AD626_03 [ADI]

Low Cost, Single-Supply Differential Amplifi er; 低成本,单电源差分功率放大器儿
AD626_03
型号: AD626_03
厂家: ADI    ADI
描述:

Low Cost, Single-Supply Differential Amplifi er
低成本,单电源差分功率放大器儿

放大器 功率放大器
文件: 总12页 (文件大小:339K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Cost, Single-Supply  
Differential Amplifier  
AD626  
FEATURES  
CONNECTION DIAGRAM  
8-Lead Plastic Mini-DIP (N)  
and SOIC (R) Packages  
Pin Selectable Gains of 10 and 100  
True Single-Supply Operation  
Single-Supply Range of +2.4V to +10V  
Dual-Supply Range of ؎1.2 V to ؎6V  
Wide OutputVoltage Range of 30 mV to 4.7V  
Optional Low-Pass Filtering  
200k  
200k⍀  
+IN  
1
2
3
4
–IN  
8
7
6
5
1/6  
ANALOG  
GND  
Excellent DC Performance  
G = 100  
G = 30  
Low Input OffsetVoltage: 500 V Max  
Large Common-Mode Range: 0V to +54V  
Low Power: 1.2 mW (VS = +5V)  
Good CMR of 90 dBTyp  
+V  
S
–V  
S
100k⍀  
=
FILTER  
G
2
OUT  
AC Performance  
AD626  
Fast SettlingTime: 24 s (0.01%)  
Includes Input Protection  
Series Resistive Inputs (RIN = 200 k)  
RFI Filters Included  
Allows 50V Continuous Overload  
range of this amplifier is equal to 6 (+VS 1V) which provides a  
+24V CMR while operating from a +5V supply. Furthermore,  
the AD626 features a CMR of 90 dB typ.  
APPLICATIONS  
Current Sensing  
Interface for PressureTransducers, Position Indicators,  
Strain Gages, and Other Low Level Signal Sources  
The amplifier’s inputs are protected against continuous overload of  
up to 50V, and RFI filters are included in the attenuator network.  
The output range is +0.03V to +4.9V using a +5V supply.The  
amplifier provides a preset gain of 10, but gains between 10 and  
100 can be easily configured with an external resistor. Further-  
more, a gain of 100 is available by connecting the G = 100 pin to  
analog ground.The AD626 also offers low-pass filter capability by  
connecting a capacitor between the filter pin and analog ground.  
PRODUCT DESCRIPTION  
The AD626 is a low cost, true single-supply differential amplifier  
designed for amplifying and low-pass filtering small differential  
voltages from sources having a large common-mode voltage.  
The AD626A and AD626B operate over the industrial temperature  
range of –40°C to +85°C.The AD626 is available in two 8-lead  
packages: a plastic mini-DIP and SOIC.  
The AD626 can operate from either a single supply of +2.4V to  
+10V, or dual supplies of 1.2V to 6V.The input common-mode  
25  
20  
140  
120  
100  
G = 10, 100  
S
؎V  
FOR SINGLE  
CM  
V
= +5V  
15  
10  
5
80  
60  
40  
20  
0
AND DUAL SUPPLIES  
G = 100  
V
= ؎5V  
S
G = 10  
= ؎5V  
V
S
؎V  
FOR DUAL  
CM  
SUPPLIES ONLY  
0
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
1
2
3
4
5
FREQUENCY – Hz  
SUPPLY VOLTAGE – ؎V  
Figure 2. Input Common-Mode Range vs. Supply  
Figure 1. Common-Mode Rejection vs. Frequency  
REV. D  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed byAnalog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
that may result from its use. No license is granted by implication or other-  
wise under any patent or patent rights ofAnalog Devices.Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
AD626–SPECIFICATIONS  
