AD626AR-REEL [ADI]

Low Cost, Single Supply Differential Amplifier; 低成本,单电源差分放大器
AD626AR-REEL
型号: AD626AR-REEL
厂家: ADI    ADI
描述:

Low Cost, Single Supply Differential Amplifier
低成本,单电源差分放大器

放大器
文件: 总12页 (文件大小:169K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Cost, Single Supply  
Differential Amplifier  
a
AD626  
CONNECTION DIAGRAM  
8-Lead Plastic Mini-DIP (N)  
and SOIC (SO) Packages  
FEATURES  
Pin Selectable Gains of 10 and 100  
True Single Supply Operation  
Single Supply Range of +2.4 V to +10 V  
Dual Supply Range of ؎1.2 V to ؎6 V  
Wide Output Voltage Range of 30 mV to 4.7 V  
Optional Low-Pass Filtering  
200k  
200k⍀  
+IN  
1
2
3
4
–IN  
8
7
6
5
1/6  
Excellent DC Performance  
ANALOG  
GND  
G = 100  
Low Input Offset Voltage: 500 V max  
Large Common-Mode Range: 0 V to +54 V  
Low Power: 1.2 mW (VS = +5 V)  
Good CMR of 90 dB typ  
AC Performance  
Fast Settling Time: 24 s (0.01%)  
Includes Input Protection  
G = 30  
+V  
S
–V  
S
100k⍀  
=
FILTER  
G
2
OUT  
AD626  
Series Resistive Inputs (RIN = 200 k)  
RFI Filters Included  
Allows 50 V Continuous Overload  
APPLICATIONS  
Current Sensing  
Interface for Pressure Transducers, Position Indicators,  
Strain Gages, and Other Low Level Signal Sources  
The amplifier’s inputs are protected against continuous overload  
of up to 50 V, and RFI filters are included in the attenuator  
network. The output range is +0.03 V to +4.9 V using a +5 V  
supply. The amplifier provides a preset gain of 10, but gains be-  
tween 10 to 100 can be easily configured with an external resis-  
tor. Furthermore, a gain of 100 is available by connecting the G  
= 100 pin to analog ground. The AD626 also offers low-pass  
filter capability by connecting a capacitor between the filter pin  
and analog ground.  
PRODUCT DESCRIPTION  
The AD626 is a low cost, true single supply differential ampli-  
fier designed for amplifying and low-pass filtering small differen-  
tial voltages from sources having a large common-mode voltage.  
The AD626 can operate from either a single supply of +2.4 V to  
+10 V, or dual supplies of ±1.2 V to ±6 V. The input common-  
mode range of this amplifier is equal to 6 (+VS – 1 V) which  
provides a +24 V CMR while operating from a +5 V supply.  
Furthermore, the AD626 features a CMR of 90 dB typ.  
The AD626A and AD626B operate over the industrial tempera-  
ture range of –40°C to +85°C. The AD626 is available in two  
8-lead packages: a plastic mini-DIP and SOIC.  
25  
160  
140  
20  
100  
G = 10,100  
؎V  
FOR SINGLE  
CM  
15  
10  
5
V
= +5V  
S
AND DUAL SUPPLIES  
80  
60  
40  
20  
0
G = 100  
V
= ؎5V  
S
G = 10  
= ؎5V  
؎V  
FOR DUAL  
CM  
V
S
SUPPLIES ONLY  
0
1
2
3
4
5
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
POWER SUPPLY VOLTAGE – ؎Volts  
FREQUENCY – Hz  
Common-Mode Rejection vs. Frequency  
Input Common-Mode Range vs. Supply  
REV. C  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1999  
AD626–SPECIFICATIONS  
SINGLE SUPPLY  
(@ +VS = +5 V and TA = +25؇C)  
Model  
AD626A  
Min Typ  
AD626B  
Max Min Typ  
