AD627ARZ-REEL7 [ADI]

INSTRUMENTATION AMPLIFIER, 200uV OFFSET-MAX, 0.08MHz BAND WIDTH, PDSO8, MS-012AA, SOIC-8;
AD627ARZ-REEL7
型号: AD627ARZ-REEL7
厂家: ADI    ADI
描述:

INSTRUMENTATION AMPLIFIER, 200uV OFFSET-MAX, 0.08MHz BAND WIDTH, PDSO8, MS-012AA, SOIC-8

放大器 光电二极管
文件: 总25页 (文件大小:1129K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Micropower, Single- and Dual-Supply,  
Rail-to-Rail Instrumentation Amplifier  
AD627  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Micropower, 85 μA maximum supply current  
Wide power supply range (+2.2 V to 18 V)  
Easy to use  
Gain set with one external resistor  
Gain range 5 (no resistor) to 1000  
Higher performance than discrete designs  
Rail-to-rail output swing  
High accuracy dc performance  
AD627  
R
1
2
3
4
8
7
6
5
R
G
G
–IN  
+IN  
+V  
S
OUTPUT  
REF  
–V  
S
Figure 1. 8-Lead PDIP (N) and SOIC_N (R)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.03% typical gain accuracy (G = +5) (AD627A)  
10 ppm/°C typical gain drift (G = +5)  
125 μV maximum input offset voltage (AD627B dual supply)  
200 μV maximum input offset voltage (AD627A dual supply)  
1 μV/°C maximum input offset voltage drift (AD627B)  
3 μV/°C maximum input offset voltage drift (AD627A)  
10 nA maximum input bias current  
Noise: 38 nV/√Hz RTI noise @ 1 kHz (G = +100)  
Excellent ac specifications  
AD627A: 77 dB minimum CMRR (G = +5)  
AD627B: 83 dB minimum CMRR (G = +5)  
80 kHz bandwidth (G = +5)  
AD627  
TRADITIONAL  
LOW POWER  
DISCRETE DESIGN  
135 μs settling time to 0.01% (G = +5, 5 V step)  
1
10  
100  
1k  
10k  
FREQUENCY (Hz)  
Figure 2. CMRR vs. Frequency, ±± S, Gain = +±  
APPLICATIONS  
4 to 20 mA loop-powered applications  
Low power medical instrumentation—ECG, EEG  
Transducer interfacing  
Thermocouple amplifiers  
Industrial process controls  
Low power data acquisition  
Portable battery-powered instruments  
ideal for battery-powered applications. Its rail-to-rail output  
stage maximizes dynamic range when operating from low  
supply voltages. Dual-supply operation (±±5 Vꢀ and low power  
consumption make the AD627 ideal for industrial applications,  
including 4 to 20 mA loop-powered systems.  
GENERAL DESCRIPTION  
The AD627 is an integrated, micropower instrumentation  
amplifier that delivers rail-to-rail output swing on single and  
dual (+2.2 V to ±±1 Vꢀ supplies. The AD627 provides excellent  
ac and dc specifications while operating at only 15 μA maximum.  
The AD627 does not compromise performance, unlike other  
micropower instrumentation amplifiers. Low voltage offset,  
offset drift, gain error, and gain drift minimize errors in the  
system. The AD627 also minimizes errors over frequency by  
providing excellent CMRR over frequency. Because the CMRR  
remains high up to 200 Hz, line noise and line harmonics are  
rejected.  
The AD627 offers superior flexibility by allowing the user to set  
the gain of the device with a single external resistor while con-  
forming to the 1-lead industry-standard pinout configuration.  
With no external resistor, the AD627 is configured for a gain of 5.  
With an external resistor, it can be set to a gain of up to ±000.  
A wide supply voltage range (+2.2 V to ±±1 Vꢀ and micropower  
current consumption make the AD627 a perfect fit for a wide  
range of applications. Single-supply operation, low power  
consumption, and rail-to-rail output swing make the AD627  
The AD627 provides superior performance, uses less circuit  
board area, and costs less than micropower discrete designs.  
Rev. D  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2007 Analog Devices, Inc. All rights reserved.  
 
IMPORTANT LINKS for the AD627*  
Last content update 04/29/2013 06:21 pm  
Newer Alternatives: AD8420 : (8-Lead MSOP) low-cost instrumentation amplifier with 80 micro-Amp supply current and 2.7V to +/-18V  
operation.  
PARAMETRIC SELECTION TABLES  
DESIGN TOOLS, MODELS, DRIVERS & SOFTWARE  
In-Amp Error Calculator  
Find Similar Products By Operating Parameters  
Looking for a wide-supply, micropower in amp with a smaller  
footprint and lower cost? Consider the AD8420.  
In-Amp Common Mode Calculator  
AD627A SPICE Macro-Model  
Looking for a single-supply in amp with 40 micro-Amp supply current  
and 1.8V operation? Consider the AD8235 (WLCSP) or the AD8236  
8-lead MSOP.  
AD627B SPICE Macro-Model  
DESIGN COLLABORATION COMMUNITY  
DOCUMENTATION  
AN-282: Fundamentals of Sampled Data Systems  
Collaborate Online with the ADI support team and other designers  
about select ADI products.  
AN-244: A User’s Guide to I.C. Instrumentation Amplifiers  
AN-245: Instrumentation Amplifiers Solve Unusual Design Problems  
AN-671: Reducing RFI Rectification Errors in In-Amp Circuits  
AN-589: Ways to Optimize the Performance of a Difference Amplifier  
A Designer’s Guide to Instrumentation Amplifiers  
Follow us on Twitter: www.twitter.com/ADI_News  
Like us on Facebook: www.facebook.com/AnalogDevicesInc  
UG-261: Evaluation Boards for the AD62x, AD822x and AD842x Series  
MS-2178: Discussion Between CareFusion and Analog Devices:  
Optimizing Performance and Lowering Power in an EEG Amplifer  
DESIGN SUPPORT  
Auto-Zero Amplifiers  
Submit your support request here:  
Linear and Data Converters  
High-performance Adder Uses Instrumentation Amplifiers  
Piezoresistive Sensing ICs in Portable Infusion Pumps  
Oscillometric Blood Pressure Measurement  
Protecting Instrumentation Amplifiers  
Embedded Processing and DSP  
Telephone our Customer Interaction Centers toll free:  
Americas:  
Europe:  
China:  
1-800-262-5643  
00800-266-822-82  
4006-100-006  
1800-419-0108  
8-800-555-45-90  
The AD8221 - Setting a New Industry Standard for Instrumentation  
Amplifiers  
India:  
Russia:  
Input Filter Prevents Instrumentation-amp RF-Rectification Errors  
Quality and Reliability  
Lead(Pb)-Free Data  
Applying Instrumentation Amplifiers Effectively: The Importance of an  
Input Ground Return  
Leading Inside Advertorials: Applying Instrumentation Amplifiers  
Effectively—The Importance of an Input Ground Return  
SAMPLE & BUY  
AD627  
EVALUATION KITS & SYMBOLS & FOOTPRINTS  
View the Evaluation Boards and Kits page for documentation and  
purchasing  
View Price & Packaging  
Request Evaluation Board  
Request Samples Check Inventory & Purchase  
Symbols and Footprints  
Find Local Distributors  
* This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet.  
Note: Dynamic changes to the content on this page (labeled 'Important Links') does not  
constitute a change to the revision number of the product data sheet.  
This content may be frequently modified.  
AD627  
TABLE OF CONTENTS  
Features .............................................................................................. ±  
Reference Terminal .................................................................... ±6  
Input Range Limitations in Single-Supply Applications....... ±6  
Output Buffering ........................................................................ ±7  
Input and Output Offset Errors................................................ ±7  
Make vs. Buy: A Typical Application Error Budget............... ±1  
Errors Due to AC CMRR .......................................................... ±9  
Ground Returns for Input Bias Currents ................................ ±9  
Layout and Grounding .............................................................. 20  
Input Protection ......................................................................... 2±  
RF Interference ........................................................................... 2±  
Applications Circuits...................................................................... 22  
Classic Bridge Circuit ................................................................ 22  
4 to 20 mA Single-Supply Receiver.......................................... 22  
Thermocouple Amplifier .......................................................... 22  
Outline Dimensions....................................................................... 24  
Ordering Guide .......................................................................... 24  
Applications....................................................................................... ±  
Functional Block Diagram .............................................................. ±  
General Description......................................................................... ±  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Single Supply................................................................................. 3  
Dual Supply................................................................................... 5  
Dual and Single Supplies ............................................................. 6  
Absolute Maximum Ratings............................................................ 7  
ESD Caution.................................................................................. 7  
Pin Configurations and Function Descriptions ........................... 1  
Typical Performance Characteristics ............................................. 9  
Theory of Operation ...................................................................... ±4  
Using the AD627 ............................................................................ ±5  
Basic Connections...................................................................... ±5  
Setting the Gain .......................................................................... ±5  
REVISION HISTORY  
11/07—Rev. C to Rev. D  
Rev. A to Rev. B  
Changes to Features.......................................................................... ±  
Changes to Figure 29 to Figure 34 Captions............................... ±3  
Changes to Setting the Gain Section............................................ ±5  
Changes to Input Range Limitations in Single-Supply  
Applications Section....................................................................... ±6  
Changes to Table 7.......................................................................... ±7  
Changes to Figure 4±...................................................................... ±1  
Changes to Figure 4 and Table I, Resulting Gain column......... ±±  
Change to Figure 9 ......................................................................... ±3  
11/05—Rev. B to Rev. C  
Updated Format..................................................................Universal  
Added Pin Configurations and Function  
Descriptions Section ........................................................................ 1  
Change to Figure 33 ....................................................................... ±3  
Updated Outline Dimensions....................................................... 24  
Changes to Ordering Guide .......................................................... 24  
Rev. D | Page 2 of 24  
 
