table II summarizes the overload voltages and total input noise  
for a range of range of r values. Note that a 2 kresistor in se-  
ries with each input will protect the AD621 from a ±15 volt  
continuous overload, while only increasing input noise to  
13 nVHz—about the same level as would be expected from a  
typical unprotected 3 op amp in amp.  
Figure 35. Precision Voltage to Current Converter  
(Operates on 1.8 mA, ±3 V)  
INPUT AND OUTPUT OFFSET VOLTAGE  
The AD621 is fully specified for total input errors at gains of 10  
and 100. That is, effects of all error sources within the AD621  
are properly included in the guaranteed input error specs, elimi-  
nating the need for separate error calculation.  
Table II. Input Overload Protection vs. Value of Resistor RP  
Total Input Noise  
in nVHz @ 1 kHz  
Maximum Continuous  
Overload Voltage, VOL  
Value of  
Resistor RP G = 10  
Total Error RTI = Input Error + (Output Error/G)  
Total Error RTO = (Input Error × G) + Output Error  
G = 100 In Volts  
0
14  
14  
14  
15  
16  
17  
9
3
6
9
15  
21  
33  
499 Ω  
10  
11  
13  
14  
16  
REFERENCE TERMINAL  
1.00 kΩ  
2.00 kΩ  
3.01 k*  
4.99 k*  
Although usually grounded, the reference terminal may be used  
to offset the output of the AD621. This is useful when the load  
is “floating” or does not share a ground with the rest of the sys-  
tem. It also provides a direct means of injecting a precise offset.  
*1/4 watt, 1% metal-film resistor. All others are 1/8 watt, 1% RN55  
or equivalent.  
Another benefit of having a reference terminal is that it can be  
quite effective in eliminating ground loops and noise in a circuit  
or system.  
+V  
S
RP  
7
2
3
V
OL  
V
OUT  
AD621  
6
V
R
P
OL  
5
4
GAIN = 10 OR 100  
–V  
S
Figure 36. Input Overload Protection  
REV. A  
–13–  
AD621  
+V  
Gain Selection  
S
+V  
S
The AD621 has accurate, low temperature coefficient (TC),  
gains of 10 and 100 available. The gain of the AD621 is nomi-  
nally set at 10; this is easily changed to a gain of 100 by simply  
connecting a jumper between Pins 1 and 8.  
0.1µF  
0.1µF  
7
2
3
10  
INPUTS  
6
3
AD621  
8
9
4
OUTPUT  
+
5
AD526  
4
5
6
2
2
G = 10  
–V  
555.5  
7
20kΩ  
0.1µF  
...  
S
R
OFFSET  
NULL  
(OPTIONAL)  
6
EXT  
5,555.5Ω  
AD621  
...  
0.1µF  
–V  
S
5
3
Figure 38. A High Performance Programmable Gain  
Amplifier  
Figure 37. Programming the AD621 for Gains Between  
10 and 100  
COMMON-MODE REJECTION  
Instrumentation amplifiers like the AD621 offer high CMR  
which is a measure of the change in output voltage when both  
inputs arc changed by equal amounts. These specifications are  
usually given for a full-range input voltage change and a speci-  
fied source imbalance.  
As shown in Figure 37, the device can be programmed for any  
gain between 10 and 100 by connecting a single external resistor  
between Pins 1 and 8. Note that adding the external resistor will  
degrade both the gain accuracy and gain TC. Since the gain  
equation of the AD621 yields:  
For optimal CMR the reference terminal should be tied to a low  
impedance point, and differences in capacitance and resistance  
should be kept to a minimum between the two inputs. In many  
applications shielded cables are used to minimize noise, and for  
best CMR over frequency the shield should he properly driven.  
Figures 39 and 40 show active data guards which are configured  
to improve ac common-mode rejections by “bootstrapping” the  
capacitances of input cable shields, thus minimizing the capaci-  
tance mismatch between the inputs.  
9(RX + 6,111.111)  
G = 1+  
(RX + 555.555)  
This can be solved for the nominal value of external resistor for  
gains between 10 and 100:  
(G – 1)555.555 – 55,000  
RX  
=
(10 – G )  
Table III gives practical 1% resistor values for several common  
gains.  
+V  
S
– INPUT  
2
7
AD648  
Table III. Practical 1% External Resistor  
Values for Gains Between 10 and 100  
1
100Ω  
100Ω  
100kΩ  
100kΩ  
V
OUT  
6
Desired Recommended  
Gain Error Temperature  
Coefficient (TC)  
AD621  
Gain  
1% Resistor Value  
–V  
5
S
8
3
10  
20  
(Pins 1 and 8 Open)  
4.42 k  
*
*5 ppm/°C max  
0.4 (50 ppm/°C  
+ Resistor TC)  
0.4 (50 ppm/°C  
+ Resistor TC)  
*5 ppm/°C max  
REFERENCE  
4
±10%  
+ INPUT  
–V  
S
50  
698 Ω  
±10%  
Figure 39. Differential Shield Driver, G = 10  
100  
0 (Pins 1 and 8 Shorted)*  
+V  
S
A High Performance Programmable Gain Amplifier  
The excellent performance of the AD621 at a gain of 10 make it  
a good choice to team up with the AD526 programmable gain  
amplifier (PGA) to yield a differential input PGA with gains of  
10, 20, 40, 80, 160. As shown in Figure 38, the low offset of the  
AD621 allows total circuit offset to be trimmed using the offset  
null of the AD526, with only a negligible increase in total drift  
error. The total gain TC will be 9 ppm/°C max, with 2 µV/°C  
typical input offset drift. Bandwidth is 600 kHz to gains of 10 to  
80, and 350 kHz at G = 160. Settling time is 13 µs to 0.01%  
for a 10 V output step for all gains.  