SINGLE SUPPLY (@+VS = +5 V and TA = 25؇C, unless otherwise noted.)  
Model  
AD626A  
Typ  
AD626B  
Typ  
Parameter  
Condition  
Min  
Max  
Min  
Max  
Unit  
GAIN  
Gain Accuracy  
Total Error  
Gain = 10  
Gain = 100  
OverTemperature,TA =TMIN toTMAX  
@VOUT 100 mV dc  
@VOUT 100 mV dc  
G = 10  
0.4  
0.1  
1.0  
1.0  
50  
0.2  
0.5  
0.6  
0.6  
30  
%
%
ppm/°C  
ppm/°C  
G = 100  
150  
120  
Gain Linearity  
Gain = 10  
Gain = 100  
@VOUT 100 mV dc  
@VOUT 100 mV dc  
0.014  
0.014  
0.016  
0.02  
0.014  
0.014  
0.016  
0.02  
%
%
OFFSETVOLTAGE  
Input OffsetVoltage  
vs.Temperature  
vs.Temperature  
vs. SupplyVoltage (PSR)  
+PSR  
1.9  
2.5  
2.9  
6
1.9  
2.5  
2.9  
6
mV  
mV  
µV/°C  
TMIN toTMAX, G = 10 or 100  
TMIN toTMAX, G = 10 or 100  
74  
64  
80  
66  
74  
64  
80  
66  
dB  
dB  
–PSR  
COMMON-MODE REJECTION  
+CMR Gain = 10, 100  
CMR Gain = 10, 100  
–CMR Gain = 10, 100*  
RL = 10 k  
f = 100 Hz,VCM = +24V  
f = 10 kHz,VCM = +6V  
f = 100 Hz,VCM = –2V  
66  
55  
60  
90  
64  
85  
80  
55  
73  
90  
64  
85  
dB  
dB  
dB  
COMMON-MODEVOLTAGE RANGE  
+CMV Gain = 10  
–CMV Gain = 10  
CMR > 85 dB  
CMR > 85 dB  
+24  
–2  
+24  
–2  
V
V
INPUT  
Input Resistance  
Differential  
Common-Mode  
200  
100  
6 (VS – l)  
200  
100  
6 (VS – l)  
k⍀  
k⍀  
V
InputVoltage Range (Common-Mode)  
OUTPUT  
OutputVoltage Swing  
Positive  
RL = 10 k⍀  
Gain = 10  
Gain = 100  
Gain = 10  
Gain = 100  
4.7  
4.7  
0.03  
0.03  
4.90  
4.90  
4.7  
4.7  
0.03  
0.03  
4.90  
4.90  
V
V
V
V
Negative  
Short Circuit Current  
+ISC  
12  
12  
mA  
NOISE  
Voltage Noise RTI  
Gain = 10  
f = 0.1 Hz–10 Hz  
f = 0.1 Hz–10 Hz  
f = 1 kHz  
2
2
0.25  
0.25  
2
2
0.25  
0.25  
µV p-p  
µV p-p  
Gain = 100  
Gain = 10  
Gain = 100  
ͱ
µV/ Hz  
ͱ
f = 1 kHz  
µV/ Hz  
DYNAMIC RESPONSE  
–3 dB Bandwidth  
Slew Rate,TMIN toTMAX  
VOUT = +1V dc  
Gain = 10  
Gain = 100  
100  
0.22  
0.17  
24  
100  
0.22  
0.17  
22  
kHz  
V/µs  
V/µs  
µs  
0.17  
0.1  
0.17  
0.1  
SettlingTime  
to 0.01%, 1V Step  
POWER SUPPLY  
Operating Range  
Quiescent Current  
TA =TMIN toTMAX  
Gain = 10  
Gain = 100  
2.4  
5
0.16  
0.23  
12  
0.20  
0.29  
2.4  
5
0.16  
0.23  
10  
0.20  
0.29  
V
mA  
mA  
TRANSISTOR COUNT  
Number ofTransistors  
46  
46  
*At temperatures above 25°C, –CMV degrades at the rate of 12 mV/°C; i.e., @ 25°C CMV = –2V, @ 85°C CMV = –1.28V.  
Specifications subject to change without notice.  
–2–  
REV. D  
AD626  
(@+VS = ؎5 V and TA = 25؇C, unless otherwise noted.)  
DUAL SUPPLY  
Model  
AD626A  
Typ  
AD626B  
Typ  
Parameter  
Condition  
Min  
Max  
Min  
Max  
Unit  
GAIN  
Gain Accuracy  
Total Error  
Gain = 10  
Gain = 100  
OverTemperature,TA =TMIN toTMAX  
RL = 10 k⍀  
0.2  
0.25  
0.5  
1.0  
50  
0.1  
0.15  
0.3  
0.6  
30  
%
%
ppm/°C  
ppm/°C  
G = 10  
G = 100  
100  
80  
Gain Linearity  
Gain = 10  
Gain = 100  
0.045  
0.01  
0.055  
0.015  
0.045  
0.01  
0.055  
0.015  
%
%
OFFSETVOLTAGE  
Input OffsetVoltage  
vs.Temperature  
vs.Temperature  
vs. SupplyVoltage (PSR)  
+PSR  
50  
500  
1.0  
50  
250  
0.5  
µV  
mV  
µV/°C  
TMIN toTMAX, G = 10 or 100  
TMIN toTMAX, G = 10 or 100  
1.0  
0.5  
74  
64  