AD627  
SPECIFICATIONS  
SINGLE SUPPLY  
Typical @ 25°C single supply, VS = 3 V and 5 V, and RL = 20 kΩ, unless otherwise noted.  
Table 1.  
AD627A  
Typ  
AD627B  
Typ  
Parameter  
GAIN  
Conditions  
Min  
Max  
Min  
Max  
Unit  
G = +5 + (200 kΩ/RG)  
Gain Range  
Gain Error1  
G = +5  
G = +10  
G = +100  
G = +1000  
Nonlinearity  
G = +5  
G = +100  
Gain vs. Temperature1  
5
1000  
5
1000  
V/V  
VOUT = (−VS) + 0.1 to (+VS) − 0.15  
0.03  
0.15  
0.15  
0.50  
0.10  
0.35  
0.35  
0.70  
0.01  
0.10  
0.10  
0.25  
0.06  
0.25  
0.25  
0.35  
%
%
%
%
10  
20  
100  
100  
10  
20  
100  
100  
ppm  
ppm  
G = +5  
G > +5  
10  
−75  
20  
10  
−75  
20  
ppm/°C  
ppm/°C  
VOLTAGE OFFSET  
Input Offset, VOSI  
2
50  
250  
445  
3
1000  
1650  
10  
25  
150  
215  
1
500  
1150  
10  
μV  
μV  
μV/°C  
μV  
μV  
Over Temperature  
Average TC  
VCM = VREF = +VS/2  
0.1  
0.1  
Output Offset, VOSO  
Over Temperature  
Average TC  
Offset Referred to the  
Input vs. Supply (PSRR)  
2.5  
2.5  
μV/°C  
G = +5  
G = +10  
G = +100  
G = +1000  
86  
100  
120  
125  
125  
86  
100  
120  
125  
125  
dB  
dB  
dB  
dB  
100  
110  
110  
100  
110  
110  
INPUT CURRENT  
Input Bias Current  
Over Temperature  
Average TC  
Input Offset Current  
Over Temperature  
Average TC  
3
10  
15  
3
10  
15  
nA  
nA  
pA/°C  
nA  
nA  
20  
0.3  
20  
0.3  
1
2
1
2
1
1
pA/°C  
INPUT  
Input Impedance  
Differential  
Common-Mode  
Input Voltage Range3  
20||2  
20||2  
20||2  
20||2  
GΩ||pF  
GΩ||pF  
V
VS = 2.2 V to 36 V  
(−VS) − 0.1  
(+VS) − 1  
(−VS) − 0.1  
(+VS) – 1  
Common-Mode Rejection VREF = VS/2  
Ratio3 DC to 60 Hz with  
1 kΩ Source Imbalance  
G = +5  
G = +5  
VS = 3 V, VCM = 0 V to 1.9 V  
VS = 5 V, VCM = 0 V to 3.7 V  
77  
77  
90  
90  
83  
83  
96  
96  
dB  
dB  
OUTPUT  
Output Swing  
RL = 20 kΩ  
RL = 100 kΩ  
Short circuit to ground  
(−VS) + 25  
(−VS) + 7  
(+VS) − 70 (−VS) + 25  
(+VS) − 25 (−VS) + 7  
(+VS) − 70 mV  
(+VS) − 25 mV  
mA  
Short-Circuit Current  
25  
25  
Rev. D | Page 3 of 24  
 
 
AD627  
AD627A  
Typ  
AD627B  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Unit  
DYNAMIC RESPONSE  
Small Signal −3 dB  
Bandwidth  
G = +5  
G = +100  
G = +1000  
Slew Rate  
80  
3
80  
3
0.4  
kHz  
kHz  
kHz  
V/μs  
0.4  
+0.05/−0.07  
+0.05/−0.07  
Settling Time to 0.01%  
G = +5  
G = +100  
Settling Time to 0.01%  
G = +5  
G = +100  
VS = 3 V, 1.5 V output step  
VS = 5 V, 2.5 V output step  
50% input overload  
65  
290  
65  
290  
μs  
μs  
85  
330  
3
85  
330  
3
μs  
μs  
μs  
Overload Recovery  
1 Does not include effects of External Resistor RG.  
2 See Table 8 for total RTI errors.  
3 See the Using the AD627 section for more information on the input range, gain range, and common-mode range.  
Rev. D | Page 4 of 24  
 
AD627  
DUAL SUPPLY  
Typical @ 25°C dual supply, VS = ±5 V and ±±5 V, and RL = 20 kΩ, unless otherwise noted.  
Table 2.  
AD627A  
Typ  
AD627B  
Typ  
Parameter  
GAIN  
Conditions  
Min  
Max  
Min  
Max  
Unit  
G = +5 + (200 kΩ/RG)  
Gain Range  
Gain Error1  
5
1000  
5
1000  
V/V  
VOUT = (−VS) + 0.1 to  
(+VS) − 0.15  
G = +5  
G = +10  
G = +100  
G = +1000  
Nonlinearity  
G = +5  
0.03  
0.15  
0.15  
0.50  
0.10  
0.35  
0.35  
0.70  
0.01  
0.10  
0.10  
0.25  
0.06  
0.25  
0.25  
0.35  
%
%
%
%
VS = 5 V/ 15 V  
VS = 5 V/ 15 V  
10/25  
10/15  
100  
100  
10/25  
10/15  
100  
100  
ppm  
ppm  
G = +100  
Gain vs. Temperature1  
G = +5  
G > +5  
10  
–75  
20  
10  
−75  
20  
ppm/°C  
ppm/°C  
VOLTAGE OFFSET  
Total RTI error =  
VOSI + VOSO/G  
2
Input Offset, VOSI  
25  
200  
395  
3
1000  
1700  
10  
25  
125  
190  
1
500  
1100  
10  
μV  
μV  
μV/°C  
μV  
μV  
Over Temperature  
Average TC  
VCM = VREF = 0 V  
0.1  
0.1  
Output Offset, VOSO  
Over Temperature  
Average TC  
Offset Referred to the Input  
vs. Supply (PSRR)  
2.5  
2.5  
μV/°C  
G = +5  
G = +10  
G = +100  
G = +1000  
86  
100  
120  
125  
125  
86  
100  
120  
125  
125  
dB  
dB  
dB  
dB  
100  
110  
110  
100  
110  
110  
INPUT CURRENT  
Input Bias Current  
Over Temperature  
Average TC  
Input Offset Current  
Over Temperature  
Average TC  
2
10  
15  
2
10  
15  
nA  
nA  
pA/°C  
nA  
nA  
20  
0.3  
20  
0.3  
1
5
1
5
5
5
pA/°C  
INPUT  
Input Impedance  
Differential  
Common Mode  
Input Voltage Range3  
20||2  
20||2  
20||2  
20||2  
GΩ||pF  
GΩ||pF  
V
VS = 1.1 V to 18 V  
(−VS) − 0.1  
(+VS) − 1  
(−VS) − 0.1  
(+VS) − 1  
Common-Mode Rejection  
Ratio3 DC to 60 Hz with  
1 kΩ Source Imbalance  
G = +5 to +1000  
VS = 5 V, VCM  
−4 V to +3.0 V  
VS = 15 V, VCM  
=
77  
77  
90  
90  
83  
83  
96  
96  
dB  
dB  
G = +5 to +1000  
=
−12 V to +10.9 V  
OUTPUT  
Output Swing  
RL = 20 kΩ  
RL = 100 kΩ  
Short circuit to ground  
(−VS) + 25  
(−VS) + 7  
(+VS) − 70 (−VS) + 25  
(+VS) − 25 (−VS) + 7  
(+VS) − 70 mV  
(+VS) − 25 mV  
mA  
Short-Circuit Current  
25  
25  
Rev. D | Page 5 of 24  
 