Parameter  
Condition  
Max  
Units  
GAIN  
Gain Accuracy  
Total Error  
Gain = 10  
Gain = 100  
Over Temperature, TA = TMIN–TMAX  
@ VOUT 100 mV dc  
@ VOUT 100 mV dc  
G = 10  
0.4  
0.1  
1.0  
1.0  
50  
0.2  
0.5  
0.6  
0.6  
30  
%
%
ppm/°C  
ppm/°C  
G = 100  
150  
120  
Gain Linearity  
Gain = 10  
Gain = 100  
@ VOUT 100 mV dc  
@ VOUT 100 mV dc  
0.014  
0.014  
0.016  
0.02  
0.014  
0.014  
0.016  
0.02  
%
%
OFFSET VOLTAGE  
Input Offset Voltage  
vs. Temperature  
vs. Temperature  
vs. Supply Voltage (PSR)  
+PSR  
1.9  
2.5  
2.9  
6
1.9  
2.5  
2.9  
6
mV  
mV  
µV/°C  
TMIN–TMAX, G = 10 or 100  
TMIN–TMAX, G = 10 or 100  
74  
64  
80  
66  
74  
64  
80  
66  
dB  
dB  
–PSR  
COMMON-MODE REJECTION  
+CMR Gain = 10, 100  
RL = 10 kΩ  
f = 100 Hz, VCM = +24 V  
f = 10 kHz, VCM = 6 V  
f = 100 Hz, VCM = –2 V  
66  
55  
60  
90  
64  
85  
80  
55  
73  
90  
64  
85  
dB  
dB  
dB  
±CMR Gain = 10, 100  
–CMR Gain = 10, 1001  
COMMON-MODE VOLTAGE RANGE  
+CMV Gain = 10  
–CMV Gain = 10  
CMR > 85 dB  
CMR > 85 dB  
+24  
–2  
+24  
–2  
V
V
INPUT  
Input Resistance  
Differential  
Common Mode  
200  
100  
6 (VS – l)  
200  
100  
6 (VS – l)  
kΩ  
kΩ  
V
Input Voltage Range (Common Mode)  
OUTPUT  
Output Voltage Swing  
Positive  
RL = 10 kΩ  
Gain = 10  
Gain = 100  
Gain = 10  
Gain = 100  
4.7 4.90  
4.7 4.90  
0.03  
4.7 4.90  
4.7 4.90  
0.03  
V
V
V
V
Negative  
0.03  
0.03  
Short Circuit Current  
+ISC  
12  
12  
mA  
NOISE  
Voltage Noise RTI  
Gain = 10  
Gain = 100  
Gain = 10  
f = 0.1 Hz–10 Hz  
f = 0.1 Hz–10 Hz  
f = 1 kHz  
2
2
0.25  
0.25  
2
2
0.25  
0.25  
µV p-p  
µV p-p  
µV/Hz  
µV/Hz  
Gain = 100  
f = 1 kHz  
DYNAMIC RESPONSE  
–3 dB Bandwidth  
Slew Rate, TMIN to TMAX  
VOUT = +1 V dc  
Gain = 10  
Gain = 100  
100  
0.17 0.22  
0.1 0.17  
24  
100  
0.17 0.22  
0.1 0.17  
22  
kHz  
V/µs  
V/µs  
µs  
Settling Time  
to 0.01%, 1 V Step  
POWER SUPPLY  
Operating Range  
Quiescent Current  
TA = TMIN–TMAX  
Gain = 10  
Gain = 100  
2.4  
5
0.16  
0.23  
12  
0.20  
0.29  
2.4  
5
0.16  
0.23  
10  
0.20  
0.29  
V
mA  
mA  
TRANSISTOR COUNT  
NOTES  
# of Transistors  
46  
46  
1At temperatures above +25°C, –CMV degrades at the rate of 12 mV/°C; i.e., @ +25°C CMV = –2 V, @ +85°C CMV = –1.28 V.  
Specifications subject to change without notice.  
–2–  
REV. C  
AD626  
(@ +V =  
؎5 V and TA = +25؇C)  
DUAL SUPPLY  
S
Model  
AD626A  
Min Typ  
AD626B  
Max Min Typ  
Parameter  
Condition  
Max  
Units  
GAIN  
Gain Accuracy  
Gain = 10  
Gain = 100  
Total Error  
RL = 10 kΩ  
0.2  
0.25  
0.5  
1.0  
50  
0.1  
0.15  
0.3  
0.6  
30  
%
%
ppm/°C  
ppm/°C  
Over Temperature, TA = TMIN–TMAX  
G = 10  
G = 100  
100  
80  
Gain Linearity  
Gain = 10  
Gain = 100  
0.045  
0.01  
0.055  
0.015  
0.045  
0.01  
0.055  
0.015  
%
%
OFFSET VOLTAGE  
Input Offset Voltage  
vs. Temperature  
vs. Temperature  
vs. Supply Voltage (PSR)  
+PSR  
50  
500  
1.0  
50  
250  
0.5  
µV  
mV  
µV/°C  
TMIN–TMAX, G = 10 or 100  
TMIN–TMAX, G = 10 or 100  
1.0  
0.5  
74  
64  
80  
66  
74  
64  