80  
66  
74  
64  
80  
66  
dB  
dB  
–PSR  
COMMON-MODE REJECTION  
+CMR Gain = 10, 100  
RL = 10 k⍀  
f = 100 Hz,VCM = +24V  
f = 10 kHz,VCM = 6V  
66  
55  
90  
60  
80  
55  
90  
60  
dB  
dB  
CMR Gain = 10, 100  
COMMON-MODEVOLTAGE RANGE  
+CMV Gain = 10  
–CMV Gain = 10  
CMR > 85 dB  
CMR > 85 dB  
26.5  
32.5  
26.5  
32.5  
V
V
INPUT  
Input Resistance  
Differential  
Common-Mode  
200  
110  
6 (VS – l)  
200  
110  
6 (VS – l)  
k⍀  
k⍀  
V
InputVoltage Range (Common-Mode)  
OUTPUT  
OutputVoltage Swing  
Positive  
Negative  
RL = 10 k⍀  
Gain = 10, 100  
Gain = 10  
4.7  
–1.65  
–1.45  
4.90  
–2.1  
–1.8  
4.7  
–1.65  
–1.45  
4.90  
–2.1  
–1.8  
V
V
V
Gain = 100  
Short Circuit Current  
+ISC  
–ISC  
12  
0.5  
12  
0.5  
mA  
mA  
NOISE  
Voltage Noise RTI  
Gain = 10  
f = 0.1 Hz–10 Hz  
f = 0.1 Hz–10 Hz  
f = 1 kHz  
2
2
0.25  
0.25  
2
2
0.25  
0.25  
µV p-p  
µV p-p  
Gain = 100  
Gain = 10  
Gain = 100  
ͱ
µV/ Hz  
ͱ
f = 1 kHz  
µV/ Hz  
DYNAMIC RESPONSE  
–3 dB Bandwidth  
Slew Rate,TMIN toTMAX  
VOUT = +1V dc  
Gain = 10  
Gain = 100  
100  
0.22  
0.17  
24  
100  
0.22  
0.17  
22  
kHz  
V/µs  
V/µs  
µs  
0.17  
0.1  
0.17  
0.1  
SettlingTime  
to 0.01%, 1V Step  
POWER SUPPLY  
Operating Range  
Quiescent Current  
TA =TMIN toTMAX  
Gain = 10  
Gain = 100  
Ϯ1.2  
Ϯ5  
1.5  
1.5  
Ϯ6  
2
2
Ϯ1.2  
Ϯ5  
1.5  
1.5  
Ϯ6  
2
2
V
mA  
mA  
TRANSISTOR COUNT  
Number ofTransistors  
46  
46  
Specifications subject to change without notice.  
REV. D  
–3–  
AD626  
ABSOLUTE MAXIMUM RATINGS1  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause permanent  
damage to the device.This is a stress rating only; functional operation of the device  
at these or any other conditions above those indicated in the operational section of  
this specification is not implied. Exposure to absolute maximum rating conditions  
for extended periods may affect device reliability.  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +36V  
Internal Power Dissipation2  
Peak InputVoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +60V  
Maximum Reversed SupplyVoltage Limit . . . . . . . . . . . . . –34V  
Output Short Circuit Duration . . . . . . . . . . . . . . . . . . Indefinite  
StorageTemperature Range (N, R) . . . . . . . . . –65°C to +125°C  
OperatingTemperature Range  
2 8-Lead Plastic Package: JA = 100°C/W; JC = 50°C/W.  
8-Lead SOIC Package: JA = 155°C/W; JC = 40°C/W.  
AD626A/AD626B . . . . . . . . . . . . . . . . . . . . 40°C to +85°C  
LeadTemperature Range (Soldering 60 sec) . . . . . . . . . +300°C  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
AD626AN  
AD626AR  
AD626BN  
AD626AR-REEL  
AD626AR-REEL7  
40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
Plastic DIP  
Small Outline IC  
Plastic DIP  
13"Tape and Reel  
7"Tape and Reel  
N-8  
R-8  
N-8  
METALLIZATION PHOTOGRAPH  
Dimensions shown in inches and (mm).  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000V readily accumulate  
on the human body and test equipment and can discharge without detection.Although the AD626 features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
–4–  
REV. D  
Typical Performance Characteristics–AD626  