AD627  
AD627A  
Typ  
AD627B  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Unit  
DYNAMIC RESPONSE  
Small Signal −3 dB  
Bandwidth  
G = +5  
G = +100  
G = +1000  
Slew Rate  
80  
3
0.4  
80  
3
0.4  
kHz  
kHz  
kHz  
V/μs  
+0.05/−0.06  
+0.05/−0.06  
Settling Time to 0.01%  
VS = 5 V,  
+5 V output step  
G = +5  
G = +100  
135  
350  
135  
350  
μs  
μs  
Settling Time to 0.01%  
VS = 15 V,  
+15 V output step  
G = +5  
G = +100  
Overload Recovery  
330  
560  
3
330  
560  
3
μs  
μs  
μs  
50% input overload  
1 Does not include effects of External Resistor RG.  
2 See Table 8 for total RTI errors.  
3 See the Using the AD627 section for more information on the input range, gain range, and common-mode range.  
DUAL AND SINGLE SUPPLIES  
Table 3.  
AD627A  
AD627B  
Parameter  
Conditions  
Min  
Typ  
Max Min  
Typ  
Max Unit  
NOISE  
Voltage Noise, 1 kHz  
2
2
Total RTI Noise =  
(
eni  
)
+
(
eno / RG  
)
Input, Voltage Noise, eni  
Output, Voltage Noise, eno  
RTI, 0.1 Hz to 10 Hz  
G = +5  
G = +1000  
Current Noise  
0.1 Hz to 10 Hz  
REFERENCE INPUT  
RIN  
Gain to Output  
Voltage Range1  
POWER SUPPLY  
Operating Range  
38  
177  
38  
177  
nV/√Hz  
nV/√Hz  
1.2  
0.56  
50  
1.2  
0.56  
50  
μV p-p  
μV p-p  
fA/√Hz  
pA p-p  
f = 1 kHz  
RG = ∞  
1.0  
1.0  
125  
1
125  
1
kΩ  
Dual supply  
Single supply  
1.1  
2.2  
18  
36  
1.1  
2.2  
18  
36  
V
V
Quiescent Current  
Over Temperature  
60  
200  
85  
60  
200  
85  
μA  
nA/°C  
TEMPERATURE RANGE  
For Specified Performance  
−40  
+85  
−40  
+85  
°C  
1 See Using the AD627 section for more information on the reference terminal, input range, gain range, and common-mode range.  
Rev. D | Page 6 of 24  
 
AD627  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Supply Voltage  
Internal Power Dissipation1  
PDIP (N-8)  
18 V  
1.3 W  
SOIC_N (R-8)  
0.8 W  
−IN, +IN  
Common-Mode Input Voltage  
−VS − 20 V to +VS + 20 V  
−VS − 20 V to +VS + 20 V  
Differential Input Voltage (+IN − (−IN)) +VS − (−VS)  
ESD CAUTION  
Output Short-Circuit Duration  
Storage Temperature Range (N, R)  
Operating Temperature Range  
Lead Temperature (Soldering, 10 sec)  
Indefinite  
−65°C to +125°C  
−40°C to +85°C  
300°C  
1 Specification is for device in free air:  
8-lead PDIP package: θJA = 90°C/W.  
8-lead SOIC_N package: θJA = 155°C/W.  
Rev. D | Page 7 of 24  
 
 
AD627  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
R
1
2
3
4
8
7
6
5
R
G
G
R
1
2
3
4
8
7
6
5
R
G
G
AD627  
–IN  
+IN  
+V  
AD627  
S
+V  
–IN  
+IN  
S
TOP VIEW  
TOP VIEW  
OUTPUT  
REF  
(Not to Scale)  
OUTPUT  
REF  
(Not to Scale)  
–V  
S
–V  
S
Figure 3. 8-Lead PDIP Pin Configuration  
Figure 4. 8-Lead SOIC_N Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
2
3
4
5
6
7
8
RG  
External Gain Setting Resistor. Place gain setting resistor across RG pins to set the gain.  
Negative Input.  
Positive Input.  
Negative Voltage Supply Pin.  
Reference Pin. Drive with low impedance voltage source to level shift the output voltage.  
Output Voltage.  
Positive Supply Voltage.  
−IN  
+IN  
−VS  
REF  
OUTPUT  
+VS  
RG  
External Gain Setting Resistor. Place gain setting resistor across RG pins to set the gain.  
Rev. D | Page 8 of 24  
 
AD627  
TYPICAL PERFORMANCE CHARACTERISTICS  
At 25°C, VS = ±5 V, RL = 20 kΩ, unless otherwise noted.  
100  
90  
–5.5  
–5.0  
–4.5  
–4.0  
–3.5  
–3.0  
–2.5  
–2.0  
–1.5  
80  
70  
V
= +5V  
S
60  
GAIN = +5  
V
= ±5V  
S
50  
40  
30  
GAIN = +100  
20  
V
= ±15V  
S
GAIN = +1000  
10  
0
1
10  
100  
1k  
10k  
100k  
0
–60 –40 –20  
20  
40  
60  
80  
100 120 140  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure ±. ꢀoltage Noise Spectral Density vs. Frequency  
Figure 8. Input Bias Current vs. Temperature  
100  
90  
80  
70  
60  
50  
40  
30  
65.5  
64.5  
63.5  
62.5  
61.5  
60.5  
59.5  
20  
10  
0
1
10  
100  
1k  
10k  
0
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY (Hz)  
TOTAL POWER SUPPLY VOLTAGE (V)  
Figure 6. Current Noise Spectral Density vs. Frequency  
Figure 9. Supply Current vs. Supply ꢀoltage  
–3.2  
–3.0  
–2.8  
–2.6  
–2.4  
–2.2  
–2.0  
V+  
V
= ±15V  
S
(V+) –1  
(V+) –2  
(V+) –3  
(V–) +2  
(V–) +1  
V–  
V
= ±1.5V  
S
V
= ±5V  
S
V
= ±2.5V  
S
SOURCING  
SINKING  
V
= ±5V  
S
V
= ±2.5V  
S
V
= ±1.5V  
5
S
V
= ±15V  
20  
S
0
–15  
–10  
–5  
5
10  
15  
0
10  
15  
25  
COMMON-MODE INPUT (V)  
OUTPUT CURRENT (mA)  
Figure 7. Input Bias Current vs. CMꢀ, ꢀS = ± 1± ꢀ  
Figure 10. Output ꢀoltage Swing vs. Output Current  
Rev. D | Page 9 of 24  
 