80  
66  
dB  
dB  
–PSR  
COMMON-MODE REJECTION  
±CMR Gain = 10, 100  
±CMR Gain = 10, 100  
RL = 10 kΩ  
f = 100 Hz, VCM = +24 V  
f = 10 kHz, VCM = 6 V  
66  
55  
90  
60  
80  
55  
90  
60  
dB  
dB  
COMMON-MODE VOLTAGE RANGE  
+CMV Gain = 10  
–CMV Gain = 10  
CMR > 85 dB  
CMR > 85 dB  
26.5  
32.5  
26.5  
32.5  
V
V
INPUT  
Input Resistance  
Differential  
Common Mode  
200  
110  
6 (VS – 1)  
200  
110  
6 (VS – 1)  
kΩ  
kΩ  
V
Input Voltage Range (Common Mode)  
OUTPUT  
Output Voltage Swing  
Positive  
Negative  
RL = 10 kΩ  
Gain = 10, 100  
Gain = 10  
4.7 4.90  
1.65 2.1  
1.45 1.8  
4.7 4.90  
1.65 2.1  
1.45 1.8  
V
V
V
Gain = 100  
Short Circuit Current  
+ISC  
–ISC  
12  
0.5  
12  
0.5  
mA  
mA  
NOISE  
Voltage Noise RTI  
Gain = 10  
Gain = 100  
Gain = 10  
f = 0.1 Hz–10 Hz  
f = 0.1 Hz–10 Hz  
f = 1 kHz  
2
2
0.25  
0.25  
2
2
0.25  
0.25  
µV p-p  
µV p-p  
µV/Hz  
µV/Hz  
Gain = 100  
f = 1 kHz  
DYNAMIC RESPONSE  
–3 dB Bandwidth  
Slew Rate, TMIN to TMAX  
VOUT = +1 V dc  
Gain = 10  
Gain = 100  
100  
0.17 0.22  
0.1 0.17  
24  
100  
0.17 0.22  
0.1 0.17  
22  
kHz  
V/µs  
V/µs  
µs  
Settling Time  
to 0.01%, 1 V Step  
POWER SUPPLY  
Operating Range  
Quiescent Current  
TA = TMIN–TMAX  
Gain = 10  
Gain = 100  
±1.2 ±5  
1.5  
±6  
2
2
±1.2 ±5  
1.5  
±6  
2
2
V
mA  
mA  
1.5  
1.5  
TRANSISTOR COUNT  
# of Transistors  
46  
46  
Specifications subject to change without notice.  
REV. C  
–3–  
AD626  
ABSOLUTE MAXIMUM RATINGS1  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause permanent  
damage to the device. This is a stress rating only; functional operation of the device  
at these or any other conditions above those indicated in the operational section of  
this specification is not implied. Exposure to absolute maximum rating conditions  
for extended periods may affect device reliability.  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+36 V  
Internal Power Dissipation2  
Peak Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 V  
Maximum Reversed Supply Voltage Limit . . . . . . . . . . . . –34 V  
Output Short Circuit Duration . . . . . . . . . . . . . . . . . Indefinite  
Storage Temperature Range (N, R) . . . . . . . . –65°C to +125°C  
Operating Temperature Range  
AD626A/B . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
Lead Temperature Range (Soldering 60 sec) . . . . . . . . +300°C  
2 8-Lead Plastic Package: θJA = 100°C/W, θJC = 50°C/W.  
8-Lead SOIC Package: θJA = 155°C/W, θJC = 40°C/W.  
ESD SUSCEPTIBILITY  
An ESD classification per method 3015.6 of MIL STD 883C  
has been performed on the AD626, which is a Class 1 device.  
ORDERING GUIDE  
Temperature  
Range  
Package  
Descriptions  
Package  
Options  
Model  
AD626AN  
AD626AR  
AD626BN  
AD626AR-REEL  
AD626AR-REEL7  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
Plastic DIP  
Small Outline IC  
Plastic DIP  
13" Tape and Reel  
7" Tape and Reel  
N-8  
SO-8  
N-8  
METALIZATION PHOTOGRAPH  
Dimensions shown in inches and (mm).  
–4–  
REV. C  
Typical Performance Characteristics–AD626  