25  
20  
15  
10  
5
6
V
= ؎5V  
S
5
4
3
2
1
GAIN = 10, 100  
؎V  
FOR SINGLE  
CM  
AND DUAL SUPPLIES  
؎V  
FOR DUAL  
CM  
SUPPLIES ONLY  
0
–1  
0
1
2
3
4
5
10  
100  
1k  
10k  
LOAD RESISTANCE – ⍀  
SUPPLY VOLTAGE – ؎V  
TPC 1. Input Common-Mode Range vs. Supply  
TPC 4. Positive Output Voltage Swing vs. Resistive Load  
5
–6  
–5  
–4  
T
= 25؇C  
A
4
3
2
1
0
SINGLE AND  
DUAL SUPPLY  
–3  
–2  
–1  
GAIN = 10  
GAIN = 100  
DUAL SUPPLY  
ONLY  
0
1
0
1
2
3
4
5
100  
1k  
10k  
100k  
SUPPLY VOLTAGE – V  
LOAD RESISTANCE – ⍀  
TPC 2. Positive Output Voltage Swing vs. Supply Voltage  
TPC 5. Negative Output Voltage Swing vs. Resistive Load  
–5  
30  
T
= 25؇C  
A
–4  
–3  
–2  
–1  
0
20  
10  
0
DUAL SUPPLY  
ONLY  
0
1
2
3
4
5
0
1
2
3
4
5
SUPPLY VOLTAGE – V  
WARM-UP TIME – Minutes  
TPC 3. Negative Output Voltage Swing vs. Supply Voltage  
TPC 6. Change in Input Offset Voltage vs. Warm-UpTime  
REV. D  
–5–  
AD626  
100  
95  
90  
85  
80  
75  
70  
65  
1000  
V
= ؎5V  
S
DUAL SUPPLY  
GAIN = 100  
GAIN = 10  
100  
10  
0
V
= +5V  
S
SINGLE SUPPLY  
V
= ؎5  
S
V
= ؎5V  
DUAL SUPPLY  
S
20  
22  
24  
26  
28  
30  
10  
100  
1k  
10k  
100k  
1M  
INPUT COMMON-MODE VOLTAGE – V  
FREQUENCY – Hz  
TPC 7. Closed-Loop Gain vs. Frequency  
TPC 10. Common-Mode Rejection vs. Input  
Common-Mode Voltage for Dual-Supply Operation  
100  
140  
120  
100  
80  
G = 10, 100  
90  
G = 10, 100  
S
V
= +5  
80  
70  
60  
G = 100  
= ؎5  
V
S
60  
40  
G = 10  
= ؎5  
V
S
20  
0
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
0
20  
40  
60  
80  
FREQUENCY – Hz  
INPUT SOURCE RESISTANCE MISMATCH – ⍀  
TPC 8. Common-Mode Rejection vs. Frequency  
TPC 11. Common-Mode Rejection vs. Input Source  
Resistance Mismatch  
100  
0.7  
G = 10, 100  
CURVE APPLIES TO  
95  
ALL SUPPLY VOLTAGES  
0.6  
AND GAINS BETWEEN 10 AND 100  
90  
85  
80  
0.5  
TOTAL GAIN ERROR =  
GAIN ACCURACY (FROM SPEC TABLE)  
+ ADDITIONAL GAIN ERROR  
0.4  
0.3  
0.2  
V
= +5  
S
75  
70  
65  
0.1  
0.0  
–5  
0
5
10  
15  
20  
25  
10  
100  
1k  
INPUT COMMON-MODE VOLTAGE – V  
SOURCE RESISTANCE MISMATCH – ⍀  
TPC 9. Common-Mode Rejection vs. Input Common-  
Mode Voltage for Single-Supply Operation  
TPC 12. Additional Gain Error vs. Source  
Resistance Mismatch  
–6–  
REV. D  
AD626  
0.16  
0.15  
0.14  
0.13  
0.12  
G = 10  
1
2
3
4
5
5 SECONDS PER HORIZONTAL DIVISION  
SUPPLY VOLTAGE – V  
TPC 13. Quiescent Supply Current vs. Supply Voltage  
for Single-Supply Operation  
TPC 16. 0.1 Hz to 10 Hz RTI Voltage Noise. VS = 5 V,  
Gain = 100  
2.0  
100  
80  
1.5  
1.0  
0.5  
0
FOR V = ؎5V AND +5V  
S
60  
40  
20  
0
؎1  
؎2  
؎3  
؎4  
؎5  
1
10  
100  
1k  
10k  
100k  
1M  
SUPPLY VOLTAGE – V  
VALUE OF RESISTOR R ⍀  
G
TPC 14. Quiescent Supply Current vs. Supply Voltage  
for Dual-Supply Operation  
TPC 17. Closed-Loop Gain vs. RG  
10  
140  
ALL CURVES FOR  
GAINS OF 10 OR 100  
120  
100  
80  
1.0  
SINGLE AND DUAL  
–PSRR  
GAIN = 10, 100  
60  
0.1  
SINGLE  
+PSRR  
V
= ؎5V DUAL SUPPLY  
S
40  
20  
DUAL  
+PSRR  
0.01  
1
10  
100  
1k  
10k  
100k  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 15. Noise Voltage Spectral Density vs. Frequency  