 
AD627  
120  
110  
500mV  
1s  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
G = +1000  
G = +100  
G = +5  
10  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
100k  
100k  
Figure 11. 0.1 Hz to 10 Hz Current Noise (0.71 pA/DIꢀ)  
Figure 14. Positive PSRR vs. Frequency, ±± ꢀ  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1s  
20mV  
100  
G = +1000  
G = +100  
G = +5  
10  
10  
100  
1k  
10k  
FREQUENCY (Hz)  
Figure 12. 0.1 Hz to 10 Hz RTI ꢀoltage Noise (400 nꢀ/DIꢀ), G = +±  
Figure 1±. Negative PSRR vs. Frequency, ±± ꢀ  
120  
110  
100  
90  
2V  
1s  
100  
G = +1000  
G = +100  
80  
70  
G = +5  
60  
10  
50  
40  
30  
20  
10  
100  
1k  
10k  
FREQUENCY (Hz)  
Figure 13. 0.1 Hz to 10 Hz RTI ꢀoltage Noise (200 nꢀ/DIꢀ), G = +1000  
Figure 16. Positive PSRR vs. Frequency (ꢀS = ± ꢀ, 0 ꢀ)  
Rev. D | Page 10 of 24  
AD627  
10  
400  
300  
200  
1
100  
0
0.1  
0
5
10  
100  
1k  
±2  
±4  
±6  
±8  
±10  
OUTPUT PULSE (V)  
GAIN (V/V)  
Figure 17. Settling Time to 0.01% vs. Gain for a ± ꢀ Step at Output, RL = 20 kΩ,  
CL = 100 pF, ꢀS = ± ± ꢀ  
Figure 20. Settling Time to 0.01% vs. Output Swing, G = +±, RL = 20 kΩ,  
CL = 100 pF  
200µV  
1V  
100µs  
1mV  
1V  
50µs  
Figure 18. Large Signal Pulse Response and Settling Time, G = –±, RL = 20 kΩ,  
CL = 100 pF (1.± mꢀ = 0.01%)  
Figure 21. Large Signal Pulse Response and Settling Time, G = –100,  
RL = 20 kΩ, CL = 100 pF (100 μꢀ = 0.01%)  
200µV  
1V  
500µs  
1mV  
1V  
50µs  
Figure 19. Large Signal Pulse Response and Settling Time, G = −10,  
RL = 20 kΩ, CL = 100 pF (1.0 mꢀ = 0.01%)  
Figure 22. Large Signal Pulse Response and Settling Time, G = –1000,  
RL = 20 kΩ, CL = 100 pF (10 μꢀ = 0.01%)  
Rev. D | Page 11 of 24  
AD627  
120  
110  
100  
90  
A
20µs  
286mV  
EXT1  
CH2  
20mV  
G = +1000  
80  
70  
G = +100  
60  
50  
G = +5  
40  
30  
20  
10  
0
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 23. CMRR vs. Frequency, ±± S (CMꢀ = 200 mꢀ p-p)  
Figure 26. Small Signal Pulse Response, G = +10, RL = 20 kΩ, CL = ±0 pF  
70  
A
100µs 286mV  
EXT1  
CH2  
20mV  
G = +1000  
G = +100  
60  
50  
40  
30  
20  
10  
0
G = +10  
G = +5  
–10  
–20  
–30  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 27. Small Signal Pulse Response, G = +100, RL = 20 kΩ, CL = ±0 pF  
Figure 24. Gain vs. Frequency (ꢀS = ± ꢀ, 0 ꢀ), ꢀREF = 2.± ꢀ  
A
1ms  
286mV  
EXT1  
A
20µs  
288mV  
EXT1  
CH2  
50mV  
CH2  
20mV  
Figure 28. Small Signal Pulse Response, G = +1000, RL = 20 kΩ, CL = ±0 pF  
Figure 2±. Small Signal Pulse Response, G = +±, RL = 20 kΩ, CL = ±0 pF  
Rev. D | Page 12 of 24  
 
AD627  
20µV/DIV  
200µV/DIV  
V
V
OUT  
3V/DIV  
OUT  
0.5V/DIV  
Figure 29. Gain Nonlinearity, Negative Input,  
S = ± 2.± ꢀ, G = +± (4 ppm/DIꢀ)  
Figure 32. Gain Nonlinearity, Negative Input,  
S = ±1± ꢀ, G = +100 (7 ppm/DIꢀ)  
40µV/DIV  
200µV/DIV  
V
OUT  
0.5V/DIV  
V
OUT  
3V/DIV  
Figure 30. Gain Nonlinearity, Negative Input,  
S = ±2.± ꢀ, G = +100 (8 ppm/DIꢀ)  
Figure 33. Gain Nonlinearity, Negative Input,  
S = ± 1± ꢀ, G = +± (7 ppm/DIꢀ)  
200µV/DIV  
40µV/DIV  
V
V
OUT  
OUT  
3V/DIV  
3V/DIV  
Figure 31. Gain Nonlinearity, Negative Input,  
S = ± 1± ꢀ, G = +± (1.± ppm/DIꢀ)  
Figure 34. Gain Nonlinearity, Negative Input,  
S = ±1± ꢀ, G = +100 (7 ppm/DIꢀ)  
Rev. D | Page 13 of 24  
AD627  
THEORY OF OPERATION  
The AD627 is a true instrumentation amplifier, built using two  
feedback loops. Its general properties are similar to those of the  
classic two-op-amp instrumentation amplifier configuration but  
internally the details are somewhat different. The AD627 uses a  
modified current feedback scheme, which, coupled with interstage  
feedforward frequency compensation, results in a much better  
common-mode rejection ratio (CMRRꢀ at frequencies above  
dc (notably the line frequency of 50 Hz to 60 Hzꢀ than might  
otherwise be expected of a low power instrumentation amplifier.  
The inverting terminal gain of A± (±.25ꢀ times the gain of A2  
(−4ꢀ makes the gain from the inverting and noninverting  
terminals equal.  
The differential mode gain is equal to ± + R4/R3, nominally 5,  
and is factory trimmed to 0.0±% final accuracy. Adding an  
external gain setting resistor (RGꢀ increases the gain by an  
amount equal to (R4 + R±ꢀ/RG. The output voltage of the  
AD627 is given by  
V
OUT = [VIN(+ꢀ – VIN(−ꢀ] × (5 + 200 kΩ/RGꢀ + VREF  
(±ꢀ  
In Figure 35, A± completes a feedback loop that, in conjunction  
with V± and R5, forces a constant collector current in Q±. Assume  
that the gain-setting resistor (RGꢀ is not present. Resistors R2  
and R± complete the loop and force the output of A± to be equal  
to the voltage on the inverting terminal with a gain of nearly  
±.25. A2 completes a nearly identical feedback loop that forces  
a current in Q2 that is nearly identical to that in Q±; A2 also  
provides the output voltage. When both loops are balanced, the  
gain from the noninverting terminal to VOUT is equal to 5,  
whereas the gain from the output of A± to VOUT is equal to −4.  
Laser trims are performed on R± through R4 to ensure that  
their values are as close as possible to the absolute values in the  
gain equation. This ensures low gain error and high common-  
mode rejection at all practical gains.  
EXTERNAL GAIN RESISTOR  
R1  
100k  
R
R4  
100kΩ  
G
REF  
–IN  
R2  
25kΩ  
R3  
25kΩ  
+V  
+V  
S
S
2kΩ  
2kΩ  
+IN  
Q1  
Q2  
–V  
–V  
S
S
A1  
A2  
OUTPUT  
R5  
200kΩ  
R6  
200kΩ  
V1  
0.1V  
Figure 3±. Simplified Schematic  
Rev. D | Page 14 of 24  
 