6
25  
20  
15  
10  
5
V
= ؎5V  
S
5
4
3
GAIN = 10, 100  
؎V  
FOR SINGLE  
CM  
AND DUAL SUPPLIES  
2
1
؎V  
FOR DUAL  
CM  
SUPPLIES ONLY  
0
–1  
0
1
2
3
4
5
10  
100  
1k  
10k  
LOAD RESISTANCE – ⍀  
SUPPLY VOLTAGE – ؎Volts  
Figure 4. Positive Output Voltage Swing vs. Resistive Load  
Figure 1. Input Common-Mode Range vs. Supply  
5
–6  
–5  
–4  
T
= +25؇C  
A
4
3
2
1
0
SINGLE AND  
DUAL SUPPLY  
–3  
–2  
–1  
GAIN = 10  
GAIN = 100  
DUAL SUPPLY  
ONLY  
0
1
0
1
2
3
4
5
100  
1k  
10k  
100k  
LOAD RESISTANCE – ⍀  
SUPPLY VOLTAGE – Volts  
Figure 5. Negative Output Voltage Swing vs. Resistive Load  
Figure2. PositiveOutputVoltageSwingvs. SupplyVoltage  
30  
–5  
T
= +25؇C  
A
–4  
–3  
–2  
–1  
0
20  
10  
0
DUAL SUPPLY  
ONLY  
0
1
2
3
4
5
0
1
2
3
4
5
SUPPLY VOLTAGE – Volts  
WARM-UP TIME – Minutes  
Figure 3. Negative Output Voltage Swing vs. Supply  
Voltage  
Figure 6. Change in Input Offset Voltage vs. Warm-Up  
Time  
REV. C  
–5–  
AD626–Typical Performance Characteristics  
100  
95  
90  
85  
80  
75  
70  
65  
1000  
V
= ؎5V  
S
DUAL SUPPLY  
GAIN = 100  
GAIN = 10  
100  
10  
0
V
= +5V  
S
SINGLE SUPPLY  
V
= ؎5  
S
V
= ؎5V  
DUAL SUPPLY  
S
20  
22  
24  
26  
28  
30  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY – Hz  
INPUT COMMON-MODE VOLTAGE – Volts  
Figure 7. Closed-Loop Gain vs. Frequency  
Figure 10. Common-Mode Rejection vs. Input Common-  
Mode Voltage for Dual Supply Operation  
160  
100  
140  
100  
80  
60  
40  
20  
0
G = 10, 100  
90  
G = 10,100  
= +5  
V
S
G = 100  
= ؎5  
80  
70  
60  
V
S
G = 10  
= ؎5  
V
S
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
0
20  
40  
60  
80  
FREQUENCY – Hz  
INPUT SOURCE RESISTANCE MISMATCH – ⍀  
Figure 8. Common-Mode Rejection vs. Frequency  
Figure 11. Common-Mode Rejection vs. Input Source  
Resistance Mismatch  
100  
0.7  
G = 10, 100  
CURVE APPLIES TO  
ALL SUPPLY VOLTAGES  
AND GAINS BETWEEN 10 AND 100  
95  
0.6  
90  
85  
80  
0.5  
TOTAL GAIN ERROR =  
GAIN ACCURACY (FROM SPEC TABLE)  
+ ADDITIONAL GAIN ERROR  
0.4  
0.3  
0.2  
V
= +5  
S
75  
70  
65  
0.1  
0.0  
–5  
0
5
10  
15  
20  
25  
10  
100  
1k  
SOURCE RESISTANCE MISMATCH – ⍀  
INPUT COMMON-MODE VOLTAGE – Volts  
Figure 12. Additional Gain Error vs. Source Resistance  
Mismatch  
Figure 9. Common-Mode Rejection vs. Input Common-  
Mode Voltage for Single Supply Operation  
–6–  
REV. C  
AD626  
0.16  
0.15  
0.14  
0.13  
0.12  
G = 10  
1
2
3
4
5
5 SECONDS PER HORIZONTAL DIVISION  
SUPPLY VOLTAGE – Volts  
Figure 16. 0.1 Hz to 10 Hz RTI Voltage Noise. VS = ±5 V,  
Gain = 100  
Figure 13. Quiescent Supply Current vs. Supply Voltage  
for Single Supply Operation  
100  
80  
2.0  
1.5  
1.0  
0.5  
0
FOR V = ؎5V AND +5V  
S
60  
40  
20  
0
1
10  
100  
1k  
10k  
100k  
1M  
؎1  
؎2  
؎3  
؎4  
؎5  
VALUE OF RESISTOR R ⍀  
G
SUPPLY VOLTAGE – Volts  
Figure 17. Closed-Loop Gain vs. RG  
Figure 14. Quiescent Supply Current vs. Supply Voltage  
for Dual Supply Operation  
140  
10  
ALL CURVES FOR  
GAINS OF 10 OR 100  
120  
100  
80  
1.0  