TPC 18. Power Supply Rejection vs. Frequency  
REV. D  
–7–  
AD626  
100  
100  
90  
90  
10  
10  
0%  
0%  
TPC 19. Large Signal Pulse Response. VS = 5 V, G = 10  
TPC 22. Large Signal Pulse Response. VS = +5 V, G = 100  
100  
90  
100  
90  
10  
10  
0%  
0%  
TPC 20. Large Signal Pulse Response. VS = 5 V, G = 100  
TPC 23. SettlingTime. VS = 5 V, G = 10  
500mV  
100  
90  
100  
90  
10  
10  
0%  
0%  
TPC 21. Large Signal Pulse Response. VS = +5 V, G = 10  
TPC 24. SettlingTime. VS = 5 V, G = 100  
–8–  
REV. D  
AD626  
100  
90  
100  
90  
10  
10  
0%  
0%  
TPC 25. SettlingTime. VS = +5 V, G = 10  
TPC 26. SettlingTime. VS = +5 V, G = 100  
Figure 4 shows the main elements of the AD626.The signal inputs  
at Pins 1 and 8 are first applied to dual resistive attenuators R1  
through R4 whose purpose is to reduce the peak common-mode  
voltage at the input to the preamplifier—a feedback stage based  
on the very low drift op amp A1.This allows the differential  
input voltage to be accurately amplified in the presence of large  
common-mode voltages six times greater than that which can be  
tolerated by the actual input to A1. As a result, the input CMR  
extends to six times the quantity (VS 1V).The overall common-  
mode error is minimized by precise laser-trimming of R3 and R4,  
thus giving the AD626 a common-mode rejection ratio (CMRR)  
of at least 10,000:1 (80 dB).  
ERROR  
OUT  
10k⍀  
10k⍀  
2k⍀  
+V  
S
10k⍀  
1k⍀  
INPUT  
20V p–p  
AD626  
–V  
S
Figure 3. SettlingTimeTest Circuit  
THEORY OF OPERATION  
To minimize the effect of spurious RF signals at the inputs due to  
rectification at the input to A1, small filter capacitors C1 and C2  
are included.  
The AD626 is a differential amplifier consisting of a precision  
balanced attenuator, a very low drift preamplifier (A1), and an  
output buffer amplifier (A2). It has been designed so that small  
differential signals can be accurately amplified and filtered in the  
presence of large common-mode voltages (VCM), without the use  
of any other active components.  
The output of A1 is connected to the input of A2 via a 100 k  
(R12) resistor to facilitate the low-pass filtering of the signal of  
interest (see Low-Pass Filtering section).  
The 200 kinput impedance of the AD626 requires that the source  
resistance driving this amplifier be low in value (<1 k)—this is  
+V  
S
FILTER  
C1  
5pF  
AD626  
R1  
200k⍀  
R12  
100k⍀  
+IN  
–IN  
A1  
A2  
OUT  
R2  
200k⍀  
C2  
5pF  
R17  
95k⍀  
R3  
41k⍀  
R4  
41k⍀  
R15  
10k⍀  
R9  
10k⍀  
R5  
4.2k⍀  
R7  
500⍀  
R10  
10k⍀  
R13  
10k⍀  
R8  
10k⍀  
R14  
R11  
10k⍀  
R6  
500⍀  
555⍀  
GAIN = 100  
–V  
GND  
S
Figure 4. Simplified Schematic  
REV. D  
–9–  
AD626  
+INPUT  
–INPUT  
necessary to minimize gain error. Also, any mismatch between the  
total source resistance at each input will affect gain accuracy and  
common-mode rejection (CMR). For example: when operating at  
a gain of 10, an 80 mismatch in the source resistance between  
the inputs will degrade CMR to 68 dB.  
200k⍀  
200k⍀  
+IN  
–IN  
1
2
3
8
7
6
5
1/6  
ANALOG  
GND  
G = 100  
The output buffer, A2, operates at a gain of 2 or 20, thus setting  