 
AD627  
USING THE AD627  
BASIC CONNECTIONS  
SETTING THE GAIN  
The gain of the AD627 is resistor programmed by RG, or, more  
precisely, by whatever impedance appears between Pin ± and Pin 1.  
Figure 36 shows the basic connection circuit for the AD627.  
The +VS and −VS terminals connect to the power supply. The  
supply can be either bipolar (VS = ±±.± V to ±±1 Vꢀ or single  
supply (−VS = 0 V, +VS = 2.2 V to 36 Vꢀ. Capacitively decouple  
the power supplies close to the power pins of the device. For  
best results, use surface-mount 0.± μF ceramic chip capacitors.  
The gain is set according to  
Gain = 5 + (200 kΩ/RGꢀ or RG = 200 kΩ/(Gain − 5ꢀ  
(2ꢀ  
Therefore, the minimum achievable gain is 5 (for 200 kΩ/  
(Gain − 5ꢀꢀ. With an internal gain accuracy of between 0.05%  
and 0.7%, depending on gain and grade, a 0.±% external gain  
The input voltage can be single-ended (tie either −IN or +IN to  
groundꢀ or differential. The difference between the voltage on the  
inverting and noninverting pins is amplified by the programmed  
gain. The gain resistor programs the gain as described in  
the Setting the Gain and Reference Terminal sections. Basic  
connections are shown in Figure 36. The output signal appears  
as the voltage difference between the output pin and the  
externally applied voltage on the REF pin, as shown in Figure 37.  
resistor is appropriate to prevent significant degradation of the  
overall gain error. However, 0.±% resistors are not available in a  
wide range of values and are quite expensive. Table 6 shows  
recommended gain resistor values using ±% resistors. For all  
gains, the size of the gain resistor is conservatively chosen as the  
closest value from the standard resistor table that is higher than  
the ideal value. This results in a gain that is always slightly less  
than the desired gain, thereby preventing clipping of the signal  
at the output due to resistor tolerance.  
The internal resistors on the AD627 have a negative temperature  
coefficient of −75 ppm/°C maximum for gains > 5. Using a  
gain resistor that also has a negative temperature coefficient  
of −75 ppm/°C or less tends to reduce the overall gain drift of  
the circuit.  
+V  
+V  
S
S
+1.1V TO +18V  
+2.2V TO +36V  
0.1µF  
0.1µF  
+IN  
+IN  
R
R
R
R
G
G
V
V
IN  
R
G
OUTPUT  
REF  
R
G
OUTPUT  
REF  
G
V
V
OUT  
IN  
OUT  
G
–IN  
–IN  
REF (INPUT)  
REF (INPUT)  
0.1µF  
–1.1V TO –18V  
–V  
S
GAIN = 5 + (200k/R  
)
G
Figure 36. Basic Connections for Single and Dual Supplies  
V+  
+IN  
–IN  
EXTERNAL GAIN RESISTOR  
V
V
DIFF  
2
R
G
100k  
25kΩ  
25kΩ  
100kΩ  
REF  
V
CM  
+V  
+V  
S
S
DIFF  
2
–IN  
2kΩ  
2kΩ  
+IN  
Q1  
Q2  
V–  
–V  
–V  
S
S
A1  
A2  
200kΩ  
OUTPUT  
200k0.1V  
V
A
–V  
S
Figure 37. Amplifying Differential Signals with a Common-Mode Component  
Rev. D | Page 15 of 24  
 
 
 
 
 
 
AD627  
The voltage on A± can also be expressed as a function of the  
actual voltages on the –IN and +IN pins (V− and V+ꢀ such that  
Table 6. Recommended Values of Gain Resistors  
VA1 = ±.25 ((V−ꢀ + 0.5 V) − 0.25 VREF − ((V+ꢀ − (V−ꢀꢀ 25 kΩ/RG (4ꢀ  
1% Standard Table  
Desired Gain  
Value of RG  
Resulting Gain  
5.00  
6.00  
7.00  
7.94  
The output of A± is capable of swinging to within 50 mV of the  
negative rail and to within 200 mV of the positive rail. It is clear,  
from either Equation 3 or Equation 4, that an increasing VREF  
(while it acts as a positive offset at the output of the AD627ꢀ  
tends to decrease the voltage on A±. Figure 31 and Figure 39  
show the maximum voltages that can be applied to the REF pin  
for a gain of 5 for both the single-supply and dual-supply cases.  
5
5
6
7
8
200 kΩ  
100 kΩ  
68.1 kΩ  
51.1 kΩ  
40.2 kΩ  
20 kΩ  
9
8.91  
9.98  
10  
15  
20  
25  
30  
40  
50  
60  
70  
80  
90  
100  
200  
500  
1000  
15.00  
19.60  
25.00  
29.81  
39.72  
49.15  
59.79  
69.72  
79.91  
89.39  
100.24  
195.48  
490.44  
980.61  
13.7 kΩ  
10 kΩ  
4
3
2
8.06 kΩ  
5.76 kΩ  
4.53 kΩ  
3.65 kΩ  
3.09 kΩ  
2.67 kΩ  
2.37 kΩ  
2.1 kΩ  
MAXIMUM V  
REF  
1
0
–1  
–2  
–3  
–4  
–5  
MINIMUM V  
REF  
1.05 kΩ  
412 Ω  
205 Ω  
0
1
2
3
4
–6  
–5  
–4  
–3  
–2  
–1  
V
(–) (V)  
IN  
Figure 38. Reference Input ꢀoltage vs. Negative Input ꢀoltage,  
S = ± ± ꢀ, G = +±  
REFERENCE TERMINAL  
5
The reference terminal potential defines the zero output voltage  
and is especially useful when the load does not share a precise  
ground with the rest of the system. It provides a direct means of  
injecting a precise offset to the output. The reference terminal is  
also useful when amplifying bipolar signals, because it provides  
a virtual ground voltage.  
MAXIMUM V  
REF  
4
3
2
1
The AD627 output voltage is developed with respect to the poten-  
tial on the reference terminal; therefore, tying the REF pin to the  
appropriate local ground solves many grounding problems. For  
optimal CMR, tie the REF pin to a low impedance point.  
MINIMUM V  
REF  
INPUT RANGE LIMITATIONS IN SINGLE-SUPPLY  
APPLICATIONS  
0
–0.5  
3.0  
3.5  
4.0  
4.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
V
(–) (V)  
IN  
In general, the maximum achievable gain is determined by the  
available output signal range. However, in single-supply applica-  
tions where the input common-mode voltage is nearly or equal  
to 0, some limitations on the gain can be set. Although the  
Specifications section nominally defines the input, output, and  
reference pin ranges, the voltage ranges on these pins are  
mutually interdependent. Figure 37 shows the simplified  
schematic of the AD627, driven by a differential voltage (VDIFFꢀ  
that has a common-mode component, VCM. The voltage on the  
A± op amp output is a function of VDIFF, VCM, the voltage on the  
REF pin, and the programmed gain. This voltage is given by  
Figure 39. Reference Input ꢀoltage vs. Negative Input ꢀoltage,  
S = ± ꢀ, G = +±  
Raising the input common-mode voltage increases the voltage  
on the output of A±. However, in single-supply applications  
where the common-mode voltage is low, a differential input  
voltage or a voltage on REF that is too high can drive the output  
of A± into the ground rail. Some low-side headroom is added  
because both inputs are shifted upwards by about 0.5 V (that is,  
by the VBE of Q± and Q2ꢀ. Use Equation 3 and Equation 4 to  
check whether the voltage on Amplifier A± is within its  
operating range.  
V
A1 = ±.25 (VCM + 0.5 Vꢀ − 0.25 VREF VDIFF (25 kΩ/RG − 0.625ꢀ (3ꢀ  
Rev. D | Page 16 of 24  
 
 
 
 
 