SINGLE & DUAL  
GAIN = 10, 100  
–PSRR  
60  
0.1  
SINGLE  
+PSRR  
V
= ؎5V DUAL SUPPLY  
40  
20  
S
+PSRR  
DUAL  
0.01  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
1
10  
100  
1k  
10k  
100k  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 15. Noise Voltage Spectral Density vs. Frequency  
Figure 18. Power Supply Rejection vs. Frequency  
REV. C  
–7–  
AD626  
100  
90  
100  
90  
10  
10  
0%  
0%  
Figure 22. Large Signal Pulse Response. VS = +5 V,  
G = 100  
Figure 19. Large Signal Pulse Response. VS = ±5 V,  
G = 10  
100  
90  
100  
90  
10  
10  
0%  
0%  
Figure 23. Settling Time. VS = ±5 V, G = 10  
Figure 20. Large Signal Pulse Response. VS = ±5 V,  
G = 100  
100  
90  
100  
90  
10  
10  
0%  
0%  
Figure 24. Settling Time. VS = ±5 V, G = 100  
Figure 21. Large Signal Pulse Response. VS = +5 V,  
G = 10  
–8–  
REV. C  
AD626  
ERROR  
OUT  
10k⍀  
10k⍀  
100  
90  
2k⍀  
+V  
S
10k⍀  
INPUT  
20V p–p  
AD626  
1k⍀  
10  
–V  
S
0%  
Figure 27. Settling Time Test Circuit  
THEORY OF OPERATION  
Figure 25. Settling Time. VS = +5 V, G = 10  
The AD626 is a differential amplifier consisting of a precision  
balanced attenuator, a very low drift preamplifier (A1), and an  
output buffer amplifier (A2). It has been designed so that small  
differential signals can be accurately amplified and filtered in the  
presence of large common-mode voltages (VCM), without the  
use of any other active components.  
100  
90  
Figure 28 shows the main elements of the AD626. The signal  
inputs at Pins 1 and 8 are first applied to dual resistive attenuators  
R1 through R4 whose purpose is to reduce the peak common-  
mode voltage at the input to the preamplifier—a feedback stage  
based on the very low drift op amp A1. This allows the differen-  
tial input voltage to be accurately amplified in the presence of  
large common-mode voltages six times greater than that which  
can be tolerated by the actual input to A1. As a result, the input  
CMR extends to six times the quantity (VS – 1 V). The overall  
common-mode error is minimized by precise laser-trimming of  
R3 and R4, thus giving the AD626 a common-mode rejection  
ratio (CMRR) of at least 10,000:1 (80 dB).  
10  
0%  
Figure 26. Settling Time. VS = +5 V, G = 100  
To minimize the effect of spurious RF signals at the inputs due  
to rectification at the input to A1, small filter capacitors C1 and  
C2 are included.  
+V  
S
FILTER  
C1  
5pF  
AD626  
R1  
200k⍀  
R12  
100k⍀  
+IN  
–IN  
A1  
A2  
OUT  
R2  
200k⍀  
C2  
5pF  
R17  
95k⍀  
R3  
41k⍀  
R4  
41k⍀  
R15  
10k⍀  
R9  
10k⍀  
R5  
4.2k⍀  
R7  
500⍀  
R10  
10k⍀  
R13  
10k⍀  
R8  
10k⍀  
R14  
555⍀  
R11  
10k⍀  
R6  
500⍀  
GAIN = 100  
–V  
GND  
S
Figure 28. Simplified Schematic  
REV. C  
–9–  
AD626  
+INPUT  
–INPUT  
The output of A1 is connected to the input of A2 via a 100 kΩ  
(R12) resistor to facilitate the low-pass filtering of the signal of  
interest (see Low-Pass Filtering section).  
200k⍀  
200k⍀  
+IN  
–IN  
1
2
3
8
7
6
5
The 200 kinput impedance of the AD626 requires that the  
source resistance driving this amplifier be low in value (<1 k)—  
this is necessary to minimize gain error. Also, any mismatch  
between the total source resistance at each input will affect gain  
accuracy and common-mode rejection (CMR). For example:  
when operating at a gain of 10, an 80 mismatch in the source  
resistance between the inputs will degrade CMR to 68 dB.  
1/6  
ANALOG  
GND  
NOT  
CONNECTED  
G = 100  
G=30  
–V  
+V  
S
–V  
S
+V  
S
S
0.1F  
100k⍀  
FILTER  
0.1F  
OUT  
=
OUTPUT  
G
2
4
The output buffer, A2, operates at a gain of 2 or 20, thus setting  
the overall, precalibrated gain of the AD626 (with no external  
components) at 10 or 100. The gain is set by the feedback net-  
work around amplifier A2.  
AD626  
Figure 29. AD626 Configured for a Gain of 10  
+INPUT  
The output of amplifier A2 relies on a 10 kresistor to –VS for  
“pulldown.” For single supply operation, (–VS = “GND”), A2  
can drive a 10 kground referenced load to at least +4.7 V.  
The minimum, nominally “zero,” output voltage will be 30 mV.  
For dual supply operation (±5 V), the positive output voltage  
swing will be the same as for a single supply. The negative swing  
will be to –2.5 V, at G = 100, limited by the ratio:  
200k⍀  
200k⍀  
+IN  
–IN  
–INPUT  
1
2
3
8
7
6
5
1/6  
ANALOG  
GND  
G = 100  
G=30  
–V  
+V  
–V  
S
+V  
S
S
R15 + R14  
VS ×  
S
0.1F  
100k⍀  
FILTER  
0.1F  
OUTPUT  
R13 + R14 + R15  
OUT  
=
G
2
4
The negative range can be extended to –3.3 V (G = 100) and  
–4 V (G = 10) by adding an external 10 kpulldown from the  
output to –VS. This will add 0.5 mA to the AD626’s quiescent  
current, bringing the total to 2 mA.  
AD626  
Figure 30. AD626 Configured for a Gain of 100  
The AD626’s 100 kHz bandwidth at G = 10 and 100 (a 10 MHz  
gain bandwidth) is much higher than can be obtained with low  
power op amps in discrete differential amplifier circuits. Fur-  
thermore, the AD626 is stable driving capacitive loads up to  
50 pF (G10) or 200 pF (G100). Capacitive load drive can be  
increased to 200 pF (G10) by connecting a 100 resistor in  
series with the AD626’s output and the load.  
+INPUT  
200k⍀  
200k⍀  
+IN  
–IN  
–INPUT  
8
7
6
5
1
2
3
1/6  
R
H
ANALOG  
GND  
G = 100  
R
G
G=30  
–V  
+V  
–V  
S
+V  
S
S
S
ADJUSTING THE GAIN OF THE AD626  
100k⍀  
FILTER  
0.1F  
0.1F  
The AD626 is easily configured for gains of 10 or 100. Figure  
29 shows that for a gain of 10, Pin 7 is simply left unconnected;  
similarly, for a gain of 100, Pin 7 is grounded, as shown in Fig-  
ure 30.  
OUT  
=
G
OUTPUT  
2
4
CF  
FILTER  
(OPTIONAL)  
AD626  
1
CORNER FREQUENCY OF FILTER =  
Gains between 10 and 100 are easily set by connecting a vari-  
able resistance between Pin 7 and Analog GND, as shown in  
Figure 31. Because the on-chip resistors have an absolute toler-  
ance of ±20% (although they are ratio matched to within 0.1%),  
at least a 20% adjustment range must be provided. The values  
shown in the table in Figure 31 provide a good trade-off be-  
tween gain set range and resolution, for gains from 11 to 90.  
2CF (100k)  
RESISTOR VALUES FOR GAIN ADJUSTMENT  
GAIN RANGE  
R
()  
R ()  
H
G
4.99k  
802  
80  
11 – 20  
20 – 40  
40 – 80  
80 – 100  
100k  
10k  
1k  
2
100  
Figure 31. Recommended Circuit for Gain Adjustment  
–10–  
REV. C  
AD626  
SINGLE-POLE LOW-PASS FILTERING  
A low-pass filter can be easily implemented by using the features  
provided by the AD626.  
BRIDGE APPLICATION  
Figure 34 shows the AD626 in a typical bridge application.  
Here, the AD626 is set to operate at a gain of 100, using dual  
supply voltages and offering the option of low-pass filtering.  
By simply connecting a capacitor between Pin 4 and ground, a  
single-pole low-pass filter is created, as shown in Figure 32.  
+V  
S
+INPUT  
200k⍀  
200k⍀  
+IN  
–IN  
1
2
3
8
7
6
5
200k⍀  
200k⍀  
+IN  
–IN  
–INPUT  
1
2
3
8
7
6
5
1/6  
ANALOG  
GND  
G = 100  
1/6  
G=30  
ANALOG  
GND  
G = 100  
G=30  
–5V  
0.1F  
–V  
S
+V  
S
+5V  
0.1F  
100k⍀  
FILTER  
–V  
S
+V  
S
+10V  
0.1F  
OUT  
CF  
OPTIONAL  
LOW-PASS  
FILTER  
=
G
OUTPUT  
2
100k⍀  
FILTER  
4
OUT  
AD626  
=
G
OUTPUT  
2
4
CF  
AD626  
Figure 34. A Typical Bridge Application  
1
CORNER FREQUENCY OF FILTER =  
2CF (100k)  
Figure 32. A One-Pole Low-Pass Filter Circuit Which  
Operates from a Single +10 V Supply  
CURRENT SENSOR INTERFACE  
A typical current sensing application, making use of the large  
common-mode range of the AD626, is shown in Figure 33. The  
current being measured is sensed across resistor RS. The value  
of RS should be less than 1 kand should be selected so that  
the average differential voltage across this resistor is typically  
100 mV.  
To produce a full-scale output of +4 V, a gain of 40 is used  
adjustable by ±20% to absorb the tolerance in the sense resistor.  
Note that there is sufficient headroom to allow at least a 10%  
overrange (to +4.4 V).  
CURRENT IN  
CURRENT  
R
S
SENSOR  
CURRENT OUT  
200k⍀  
200k⍀  
+IN  
–IN  
1
2
3
8
7
6
5
1/6  
R
H
ANALOG  
GND  
G = 100  
R
G
G=30  
–V  
–V  
S
+V  
S
+V  
S
S
0.1F  
100k⍀  
FILTER  
0.1F  
OUT  
CF  
OPTIONAL  
LOW-PASS  
FILTER  
=
G
OUTPUT  
2
4
AD626  
Figure 33. Current Sensor Interface  
REV. C  
–11–  
AD626  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
8-Lead SOIC  
(SO-8)  
0.1968 (5.00)  
0.1890 (4.80)  
8
1
5
4
0.2440 (6.20)  
0.2284 (5.80)  
0.1574 (4.00)  
0.1497 (3.80)  
PIN 1  
0.0196 (0.50)  
0.0099 (0.25)  
0.0500 (1.27)  
BSC  
؋
 45؇  
0.0688 (1.75)  
0.0532 (1.35)  
0.0098 (0.25)  
0.0040 (0.10)  
SEATING  
PLANE  
8؇  
0؇  
0.0500 (1.27)  
0.0160 (0.41)  
0.0192 (0.49)  
0.0138 (0.35)  
0.0098 (0.25)  
0.0075 (0.19)  
8-Lead Plastic Dual-In Line (PDIP)  
(N-8)  
0.430 (10.92)  
0.348 (8.84)  
8
5
4
0.280 (7.11)  
0.240 (6.10)  
1
0.325 (8.25)  
0.300 (7.62)  
PIN 1  
0.100 (2.54)  
BSC  
0.060 (1.52)  
0.015 (0.38)  
0.210  
(5.33)  
MAX  
0.195 (4.95)  
0.115 (2.93)  
0.130  
(3.30)  
MIN  
0.160 (4.06)  
0.115 (2.93)  
0.015 (0.381)  
0.008 (0.204)  
0.022 (0.558)  
0.014 (0.356)  
SEATING  
PLANE  
0.070 (1.77)  
0.045 (1.15)  
–12–  
REV. C  

相关型号:

AD626AR-REEL7

Low Cost, Single Supply Differential Amplifier
ADI

AD626ARZ

暂无描述
ADI

AD626ARZ

INSTRUMENTATION AMPLIFIER, 2500 uV OFFSET-MAX, 0.1 MHz BAND WIDTH, PDSO8, SOIC-8
ROCHESTER

AD626ARZ-REEL

Low Cost, Single-Supply Differential Amplifier
ADI

AD626B

Low Cost, Single Supply Differential Amplifier
ADI

AD626BN

Low Cost, Single Supply Differential Amplifier
ADI

AD626BN

INSTRUMENTATION AMPLIFIER, 2500uV OFFSET-MAX, 0.1MHz BAND WIDTH, PDIP8, MINI, PLASTIC, DIP-8
ROCHESTER

AD626BNZ

INSTRUMENTATION AMPLIFIER, 2500 uV OFFSET-MAX, 0.1 MHz BAND WIDTH, PDIP8, MINI, PLASTIC, DIP-8
ROCHESTER

AD626_03

Low Cost, Single-Supply Differential Amplifi er
ADI

AD627

Micropower, Single and Dual Supply Rail-to-Rail Instrumentation Amplifier
ADI

AD6271

10 MHz, 20 V/レs, G = 1, 10, 100, 1000 i CMOS㈢ Programmable Gain Instrumentation Amplifier
ADI

AD627A

Micropower, Single and Dual Supply Rail-to-Rail Instrumentation Amplifier
ADI