the overall, precalibrated gain of the AD626 (with no external  
components) at 10 or 100.The gain is set by the feedback network  
around amplifier A2.  
G = 30  
–V  
–V  
S
+V  
S
+V  
S
S
0.1F  
100k⍀  
FILTER  
0.1F  
OUTPUT  
OUT  
The output of amplifier A2 relies on a 10 kresistor to –VS for  
“pull-down.” For single-supply operation, (–VS = “GND”), A2  
can drive a 10 kground referenced load to at least +4.7V.The  
minimum, nominally “zero,” output voltage will be 30 mV. For  
dual-supply operation ( 5V), the positive output voltage swing  
will be the same as for a single supply.The negative swing will be  
to –2.5V, at G = 100, limited by the ratio:  
4
G = 2  
AD626  
Figure 6. AD626 Configured for a Gain of 100  
+INPUT  
R15 + R14  
VS ×  
200k⍀  
200k⍀  
+IN  
–IN  
–INPUT  
1
2
3
4
8
7
6
5
R13 + R14 + R15  
1/6  
R
H
ANALOG  
GND  
The negative range can be extended to –3.3V (G = 100) and –4V  
(G = 10) by adding an external 10 kpull-down from the output  
to –VS. This will add 0.5 mA to the AD626’s quiescent current,  
bringing the total to 2 mA.  
G = 100  
R
G
G = 30  
–V  
+V  
–V  
S
+V  
S
S
S
100k⍀  
FILTER  
0.1F  
0.1F  
The AD626’s 100 kHz bandwidth at G = 10 and 100 (a 10 MHz  
gain bandwidth) is much higher than can be obtained with low  
power op amps in discrete differential amplifier circuits. Further-  
more, the AD626 is stable driving capacitive loads up to 50 pF  
(G10) or 200 pF (G100). Capacitive load drive can be increased  
to 200 pF (G10) by connecting a 100 resistor in series with the  
AD626’s output and the load.  
OUT  
OUTPUT  
G = 2  
CF  
FILTER  
(OPTIONAL)  
AD626  
1
CORNER FREQUENCY OF FILTER =  
2CF (100k)  
RESISTOR VALUES FOR GAIN ADJUSTMENT  
GAIN RANGE  
R
()  
R ()  
G
H
ADJUSTINGTHE GAIN OFTHE AD626  
4.99k  
802  
80  
11 – 20  
20 – 40  
40 – 80  
80 – 100  
100k  
10k  
1k  
The AD626 is easily configured for gains of 10 or 100. Figure 5  
shows that for a gain of 10, Pin 7 is simply left unconnected; simi-  
larly, for a gain of 100, Pin 7 is grounded, as shown in Figure 6.  
2
100  
Gains between 10 and 100 are easily set by connecting a variable  
resistance between Pin 7 and Analog GND, as shown in Figure 7.  
Because the on-chip resistors have an absolute tolerance of 20%  
(although they are ratio matched to within 0.1%), at least a 20%  
adjustment range must be provided.The values shown in the  
table in Figure 7 provide a good trade-off between gain set range  
and resolution, for gains from 11 to 90.  
Figure 7. Recommended Circuit for Gain Adjustment  
SINGLE-POLE LOW-PASS FILTERING  
A low-pass filter can be easily implemented by using the features  
provided by the AD626.  
By simply connecting a capacitor between Pin 4 and ground,  
a single-pole low-pass filter is created, as shown in Figure 8.  
+INPUT  
+INPUT  
200k⍀  
200k⍀  
–IN  
+IN  
–INPUT  
1
2
3
4
8
7
6
5
200k⍀  
200k⍀  
+IN  
–IN  
–INPUT  
1
2
3
4
8
7
6
5
1/6  
NOT  
1/6  
ANALOG  
GND  
G = 10  
CONNECTED  
ANALOG  
GND  
G = 100  
G = 30  
G = 30  
–V  
S
+V  
S
–V  
+V  
S
S
+10V  
0.1F  
–V  
S
+V  
S
0.1F  
100k⍀  
0.1F  
100k⍀  
FILTER  
OUT  
FILTER  
OUTPUT  
G = 2  
OUT  
OUTPUT  
G = 2  
AD626  
CF  
AD626  
1
Figure 5. AD626 Configured for a Gain of 10  
CORNER FREQUENCY OF FILTER =  
2CF (100k)  
Figure 8. A One-Pole Low-Pass Filter Circuit  
Which Operates from a Single +10 V Supply  
–10–  
REV. D  
AD626  
CURRENT SENSOR INTERFACE  
BRIDGE APPLICATION  
A typical current sensing application, making use of the large  
common-mode range of the AD626, is shown in Figure 9.The  
current being measured is sensed across resistor RS. The value of  
RS should be less than 1 kand should be selected so that the  
average differential voltage across this resistor is typically 100 mV.  
Figure 10 shows the AD626 in a typical bridge application. Here,  
the AD626 is set to operate at a gain of 100, using dual-supply  
voltages and offering the option of low-pass filtering.  
+V  
S
To produce a full-scale output of +4V, a gain of 40 is used adjust-  
able by 20% to absorb the tolerance in the sense resistor. Note  
that there is sufficient headroom to allow at least a 10% overrange  
(to +4.4V).  
200k⍀  
200k⍀  
+IN  
–IN  
1
2
3
4
8
7
6
5
1/6  
ANALOG  
GND  
G = 100  
G = 30  
CURRENT IN  
CURRENT  
–5V  
0.1F  
–V  
S
+V  
S
+5V  
0.1F  
R
S
SENSOR  
CURRENT OUT  
100k⍀  
FILTER  
200k⍀  
200k⍀  
+IN  
–IN  
1
2
3
4
8
7
6
5
OUT  
CF  
OPTIONAL  
LOW-PASS  
FILTER  
OUTPUT  
G = 2  
1/6  
R
AD626  
H
ANALOG  
GND  
G = 100  
R
G
G = 30  
Figure 10. ATypical Bridge Application  
–V  
+V  
–V  
S
+V  
S
S
S
100k⍀  
FILTER  
0.1F  
0.1F  
OUT  
CF  
OPTIONAL  
LOW-PASS  
FILTER  
OUTPUT  
G = 2  
AD626  
Figure 9. Current Sensor Interface  
REV. D  
11–  
AD626  
OUTLINE DIMENSIONS  
8-Lead Standard Small Outline Package [SOIC]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
؋
45؇  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8؇  
0؇  
0.51 (0.0201)  
0.33 (0.0130)  
1.27 (0.0500)  
0.41 (0.0160)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.19 (0.0075)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
8-Lead Plastic Dual-In Line Package [PDIP]  
(N-8)  
Dimensions shown in inches and (millimeters)  
0.375 (9.53)  
0.365 (9.27)  
0.355 (9.02)  
8
1
5
0.295 (7.49)  
0.285 (7.24)  
0.275 (6.98)  
4
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.150 (3.81)  
0.135 (3.43)  
0.120 (3.05)  
0.015  
(0.38)  
MIN  
0.180  
(4.57)  
MAX  
0.015 (0.38)  
0.010 (0.25)  
0.008 (0.20)  
0.150 (3.81)  
0.130 (3.30)  
0.110 (2.79)  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
SEATING  
PLANE  
0.060 (1.52)  
0.050 (1.27)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MO-095AA  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Revision History  
Location  
Page  
1/03—Data Sheet changed from REV. C to REV. D.  
Renumbered Figures andTPCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Universal  
Edits to Figure 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Edits to SPECIFICATIONS, Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Edit to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Update to standard CAUTION/ESDWarning note and diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Edits toTPC 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
–12–  
REV. D  

相关型号:

AD627

Micropower, Single and Dual Supply Rail-to-Rail Instrumentation Amplifier
ADI

AD6271

10 MHz, 20 V/レs, G = 1, 10, 100, 1000 i CMOS㈢ Programmable Gain Instrumentation Amplifier
ADI

AD627A

Micropower, Single and Dual Supply Rail-to-Rail Instrumentation Amplifier
ADI

AD627AN

Micropower, Single and Dual Supply Rail-to-Rail Instrumentation Amplifier
ADI

AD627ANZ

Micropower, Single- and Dual-Supply, Rail-to-Rail Instrumentation Amplifier
ADI

AD627AR

Micropower, Single and Dual Supply Rail-to-Rail Instrumentation Amplifier
ADI

AD627AR-REEL

Micropower, Single and Dual Supply Rail-to-Rail Instrumentation Amplifier
ADI

AD627AR-REEL7

Micropower, Single and Dual Supply Rail-to-Rail Instrumentation Amplifier
ADI

AD627ARZ

Micropower, Single- and Dual-Supply, Rail-to-Rail Instrumentation Amplifier
ADI

AD627ARZ-R7

Micropower, Single- and Dual-Supply, Rail-to-Rail Instrumentation Amplifier
ADI

AD627ARZ-REEL

INSTRUMENTATION AMPLIFIER, 200uV OFFSET-MAX, 0.08MHz BAND WIDTH, PDSO8, MS-012AA, SOIC-8
ADI

AD627ARZ-REEL7

INSTRUMENTATION AMPLIFIER, 200uV OFFSET-MAX, 0.08MHz BAND WIDTH, PDSO8, MS-012AA, SOIC-8
ADI