 
AD627  
Table 7. Maximum Gain for Low Common-Mode, Single-Supply Applications  
VIN REF Pin Supply Voltage RG (1% Tolerance) Resulting Maximum Gain Output Swing WRT 0 V  
100 mV, VCM = 0 V  
2 V  
2 V  
2 V  
1 V  
5 V to 15 V  
5 V to 15 V  
5 V to 15 V  
10 V to 15 V  
5 V to 15 V  
5 V to 15 V  
28.7 kΩ  
10.7 kΩ  
1.74 kΩ  
78.7 kΩ  
7.87 kΩ  
787 Ω  
12.0  
23.7  
119.9  
7.5  
31  
259.1  
0.8 V to 3.2 V  
0.8 V to 3.2 V  
0.8 V to 3.2 V  
1 V to 8.5 V  
1 V to 4.1 V  
1 V to 3.6 V  
50 mV, VCM = 0 V  
10 mV, VCM = 0 V  
V− = 0 V, V+ = 0 V to 1 V  
V− = 0 V, V+ = 0 mV to 100 mV 1 V  
V− = 0 V, V+ = 0 mV to 10 mV  
1 V  
Table 8. RTI Error Sources  
Maximum Total RTI Offset Error (ꢀV)  
MaximumTotal RTI Offset Drift (ꢀV/°C)  
Total RTI Noise (nV/√Hz)  
Gain  
+5  
+10  
+20  
+50  
+100  
+500  
+1000  
AD627A  
AD627B  
250  
200  
175  
160  
155  
151  
151  
AD627A  
AD627B  
AD627A /AD627B  
450  
350  
300  
270  
270  
252  
251  
5
4
3.5  
3.2  
3.1  
3
3
2
1.5  
1.2  
1.1  
1
95  
66  
56  
53  
52  
52  
52  
3
1
Table 7 gives values for the maximum gain for various single-  
supply input conditions. The resulting output swings refer to  
0 V. To maximize the available gain and output swing, set the  
voltages on the REF pins to either 2 V or ± V. In most cases,  
there is no advantage to increasing the single supply to greater  
than 5 V (the exception is an input range of 0 V to ± Vꢀ.  
INPUT AND OUTPUT OFFSET ERRORS  
The low errors of the AD627 are attributed to two sources,  
input and output errors. The output error is divided by G when  
referred to the input. In practice, input errors dominate at high  
gains and output errors dominate at low gains. The total offset  
error for a given gain is calculated as  
OUTPUT BUFFERING  
Total Error RTI = Input Error + (Output Error/Gainꢀ (5ꢀ  
The AD627 is designed to drive loads of 20 kΩ or greater but  
can deliver up to 20 mA to heavier loads at lower output voltage  
swings (see Figure ±0ꢀ. If more than 20 mA of output current is  
required at the output, buffer the AD627 output with a precision  
op amp, such as the OP±±3. Figure 40 shows this for a single  
supply. This op amp can swing from 0 V to 4 V on its output  
while driving a load as small as 600 Ω.  
Total Error RTO = (Input Error × Gꢀ + Output Error  
(6ꢀ  
RTI offset errors and noise voltages for different gains are listed  
in Table 1.  
+V  
S
0.1µF  
0.1µF  
V
R
IN  
G
AD627  
REF  
R
V
G
OP113  
OUT  
0.1µF  
0.1µF  
–V  
S
–V  
S
Figure 40. Output Buffering  
Rev. D | Page 17 of 24  
 
 
 
 
 
AD627  
The errors associated with each implementation (see Table 9ꢀ  
show the integrated in-amp to be more precise at both ambient  
and overtemperature. Note that the discrete implementation is  
more expensive, primarily due to the relatively high cost of the  
low drift precision resistor network.  
MAKE vs. BUY: A TYPICAL APPLICATION ERROR  
BUDGET  
The example in Figure 4± serves as a good comparison between  
the errors associated with an integrated and a discrete in-amp  
implementation. A ±±00 mV signal from a resistive bridge  
(common-mode voltage = 2.5 Vꢀ is amplified. This example  
compares the resulting errors from a discrete two-op-amp  
instrumentation amplifier and the AD627. The discrete  
implementation uses a four-resistor precision network  
(±% match, 50 ppm/°C trackingꢀ.  
The input offset current of the discrete instrumentation amplifier  
implementation is the difference in the bias currents of the two-  
op amplifiers, not the offset currents of the individual op amps.  
In addition, although the values of the resistor network are chosen  
so that the inverting and noninverting inputs of each op amp  
see the same impedance (about 350 Ωꢀ, the offset current of  
each op amp adds another error that must be characterized.  
+5V  
+5V  
+5V  
350Ω  
350Ω  
350Ω  
350Ω  
LT10781SB  
R
G
V
1/2  
OUT  
40.2kΩ  
1%  
+10ppm/°C  
LT10781SB  
AD627A  
V
OUT  
±100mV  
1/2  
+2.5V  
3.15k*  
350*  
350*  
3.15k*  
+2.5V  
AD627A GAIN = 9.98 (5+(200k/R ))  
HOMEBREW IN-AMP, G = +10  
*1% RESISTOR MATCH, 50ppm/°C TRACKING  
G
Figure 41. Make vs. Buy  
Table 9. Make vs. Buy Error Budget  
Total Error  
AD627  
(ppm)  
Total Error  
Homebrew  
(ppm)  
Error Source  
AD627 Circuit Calculation  
Homebrew Circuit Calculation  
ABSOLUTE ACCURACY at TA = 25°C  
Total RTI Offset Voltage, mV  
Input Offset Current, nA  
Internal Offset Current  
(Homebrew Only)  
(250 ꢀV + (1000 ꢀV/10))/100 mV  
1 nA × 350 Ω/100 mV  
Not applicable  
(180 ꢀV × 2)/100 mV  
20 nA × 350 Ω/100 mV  
0.7 nA × 350 Ω/100 mV  
3,500  
3.5  
3,600  
70  
2.45  
CMRR, dB  
Gain  
(1% match × 2.5 V)/10/100 mV  
1% match  
3,531  
25,000  
10,000  
38,672  
77 dB141 ppm × 2.5 V/100 mV  
0.35% + 0.1%  
13,500  
20,535  
Total Absolute Error  
DRIFT TO 85°C  
Gain Drift, ppm/°C  
Total RTI Offset Voltage, mV/°C (3.0 ꢀV/°C + (10 ꢀV/°C/10)) ×  
60°C/100 mV  
(−75 + 10) ppm/°C × 60°C  
50 ppm/°C × 60°C  
(2 × 3.5 ꢀV/°C × 60°C)/100 mV  
3,900  
2,600  
3,000  
4,200  
Input Offset Current, pA/°C  
(16 pA/°C × 350 Ω × 60°C)/100 mV (33 pA/°C × 350 Ω × 60°C)/100 mV  
3.5  
7
Total Drift Error  
Grand Total Error  
6,504  
27,039  
7,207  
45,879  
Rev. D | Page 18 of 24  
 
 
 
AD627  
ERRORS DUE TO AC CMRR  
GROUND RETURNS FOR INPUT BIAS CURRENTS  
In Table 9, the error due to common-mode rejection results  
from the common-mode voltage from the bridge 2.5 V. The  
ac error due to less than ideal common-mode rejection cannot  
be calculated without knowing the size of the ac common-mode  
voltage (usually interference from 50 Hz/60 Hz mains frequenciesꢀ.  
Input bias currents are dc currents that must flow to bias the  
input transistors of an amplifier. They are usually transistor base  
currents. When amplifying floating input sources, such as  
transformers or ac-coupled sources, there must be a direct dc  
path into each input so that the bias current can flow. Figure 44,  
Figure 45, and Figure 46 show how to provide a bias current  
path for the cases of, respectively, transformer coupling, a  
thermocouple application, and capacitive ac-coupling.  
A mismatch of 0.±% between the four gain setting resistors  
determines the low frequency CMRR of a two-op-amp  
instrumentation amplifier. The plot in Figure 43 shows the  
practical results of resistor mismatch at ambient temperature.  
In dc-coupled resistive bridge applications, providing this path  
is generally not necessary because the bias current simply flows  
from the bridge supply through the bridge and into the amplifier.  
However, if the impedance that the two inputs see are large, and  
differ by a large amount (>±0 kΩꢀ, the offset current of the input  
stage causes dc errors compatible with the input offset voltage of  
the amplifier.  
The CMRR of the circuit in Figure 42 (Gain = +±±ꢀ was  
measured using four resistors with a mismatch of nearly 0.±%  
(R± = 9999.5 Ω, R2 = 999.76 Ω, R3 = ±000.2 Ω, R4 = 9997.7 Ωꢀ.  
As expected, the CMRR at dc was measured at about 14 dB  
(calculated value is 15 dBꢀ. However, as frequency increases,  
CMRR quickly degrades. For example, a 200 mV p-p harmonic  
of the mains frequency at ±10 Hz would result in an output  
voltage of about 100 μV. To put this in context, a ±2-bit data  
acquisition system, with an input range of 0 V to 2.5 V, has an  
LSB weighting of 6±0 μV.  
+V  
S
–INPUT  
2
1
7
R
G
6
V
OUT  
AD627  
5
8
3
+INPUT  
REFERENCE  
4
By contrast, the AD627 uses precision laser trimming of internal  
resistors, along with patented CMR trimming, to yield a higher  
dc CMRR and a wider bandwidth over which the CMRR is flat  
(see Figure 23ꢀ.  
LOAD  
–V  
S
TO POWER  
SUPPLY  
GROUND  
Figure 44. Ground Returns for Bias Currents with Transformer Coupled Inputs  
+5V  
+V  
S
–INPUT  
2
1
7
A2  
VIN–  
VIN+  
1/2  
OP296  
R
G
6
V
OUT  
AD627  
V
OUT  
5
A1  
8
3
+INPUT  
1/2  
REFERENCE  
4
OP296  
LOAD  
–V  
S
TO POWER  
SUPPLY  
GROUND  
–5V  
R2  
R1  
R3  
1000.2  
R4  
9997.7Ω  
9999.5999.76Ω  
Figure 4±. Ground Returns for Bias Currents with Thermocouple Inputs  
+V  
S
–INPUT  
Figure 42. 0.1% Resistor Mismatch Example  
2
1
7
120  
R
G
6
V
OUT  
AD627  
110  
100  
90  
5
8
3
+INPUT  
REFERENCE  
4
LOAD  
100k  
–V  
S
TO POWER  
SUPPLY  
GROUND  
80  
70  
60  
50  
40  
Figure 46. Ground Returns for Bias Currents with AC-Coupled Inputs  
30  
20  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 43. CMRR over Frequency of Discrete In-Amp in Figure 42  
Rev. D | Page 19 of 24  
 
 
 
 
 
 
AD627  
If there is only one power supply available, it must be shared by  
both digital and analog circuitry. Figure 41 shows how to minimize  
interference between the digital and analog circuitry. As in the  
previous case, use separate analog and digital ground planes or  
use reasonably thick traces as an alternative to a digital ground  
plane. Connect the ground planes at the ground pin of the power  
supply. Run separate traces (or power planesꢀ from the power  
supply to the supply pins of the digital and analog circuits. Ideally,  
each device should have its own power supply trace, but they  
can be shared by multiple devices if a single trace is not used to  
route current to both digital and analog circuitry.  
LAYOUT AND GROUNDING  
The use of ground planes is recommended to minimize the  
impedance of ground returns (and hence, the size of dc errorsꢀ.  
To isolate low level analog signals from a noisy digital environment,  
many data acquisition components have separate analog and  
digital ground returns (see Figure 47ꢀ. Return all ground pins  
from mixed-signal components, such as analog-to-digital  
converters, through the high quality analog ground plane.  
Digital ground lines of mixed-signal components should also  
be returned through the analog ground plane. This may seem  
to break the rule of separating analog and digital grounds;  
however, in general, there is also a requirement to keep the  
voltage difference between digital and analog grounds on a  
converter as small as possible (typically, <0.3 Vꢀ. The increased  
noise, caused by the digital return currents of the converter  
flowing through the analog ground plane, is generally negligible.  
To maximize isolation between analog and digital, connect the  
ground planes back at the supplies.  
ANALOG POWER SUPPLY  
DIGITAL POWER SUPPLY  
+5V  
–5V  
GND  
GND  
+5V  
0.1µF 0.1µF  
0.1µF  
0.1µF  
7
4
2
3
1
6
14  
AGND  
V
V
V
DD  
6
4
3
AD627  
DGND  
12  
IN1  
DD  
AGND  
5
MICRO-  
PROCESSOR  
V
ADC  
IN2  
AD7892-2  
Figure 47. Optimal Grounding Practice for a Bipolar Supply Environment with Separate Analog and Digital Supplies  
POWER SUPPLY  
5V  
GND  
0.1µF  
0.1µF  
0.1µF  
7
1
4
2
3
V
V
AGND  
DGND  
12  
DGND  
MICRO-  
DD  
DD  
6
4
V
AD627  
IN  
ADC  
AD7892-2  
5
PROCESSOR  
Figure 48. Optimal Ground Practice in a Single-Supply Environment  
Rev. D | Page 20 of 24  
 
 
 
AD627  
Capacitor C3 is needed to maintain common-mode rejection at  
low frequencies. R±/R2 and C±/C2 form a bridge circuit whose  
output appears across the input pins of the in-amp. Any mismatch  
between C± and C2 unbalances the bridge and reduces common-  
mode rejection. C3 ensures that any RF signals are common  
mode (the same on both in-amp inputsꢀ and are not applied  
differentially. This second low-pass network, R± + R2 and C3,  
has a −3 dB frequency equal to  
INPUT PROTECTION  
As shown in the simplified schematic (see Figure 35ꢀ, both the  
inverting and noninverting inputs are clamped to the positive  
and negative supplies by ESD diodes. In addition, a 2 kΩ series  
resistor on each input provides current limiting in the event of  
an overvoltage. These ESD diodes can tolerate a maximum  
continuous current of ±0 mA. So an overvoltage (that is, the  
amount by which the input voltage exceeds the supply voltageꢀ  
of ±20 V can be tolerated. This is true for all gains, and for  
power on and off. This last case is particularly important  
because the signal source and amplifier can be powered  
separately.  
±/(2π((R± + R2ꢀ × C3ꢀꢀ  
(1ꢀ  
+V  
S
0.33µF  
0.01µF  
C1  
1000pF  
5%  
R1  
20k  
1%  
If the overvoltage is expected to exceed 20 V, use additional  
external series current-limiting resistors to keep the diode  
current below ±0 mA.  
+IN  
–IN  
R2  
20kΩ  
1%  
C3  
R
V
G
AD627  
OUT  
0.022µF  
RF INTERFERENCE  
REFERENCE  
0.01µF  
C2  
1000pF  
5%  
All instrumentation amplifiers can rectify high frequency out-  
of-band signals. Once rectified, these signals appear as dc offset  
errors at the output. The circuit in Figure 49 provides good RFI  
suppression without reducing performance within the pass  
band of the instrumentation amplifier. Resistor R± and  
Capacitor C± (and likewise, R2 and C2ꢀ form a low-pass RC  
filter that has a –3 dB BW equal to  
0.33µF  
–V  
S
Figure 49. Circuit to Attenuate RF Interference  
Using a C3 value of 0.022 μF, as shown in Figure 49, the −3 dB  
signal bandwidth of this circuit is approximately 200 Hz. The  
typical dc offset shift over frequency is less than ± mV and the  
RF signal rejection of the circuit is better than 57 dB. To increase  
the 3 dB signal bandwidth of this circuit, reduce the value of  
Resistor R± and Resistor R2. The performance is similar to that  
when using 20 kΩ resistors, except that the circuitry preceding  
the in-amp must drive a lower impedance load.  
f = ±/(2π(R1 × C1ꢀꢀ  
(7ꢀ  
Using the component values shown in Figure 49, this filter has  
a –3 dB bandwidth of approximately 1 kHz. Resistor R± and  
Resistor R2 were selected to be large enough to isolate the circuit  
input from the capacitors but not large enough to significantly  
increase circuit noise. To preserve common-mode rejection in  
the amplifier pass band, Capacitor C± and Capacitor C2 must  
be 5% mica units, or low cost 20% units can be tested and binned  
to provide closely matched devices.  
When building a circuit like that shown in Figure 49, use a PC  
board with a ground plane on both sides. Make all component  
leads as short as possible. Resistor R± and Resistor R2 can be  
common ±% metal film units, but Capacitor C± and Capacitor C2  
must be ±5% tolerance devices to avoid degrading the common-  
mode rejection of the circuit. Either the traditional 5% silver mica  
units or Panasonic ±2% PPS film capacitors are recommended.  
Rev. D | Page 21 of 24  
 
 
AD627  
APPLICATIONS CIRCUITS  
CLASSIC BRIDGE CIRCUIT  
4 TO 20 mA SINGLE-SUPPLY RECEIVER  
Figure 5± shows how a signal from a 4 to 20 mA transducer can  
be interfaced to the ADuC1±2, a ±2-bit ADC with an embedded  
microcontroller. The signal from a 4 to 20 mA transducer is  
single-ended, which initially suggests the need for a simple  
shunt resistor to convert the current to a voltage at the high  
impedance analog input of the converter. However, any line  
resistance in the return path (to the transducerꢀ adds a current  
dependent offset error; therefore, the current must be sensed  
differentially.  
Figure 50 shows the AD627 configured to amplify the signal  
from a classic resistive bridge. This circuit works in dual-supply  
mode or single-supply mode. Typically, the same voltage that  
powers the instrumentation amplifiers excites the bridge.  
Connecting the bottom of the bridge to the negative supply of  
the instrumentation amplifiers (usually 0 V, 5 V, ±2 V, or  
−±5 Vꢀ, sets up an input common-mode voltage that is  
optimally located midway between the supply voltages. It is  
also appropriate to set the voltage on the REF pin to midway  
between the supplies, especially if the input signal is bipolar.  
However, the voltage on the REF pin can be varied to suit the  
application. For example, the REF pin is tied to the VREF pin of  
an analog-to-digital converter (ADCꢀ whose input range is  
(VREF ± VINꢀ. With an available output swing on the AD627 of  
(−VS + ±00 mVꢀ to (+VS − ±50 mVꢀ, the maximum programmable  
gain is simply this output range divided by the input range.  
In this example, a 24.9 Ω shunt resistor generates a maximum  
differential input voltage to the AD627 of between ±00 mV  
(for 4 mA inꢀ and 500 mV (for 20 mA inꢀ. With no gain resistor  
present, the AD627 amplifies the 500 mV input voltage by a  
factor of 5, to 2.5 V, the full-scale input voltage of the ADC. The  
zero current of 4 mA corresponds to a code of 1±9 and the LSB  
size is 6±0 ꢁA.  
+V  
S
THERMOCOUPLE AMPLIFIER  
0.1µF  
Because the common-mode input range of the AD627 extends  
0.± V below ground, it is possible to measure small differential  
signals that have a low, or no, common-mode component.  
Figure 5± shows a thermocouple application where one side of  
the J-type thermocouple is grounded.  
200kΩ  
GAIN–5  
R
V
G =  
V
AD627  
OUT  
DIFF  
V
REF  
0.1µF  
Over a temperature range from −200°C to +200°C, the J-type  
thermocouple delivers a voltage ranging from −7.190 mV to  
+±0.777 mV. A programmed gain on the AD627 of ±00 (RG =  
2.± kΩꢀ and a voltage on the AD627 REF pin of 2 V result in the  
output voltage of the AD627 ranging from ±.±±0 V to 3.077 V  
relative to ground. For a different input range or different  
voltage on the REF pin, it is important to verify that the voltage  
on Internal Node A± (see Figure 37ꢀ is not driven below  
ground. This can be checked using the equations in the Input  
Range Limitations in Single-Supply Applications section.  
5V  
–V  
S
Figure ±0. Classic Bridge Circuit  
0.1µF  
J-TYPE  
THERMOCOUPLE  
R
2.1k  
G
V
AD627  
OUT  
REF  
V
REF  
Figure ±1. Amplifying Bipolar Signals with Low Common-Mode ꢀoltage  
Rev. D | Page 22 of 24  
 
 
 
AD627  
5V  
5V  
5V  
0.1µF  
0.1µF  
0.1µF  
V
AV  
DV  
DD  
REF  
DD  
ADuC812  
MICROCONVERTER®  
AIN 0  
to AIN 7  
4–20mA  
TRANSDUCER  
LINE  
IMPEDANCE  
4–20mA  
24.9Ω  
G = +5  
AD627  
REF  
AGND  
DGND  
Figure ±2. 4 to 20 mA Receiver Circuit  
Rev. D | Page 23 of 24  
AD627  
OUTLINE DIMENSIONS  
0.400 (10.16)  
0.365 (9.27)  
0.355 (9.02)  
8
1
5
4
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
5.00 (0.1968)  
4.80 (0.1890)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
8
1
5
4
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
SEATING  
PLANE  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.25 (0.0098)  
0.10 (0.0040)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-001  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure ±3. 8-Lead Plastic Dual In-Line Package [PDIP]  
Narrow Body (N-8)  
Figure ±4. 8-Lead Small Standard Outline Package [SOIC_N]  
Narrow Body (R-8)  
Dimensions shown in inches (and millimeters)  
Dimensions shown in millimeters (and inches)  
ORDERING GUIDE  
Model  
AD627AN  
AD627ANZ1  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
8-Lead Plastic Dual In-Line Package [PDIP]  
8-Lead Plastic Dual In-Line Package [PDIP]  
8-Lead Small Standard Outline [SOIC_N]  
8-Lead Small Standard Outline [SOIC_N]  
8-Lead Small Standard Outline [SOIC_N]  
8-Lead Small Standard Outline [SOIC_N]  
8-Lead Small Standard Outline [SOIC_N]  
8-Lead Small Standard Outline [SOIC_N]  
8-Lead Plastic Dual In-Line Package [PDIP]  
8-Lead Plastic Dual In-Line Package [PDIP]  
8-Lead Small Standard Outline [SOIC_N]  
8-Lead Small Standard Outline [SOIC_N]  
8-Lead Small Standard Outline [SOIC_N]  
8-Lead Small Standard Outline [SOIC_N]  
8-Lead Small Standard Outline [SOIC_N]  
8-Lead Small Standard Outline [SOIC_N]  
N-8  
N-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
N-8  
N-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
AD627AR  
AD627AR-REEL  
AD627AR-REEL7  
AD627ARZ1  
AD627ARZ-R71  
AD627ARZ-RL1  
AD627BN  
AD627BNZ1  
AD627BR  
AD627BR-REEL  
AD627BR-REEL7  
AD627BRZ1  
AD627BRZ-RL1  
AD627BRZ-R71  
1 Z = RoHS Compliant part.  
©2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00782-0-11/07(D)  
Rev. D | Page 24 of 24  
 
 
 

相关型号:

AD627ARZ-RL

Micropower, Single- and Dual-Supply, Rail-to-Rail Instrumentation Amplifier
ADI

AD627B

Micropower, Single and Dual Supply Rail-to-Rail Instrumentation Amplifier
ADI

AD627BN

Micropower, Single and Dual Supply Rail-to-Rail Instrumentation Amplifier
ADI

AD627BNZ

Micropower, Single- and Dual-Supply, Rail-to-Rail Instrumentation Amplifier
ADI

AD627BR

Micropower, Single and Dual Supply Rail-to-Rail Instrumentation Amplifier
ADI

AD627BR-REEL

Micropower, Single and Dual Supply Rail-to-Rail Instrumentation Amplifier
ADI

AD627BR-REEL7

Micropower, Single and Dual Supply Rail-to-Rail Instrumentation Amplifier
ADI

AD627BRZ

Micropower, Single- and Dual-Supply, Rail-to-Rail Instrumentation Amplifier
ADI

AD627BRZ-R7

Micropower, Single- and Dual-Supply, Rail-to-Rail Instrumentation Amplifier
ADI

AD627BRZ-REEL7

INSTRUMENTATION AMPLIFIER, 190uV OFFSET-MAX, 0.08MHz BAND WIDTH, PDSO8, MS-012AA, SOIC-8
ADI

AD627BRZ-RL

Micropower, Single- and Dual-Supply, Rail-to-Rail Instrumentation Amplifier
ADI

AD627_07

Micropower, Single- and Dual-Supply, Rail-to-Rail Instrumentation Amplifier
ADI