– INPUT  
2
7
1
V
OUT  
100Ω  
AD621  
6
AD548  
+ INPUT  
5
8
3
REFERENCE  
4
–V  
S
Figure 40. Common-Mode Shield Driver, G = 100  
–14–  
REV. A  
AD621  
+VS  
GROUNDING  
– INPUT  
Since the AD621 output voltage is developed with respect to the  
potential on the reference terminal, it can solve many grounding  
problems by simply tying the REF pin to the appropriate “local  
ground.”  
2
7
VOUT  
6
AD621  
In order to isolate low level analog signals from a noisy digital  
environment, many data-acquisition components have separate  
analog and digital ground pins (Figure 41). It would be conve-  
nient to use a single ground line; however, current through  
ground wires and PC runs of the circuit card can cause hun-  
dreds of millivolts of error. Therefore, separate ground returns  
should be provided to minimize the current flow from the sensi-  
tive points to the system ground. These ground returns must be  
tied together at some point, usually best at the ADC package as  
shown.  
5
LOAD  
4
3
REFERENCE  
+ INPUT  
–VS  
TO POWER  
SUPPLY  
GROUND  
Figure 42b. Ground Returns for Bias Currents when Using  
a Thermocouple Input  
DIGITAL P.S.  
ANALOG P.S.  
C
+15V  
–15V  
C
+5V  
+VS  
– INPUT  
2
0.1µF  
0.1µF  
1µF 1µF  
1µF  
7
7
VOUT  
2
3
4
11  
4
+
15  
1
6
AD621  
9
11  
7
6
AD621  
5
AD585  
S/H  
DIGITAL  
DATA  
5
6
AD574A  
ADC  
LOAD  
OUTPUT  
4
3
+ INPUT  
100kΩ  
REFERENCE  
Figure 41. Basic Grounding Practice  
100kΩ  
–VS  
GROUND RETURNS FOR INPUT BIAS CURRENTS  
Input bias currents are those currents necessary to bias the input  
transistors of an amplifier. There must be a direct return path  
for these currents; therefore when amplifying “floating” input  
sources such as transformers, or ac-coupled sources, there must  
be a dc path from each input to ground as shown in Figures 42a  
through 42c. Refer to the Instrumentation Amplifier Application  
Guide (free from Analog Devices) for more information regard-  
ing in amp applications.  
TO POWER  
SUPPLY  
GROUND  
Figure 42c. Ground Returns for Bias Currents when Using  
AC Input Coupling  
+V  
S
– INPUT  
2
7
V
OUT  
6
AD621  
5
LOAD  
4
3
+ INPUT  
REFERENCE  
–V  
S
TO POWER  
SUPPLY  
GROUND  
Figure 42a. Ground Returns for Bias Currents when Using  
Transformer Input Coupling  
REV. A  
–15–  
AD621  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
Plastic DIP (N-8) Package  
8
5
0.25  
0.31  
(6.35)  
(7.87)  
1
4
0.30 (7.62)  
REF  
0.39 (9.91)  
MAX  
0.035 ± 0.01  
(0.89 ± 0.25)  
0.165 ± 0.01  
(4.19 ± 0.25)  
SEATING PLANE  
0.011 ± 0.003  
(4.57 ± 0.76)  
0.125 (3.18)  
MIN  
0.18 ± 0.03  
(4.57 ± 0.76)  
0.10  
0.018 ± 0.003  
(0.46 ± 0.08)  
0
- 15  
(2.54)  
TYP  
0.033  
(0.84)  
NOM  
Cerdip (Q-8) Package  
0.005 (0.13) MIN  
0.055 (1.4) MAX  
8
5
0.310 (7.87)  
0.220 (5.59)  
1
4
0.070 (1.78)  
0.030 (0.76)  
0.320 (8.13)  
0.290 (7.37)  
0.405 (10.29) MAX  
0.200  
(5.08)  
MAX  
0.060 (1.52)  
0.015 (0.38)  
0.150  
(3.81)  
MIN  
0.015 (0.38)  
0.008 (0.20)  
0.200 (5.08)  
0.125 (3.18)  
0.023 (0.58)  
0.014 (0.36)  
0.100 (2.54)  
BSC  
0
- 15  
SEATING PLANE  
SOIC (R-8) Package  
0.198 (5.03)  
0.188 (4.77)  
5
8
1
0.158 (4.00)  
0.150 (3.80)  
0.244 (6.200)  
0.228 (5.80)  
4
0.018 (0.46)  
0.014 (0.36)  
0.050 (1.27)  
TYP  
0.205 (5.20)  
0.181 (4.60)  
0.094(2.39)  
0.010 (0.25)  
0.004 (0.10)  
0.015 (0.38)  
0.007 (0.18)  
0.045 (1.15)  
0.020 (0.50)  
0.100 (2.59)  
–16–  
REV. A  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY