AD6674-500EBZ [ADI]

385 MHz BW IF Diversity Receiver;
AD6674-500EBZ
型号: AD6674-500EBZ
厂家: ADI    ADI
描述:

385 MHz BW IF Diversity Receiver

文件: 总97页 (文件大小:4851K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
385 MHz BW IF Diversity Receiver  
Data Sheet  
AD6674  
FEATURES  
APPLICATIONS  
JESD204B (Subclass 1) coded serial digital outputs  
In band SFDR = 83 dBFS at 340 MHz (750 MSPS)  
In band SNR = 66.7 dBFS at 340 MHz (750 MSPS)  
1.4 W total power per channel at 750 MSPS (default settings)  
Noise density = −153 dBFS/Hz at 750 MSPS  
1.25 V, 2.5 V, and 3.3 V dc supply operation  
Flexible input range  
AD6674-750 and AD6674-1000  
1.46 V p-p to 1.94 V p-p (1.70 V p-p nominal)  
AD6674-500  
1.46 V p-p to 2.06 V p-p (2.06 V p-p nominal)  
95 dB channel isolation/crosstalk  
Amplitude detect bits for efficient automatic gain control  
(AGC) implementation  
Noise shaping requantizer (NSR) option for main receiver  
function  
Variable dynamic range (VDR) option for digital  
predistortion (DPD) function  
Diversity multiband, multimode digital receivers  
3G/4G, TD-SCDMA, W-CDMA, GSM, LTE, LTE-A  
DOCSIS 3.0 CMTS upstream receive paths  
HFC digital reverse path receivers  
GENERAL DESCRIPTION  
The AD6674 is a 385 MHz bandwidth mixed-signal  
intermediate frequency (IF) receiver. It consists of two, 14-bit  
1.0 GSPS/750 MSPS/500 MSPS analog-to-digital converters  
(ADC) and various digital signal processing blocks consisting of  
four wideband DDCs, an NSR, and VDR monitoring. It has an  
on-chip buffer and a sample-and-hold circuit designed for low  
power, small size, and ease of use. This product is designed to  
support communications applications capable of sampling wide  
bandwidth analog signals of up to 2 GHz. The AD6674 is  
optimized for wide input bandwidth, high sampling rate,  
excellent linearity, and low power in a small package.  
The dual ADC cores feature a multistage, differential pipelined  
architecture with integrated output error correction logic. Each  
ADC features wide bandwidth inputs supporting a variety of  
user-selectable input ranges. An integrated voltage reference  
eases design considerations.  
2 integrated wideband digital processors per channel  
12-bit numerically controlled oscillator (NCO), up to  
4 cascaded half-band filters  
Differential clock inputs  
Integer clock divide by 1, 2, 4, or 8  
Energy saving power-down modes  
Flexible JESD204B lane configurations  
Small signal dither  
FUNCTIONAL BLOCK DIAGRAM  
AVDD1  
(1.25V)  
AVDD2  
(2.5V)  
AVDD3  
(3.3V)  
AVDD1_SR  
(1.25V)  
DVDD  
DRVDD  
SPIVDD  
(1.25V)  
(1.25V) (1.7V TO 3.4V)  
BUFFER  
SIGNAL PROCESSING  
VIN+A  
VIN–A  
ADC  
DIGITAL DOWNCONVERSION  
FD_A  
(×4)  
SERDOUT0±  
SERDOUT1±  
SERDOUT2±  
SERDOUT3±  
4
SIGNAL  
MONITOR  
NOISE SHAPING REQUANTIZER  
(×2)  
FD_B  
VARIABLE DYNAMIC RANGE  
VIN+B  
VIN–B  
(×2)  
ADC  
BUFFER  
FAST  
DETECT  
V_1P0  
JESD204B  
SUBCLASS 1  
CONTROL  
CLOCK  
GENERATION  
SIGNAL  
MONITOR  
PDWN/  
STBY  
CLK+  
CLK–  
SPI CONTROL  
÷2  
÷4  
÷8  
AD6674  
AGND  
SYSREF± SYNCINB± SDIO SCLK CSB  
DGND DRGND  
Figure 1.  
Rev. C  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2014–2016 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD6674* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DESIGN RESOURCES  
AD6674 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
EVALUATION KITS  
[NO TITLE FOUND] EvalBoard  
DOCUMENTATION  
Application Notes  
DISCUSSIONS  
View all AD6674 EngineerZone Discussions.  
AN-1371: Variable Dynamic Range  
Data Sheet  
SAMPLE AND BUY  
AD6674: 385 MHz BW IF Diversity Receiver Data Sheet  
Visit the product page to see pricing options.  
TOOLS AND SIMULATIONS  
AD6674 Delphi Model  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
AD9680 / AD6674 IBIS Model  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
REFERENCE MATERIALS  
Technical Articles  
MS-2714: Understanding Layers in the JESD204B  
Specificaton: A High Speed ADC Perspective, Part 1  
MS-2735: Maximizing the Dynamic Range of Software-  
Defined Radio  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
AD6674  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Numerically Controlled Oscillator .......................................... 48  
FIR Filters ........................................................................................ 50  
General Description................................................................... 50  
Half-Band Filters ........................................................................ 51  
DDC Gain Stage ......................................................................... 52  
DDC Complex to Real Conversion ......................................... 52  
DDC Example Configurations ................................................. 53  
Noise Shaping Requantizer (NSR) ............................................... 57  
Decimating Half-Band Filter .................................................... 57  
NSR Overview ............................................................................ 57  
Variable Dynamic Range (VDR).................................................. 60  
VDR Real Mode.......................................................................... 61  
VDR Complex Mode ................................................................. 61  
Digital Outputs ............................................................................... 63  
Introduction to JESD204B Interface........................................ 63  
JESD204B Overview .................................................................. 63  
Functional Overview ................................................................. 64  
JESD204B Link Establishment ................................................. 64  
Physical Layer (Driver) Outputs .............................................. 66  
JESD204B Tx Converter Mapping........................................... 68  
Configuring the JESD204B Link.............................................. 68  
Multichip Synchronization............................................................ 72  
SYSREF Setup/Hold Window Monitor................................. 74  
Test Modes....................................................................................... 76  
ADC Test Modes ........................................................................ 76  
JESD204B Block Test Modes .................................................... 76  
Serial Port Interface (SPI).............................................................. 79  
Configuration Using the SPI..................................................... 79  
Hardware Interface..................................................................... 79  
SPI Accessible Features.............................................................. 79  
Memory Map .................................................................................. 80  
Reading the Memory Map Register Table............................... 80  
Memory Map Register Table..................................................... 81  
Applications Information.............................................................. 95  
Power Supply Recommendations............................................. 95  
Exposed Pad Thermal Heat Slug Recommendations............ 95  
AVDD1_SR (Pin 57) and AGND (Pin 56, Pin 60) ................ 95  
Outline Dimensions....................................................................... 96  
Ordering Guide .......................................................................... 96  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 3  
Product Highlights ........................................................................... 4  
Specifications..................................................................................... 5  
DC Specifications ......................................................................... 5  
AC Specifications.......................................................................... 6  
Digital Specifications ................................................................... 8  
Switching Specifications .............................................................. 9  
Timing Specifications .................................................................. 9  
Absolute Maximum Ratings.......................................................... 11  
Thermal Characteristics ............................................................ 11  
ESD Caution................................................................................ 11  
Pin Configuration and Function Descriptions........................... 12  
Typical Performance Characteristics ........................................... 14  
AD6674-1000.............................................................................. 14  
AD6674-750................................................................................ 18  
AD6674-500................................................................................ 22  
Equivalent Circuits......................................................................... 26  
Theory of Operation ...................................................................... 28  
ADC Architecture ...................................................................... 28  
Analog Input Considerations.................................................... 28  
Voltage Reference ....................................................................... 33  
Clock Input Considerations...................................................... 34  
Power-Down/Standby Mode..................................................... 35  
Temperature Diode .................................................................... 36  
ADC Overrange and Fast Detect.................................................. 37  
ADC Overrange (OR)................................................................ 37  
Fast Threshold Detection (FD_A and FD_B) ........................ 37  
Signal Monitor ................................................................................ 38  
SPORT over JESD204B.............................................................. 38  
Digital Downconverter (DDC)..................................................... 41  
DDC I/Q Input Selection .......................................................... 41  
DDC I/Q Output Selection ....................................................... 41  
DDC General Description ........................................................ 41  
Frequency Translation ................................................................... 47  
General Description................................................................... 47  
DDC NCO + Mixer Loss and SFDR........................................ 48  
Rev. C | Page 2 of 96  
Data Sheet  
AD6674  
REVISION HISTORY  
8/2016—Rev. B to Rev. C  
4/2015—Rev. A to Rev. B  
Changes to Figure 1...........................................................................1  
Changes to Table 1 ............................................................................5  
Changes to Table 5 ............................................................................9  
Changes to Table 8 ..........................................................................12  
Added Figure 15; Renumbered Sequentially...............................15  
Added Figure 34 ..............................................................................19  
Added Figure 53 ..............................................................................23  
Changes to Figure 72 ......................................................................27  
Changes to Table 10 ........................................................................32  
Changes to Input Clock Driver Section .......................................34  
Changes to Clock Jitter Considerations Section .........................35  
Changes to Setting Up the NCO FTW and POW Section ........48  
Changes to JESD204B Overview Section.....................................63  
Changes to Figure 123 Caption and Figure 124..........................64  
Changes to ADC Test Modes Section...........................................76  
Added Datapath Soft Reset Section..............................................80  
Changes to Table 45 ........................................................................81  
Changes to Ordering Guide...........................................................96  
Changed SPIVDD Range from 1.8 V to 3.3 V to  
1.8 V to 3.4 V ..................................................................Throughout  
Changes to General Description Section.......................................4  
Changes to Table 1 ............................................................................5  
Changes to Table 3 ............................................................................8  
Changes to Figure 14 ......................................................................15  
Change to Figure 78 Caption.........................................................27  
Changes to Table 10 ........................................................................29  
Changes to Clock Jitter Considerations Section.........................32  
Added Figure 92; Renumbered Sequentially...............................32  
Changes to Digital Downconverter (DDC) Section...................37  
Changes to Table 17 ........................................................................46  
Changes to Table 23 ........................................................................49  
Changes to Figure 108 ....................................................................53  
Changes to Figure 116 ....................................................................56  
Changes to Figure 117 and VDR Complex Mode Section ........57  
Changes to Table 45 ........................................................................79  
12/2014—Revision A: Initial Version  
Rev. C | Page 3 of 96  
 
AD6674  
Data Sheet  
The analog input and clock signals are differential inputs. The  
ADC data outputs are internally connected to four DDCs  
through a crossbar mux. Each DDC consists of up to five  
cascaded signal processing stages: a 12-bit frequency translator  
(NCO), and up to four half-band decimation filters.  
indicator goes high. Because this threshold indicator has low  
latency, the user can quickly turn down the system gain to avoid  
an overrange condition at the ADC input. Besides the fast  
detect outputs, the AD6674 also offers signal monitoring  
capability. The signal monitoring block provides additional  
information about the signal being digitized by the ADC.  
Each ADC output is connected internally to an NSR block. The  
integrated NSR circuitry allows improved SNR performance in  
a smaller frequency band within the Nyquist bandwidth. The  
device supports two different output modes selectable via the  
SPI. With the NSR feature enabled, the outputs of the ADCs are  
processed such that the AD6674 supports enhanced SNR  
performance within a limited portion of the Nyquist bandwidth  
while maintaining a 9-bit output resolution. NSR is enabled by  
default on the AD6674.  
Users can configure the Subclasss 1 JESD204B-based high speed  
serialized output in a variety of two-lane and four-lane  
configurations, depending on the DDC configuration and the  
acceptable lane rate of the receiving logic device. Multidevice  
synchronization is supported through the SYSREF and  
SYNCINB input pins.  
The AD6674 has flexible power-down options that allow signifi-  
cant power savings when desired. All of these features can be  
programmed using a 1.8 V capable 3-wire serial port interface  
(SPI).  
Each ADC output is also connected internally to a VDR block.  
This optional mode allows full dynamic range for defined input  
signals. Inputs that are within a defined mask (based on DPD  
applications) are passed unaltered. Inputs that violate this  
defined mask result in the reduction of the output resolution.  
The AD6674 is available in a Pb-free, 64-lead LFCSP, specified  
over the −40°C to +85°C industrial temperature range. This  
product is protected by a U.S. patent.  
With VDR, the dynamic range of the observation receiver is  
determined by a defined input frequency mask. For signals  
falling within the mask, the outputs are presented at the  
maximum resolution allowed. For signals exceeding defined  
power levels within this frequency mask, the output resolution  
is truncated. This mask is based on DPD applications and  
supports tunable real IF sampling, and zero IF or complex IF  
receive architectures.  
PRODUCT HIGHLIGHTS  
1. Wide full power bandwidth supports IF sampling of signals  
up to 2 GHz.  
2. Buffered inputs with programmable input termination  
eases filter design and implementation.  
3. Four integrated wideband decimation filters and  
numerically controlled oscillator (NCO) blocks supporting  
multiband receivers.  
4. Flexible SPI controls various product features and  
functions to meet specific system requirements.  
5. Programmable fast overrange detection and signal  
monitoring.  
6. Programmable fast overrange detection.  
7. 9 mm × 9 mm 64-lead LFCSP.  
Operation of the AD6674 between the DDC, NSR, and VDR  
modes is selectable via SPI-programmable profiles.  
In addition to the DDC blocks, the AD6674 has several  
functions that simplify the AGC function in a communications  
receiver. The programmable threshold detector allows  
monitoring of the incoming signal power using the fast detect  
control bits in Register 0x245 of the ADC. If the input signal  
level exceeds the programmable threshold, the fast detect  
Rev. C | Page 4 of 96  
 
Data Sheet  
AD6674  
SPECIFICATIONS  
DC SPECIFICATIONS  
AVDD1 = 1.25 V, AVDD2 = 2.5 V, AVDD3 = 3.3 V, AVDD1_SR = 1.25 V, DVDD = 1.25 V, DRVDD = 1.25 V, SPIVDD = 1.8 V, specified  
maximum sampling rate, 1.0 V internal reference (VREF), AIN = −1.0 dBFS, clock divider = 2, default SPI settings, TA = 25°C, unless  
otherwise noted.  
Table 1.  
AD6674-1000  
AD6674-750  
AD6674-500  
Parameter  
Temp  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
Bits  
RESOLUTION  
14  
14  
ACCURACY  
No Missing Codes  
Offset Error  
Offset Matching  
Gain Error  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Guaranteed  
Guaranteed  
Guaranteed  
−0.31  
−6  
0
0
0
1
+0.31  
+0.23  
+6  
+4.5  
+0.ꢀ  
+6.9  
−0.51  
−6  
0
0
0
1
+0.42  
+0.41  
+6  
+5.2  
+0.ꢀ  
+5.0  
−0.3  
−6  
0
0
0
1
+0.3  
+0.3  
+6  
+5.1  
+0.7  
+5.0  
% FSR  
% FSR  
% FSR  
% FSR  
LSB  
Gain Matching  
Differential Nonlinearity (DNL)  
Integral Nonlinearity (INL)  
TEMPERATURE DRIFT  
Offset Error  
−0.7  
−5.7  
0.5  
2.5  
−0.6  
−3.4  
0.5  
2.5  
−0.6  
−4.5  
0.5  
2.5  
LSB  
Full  
Full  
−14  
13.ꢀ  
−9  
−57  
−3  
25  
ppm/°C  
ppm/°C  
Gain Error  
INTERNAL VOLTAGE REFERENCE  
Voltage  
Full  
25°C  
Full  
1.0  
1.0  
1.0  
V
INPUT REFERRED NOISE  
VREF = 1.0 V  
2.63  
1.70  
2.4ꢀ  
1.70  
2.06  
2.06  
LSB rms  
V p-p  
ANALOG INPUTS  
Differential Input Voltage Range  
(Internal VREF = 1.0 V)  
1.46  
1.94  
1.46  
1.94  
1.46  
2.06  
Common-Mode Voltage (VCM  
)
Full  
Full  
Full  
2.05  
1.5  
2
2.05  
1.5  
2
2.05  
1.5  
2
V
pF  
GHz  
Differential Input Capacitance1  
Analog Full Power Bandwidth  
POWER SUPPLY  
AVDD1  
AVDD2  
AVDD3  
AVDD1_SR  
DVDD  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
25°C  
Full  
1.22  
2.44  
3.2  
1.22  
1.22  
1.22  
1.7  
1.25  
2.50  
3.3  
1.25  
1.25  
1.25  
1.ꢀ  
6ꢀ5  
595  
125  
16  
263  
200  
N/A5  
5
1.2ꢀ  
2.56  
3.4  
1.2ꢀ  
1.2ꢀ  
1.2ꢀ  
3.4  
721  
677  
142  
1ꢀ  
292  
225  
1.22  
2.44  
3.2  
1.22  
1.22  
1.22  
1.7  
1.25  
2.50  
3.3  
1.25  
1.25  
1.25  
1.ꢀ  
545  
460  
125  
10  
165  
190  
N/A5  
5
1.2ꢀ  
2.56  
3.4  
1.2ꢀ  
1.2ꢀ  
1.2ꢀ  
3.4  
623  
572  
142  
17  
217  
25ꢀ  
1.22  
2.44  
3.2  
1.22  
1.22  
1.22  
1.7  
1.25  
2.50  
3.3  
1.25  
1.25  
1.25  
1.ꢀ  
427  
39ꢀ  
ꢀ9  
1.2ꢀ  
2.56  
3.4  
1.2ꢀ  
1.2ꢀ  
1.2ꢀ  
3.4  
466  
463  
100  
1ꢀ  
1ꢀ3  
237  
V
V
V
V
V
V
V
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
DRVDD  
SPIVDD  
2
IAVDD1  
2
IAVDD2  
2
IAVDD3  
2
IAVDD1_SR  
IDVDD  
IDRVDD  
10  
2
139  
1ꢀ2  
140  
5
2, 3  
L = 2 Mode4  
ISPIVDD  
6
7.0  
7
Rev. C | Page 5 of 96  
 
 
 
AD6674  
Data Sheet  
AD6674-1000  
AD6674-750  
AD6674-500  
Parameter  
Temp  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
POWER CONSUMPTION  
Total Power Dissipation2  
Power-Down Dissipation  
Standby6  
Full  
Full  
Full  
3.3  
ꢀ35  
1.4  
3.6  
2.ꢀ  
ꢀ35  
1.4  
3.1  
2.24  
710  
1.2  
2.5  
W
mW  
W
1 Differential capacitance is measured between the VIN+x and VIN−x pins (x = A, B).  
2 Measured with a low input frequency, full-scale sine wave.  
3 All lanes running. Power dissipation on DRVDD changes with lane rate and number of lanes used.  
4 L is the number of lanes per converter device (lanes per link).  
5 N/A means not applicable. At the maximum sample rate, it is not applicable to use L = 2 mode on the JESD204B output interface because this exceeds the maximum  
lane rate of 12.5 Gbps. L = 2 mode is supported when the equation ((M × N΄ × (10/ꢀ) × fOUT)/L) results in a lane rate that is ≤12.5 Gbps. fOUT is the output sample rate and  
is denoted by fS/DCM, where DCM = decimation ratio.  
6 Can be controlled by the SPI.  
AC SPECIFICATIONS  
AVDD1 = 1.25 V, AVDD2 = 2.5 V, AVDD3 = 3.3 V, AVDD1_SR = 1.25 V, DVDD = 1.25 V, DRVDD = 1.25 V, SPIVDD = 1.8 V, specified  
maximum sampling rate, 1.0 V internal reference, AIN = −1.0 dBFS, clock divider = 2, default SPI settings, TA = 25°C, unless otherwise noted.  
Table 2.  
AD6674-1000  
AD6674-750  
AD6674-500  
Max Unit  
Parameter1  
Temp Min Typ Max Min Typ  
Max Min Typ  
ANALOG INPUT FULL SCALE  
NOISE DENSITY2  
SIGNAL-TO-NOISE RATIO (SNR)3  
VDR Mode (Input Mask Not Triggered)  
fIN = 10 MHz  
fIN = 170 MHz  
fIN = 340 MHz  
fIN = 450 MHz  
fIN = 765 MHz  
fIN = 9ꢀ5 MHz  
fIN = 1950 MHz  
NSR Enabled (21% BW Mode)4  
Full  
Full  
1.7  
1.7  
2.06  
V p-p  
−154  
−153  
−153  
dBFS/Hz  
25°C  
Full  
67.2  
65.1 66.6  
65.3  
67.3  
65.ꢀ 67.1  
66.7  
69.2  
67.ꢀ 69.0  
6ꢀ.6  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
25°C  
25°C  
25°C  
25°C  
25°C  
64.0  
62.4  
61.4  
57.0  
66.2  
64.3  
63.6  
59.9  
6ꢀ.0  
64.4  
63.ꢀ  
60.5  
fIN = 10 MHz  
fIN = 170 MHz  
fIN = 340 MHz  
fIN = 450 MHz  
fIN = 765 MHz  
fIN = 9ꢀ5 MHz  
fIN = 1950 MHz  
NSR Enabled (2ꢀ% BW Mode)4  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
73.ꢀ  
73.6  
73.5  
71.9  
69.0  
6ꢀ.2  
63.6  
74.0  
73.ꢀ  
73.7  
72.2  
71.4  
71.0  
66.6  
75.2  
75.2  
74.ꢀ  
74.2  
70.3  
69.3  
65.3  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
fIN = 10 MHz  
fIN = 170 MHz  
fIN = 340 MHz  
fIN = 450 MHz  
fIN = 765 MHz  
fIN = 9ꢀ5 MHz  
fIN = 1950 MHz  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
72.4  
72.2  
72.1  
70.5  
67.0  
66.3  
61.9  
72.ꢀ  
72.6  
72.5  
71.0  
70.0  
6ꢀ.9  
65.1  
72.4  
72.4  
72.1  
71.9  
6ꢀ.3  
67.7  
64.1  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
Rev. C | Page 6 of 96  
 
 
Data Sheet  
AD6674  
AD6674-1000  
AD6674-750  
AD6674-500  
Parameter1  
Temp Min Typ Max Min Typ  
Max Min Typ  
Max Unit  
SIGNAL-TO-NOISE-AND-DISTORTION RATIO (SINAD)3  
VDR Mode (Input Mask Not Triggered)  
fIN = 10 MHz  
25°C  
Full  
67.1  
65.0 66.4  
65.2  
67.1  
65.6 67.0  
66.5  
69.0  
67.6 6ꢀ.ꢀ  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
fIN = 170 MHz  
fIN = 340 MHz  
fIN = 450 MHz  
fIN = 765 MHz  
fIN = 9ꢀ5 MHz  
fIN = 1950 MHz  
25°C  
25°C  
25°C  
25°C  
25°C  
6ꢀ.4  
67.9  
64.2  
63.6  
60.3  
63.ꢀ  
62.1  
61.1  
56.0  
66.1  
64.1  
63.1  
59.0  
EFFECTIVE NUMBER OF BITS (ENOB)3  
VDR Mode (Input Mask Not Triggered)  
fIN = 10 MHz  
25°C  
Full  
10.ꢀ  
10.5 10.7  
10.5  
10.ꢀ  
10.4 10.ꢀ  
10.7  
11.2  
10.ꢀ 11.1  
11.1  
Bits  
Bits  
Bits  
Bits  
Bits  
Bits  
Bits  
fIN = 170 MHz  
fIN = 340 MHz  
fIN = 450 MHz  
fIN = 765 MHz  
fIN = 9ꢀ5 MHz  
fIN = 1950 MHz  
25°C  
25°C  
25°C  
25°C  
25°C  
10.3  
10.0  
9.ꢀ  
9.0  
10.5  
10.4  
10.2  
9.5  
11.0  
10.4  
10.3  
9.7  
SPURIOUS FREE DYNAMIC RANGE (SFDR),  
SECOND OR THIRD HARMONIC3  
VDR Mode (Input Mask Not Triggered)  
fIN = 10 MHz  
fIN = 170 MHz  
fIN = 340 MHz  
fIN = 450 MHz  
fIN = 765 MHz  
fIN = 9ꢀ5 MHz  
fIN = 1950 MHz  
25°C  
Full  
ꢀꢀ  
ꢀ5  
ꢀ3  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
75  
ꢀ5  
ꢀ5  
ꢀ2  
ꢀ2  
ꢀ0  
6ꢀ  
75  
ꢀ6  
ꢀ3  
ꢀ2  
ꢀ0  
76  
6ꢀ  
ꢀ0  
ꢀꢀ  
ꢀ3  
ꢀ1  
ꢀ0  
75  
70  
25°C  
25°C  
25°C  
25°C  
25°C  
WORST OTHER (EXCLUDING SECOND OR THIRD  
HARMONIC)3  
VDR Mode (Input Mask Not Triggered)  
fIN = 10 MHz  
fIN = 170 MHz  
fIN = 340 MHz  
fIN = 450 MHz  
fIN = 765 MHz  
fIN = 9ꢀ5 MHz  
fIN = 1950 MHz  
25°C  
Full  
−95  
−ꢀ1 −94  
−ꢀꢀ  
−95  
−ꢀ1 −ꢀ9  
−ꢀ3  
−95  
−ꢀ2 −95  
−93  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
25°C  
25°C  
25°C  
25°C  
25°C  
−ꢀ6  
−ꢀ1  
−ꢀ2  
−75  
−ꢀ2  
−ꢀ5  
−ꢀ3  
−ꢀ0  
−93  
−ꢀꢀ  
−ꢀ9  
−ꢀ4  
TWO-TONE INTERMODULATION DISTORTION (IMD)3  
AIN1 AND AIN2 = −7.0 dBFS  
fIN1 = 1ꢀ5 MHz, fIN2 = 1ꢀꢀ MHz  
fIN1 = 33ꢀ MHz, fIN2 = 341 MHz  
CROSSTALK5  
25°C  
25°C  
25°C  
25°C  
−ꢀ7  
−ꢀꢀ  
95  
−ꢀ5  
−ꢀ3  
95  
−ꢀꢀ  
−ꢀꢀ  
95  
dBFS  
dBFS  
dB  
FULL POWER BANDWIDTH  
2
2
2
GHz  
1 See the AN-ꢀ35 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and for details on how these tests were completed.  
2 Noise density is measured at low analog input frequency (30 MHz).  
3 See Table 10 for recommended device settings to achieve stated typical performance.  
4 When NSR is activated on the AD6674-750 and AD6674-1000, the decimating half-band filter is also enabled.  
5 Crosstalk is measured at 1ꢀ5 MHz with −1.0 dBFS analog input on one channel and no input on the adjacent channel.  
Rev. C | Page 7 of 96  
AD6674  
Data Sheet  
DIGITAL SPECIFICATIONS  
AVDD1 = 1.25 V, AVDD2 = 2.5 V, AVDD3 = 3.3 V, AVDD1_SR = 1.25 V, DVDD = 1.25 V, DRVDD = 1.25 V, SPIVDD = 1.8 V, specified  
maximum sampling rate, 1.0 V internal reference, AIN = −1.0 dBFS, clock divider = 2, default SPI settings, TA = 25°C, unless otherwise  
noted.  
Table 3.  
Parameter  
Temp  
Min  
Typ  
Max  
1ꢀ00  
2.5  
Unit  
CLOCK INPUTS (CLK+, CLK−)  
Logic Compliance  
Differential Input Voltage  
Input Common-Mode Voltage  
Input Resistance (Differential)  
Input Capacitance  
Full  
Full  
Full  
Full  
Full  
LVDS/LVPECL  
600  
1200  
0.ꢀ5  
35  
mV p-p  
V
 
pF  
SYSTEM REFERENCE INPUTS (SYSREF+, SYSREF−)  
Logic Compliance  
Full  
Full  
Full  
Full  
Full  
LVDS/LVPECL  
Differential Input Voltage  
Input Common-Mode Voltage  
Input Resistance (Differential)  
Input Capacitance (Differential)  
LOGIC INPUTS (SDIO, SCLK, CSB, PDWN/STBY)  
Logic Compliance  
Logic 1 Voltage  
Logic 0 Voltage  
Input Resistance  
400  
0.6  
1200  
0.ꢀ5  
35  
1ꢀ00  
2.0  
mV p-p  
V
kΩ  
pF  
2.5  
Full  
Full  
Full  
Full  
CMOS  
0.ꢀ × SPIVDD  
0
V
V
kΩ  
30  
LOGIC OUTPUT (SDIO)  
Logic Compliance  
Full  
Full  
Full  
CMOS  
Logic 1 Voltage (IOH = ꢀ00 μA)  
Logic 0 Voltage (IOL = 50 μA)  
SYNC INPUTS (SYNCINB+, SYNCINB–)  
Logic Compliance  
Differential Input Voltage  
Input Common-Mode Voltage  
Input Resistance (Differential)  
Input Capacitance  
0.ꢀ × SPIVDD  
0
V
V
Full  
Full  
Full  
Full  
Full  
LVDS/LVPECL/CMOS  
400  
0.6  
1200  
0.ꢀ5  
35  
1ꢀ00  
2.0  
mV p-p  
V
kΩ  
pF  
2.5  
LOGIC OUTPUTS (FD_A, FD_B)  
Logic Compliance  
Logic 1 Voltage  
Logic 0 Voltage  
Input Resistance  
Full  
Full  
Full  
Full  
CMOS  
0.ꢀ × SPIVDD  
0
V
V
 
30  
DIGITAL OUTPUTS (SERDOUTx , x = 0 TO 3)  
Logic Compliance  
Differential Output Voltage  
Full  
Full  
CML  
360  
770  
mV p-p  
Output Common-Mode Voltage (VCM  
AC-Coupled  
)
25°C  
25°C  
25°C  
25°C  
Full  
0
1.ꢀ  
+100  
V
Short-Circuit Current (IDSHORT  
Differential Return Loss (RLDIFF  
Common-Mode Return Loss (RLCM  
Differential Termination Impedance  
)
−100  
6
mA  
dB  
dB  
Ω
1
)
1
)
ꢀ0  
100  
120  
1 Differential and common-mode return loss is measured from 100 MHz to 0.75 × baud rate.  
Rev. C | Page ꢀ of 96  
 
Data Sheet  
AD6674  
SWITCHING SPECIFICATIONS  
AVDD1 = 1.25 V, AVDD2 = 2.5 V, AVDD3 = 3.3 V, AVDD1_SR = 1.25 V, DVDD = 1.25 V, DRVDD = 1.25 V, SPIVDD = 1.8 V, specified  
maximum sampling rate, 1.0 V internal reference, AIN = −1.0 dBFS, clock divider = 2, default SPI settings, TA = 25°C, unless otherwise noted.  
Table 4.  
AD6674-1000  
Temp Min Typ Max Min  
AD6674-750  
Typ  
AD6674-500  
Max Min Typ Max Unit  
Parameter  
CLOCK  
Clock Rate (at CLK+/CLK− Pins)  
Maximum Sample Rate1  
Minimum Sample Rate2  
Clock Pulse Width High  
Clock Pulse Width Low  
OUTPUT PARAMETERS  
Unit Interval (UI)3  
Full  
Full  
Full  
Full  
Full  
0.3  
4
0.3  
750  
300  
666.67  
666.67  
4
0.3  
4
GHz  
MSPS  
MSPS  
ps  
1000  
300  
500  
500  
500  
300  
1000  
1000  
ps  
Full  
25°C  
100  
32  
133.33  
32  
200  
32  
ps  
ps  
Rise Time (tR) (20% to ꢀ0% into 100 Ω  
Load)  
Fall Time (tF) (20% to ꢀ0% into 100 Ω  
Load)  
25°C  
32  
32  
32  
ps  
PLL Lock Time  
Data Rate per Channel (NRZ)4  
25°C  
25°C  
2
2
7.5  
2
5
ms  
3.125 10  
12.5 3.125  
12.5 3.125  
12.5 Gbps  
LATENCY  
Pipeline Latency  
Full  
Full  
25°C  
25°C  
75  
1
75  
1
75  
1
Clock cycles  
Clock cycles  
ms  
ms  
Fast Detect Latency  
Wake-Up Time (Standby)5  
Wake-Up Time (Power-Down)5  
APERTURE  
2ꢀ  
4
2ꢀ  
4
2ꢀ  
4
Aperture Delay (tA)  
Aperture Uncertainty (Jitter, tJ)  
Out-of-Range Recovery Time  
Full  
Full  
Full  
530  
55  
1
530  
55  
1
530  
55  
1
ps  
fs rms  
Clock cycles  
1 The maximum sample rate is the clock rate after the divider.  
2 The minimum sample rate operates at 300 MSPS with L = 2 or L = 1.  
3 Baud rate = 1/UI. A subset of this range can be supported.  
4 At full baud rate (12.5 Gbps), each ADC outputs data on two differential pair lanes.  
5 Wake-up time is defined as the time required to return to normal operation from power-down mode or standby mode.  
TIMING SPECIFICATIONS  
Table 5.  
Parameter  
Test Conditions/Comments  
Min Typ Max Unit  
CLK to SYSREF TIMING REQUIREMENTS  
tSU_SR  
tH_SR  
Device clock to SYSREF setup time  
Device clock to SYSREF hold time  
See Figure 4  
117  
−96  
ps  
ps  
SPI TIMING REQUIREMENTS  
tDS  
tDH  
tCLK  
tS  
tH  
tHIGH  
tLOW  
tACCESS  
Setup time between the data and the rising edge of SCLK  
Hold time between the data and the rising edge of SCLK  
Period of the SCLK  
Setup time between CSB and SCLK  
Hold time between CSB and SCLK  
Minimum period that SCLK is in a logic high state  
Minimum period that SCLK is in a logic low state  
Maximum time delay between the falling edge of SCLK and the  
output data valid for a read operation  
2
2
40  
2
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10  
10  
6
10  
tDIS_SDIO  
Time required for the SDIO pin to switch from an output to an  
input relative to the SCLK rising edge (not shown in Figure 4)  
10  
ns  
Rev. C | Page 9 of 96  
 
 
 
AD6674  
Data Sheet  
Timing Diagrams  
APERTURE  
DELAY  
SAMPLE N  
ANALOG  
INPUT  
SIGNAL  
N – 54  
N + 1  
N – 55  
N – 53  
N – 1  
N – 52  
N – 51  
CLK–  
CLK+  
CLK–  
CLK+  
SERDOUT0–  
SERDOUT0+  
A
A
A
A
B
B
B
B
C
C
C
C
D
D
D
D
E
E
E
E
F
F
F
F
G
G
G
G
H
I
I
I
I
J
J
J
J
A
B
B
B
B
C
C
C
C
D
D
D
D
E
E
E
E
F
F
F
F
G
G
G
G
H
H
H
H
I
I
I
I
J
J
J
J
A
A
A
A
B
B
B
B
C
C
C
C
D
D
D
D
E
E
E
E
F
F
F
F
G
G
G
G
H
H
H
H
I
I
I
I
J
J
J
J
CONVERTER0 MSB  
CONVERTER0 LSB  
CONVERTER1 MSB  
CONVERTER1 LSB  
SERDOUT1–  
SERDOUT1+  
H
H
H
A
A
A
SERDOUT2–  
SERDOUT2+  
SERDOUT3–  
SERDOUT3+  
SAMPLE N – 55  
SAMPLE N – 54  
SAMPLE N – 53  
ENCODED INTO 1  
ENCODED INTO 1  
ENCODED INTO 1  
8-BIT/10-BIT SYMBOL  
8-BIT/10-BIT SYMBOL  
8-BIT/10-BIT SYMBOL  
Figure 2. Data Output Timing (VDR Mode; L = 4; M = 2; F = 1)  
CLK–  
CLK+  
tSU_SR  
tH_SR  
SYSREF–  
SYSREF+  
Figure 3. SYSREF Setup and Hold Timing  
tDS  
tHIGH  
tCLK  
tH  
tS  
tDH  
tLOW  
CSB  
SCLK DON’T CARE  
DON’T CARE  
DON’T CARE  
R/W  
SDIO DON’T CARE  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
A7  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 4. Serial Port Interface Timing Diagram  
Rev. C | Page 10 of 96  
 
Data Sheet  
AD6674  
ABSOLUTE MAXIMUM RATINGS  
THERMAL CHARACTERISTICS  
Table 6.  
Typical θJA, ΨJB, and θJC are specified vs. the number of printed  
circuit board (PCB) layers in different airflow velocities (in  
m/sec). Airflow increases heat dissipation, effectively reducing  
θJA and ΨJB. In addition, metal in direct contact with the package  
leads and exposed pad from metal traces, through holes, ground,  
and power planes reduces the θJA. Thermal performance for  
actual applications requires careful inspection of the conditions  
in an application. The use of appropriate thermal management  
techniques is recommended to ensure that the maximum  
junction temperature does not exceed the limits shown in Table 6.  
Parameter  
Rating  
Electrical  
AVDD1 to AGND  
AVDD1_SR to AGND  
AVDD2 to AGND  
AVDD3 to AGND  
1.32 V  
1.32 V  
2.75 V  
3.63 V  
1.32 V  
1.32 V  
3.63 V  
−0.3 V to +0.3 V  
3.2 V  
−0.3 V to SPIVDD + 0.3 V  
−0.3 V to SPIVDD + 0.3 V  
−40°C to +ꢀ5°C  
−40°C to +115°C  
−60°C to +150°C  
DVDD to DGND  
DRVDD to DRGND  
SPIVDD to AGND  
AGND to DRGND  
VIN x to AGND  
SCLK, SDIO, CSB to AGND  
PDWN/STBY to AGND  
Operating Temperature Range  
Junction Temperature Range  
Table 7. Thermal Resistance Values  
Airflow  
PCB  
Type  
Velocity  
(m/sec)  
θJA  
ΨJB  
θJC_TOP θJC_BOT Unit  
JEDEC  
2s2p  
Board  
0.0  
1.0  
2.5  
17.ꢀ1, 2  
15.61, 2  
15.01, 2  
6.31, 3  
5.91, 3  
5.71, 3  
4.71, 5  
N/A4  
N/A4  
1.21, 5  
°C/W  
°C/W  
°C/W  
Storage Temperature Range  
(Ambient)  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
1 Per JEDEC 51-7, plus JEDEC 51-5 2s2p test board.  
2 Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air).  
3 Per JEDEC JESD51-ꢀ (still air).  
4 N/A means not applicable.  
5 Per MIL-STD ꢀꢀ3, Method 1012.1.  
ESD CAUTION  
Rev. C | Page 11 of 96  
 
 
 
 
AD6674  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
AVDD1  
AVDD1  
AVDD2  
AVDD3  
VIN–A  
VIN+A  
AVDD3  
AVDD2  
AVDD2  
1
2
3
4
5
6
7
8
9
48 AVDD1  
47 AVDD1  
46 AVDD2  
45 AVDD3  
44 VIN–B  
43 VIN+B  
42 AVDD3  
41 AVDD2  
40 AVDD2  
39 AVDD2  
38 SPIVDD  
37 CSB  
AD6674  
TOP VIEW  
(Not to Scale)  
AVDD2 10  
AVDD2 11  
V_1P0 12  
SPIVDD 13  
PDWN/STBY 14  
DVDD 15  
36 SCLK  
35 SDIO  
34 DVDD  
33 DGND  
DGND 16  
NOTES  
1. EXPOSED PAD. THE EXPOSED THERMAL PAD ON THE BOTTOM OF THE  
PACKAGE PROVIDES THE GROUND REFENCE FOR AVDDx. THIS EXPOSED  
PAD MUST BE CONNECTED TO GROUND FOR PROPER OPERATION.  
Figure 5. Pin Configuration  
Table 8. Pin Function Descriptions  
Pin No.  
Mnemonic  
Type  
Description  
Power Supplies  
0
EPAD  
Ground  
Exposed Pad. The exposed thermal pad on the bottom of the package provides the  
ground reference for AVDDx. This exposed pad must be connected to ground for  
proper operation. See the Applications Information section for more details.  
1, 2, 47, 4ꢀ, 49,  
52, 55, 61, 64  
3, ꢀ, 9, 10, 11,  
39, 40, 41, 46,  
50, 51, 62, 63  
AVDD1  
AVDD2  
Supply  
Supply  
Analog Power Supply (1.25 V Nominal).  
Analog Power Supply (2.5 V Nominal).  
4, 7, 42, 45  
13, 3ꢀ  
15, 34  
16, 33  
1ꢀ, 31  
19, 30  
56, 60  
57  
AVDD3  
SPIVDD  
DVDD  
Supply  
Supply  
Supply  
Ground  
Ground  
Supply  
Ground  
Supply  
Analog Power Supply (3.3 V Nominal).  
Digital Power Supply for SPI (1.7 V to 3.4 V).  
Digital Power Supply (1.25 V Nominal).  
Ground Reference for DVDD.  
DGND  
DRGND  
DRVDD  
AGND1  
AVDD1_SR1  
Ground Reference for DRVDD.  
Digital Driver Power Supply (1.25 V Nominal).  
Ground Reference for SYSREF .  
Analog Power Supply for SYSREF (1.25 V Nominal).  
Analog  
5, 6  
12  
VIN−A, VIN+A  
V_1P0  
Input  
Input/DNC  
ADC A Analog Input Complement/True.  
1.0 V Reference Voltage Input/Do Not Connect. This pin is configurable through the  
SPI as a no connect or an input. Do not connect this pin if using the internal  
reference. This pin requires a 1.0 V reference voltage input if using an external  
voltage reference source.  
43, 44  
53, 54  
VIN+B, VIN−B  
CLK+, CLK−  
Input  
Input  
ADC B Analog Input True/Complement.  
Clock Input True/Complement.  
Rev. C | Page 12 of 96  
 
Data Sheet  
AD6674  
Pin No.  
Mnemonic  
Type  
Description  
CMOS Outputs  
17, 32  
FD_A, FD_B  
Output  
Fast Detect Outputs for Channel A and Channel B.  
Digital Inputs  
20, 21  
SYNCINB−,  
SYNCINB+  
SYSREF+,  
SYSREF−  
Input  
Input  
Active Low JESD204B LVDS Sync Input True/Complement.  
5ꢀ, 59  
Active Low JESD204B LVDS System Reference Input True/Complement.  
Data Outputs  
22, 23  
SERDOUT0−,  
SERDOUT0+  
SERDOUT1−,  
SERDOUT1+  
SERDOUT2−,  
SERDOUT2+  
SERDOUT3−,  
SERDOUT3+  
Output  
Output  
Output  
Output  
Lane 0 Output Data Complement/True.  
Lane 1 Output Data Complement/True.  
Lane 2 Output Data Complement/True.  
Lane 3 Output Data Complement/True.  
24, 25  
26, 27  
2ꢀ, 29  
Device Under  
Test (DUT )  
Controls  
14  
PDWN/STBY  
Input  
Power-Down Input (Active High). The operation of this pin depends on the SPI  
mode and can be configured as power-down or standby. This pin requires an  
external 10 kΩ pull-down resistor.  
35  
36  
37  
SDIO  
SCLK  
CSB  
Input/Output SPI Serial Data Input/Output.  
Input  
Input  
SPI Serial Clock.  
SPI Chip Select (Active Low).  
1 To ensure proper ADC operation, connect AVDD1_SR and AGND separately from the AVDD1 and EPAD connection. For more information, see the Applications  
Information section.  
Rev. C | Page 13 of 96  
AD6674  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
AD6674-1000  
AVDD1 = 1.25 V, AVDD1_SR = 1.25 V, AVDD2 = 2.5 V, AVDD3 = 3.3 V, DVDD = 1.25 V, DRVDD = 1.25 V, SPIVDD = 1.8 V,  
AIN = −1.0 dBFS, VDR mode (no violation of VDR mask), clock divider = 2, otherwise default SPI settings, TA = 25°C, 128k FFT sample,  
unless otherwise noted. See Table 10 for recommended settings.  
A
= –1dBFS  
A
= –1dBFS  
IN  
IN  
–10  
–30  
–10  
–30  
SNR = 67.2dBFS  
ENOB = 10.8 BITS  
SFDR = 88dBFS  
SNR = 64.0dBFS  
ENOB = 10.3 BITS  
SFDR = 82dBFS  
BUFFER CONTROL 1 = 1.5×  
BUFFER CONTROL 1 = 3.0×  
–50  
–50  
–70  
–70  
–90  
–90  
–110  
–130  
–110  
–130  
0
0
0
100  
200  
300  
400  
500  
0
0
0
100  
200  
300  
400  
500  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 6. Single Tone FFT with fIN = 10.3 MHz  
Figure 9. Single Tone FFT with fIN = 450.3 MHz  
0
–20  
A
= –1dBFS  
A
= –1dBFS  
SNR = 61.5dBFS  
ENOB = 10.1 BITS  
SFDR = 82dBFS  
BUFFER CONTROL 1 = 6.0×  
IN  
IN  
–10  
–30  
SNR = 66.6dBFS  
ENOB = 10.7 BITS  
SFDR = 85dBFS  
BUFFER CONTROL 1 = 3.0×  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–120  
–110  
–130  
100  
200  
300  
400  
500  
100  
200  
300  
400  
500  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 7. Single Tone FFT with fIN = 170.3 MHz  
Figure 10. Single Tone FFT with fIN = 765.3 MHz  
0
A
= –1dBFS  
SNR = 65.3dBFS  
ENOB = 10.5 BITS  
SFDR = 85dBFS  
BUFFER CONTROL 1 = 3.0×  
A
= –1dBFS  
IN  
IN  
–10  
–30  
SNR = 60.5dBFS  
ENOB = 9.9 BITS  
SFDR = 80dBFS  
–20  
–40  
BUFFER CONTROL 1 = 6.0×  
–50  
–60  
–70  
–80  
–90  
–100  
–120  
–110  
–130  
100  
200  
300  
400  
500  
100  
200  
300  
400  
500  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 8. Single Tone FFT with fIN = 340.3 MHz  
Figure 11. Single Tone FFT with fIN = 985.3 MHz  
Rev. C | Page 14 of 96  
 
 
Data Sheet  
AD6674  
0
–20  
0
A
= –20dBFS  
A
= –1dBFS  
IN  
IN  
SNR = 66.5dBFS  
ENOB = 10.8 BITS  
SFDR = 99dBFS  
SNR = 59.8BFS  
ENOB = 9.6 BITS  
SFDR = 79dBFS  
BUFFER CONTROL 1 = 8.0×  
–20  
–40  
BUFFER CONTROL 1 = 3.0×  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 12. Single Tone FFT with fIN = 1293.3 MHz  
Figure 15. LTE-FDD 10 MHz Channel FFT with fIN = 230 MHz  
0
–20  
90  
A
= –1dBFS  
IN  
SNR = 57.7dBFS  
ENOB = 9.2 BITS  
SFDR = 70dBFS  
BUFFER CONTROL 1 = 8.0×  
85  
80  
75  
70  
65  
60  
SFDR (dBFS)  
–40  
–60  
–80  
SNR (dBFS)  
–100  
–120  
0
100  
200  
300  
400  
500  
700  
750  
800  
850  
900  
950  
1000  
1050  
1100  
FREQUENCY (MHz)  
SAMPLE RATE (MHz)  
Figure 13. Single Tone FFT with fIN = 1725.3 MHz  
Figure 16. SNR/SFDR vs. Sample Rate (fS), fIN = 170.3 MHz;  
Buffer Control 1 = 3.0×  
0
–20  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
A
= –1dBFS  
IN  
1.5×, SFDR  
3.0×, SFDR  
SNR = 57.0dBFS  
ENOB = 9.1 BITS  
SFDR = 69dBFS  
BUFFER CURRENT = 6.0×  
–40  
3.0×, SNR  
–60  
–80  
1.5×, SNR  
–100  
–120  
10.3 63.3 100.3 170.3 225.3 302.3 341.3 403.3 453.3 502.3  
0
100  
200  
300  
400  
500  
ANALOG INPUT FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 14. Single Tone FFT with fIN = 1950.3 MHz  
Figure 17. SNR/SFDR vs. Analog Input Frequency (fIN);  
f
IN < 500 MHz; Buffer Control 1 = 1.5× and 3.0×  
Rev. C | Page 15 of 96  
AD6674  
Data Sheet  
0
20  
0
A
AND A  
= –7dBFS  
IN2  
IN1  
SFDR = 87dBFS  
IMD2 = 93dBFS  
IMD3 = 87dBFS  
–20  
BUFFER CONTROL 1 = 3.0×  
SFDR (dBc)  
–20  
–40  
–60  
–80  
–100  
–120  
–140  
–40  
IMD3 (dBc)  
–60  
–80  
SFDR (dBFS)  
–100  
IMD3 (dBFS)  
–120  
0
100  
200  
300  
400  
500  
–90 –84 –78 –72 –66 –60 –54 –48 –42 –36 –30 –24 –18 –12 –6  
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 18. Two-Tone FFT; fIN1 = 184 MHz, fIN2 = 187 MHz  
Figure 20. Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN  
)
with fIN1 = 184 MHz and fIN2 = 187 MHz  
0
–20  
20  
A
AND A  
= –7dBFS  
IN2  
IN1  
SFDR = 88dBFS  
IMD2 = 93dBFS  
IMD3 = 88dBFS  
BUFFER CONTROL 1 = 4.5×  
0
–20  
SFDR (dBc)  
–40  
–40  
IMD3 (dBc)  
–60  
–60  
–80  
–80  
SFDR (dBFS)  
IMD3 (dBFS)  
–100  
–120  
–140  
–100  
–120  
0
100  
200  
300  
400  
500  
–90 –84 –78 –72 –66 –60 –54 –48 –42 –36 –30 –24 –18 –12 –6  
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 19. Two-Tone FFT; fIN1 = 338 MHz, fIN2 = 341 MHz  
Figure 21. Two-Tone IMD3/SFDR vs. Input Amplitude (AIN) with fIN1 = 338 MHz  
and fIN2 = 341 MHz  
Rev. C | Page 16 of 96  
Data Sheet  
AD6674  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
2.9  
110  
100  
90  
SFDR (dBFS)  
80  
SNR (dBFS)  
70  
60  
L = 4  
M = 2  
F = 1  
50  
SFDR (dBc)  
40  
SNR (dBc)  
30  
20  
10  
0
–10  
–20  
–90 –84 –78 –72 –66 –60 –54 –48 –42 –36 –30 –24 –18 –12 –6  
INPUT AMPLITUDE (dBFS)  
0
SAMPLE RATE (MSPS)  
Figure 24. Power Dissipation vs. Sampel Rate (fS) (Default SPI)  
Figure 22. SNR/SFDR vs. Input Amplitude (AIN), fIN = 170.3 MHz  
90  
80  
SFDR  
70  
SNR  
60  
50  
40  
30  
20  
10  
0
–50 –40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
Figure 23. SNR/SFDR vs. Temperature, fIN = 170.3 MHz  
Rev. C | Page 17 of 96  
AD6674  
Data Sheet  
AD6674-750  
AVDD1 = 1.25 V, AVDD1_SR = 1.25 V, AVDD2 = 2.5 V, AVDD3 = 3.3 V, DVDD = 1.25 V, DRVDD = 1.25 V, SPIVDD = 1.8 V,  
AIN = −1.0 dBFS, VDR mode (no violation of VDR mask), clock divider = 2, otherwise default SPI settings, TA = 25°C, 128k FFT sample,  
unless otherwise noted. See Table 10 for recommended settings.  
0
0
A
= 1dBFS  
A
= 1dBFS  
IN  
IN  
SNR = 67.3dBFS  
SNR = 66.2dBFS  
ENOB = 10.7 BITS  
SFDR = 85dBFS  
ENOB = 10.5 BITS  
SFDR = 82dBFS  
–20  
–20  
BUFFER CONTROL 1 = 1.5×  
BUFFER CONTROL 1 = 4.0×  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
0
0
25 50 75 100 125 150 175 200 225 250 275 300 325 350 375  
FREQUENCY (MHz)  
0
0
0
25 50 75 100 125 150 175 200 225 250 275 300 325 350 375  
FREQUENCY (MHz)  
Figure 25. Single Tone FFT with fIN = 10.3 MHz  
Figure 28. Single Tone FFT with fIN = 450.3 MHz  
0
–20  
0
–20  
A
= 1dBFS  
A
= 1dBFS  
IN  
IN  
SNR = 64.2dBFS  
ENOB = 10.3 BITS  
SFDR = 80dBFS  
SNR = 67.1dBFS  
ENOB = 10.7 BITS  
SFDR = 86dBFS  
BUFFER CONTROL 1 = 8.5×  
BUFFER CONTROL 1 = 2.0×  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
25 50 75 100 125 150 175 200 225 250 275 300 325 350 375  
FREQUENCY (MHz)  
25 50 75 100 125 150 175 200 225 250 275 300 325 350 375  
FREQUENCY (MHz)  
Figure 26. Single Tone FFT with fIN = 170.3 MHz  
Figure 29. Single Tone FFT with fIN = 765.3 MHz  
0
–20  
0
–20  
A
= 1dBFS  
A
= 1dBFS  
IN  
IN  
SNR = 63.5dBFS  
ENOB = 10.2 BITS  
SFDR = 76dBFS  
SNR = 66.7dBFS  
ENOB = 10.6 BITS  
SFDR = 83dBFS  
BUFFER CONTROL 1 = 8.5×  
BUFFER CONTROL 1 = 3.0×  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
25 50 75 100 125 150 175 200 225 250 275 300 325 350 375  
FREQUENCY (MHz)  
25 50 75 100 125 150 175 200 225 250 275 300 325 350 375  
FREQUENCY (MHz)  
Figure 27. Single Tone FFT with fIN = 340.3 MHz  
Figure 30. Single Tone FFT with fIN = 985.3 MHz  
Rev. C | Page 1ꢀ of 96  
 
Data Sheet  
AD6674  
0
0
–20  
A
= –20dBFS  
A
= 1dBFS  
IN  
IN  
SNR = 67.4dBFS  
ENOB = 10.9 BITS  
SFDR = 96dBFS  
SNR = 62.3dBFS  
ENOB = 9.8 BITS  
SFDR = 68dBFS  
–20  
BUFFER CONTROL 1 = 8.5×  
BUFFER CONTROL 1 = 3.0×  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
25 50 75 100 125 150 175 200 225 250 275 300 325 350 375  
FREQUENCY (MHz)  
0
100  
200  
300  
400  
500  
FREQUENCY (MHz)  
Figure 34. LTE-FDD 10 MHz Channel FFT with fIN = 230 MHz  
Figure 31. Single Tone FFT with fIN = 1310.3 MHz  
0
–20  
95  
A
= 1dBFS  
IN  
SNR = 60.5dBFS  
ENOB = 9.6 BITS  
SFDR = 71dBFS  
BUFFER CONTROL 1 = 8.5×  
90  
85  
80  
75  
70  
65  
–40  
–60  
SFDR  
–80  
–100  
–120  
–140  
SNR  
0
25 50 75 100 125 150 175 200 225 250 275 300 325 350 375  
FREQUENCY (MHz)  
525 550 575 600 625 650 675 700 725 750 775 800  
SAMPLE RATE (MSPS)  
Figure 32. Single Tone FFT with fIN = 1710.3 MHz  
Figure 35. SNR/SFDR vs. Sample Rate (fS); fIN = 170.3 MHz,  
Buffer Control 1 = 3.0×  
0
–20  
100  
A
= 1dBFS  
IN  
SNR = 59.8dBFS  
ENOB = 9.5 BITS  
SFDR = 68dBFS  
BUFFER CONTROL 1 = 8.5×  
95  
90  
85  
80  
75  
70  
65  
60  
–40  
SFDR  
–60  
–80  
–100  
–120  
–140  
SNR  
0
25 50 75 100 125 150 175 200 225 250 275 300 325 350 375  
FREQUENCY (MHz)  
0
50  
100 150 200 250 300 350 400 450 500  
FREQUENCY (MHz)  
Figure 33. Single Tone FFT with fIN = 1950.3 MHz  
Figure 36. SNR/SFDR vs. Analog Input Frequency (fIN);  
fIN < 500 MHz; Buffer Control 1 = 3.0×  
Rev. C | Page 19 of 96  
AD6674  
Data Sheet  
0
0
–20  
A
AND A  
= 7dBFS  
IN2  
IN1  
SFDR = 81dBFS  
IMD2 = 86dBc  
IMD3 = 81dBc  
–20  
SFDR (dBc)  
BUFFER CONTROL 1 = 3.0×  
–40  
–40  
IMD3 (dBc)  
–60  
–60  
–80  
–80  
–100  
–120  
SFDR (dBFS)  
–100  
IMD3 (dBFS)  
–140  
0
–120  
25 50 75 100 125 150 175 200 225 250 275 300 325 350 375  
FREQUENCY (MHz)  
–90 –84 –78 –72 –66 –60 –54 –48 –42 –36 –30 –24 –18 –12 –6  
INPUT AMPLITUDE (dBFS)  
Figure 37. Two-Tone FFT; fIN1 = 184 MHz, fIN2 = 187 MHz  
Figure 39. Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN  
)
with fIN1 = 184 MHz and fIN2 = 187 MHz  
0
–20  
A
AND A  
= 7dBFS  
IN2  
IN1  
SFDR = 83dBFS  
IMD2 = 89dBc  
0
IMD3 = 83dBc  
BUFFER CONTROL 1 = 4.5×  
SFDR (dBc)  
–20  
–40  
–40  
–60  
IMD3 (dBc)  
–60  
–80  
–80  
–100  
–120  
–140  
SFDR (dBFS)  
–100  
–120  
IMD3 (dBFS)  
0
25 50 75 100 125 150 175 200 225 250 275 300 325 350 375  
FREQUENCY (MHz)  
–90 –84 –78 –72 –66 –60 –54 –48 –42 –36 –30 –24 –18 –12 –6  
INPUT AMPLITUDE (dBFS)  
Figure 38. Two-Tone FFT; fIN1 = 338 MHz, fIN2 = 341 MHz  
Figure 40. Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN  
)
with fIN1 = 338 MHz and fIN2 = 341 MHz  
Rev. C | Page 20 of 96  
Data Sheet  
AD6674  
120  
100  
80  
60  
40  
20  
0
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
SFDR (dBFS)  
SNR (dBFS)  
SFDR (dBc)  
SNR (dBc)  
500  
550  
600  
650  
700  
750  
800  
850  
SAMPLE RATE (MSPS)  
INPUT AMPLITUDE (dBFS)  
Figure 43. Power Dissipation vs. Sample Rate (fS); L = 4, M = 2, F = 1 for  
fS ≥ 625 MSPS and L= 2, M = 2, F = 2 for fS < 625 MSPS (Default SPI)  
Figure 41. SNR/SFDR vs. Input Amplitude (AIN), fIN = 170.3 MHz  
95  
90  
85  
SFDR  
80  
75  
70  
SNR  
65  
–40  
–15  
10  
35  
60  
85  
TEMPERATURE (°C)  
Figure 42. SNR/SFDR vs. Temperature, fIN = 170.3 MHz  
Rev. C | Page 21 of 96  
AD6674  
Data Sheet  
AD6674-500  
AVDD1 = 1.25 V, AVDD1_SR = 1.25 V, AVDD2 = 2.5 V, AVDD3 = 3.3 V, DVDD = 1.25 V, DRVDD = 1.25 V, SPIVDD = 1.8 V,  
AIN = −1.0 dBFS, VDR mode (no violation of VDR mask), clock divider = 2, otherwise default SPI settings, TA = 25°C, 128k FFT sample,  
unless otherwise noted. See Table 10 for recommended settings.  
0
0
A
= 1dBFS  
A
= 1dBFS  
IN  
IN  
SNR = 68.9dBFS  
SNR = 67.8dBFS  
ENOB = 10.9 BITS  
SFDR = 83dBFS  
ENOB = 10.8 BITS  
SFDR = 83dBFS  
–20  
–20  
BUFFER CONTROL 1 = 2.0×  
BUFFER CONTROL 1 = 4.5×  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
0
0
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
0
0
0
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
Figure 44. Single Tone FFT with fIN = 10.3 MHz  
Figure 47. Single Tone FFT with fIN = 450.3 MHz  
0
–20  
0
–20  
A
= 1dBFS  
A
= 1dBFS  
IN  
IN  
SNR = 68.9dBFS  
SNR = 64.7dBFS  
ENOB = 11.0 BITS  
SFDR = 88dBFS  
ENOB = 10.4 BITS  
SFDR = 80dBFS  
BUFFER CONTROL 1 = 2.0×  
BUFFER CONTROL 1 = 5.0×  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
Figure 45. Single Tone FFT with fIN = 170.3 MHz  
Figure 48. Single Tone FFT with fIN = 765.3 MHz  
0
–20  
0
–20  
A
= 1dBFS  
A
= 1dBFS  
IN  
IN  
SNR = 68.5dBFS  
SNR = 64.0dBFS  
ENOB = 10.9 BITS  
SFDR = 83dBFS  
ENOB = 10.3 BITS  
SFDR = 76dBFS  
BUFFER CONTROL 1 = 4.5×  
BUFFER CONTROL 1 = 5.0×  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
Figure 46. Single Tone FFT with fIN = 340.3 MHz  
Figure 49. Single Tone FFT with fIN = 985.3 MHz  
Rev. C | Page 22 of 96  
 
Data Sheet  
AD6674  
0
0
–20  
A
= 1dBFS  
A
= 20dBFS  
IN  
IN  
SNR = 63.0dBFS  
SNR = 69.3dBFS  
–20  
–40  
ENOB = 10.0 BITS  
SFDR = 69dBFS  
ENOB = 11.2 BITS  
SFDR = 100dBFS  
BUFFER CONTROL 1 = 8.0×  
BUFFER CONTROL 1 = 2.0×  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
0
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
Figure 50. Single Tone FFT with fIN = 1310.3 MHz  
Figure 53. LTE-TDD 10 MHz Channel FFT with fIN = 230 MHz  
0
–20  
90  
A
= 1dBFS  
IN  
SFDR  
SNR = 61.5dBFS  
ENOB = 9.8 BITS  
85  
80  
75  
70  
65  
60  
SFDR = 69dBFS  
BUFFER CONTROL 1 = 8.0×  
–40  
–60  
–80  
SNR  
–100  
–120  
–140  
0
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
SAMPLE RATE (MSPS)  
Figure 54. SNR/SFDR vs. Sample Rate (fS), fIN = 170.3 MHz;  
Buffer Control 1 = 2.0×  
Figure 51. Single Tone FFT with fIN = 1710.3 MHz  
100  
95  
90  
85  
80  
75  
70  
65  
60  
0
–20  
A
= 1dBFS  
IN  
SNR = 60.8dBFS  
ENOB = 9.6 BITS  
SFDR = 68dBFS  
BUFFER CONTROL 1 = 8.0×  
–40  
–60  
SFDR  
SNR  
–80  
–100  
–120  
–140  
0
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 52. Single Tone FFT with fIN = 1950.3 MHz  
Figure 55. SNR/SFDR vs. Analog Input Frequency (fIN);  
fIN < 500 MHz; Buffer Control 1 = 3.0×  
Rev. C | Page 23 of 96  
AD6674  
Data Sheet  
0
0
–20  
A
AND A  
= –7dBFS  
IN2  
IN1  
SFDR = 88dBFS  
IMD2 = 94dBFS  
–20  
IMD3 = 88dBFS  
BUFFER CONTROL 1 = 2.0×  
SFDR (dBc)  
–40  
–40  
IMD3 (dBFS)  
–60  
–60  
–80  
–80  
SFDR (dBc)  
IMD3 (dBFS)  
–100  
–100  
–120  
0
–120  
50  
100  
150  
200  
250  
–90 –84 –78 –72 –66 –60 –54 –48 –42 –36 –30 –24 –18 –12 –6  
INPUT AMPLITUDE (dBFS)  
FREQUENCY (MHz)  
Figure 56. Two-Tone FFT; fIN1 = 184 MHz, fIN2 = 187 MHz  
Figure 58. Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with fIN1 = 184 MHz  
and fIN2 = 187 MHz  
0
–20  
0
A
AND A  
= –7dBFS  
IN2  
IN1  
SFDR = 88dBFS  
IMD2 = 88dBFS  
–20  
IMD3 = 89dBFS  
BUFFER CONTROL 1 = 4.5×  
SFDR (dBc)  
–40  
–40  
IMD3 (dBFS)  
–60  
–60  
–80  
–80  
SFDR (dBc)  
–100  
–120  
–100  
IMD3 (dBFS)  
–120  
0
50  
100  
150  
200  
250  
–90 –84 –78 –72 –66 –60 –54 –48 –42 –36 –30 –24 –18 –12 –6  
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 57. Two-Tone FFT; fIN1 = 338 MHz, fIN2 = 341 MHz  
Figure 59. Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN  
)
with fIN1 = 338 MHz and fIN2 = 341 MHz  
Rev. C | Page 24 of 96  
Data Sheet  
AD6674  
110  
100  
90  
2.40  
2.35  
2.30  
2.25  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
1.90  
SFDR (dBFS)  
SNR (dBFS)  
80  
70  
60  
L = 4  
M = 2  
F = 1  
50  
SFDR (dBc)  
40  
30  
SNR (dBc)  
L = 2  
M = 2  
F = 2  
20  
10  
0
–10  
–20  
SAMPLE RATE (MSPS)  
INPUT AMPLITUDE (dBFS)  
Figure 60. SNR/SFDR vs. Input Amplitude (AIN), fIN = 170.3 MHz  
Figure 62. Power Dissipation vs. Sample Rate (fS) (Default SPI)  
95  
90  
SFDR  
85  
80  
75  
SNR  
70  
65  
–40  
–15  
10  
35  
60  
85  
TEMPERATURE (°C)  
Figure 61. SNR/SFDR vs. Temperature, fIN = 170.3 MHz  
Rev. C | Page 25 of 96  
AD6674  
Data Sheet  
EQUIVALENT CIRCUITS  
AVDD3  
DVDD  
1k  
AVDD3  
SYNCINB+  
VIN+x  
20kꢀ  
DGND  
DVDD  
AVDD3  
3pF 1.5pF  
LEVEL  
TRANSLATOR  
V
= 0.85V  
CM  
20kꢀ  
400Ω  
V
CM  
BUFFER  
V
CM  
10pF  
1kꢀ  
SYNCINB–  
AVDD3  
AVDD3  
SYNCINB± PIN  
CONTROL (SPI)  
DGND  
VIN–x  
A
IN  
3pF 1.5pF  
CONTROL  
(SPI)  
Figure 67. SYNCINB Inputs  
Figure 63. Analog Inputs  
SPIVDD  
AVDD1  
25  
ESD  
CLK+  
CLK–  
PROTECTED  
SPIVDD  
1k  
SCLK  
30kꢀ  
AVDD1  
ESD  
PROTECTED  
25ꢀ  
20kꢀ  
20kꢀ  
V
= 0.85V  
CM  
Figure 64. Clock Inputs  
Figure 68. SCLK Inputs  
AVDD1_SR  
SPIVDD  
1k  
ESD  
PROTECTED  
SYSREF+  
30kꢀ  
1kꢀ  
20kꢀ  
CSB  
LEVEL  
TRANSLATOR  
V
= 0.85V  
CM  
ESD  
PROTECTED  
AVDD1_SR  
20kꢀ  
1kꢀ  
SYSREF–  
Figure 65. SYSREF Inputs  
Figure 69. CSB Input  
SPIVDD  
EMPHASIS/SWING  
CONTROL (SPI)  
ESD  
PROTECTED  
SDO  
SPIVDD  
SDI  
DRVDD  
1k  
DATA+  
DATA–  
SERDOUTx+  
SDIO  
x = 0, 1, 2, 3  
30kꢀ  
DRGND  
DRVDD  
OUTPUT  
DRIVER  
ESD  
PROTECTED  
SERDOUTx–  
x = 0, 1, 2, 3  
DRGND  
Figure 66. Digital Outputs  
Figure 70. SDIO  
Rev. C | Page 26 of 96  
 
 
Data Sheet  
AD6674  
SPIVDD  
AVDD2  
ESD  
PROTECTED  
ESD  
PROTECTED  
FD  
JESD LMFC  
JESD SYNC~  
FD_A/FD_B  
V_1P0  
TEMPERATURE DIODE  
(FD_A ONLY)  
ESD  
PROTECTED  
ESD  
PROTECTED  
V_1P0 PIN  
CONTROL (SPI)  
FD_x PIN CONTROL (SPI)  
Figure 71. FD_A/FD_B Outputs  
Figure 73. V_1P0 Input/Output  
SPIVDD  
ESD  
PROTECTED  
1k  
PDWN/  
STBY  
ESD  
PROTECTED  
PDWN  
CONTROL (SPI)  
Figure 72. PDWN/STBY Input  
Rev. C | Page 27 of 96  
AD6674  
Data Sheet  
THEORY OF OPERATION  
The AD6674 has two analog input channels and two JESD204B  
output lane pairs. The AD6674 is designed to sample wide  
bandwidth analog signals of up to 2 GHz. The AD6674 is  
optimized for wide input bandwidth, high sampling rate,  
excellent linearity, and low power in a small package.  
driving source. In addition, low Q inductors or ferrite beads can  
be placed on each section of the input to reduce high differen-  
tial capacitance at the analog inputs and, thus, achieve the  
maximum bandwidth of the ADC. Such use of low Q inductors  
or ferrite beads is required when driving the converter front end  
at high IF frequencies. Place either a differential capacitor or  
two single-ended capacitors on the inputs to provide a matching  
passive network. This ultimately creates a low-pass filter at the  
input, which limits unwanted broadband noise. For more infor-  
mation, refer to the AN-742 Application Note, the AN-827  
Application Note, and the Analog Dialogue article Transformer-  
Coupled Front-End for Wideband A/D Converters(Volume 39,  
April 2005) at www.analog.com. In general, the precise values  
depend on the application.  
The dual ADC cores feature a multistage, differential pipelined  
architecture with integrated output error correction logic. Each  
ADC features wide bandwidth inputs supporting a variety of  
user-selectable input ranges. An integrated voltage reference  
eases design considerations.  
The AD6674 has several functions that simplify the AGC  
function in a communications receiver. The programmable  
threshold detector allows monitoring of the incoming signal  
power using the fast detect bits of the ADC output data stream,  
which are enabled and programmed via Register 0x245 through  
Register 0x24C. If the input signal level exceeds the programmable  
threshold, the fast detect indicator goes high. Because this  
threshold indicator has low latency, the user can quickly lower  
the system gain to avoid an overrange condition at the ADC  
input.  
For best dynamic performance, match the source impedances  
driving VIN+x and VIN−x such that common-mode settling  
errors are symmetrical. These errors are reduced by the  
common-mode rejection of the ADC. An internal reference  
buffer creates a differential reference that defines the span of the  
ADC core.  
Maximum SNR performance is achieved by setting the ADC  
to the largest span in a differential configuration. In the case  
of the AD6674, the available span is programmable through  
the SPI port from 1.46 V p-p to 2.06 V p-p differential, with  
1.70 V p-p differential being the default for the AD6674-1000  
and AD6674-750, whereas the default for the AD6674-500 is  
2.06 V p-p.  
The Subclass 1 JESD204B-based high speed serialized output  
data rate can be configured in one-lane (L = 1) and two-lane  
(L = 2) configurations depending upon the sample rate and the  
decimation ratio. Multidevice synchronization is supported  
through the SYSREF and SYNCINB input pins.  
ADC ARCHITECTURE  
The architecture consists of an input buffered pipelined ADC.  
The input buffer is designed to provide a termination imped-  
ance to the analog input signal. This termination impedance  
can be changed using the SPI to meet the termination needs  
of the driver/amplifier. The default termination value is set to  
400 Ω. The equivalent circuit diagram of the analog input  
termination is shown in Figure 63. The input buffer is  
optimized for high linearity, low noise, and low power.  
Differential Input Configurations  
There are several ways to drive the AD6674, either actively or  
passively. However, optimum performance is achieved by  
driving the analog input differentially.  
For applications where SNR and SFDR are key parameters,  
differential transformer coupling is the recommended input  
configuration (see Figure 74 and Table 9) because the noise  
performance of most amplifiers is not adequate to achieve the  
true performance of the AD6674.  
The input buffer provides a linear high input impedance (for  
ease of drive) and reduces the kickback from the ADC. The  
quantized outputs from each stage are combined into a final  
16-bit result in the digital correction logic. The pipelined  
architecture permits the first stage to operate with a new input  
sample while the remaining stages operate with preceding  
samples. Sampling occurs on the rising edge of the clock.  
For low to midrange frequencies, it is recommended to use a  
double balun or double transformer network (see Figure 74) for  
optimum performance from the AD6674. For higher  
frequencies in the second or third Nyquist zone, it is better to  
remove some of the front-end passive components to ensure  
wideband operation (see Figure 74 and Table 9).  
ANALOG INPUT CONSIDERATIONS  
0.1µF  
R3  
The analog input to the AD6674 is a differential buffer. The  
internal common-mode voltage of the buffer is 2.05 V. The  
clock signal alternately switches the input circuit between  
sample mode and hold mode. When the input circuit is switched  
into sample mode, the signal source must be capable of charging  
the sample capacitors and settling within one-half of a clock cycle.  
A small resistor, in series with each input, can help reduce the  
peak transient current inserted from the output stage of the  
R1  
R2  
C1  
C2  
ADC  
BALUN  
0.1µF  
R2  
R3  
R1  
0.1µF  
C1  
NOTES  
1. SEE TABLE 9 FOR COMPONENT VALUES.  
Figure 74. Differential Transformer Coupled Configuration for AD6674  
Rev. C | Page 2ꢀ of 96  
 
 
 
 
Data Sheet  
AD6674  
Table 9. Differential Transformer Coupled Input Configuration Component Values  
Device  
Frequency Range  
Transformer  
R1 (Ω) R2 (Ω) R3 (Ω) C1 (pF) C2 (pF)  
AD6674-500  
DC to 250 MHz  
250 MHz to 2 GHz  
DC to 375 MHz  
375 MHz to 2 GHz  
DC to 500 MHz  
500 MHz to 2 GHz  
ETC1-1-13  
BAL0006/BAL0006SMG  
ETC1-1-13  
BAL0006/BAL0006SMG  
ECT1-1-13/BAL0006SMG  
BAL0006/BAL0006SMG  
10  
10  
10  
10  
25  
25  
50  
50  
50  
50  
25  
25  
10  
10  
10  
10  
10  
0
4
4
2
2
AD6674-750  
AD6674-1000  
4
4
2
2
4
2
Open  
Open  
Input Common Mode  
a high setting of 8.5×. The default setting in Register 0x018 is  
3.0× for the AD6674-750 and AD6674-1000, whereas the  
default for the AD6674-500 is 2.0×. These settings are sufficient  
for operation in the first Nyquist zone. As the input buffer  
currents are set, the amount of current required by the AVDD3  
supply changes. This relationship is shown in Figure 76. For a  
complete list of buffer current settings, see Table 45 for more  
details.  
The analog inputs of the AD6674 are internally biased to the  
common mode, as shown in Figure 75. The common-mode  
buffer has limited range in that the performance suffers greatly  
if the common-mode voltage drops by more than 100 mV.  
Therefore, in dc-coupled applications, set the common-mode  
voltage to 2.05 V 100 mV to ensure proper ADC operation.  
Analog Input Controls and SFDR Optimization  
300  
The AD6674 offers flexible controls for the analog inputs such  
as input termination, input capacitance, buffer current, and  
input full-scale adjustment. All of the available controls are  
shown in Figure 75.  
250  
AD6674-1000  
AND  
AD6674-750  
200  
AVDD3  
AVDD3  
AD6674-500  
150  
VIN+x  
AVDD3  
100  
50  
3pF 1.5pF  
400  
V
CM  
BUFFER  
150  
250  
350  
450  
550  
650  
750  
850  
10pF  
BUFFER CURRENT SETTING  
AVDD3  
Figure 76. IAVDD3 vs. Buffer Current Setting in Register 0x018  
AVDD3  
Register 0x019, Register 0x01A, Register 0x11A, and Register 0x935  
offer secondary bias controls for the input buffer for frequencies  
>500 MHz. Register 0x934 can be used to reduce input capacitance  
to achieve wider signal bandwidth but doing so may result in  
slightly lower linearity and noise performance. These register  
settings do not affect the AVDD3 power as much as Register 0x018  
does. For frequencies <500 MHz, it is recommended to use the  
default settings for these registers. Table 10 shows the recom-  
mended values for the buffer current control registers for  
various speed grades.  
VIN–x  
A
CONTROL  
IN  
SPI REGISTERS  
(0x008, 0x015,  
0x016, 0x018,  
0x019, 0x01A,  
0x11A, 0x934,  
0x935)  
3pF 1.5pF  
Figure 75. Analog Input Controls  
Use Register 0x018, Register 0x019, Register 0x01A, Register 0x11A,  
Register 0x934, and Register 0x935 to adjust the buffer behavior on  
each channel to optimize the SFDR over various input frequencies  
and bandwidths of interest.  
Use Register 0x11A when sampling in higher Nyquist zones  
(>500 MHz for the AD6674-1000). This setting enables the  
ADC sampling network to optimize the sampling and settling  
times internal to the ADC for high frequency operation. For  
frequencies greater than 500 MHz, it is recommended to  
operate the ADC core at a 1.46 V full-scale setting irrespective  
of the speed grade. This setting offers better SFDR without any  
significant decrease in SNR.  
Input Buffer Control Registers (Register 0x018,  
Register 0x019, Register 0x01A, Register 0x934,  
Register 0x935, Register 0x11A)  
The input buffer has many registers that set the bias currents  
and other settings for operation at different frequencies. These  
bias currents and settings can be changed to suit the input  
frequency range of operation. Register 0x018 controls the buffer  
bias current to reduce the effects of charge kickback from the  
ADC core. This setting can be scaled from a low setting of 1.0× to  
Figure 77, Figure 78, and Figure 79 show the SFDR vs. analog input  
frequency for various buffer settings (IBUFF) for the AD6674-1000.  
Rev. C | Page 29 of 96  
 
 
 
AD6674  
Data Sheet  
80  
75  
70  
65  
60  
55  
80  
1.65GHz  
The recommended settings shown in Table 10 were used to  
collect the data while changing only the contents of Register 0x018.  
1.52GHz  
1.76GHz  
1.95GHz  
1.9GHz  
90  
75  
85  
4.5×  
70  
65  
60  
80  
3.0×  
75  
70  
1.5×  
1.52GHz  
1.65GHz  
1.76GHz  
1.9GHz  
65  
60  
55  
50  
1.95GHz  
55  
–1  
–3  
–2  
INPUT LEVEL (dBFS)  
Figure 80. SNR/SFDR vs. Input Level and Input Frequencies, AD6674-1000  
10  
60  
110 160 210 260 310 360 410 460  
INPUT FREQUENCY (MHz)  
Figure 81, Figure 82, and Figure 83 show the SFDR vs. analog  
input frequency for various buffer settings for the AD6674-500.  
The recommended settings shown in Table 10 were used to take  
the data while changing the contents of register 0x018 only.  
95  
Figure 77. Buffer Current Sweeps, AD6674-1000 (SFDR vs. Input Frequency  
and IBUFF); 10 MHz < fIN < 500 MHz; Front-End Network Shown in Figure 74  
85  
3.0×  
4.0×  
5.0×  
80  
6.0×  
75  
90  
85  
80  
70  
65  
60  
55  
50  
45  
40  
1.5×  
2.0×  
2.5×  
3.5×  
4.5×  
75  
70  
65  
60  
55  
503.4  
677.6  
851.9  
1026.2  
1200.5  
1374.8  
INPUT FREQUENCY (MHz)  
Figure 78. Buffer Current Sweeps, AD6674-1000 (SFDR vs. Input Frequency  
and IBUFF); 500 MHz < fIN < 1500 MHz; Front-End Network Shown in Figure 74  
INPUT FREQUENCY (MHz)  
80  
75  
70  
65  
60  
55  
Figure 81. Buffer Current Sweeps, AD6674-750 (SFDR vs. Input Frequency and  
I
BUFF); 10 MHz < fIN < 450 MHz; Front-End Network Shown in Figure 74  
95  
4.5×  
5.5×  
6.5×  
90  
7.5×  
85  
80  
75  
70  
65  
50  
4.5×  
5.5×  
6.5×  
7.5×  
8.5×  
45  
40  
1513.4  
1607.4  
1701.5  
1795.6  
1889.8  
INPUT FREQUENCY (MHz)  
Figure 79. Buffer Current Sweeps, AD6674-1000 (SFDR vs. Input Frequency  
and IBUFF); 1500 MHz < fIN < 2 GHz; Front-End Network Shown in Figure 74  
60  
450.3 480.3 510.3 515.3 610.3 765.3 810.3 985.3 1010.3  
INPUT FREQUENCY (MHz)  
In certain high frequency applications, the SFDR can be  
improved by reducing the full-scale setting, as shown in Table 10.  
At high frequencies, the performance of the ADC core is limited by  
jitter. The SFDR can be improved by reducing the full-scale level.  
Figure 82. Buffer Current Sweeps, AD6674-750 (SFDR vs. Input Frequency and  
IBUFF); 450 MHz < fIN < 800 MHz; Front-End Network Shown in Figure 74  
Rev. C | Page 30 of 96  
 
 
 
 
 
Data Sheet  
AD6674  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
4.0×  
5.0×  
6.0×  
7.0×  
8.0×  
6.5×  
7.5×  
8.5×  
450.3  
480.3  
510.3  
515.3  
610.3  
765.3  
810.3  
985.3  
INPUT FREQUENCY (MHz)  
Figure 85. Buffer Current Sweeps, AD6674-500 (SFDR vs. Input Frequency and  
INPUT FREQUENCY (MHz)  
I
BUFF); 450 MHz < fIN < 1000 MHz; Front-End Network Shown in Figure 74  
Figure 83. Buffer Current Sweeps, AD6674-750 (SFDR vs. Input Frequency and  
IBUFF); 800 MHz < fIN < 2 GHz; Front-End Network Shown in Figure 74  
80  
75  
70  
65  
60  
55  
50  
Figure 84, Figure 85, and Figure 86 show the SFDR vs. analog  
input frequency for various buffer settings for the AD6674-500.  
The recommended settings shown in Table 10 were used to take  
the data while changing the contents of register 0x018 only.  
100  
90  
80  
70  
60  
50  
40  
30  
4.0×  
5.0×  
45  
6.0×  
7.0×  
8.0×  
40  
1010.3  
1205.3  
1410.3  
1600.3  
1810.3  
1950.3  
INPUT FREQUENCY (MHz)  
Figure 86. Buffer Current Sweeps, AD6674-500 (SFDR vs. Input Frequency and  
IBUFF); 1 GHz < fIN < 2 GHz; Front-End Network Shown in Figure 74  
20  
1.0×  
1.5×  
10  
2.0×  
3.0×  
4.5×  
0
10.3  
95.3 150.3 180.3 240.3 301.3 340.7 390.3 450.3  
INPUT FREQUENCY (MHz)  
Figure 84. Buffer Current Sweeps, AD6674-500 (SFDR vs. Input Frequency and  
IBUFF); 10 MHz < fIN < 450 MHz; Front-End Network Shown in Figure 74  
Rev. C | Page 31 of 96  
 
 
 
 
AD6674  
Data Sheet  
Table 10. AD6674 Performance Optimization for Input Frequencies  
Input  
Input  
Buffer  
Control 1  
(0x018)  
Buffer  
Control 2  
(0x019)  
Buffer  
Control 3  
(0x01A)  
Buffer  
Control 4  
(0x11A)  
Buffer  
Control 5  
(0x935)  
Full-Scale  
Control  
(0x030)  
Full-Scale  
Range  
(0x025)  
Input  
Capacitance  
(0x934)  
Input  
Frequency  
(MHz)  
Termination  
Product  
(0x016)1  
AD6674-500  
DC to 250  
0x20  
(2.0×)  
0x60  
(Setting 3)  
0x0A  
(Setting 3)  
0x00 (off)  
0x00 (off)  
0x00 (off)  
0x00 (off)  
0x00 (off)  
0x00 (off)  
0x00 (off)  
0x00 (off)  
0x00 (off)  
0x00 (off)  
0x00 (off)  
0x00 (off)  
0x00 (off)  
0x20 (on)  
0x20 (on)  
0x04 (on)  
0x04 (on)  
0x00 (off)  
0x00 (off)  
0x04 (on)  
0x04 (on)  
0x04 (on)  
0x00 (off)  
0x00 (off)  
0x00 (off)  
0x00 (off)  
0x04 (on)  
0x04 (on)  
0x00 (off)  
0x00 (off)  
0x04  
0x04  
0x1ꢀ  
0x1ꢀ  
0x14  
0x14  
0x14  
0x1ꢀ  
0x1ꢀ  
0x1ꢀ  
0x1ꢀ  
0x1ꢀ  
0x1ꢀ  
0x1ꢀ  
0x1ꢀ  
0x0C  
(2.06 V p-p)  
0x1F  
0x0C/0x1C/  
0x2C/0x6C  
250 to 500  
500 to 1000  
1000 to 2000  
DC to 200  
0x70  
(4.5×)  
0x60  
(Setting 3)  
0x0A  
(Setting 3)  
0x0C  
(2.06 V p-p)  
0x1F  
0x0C/0x1C/  
0x2C/0x6C  
0xꢀ0  
(5.0×)  
0x40  
(Setting 1)  
0x0ꢀ  
(Setting 1)  
0x0ꢀ  
(1.46 V p-p)  
0x1F/0x002  
0x1F/0x002  
0x1F  
0x0C/0x1C/  
0x2C/0x6C  
0xF0  
(ꢀ.5×)  
0x40  
(Setting 1)  
0x0ꢀ  
(Setting 1)  
0x0ꢀ  
(1.46 V p-p)  
0x0C/0x1C/  
0x2C/0x6C  
AD6674-750  
0x20  
(2.0×)  
0x40  
(Setting 1)  
0x09  
(Setting 2)  
0x0A  
(1.70 V p-p)  
0x0E/0x1E/  
0x2E/0x6E  
DC to 375  
0x40  
(3.0×)  
0x40  
(Setting 1)  
0x09  
(Setting 2)  
0x0A  
(1.70 V p-p)  
0x1F  
0x0E/0x1E/  
0x2E/0x6E  
200 to 500  
375 to 750  
500 to 750  
750 to 1000  
1000 to 2000  
DC to 150  
0x70  
(4.5×)  
0x40  
(Setting 1)  
0x09  
(Setting 2)  
0x0A  
(1.70 V p-p)  
0x1F  
0x0E/0x1E/  
0x2E/0x6E  
0xA0  
(6.0×)  
0x40  
(Setting 1)  
0x0ꢀ  
(Setting 1)  
0x0ꢀ  
(1.46 V p-p)  
0x1F  
0x0E/0x1E/  
0x2E/0x6E  
0xD0  
(7.5×)  
0x40  
(Setting 1)  
0x0ꢀ  
(Setting 1)  
0x0ꢀ  
(1.46 V p-p)  
0x1F  
0x0E/0x1E/  
0x2E/0x6E  
0xF0  
(ꢀ.5×)  
0x40  
(Setting 1)  
0x0ꢀ  
(Setting 1)  
0x0ꢀ  
(1.46 V p-p)  
0x1F/0x002  
0x1F/0x002  
0x1F  
0x0E/0x1E/  
0x2E/0x6E  
0xF0  
(ꢀ.5×)  
0x40  
(Setting 1)  
0x0ꢀ  
(Setting 1)  
0x0ꢀ  
(1.46 V p-p)  
0x0E/0x1E/  
0x2E/0x6E  
AD6674-1000  
0x10  
(1.5×)  
0x50  
(Setting 2)  
0x09  
(Setting 2)  
0x0A  
(1.70 V p-p)  
0x0E/0x1E/  
0x2E/0x6E  
DC to 500  
0x40  
(3.0×)  
0x50  
(Setting 2)  
0x09  
(Setting 2)  
0x0A  
(1.70 V p-p)  
0x1F  
0x0E/0x1E/  
0x2E/0x6E  
500 to 1000  
1000 to 2000  
0xA0  
(6.0×)  
0x60  
(Setting 3)  
0x09  
(Setting 2)  
0x0ꢀ  
(1.46 V p-p)  
0x1F/0x002  
0x1F/0x002  
0x0E/0x1E/  
0x2E/0x6E  
0xD0  
(7.5×)  
0x70  
(Setting 4)  
0x09  
(Setting 2)  
0x0ꢀ  
(1.46 V p-p)  
0x0E/0x1E/  
0x2E/0x6E  
1 The input termination can be changed to accommodate the application with little or no impact to ac performance.  
2 The input capacitance can be set to 1.5 pF to achieve wider input bandwidth but results in slightly lower linearity and noise performance.  
Rev. C | Page 32 of 96  
 
Data Sheet  
AD6674  
reference voltage. For more information on adjusting the full-  
scale level of the AD6674, refer to the Memory Map Register  
Table section.  
Absolute Maximum Input Swing  
The absolute maximum input swing allowed at the inputs of the  
AD6674 is 4.3 V p-p differential. Signals operating near or at  
this level can cause permanent damage to the ADC.  
The use of an external reference may be necessary, in some  
applications, to enhance the gain accuracy of the ADC or  
improve thermal drift characteristics. Figure 88 shows the  
VOLTAGE REFERENCE  
A stable and accurate 1.0 V voltage reference is built into the  
AD6674. This internal 1.0 V reference sets the full-scale input  
range of the ADC. The full-scale input range can be adjusted via  
Register 0x025. For more information on adjusting the input  
swing, see Table 45. Figure 87 shows the block diagram of the  
internal 1.0 V reference controls.  
typical drift characteristics of the internal 1.0 V reference.  
1.0010  
1.0009  
1.0008  
1.0007  
1.0006  
1.0005  
1.0004  
1.0003  
1.0002  
1.0001  
1.0000  
0.9999  
0.9998  
VIN+A/  
VIN+B  
VIN–A/  
VIN–B  
ADC  
CORE  
INTERNAL  
V_1P0  
GENERATOR  
FULL-SCALE  
VOLTAGE  
ADJUST  
INPUT FULL-SCALE  
RANGE ADJUST  
SPI REGISTER  
–50  
0
25  
90  
(0x025 AND 0x024)  
V_1P0  
TEMPERATURE (°C)  
Figure 88. Typical V_1P0 Drift  
V_1P0 PIN  
CONTROL SPI  
REGISTER  
(0x025 AND  
0x024)  
The external reference must be a stable 1.0 V reference. The  
ADR130 is a good option for providing the 1.0 V reference.  
Figure 89 shows how the ADR130 can be used to provide the  
external 1.0 V reference to the AD6674. The grayed out areas  
show unused blocks within the AD6674 while the ADR130  
provides the external reference.  
Figure 87. Internal Reference Configuration and Controls  
Register 0x024 enables the user to either use this internal 1.0 V  
reference or to provide an external 1.0 V reference. When using  
an external voltage reference, provide a 1.0 V reference. The  
full-scale adjustment is made using the SPI, irrespective of the  
INTERNAL  
V_1P0  
GENERATOR  
FULL-SCALE  
VOLTAGE  
ADJUST  
ADR130  
1
2
3
6
5
4
NC  
NC  
GND SET  
V_1P0  
0.1µF  
INPUT  
V
V
OUT  
IN  
0.1µF  
FULL-SCALE  
CONTROL  
Figure 89. External Reference Using the ADR130  
Rev. C | Page 33 of 96  
 
 
 
 
AD6674  
Data Sheet  
Input Clock Divider  
CLOCK INPUT CONSIDERATIONS  
The AD6674 contains an input clock divider with the ability to  
divide the Nyquist input clock by 1, 2, 4, or 8. The divide ratios can  
be selected using Register 0x10B. This is shown in Figure 93.  
The maximum frequency at the output of the divider is 1.0 GHz.  
For optimum performance, drive the AD6674 sample clock  
inputs (CLK+ and CLK−) with a differential signal. This signal  
is typically ac-coupled to the CLK+ and CLK− pins via a  
transformer or clock drivers. These pins are biased internally  
and require no additional biasing.  
The maximum frequency at the CLK inputs is 4 GHz. This is  
the limit of the divider. In applications where the clock input is  
a multiple of the sample clock, take care to program the  
appropriate divider ratio into the clock divider before applying  
the clock signal. This ensures that the current transients during  
device startup are controlled.  
Figure 90 shows one preferred method for clocking the  
AD6674. The low jitter clock source is converted from a single-  
ended signal to a differential signal using an RF transformer.  
0.1µF  
1:1Z  
CLK+  
CLOCK  
INPUT  
CLK+  
100  
ADC  
CLK–  
50ꢀ  
CLK–  
÷2  
÷4  
÷8  
0.1µF  
Figure 90. Transformer Coupled Differential Clock  
Another option is to ac couple a differential CML or LVDS  
signal to the sample clock input pins as shown in Figure 91 and  
Figure 92.  
REG 0x10B  
Figure 93. Clock Divider Circuit  
3.3V  
The AD6674 clock divider can be synchronized using the  
external SYSREF input. A valid SYSREF causes the clock  
divider to reset to a programmable state. This feature is enabled  
by setting Bit 7 of Register 0x10D. This synchronization feature  
allows multiple devices to have their clock dividers aligned to  
guarantee simultaneous input sampling.  
71  
33ꢀ  
10pF  
33ꢀ  
Z
Z
= 50ꢀ  
0.1µF  
0
CLK+  
ADC  
CLK–  
0.1µF  
= 50ꢀ  
0
After programming the desired clock divider settings, changing  
the input clock frequency, or glitching the input clock, a datapath  
soft reset is recommended by writing 0x02 to Register 0x001.  
This reset function restarts all the datapath and clock generation  
circuitry in the device. The reset occurs on the first clock cycle  
after the register is programmed, and the device requires 5 ms  
to recover. This reset does not affect the contents of the memory  
map registers.  
Figure 91. Differential CML Sample Clock  
0.1µF  
0.1µF  
0.1µF  
100ꢀ  
0.1µF  
CLOCK INPUT  
CLOCK INPUT  
CLK+  
LVDS  
CLK+  
ADC  
DRIVER  
CLK–  
CLK–  
1
1
50ꢀ  
50ꢀ  
Input Clock Divider ½ Period Delay Adjustment  
1
50RESISTORS ARE OPTIONAL.  
The input clock divider inside the AD6674 provides phase delay  
in increments of ½ the input clock cycle. Program Register 0x10C  
to enable this delay independently for each channel. Changing  
the register does not affect the stability of the JESD204B link.  
Figure 92. Differential LVDS Sample Clock  
Clock Duty Cycle Considerations  
Typical high speed ADCs use both clock edges to generate a  
variety of internal timing signals. As a result, these ADCs may  
be sensitive to clock duty cycle. Commonly, a 5% tolerance is  
required on the clock duty cycle to maintain dynamic  
performance characteristics. In applications where the clock  
duty cycle cannot be guaranteed to be 50%, a higher multiple  
frequency clock can be supplied to the AD6674. For example,  
the AD6674-1000 can be clocked at 2 GHz with the internal  
clock divider set to 2. This ensures a 50% duty cycle, high slew  
rate internal clock for the ADC. See the Memory Map section  
for more details on using this feature.  
Clock Fine Delay Adjustment  
Adjust the AD6674 sampling edge instant by writing to  
Register 0x117 and Register 0x118. Setting Bit 0 of Register 0x117  
enables the feature, and Register 0x118, Bits[7:0], set the value  
of the delay. This value can be programmed individually for  
each channel. The clock delay can be adjusted from −151.7 ps to  
+150 ps in ~1.7 ps increments. The clock delay adjustment takes  
effect immediately when it is enabled via SPI writes. Enabling the  
clock fine delay adjustment in Register 0x117 causes a datapath  
reset. However, the contents of Register 0x118 can be changed  
without affecting the stability of the JESD204B link.  
Rev. C | Page 34 of 96  
 
 
 
 
 
Data Sheet  
AD6674  
Figure 95 shows the estimated SNR of the AD6674-1000 across  
input frequency for different clock induced jitter values. The  
SNR can be estimated by using the following equation:  
Clock Jitter Considerations  
High speed, high resolution ADCs are sensitive to the quality of the  
clock input. The degradation in SNR at a given input frequency  
(fA) due only to aperture jitter (tJ) is calculated by  
SNR  
  
SNR  
10  
JITTER  
ADC  
10  
SNR(dBFS) 10log 10  
10  
SNR = 20 × log 10(2 × π × fA × tJ)  
In this equation, the rms aperture jitter represents the root  
mean square of all jitter sources, including the clock input,  
analog input signal, and ADC aperture jitter specifications. IF  
undersampling applications are particularly sensitive to jitter  
(see Figure 94).  
70  
65  
60  
55  
130  
RMS CLOCK JITTER REQUIREMENT  
120  
110  
25f  
50f  
75f  
s
s
s
16 BITS  
14 BITS  
12 BITS  
100  
90  
80  
70  
60  
50  
40  
30  
100f  
125f  
150f  
175f  
200f  
s
s
s
s
s
50  
45  
10M  
100M  
1G  
10G  
10 BITS  
8 BITS  
INPUT FREQUENCY (Hz)  
0.125ps  
0.25ps  
0.5ps  
Figure 95. Estimated SNR Degradation for the AD6674-1000 vs.  
Input Frequency and Jitter  
1.0ps  
2.0ps  
POWER-DOWN/STANDBY MODE  
1
10  
100  
1000  
The AD6674 has a PDWN/STBY pin that can be used to  
configure the device in power-down or standby mode. The  
default operation is the PDWN function. The PDWN/STBY pin  
is a logic high pin. When in power-down mode, the JESD204B  
link is disrupted. The power-down option can also be set via  
Register 0x03F and Register 0x040.  
ANALOG INPUT FREQUENCY (MHz)  
Figure 94. Ideal SNR vs. Analog Input Frequency and Jitter  
Treat the clock input as an analog signal in cases where aperture  
jitter may affect the dynamic range of the AD6674. Separate  
power supplies for clock drivers from the ADC output driver  
supplies to avoid modulating the clock signal with digital noise.  
If the clock is generated from another type of source (by gating,  
dividing, or other methods), retime it using the original clock at  
the last step. See the AN-501 Application Note and the AN-756  
Application Note for more in-depth information about jitter  
performance as it relates to ADCs.  
In standby mode, the JESD204B link is not disrupted and  
transmits zeros for all converter samples. This can be changed  
using Register 0x571[7] to select /K/ characters.  
Rev. C | Page 35 of 96  
 
 
 
AD6674  
Data Sheet  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
TEMPERATURE DIODE  
The AD6674 contains a diode-based temperature sensor for  
measuring the temperature of the die. This diode outputs a  
voltage and serve as a coarse temperature sensor to monitor the  
internal die temperature.  
The temperature diode voltage can be output to the FD_A pin  
using the SPI. Use Register 0x028[0] to enable or disable the  
diode. Register 0x028 is a local register. Channel A must be  
selected in the device index register (Register 0x008) to enable  
the temperature diode readout. Configure the FD_A pin to  
output the diode voltage by programming Register 0x040[2:0].  
See Table 45 for more information.  
–55 –45 –35 –25 –15 –5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
TEMPERATURE (°C)  
The voltage response of the temperature diode (with SPIVDD =  
1.8 V) is shown in Figure 96.  
Figure 96. Temperature Diode Voltage vs. Temperature  
Rev. C | Page 36 of 96  
 
 
Data Sheet  
AD6674  
ADC OVERRANGE AND FAST DETECT  
In receiver applications, it is desirable to have a mechanism to  
reliably determine when the converter is about to be clipped.  
The standard overrange bit in the JESD204B outputs provides  
information on the state of the analog input that is of limited  
usefulness. Therefore, it is helpful to have a programmable  
threshold below full scale that allows time to reduce the gain  
before the clip actually occurs. In addition, because input  
signals can have significant slew rates, the latency of this  
function is of major concern. Highly pipelined converters can  
have significant latency. The AD6674 contains fast detect  
circuitry for individual channels to monitor the threshold and  
assert the FD_A and FD_B pins.  
time. This provides hysteresis and prevents the FD bit from  
excessively toggling.  
The operation of the upper threshold and lower threshold registers,  
along with the dwell time registers, is shown in Figure 97.  
The FD_x indicator is asserted if the input magnitude exceeds  
the value programmed in the fast detect upper threshold registers,  
located in Register 0x247 and Register 0x248. The selected  
threshold register is compared with the signal magnitude at the  
output of the ADC. The fast upper threshold detection has a  
latency of 28. The approximate upper threshold magnitude is  
defined by  
Upper Threshold Magnitude (dBFS) = 20 log (Threshold  
Magnitude/213)  
ADC OVERRANGE (OR)  
The ADC overrange indicator is asserted when an overrange is  
detected on the input of the ADC. The overrange indicator can  
be embedded within the JESD204B link as a control bit (when  
CSB > 0). The latency of this overrange indicator matches the  
sample latency.  
The FD_x indicators are not cleared until the signal drops  
below the lower threshold for the programmed dwell time. The  
lower threshold is programmed in the fast detect lower thresh-  
old registers, located in Register 0x249 and Register 0x24A. The  
fast detect lower threshold register is a 13-bit register that is  
compared with the signal magnitude at the output of the ADC.  
This comparison is subject to the ADC pipeline latency but is  
accurate in terms of converter resolution. The lower threshold  
magnitude is defined by  
The AD6674 constantly monitors the analog input level and  
records any overrange condition in any of the eight virtual  
converters. For more information on the virtual converters,  
refer to Figure 102. The overrange status of each virtual  
converter is registered as a sticky bit (that is, it is set until  
cleared) in Register 0x563. Clear the contents of Register 0x563  
using Register 0x562 by toggling the bits corresponding to the  
virtual converter to set and reset the position.  
Lower Threshold Magnitude (dBFS) = 20 log (Threshold  
Magnitude/213)  
For example, to set an upper threshold of −6 dBFS, write  
0x0FFF to Register 0x247 and Register 0x248; and to set a lower  
threshold of −10 dBFS, write 0x0A1D to Register 0x249 and  
Register 0x24A.  
FAST THRESHOLD DETECTION (FD_A AND FD_B)  
The fast detect (FD) bit (enabled in the control bits via  
Register 0x559 and Register 0x55A) is immediately set  
whenever the absolute value of the input signal exceeds the  
programmable upper threshold level. The FD bit is only cleared  
when the absolute value of the input signal drops below the  
lower threshold level for greater than the programmable dwell  
The dwell time can be programmed from 1 to 65,535 sample  
clock cycles by placing the desired value in the fast detect dwell  
time registers, located in Register 0x24B and Register 0x24C.  
See the Memory Map section (Register 0x245 to Register 0x24C in  
Table 45) for more details.  
UPPER THRESHOLD  
DWELL TIME  
TIMER RESET BY  
RISE ABOVE  
LOWER  
THRESHOLD  
LOWER THRESHOLD  
TIMER COMPLETES BEFORE  
SIGNAL RISES ABOVE  
LOWER THRESHOLD  
DWELL TIME  
FD_A OR FD_B  
Figure 97. Threshold Settings for FD_A and FD_B Signals  
Rev. C | Page 37 of 96  
 
 
 
 
AD6674  
Data Sheet  
SIGNAL MONITOR  
The signal monitor block provides additional information about  
the signal being digitized by the ADC. The signal monitor  
computes the peak magnitude of the digitized signal. This  
information can be used to drive an AGC loop to optimize the  
range of the ADC in the presence of real-world signals.  
After enabling this mode, the value in the SMPR is loaded into a  
monitor period timer that decrements at the decimated clock  
rate. The magnitude of the input signal is compared with the  
value in the internal magnitude storage register (not accessible  
to the user), and the greater of the two is updated as the current  
peak level. The initial value of the magnitude storage register is  
set to the current ADC input signal magnitude. This comparison  
continues until the monitor period timer reaches a count of 1.  
The results of the signal monitor block can be obtained either  
by reading back the internal values from the SPI port or by  
embedding the signal monitoring information into the  
JESD204B interface as special control bits. A global, 24-bit  
programmable period controls the duration of the measure-  
ment. Figure 98 shows the simplified block diagram of the  
signal monitor block.  
When the monitor period timer reaches a count of 1, the 13-bit  
peak level value is transferred to the signal monitor holding  
register, which can be read through the memory map or output  
through the serial port (SPORT) over the JESD204B interface.  
The monitor period timer is reloaded with the value in the  
SMPR, and the countdown is restarted. In addition, the  
magnitude of the first input sample is updated in the internal  
magnitude storage register, and the comparison and update  
procedure, as explained previously, continues.  
SIGNAL MONITOR  
FROM  
MEMORY  
MAP  
PERIOD REGISTER  
(SMPR)  
DOWN  
COUNTER  
IS  
COUNT = 1?  
0x271, 0x272, 0x273  
LOAD  
CLEAR  
LOAD  
MAGNITUDE  
STORAGE  
REGISTER  
SIGNAL  
MONITOR  
HOLDING  
REGISTER  
TO SPORT OVER  
JESD204B AND  
MEMORY MAP  
FROM  
INPUT  
SPORT OVER JESD204B  
The signal monitor data can also be serialized and sent over the  
JESD204B interface as control bits. These control bits must be  
deserialized from the samples to reconstruct the statistical data.  
This signal control monitor function is enabled by setting  
Bits[1:0] of Register 0x279 and Bit 1 of Register 0x27A.  
LOAD  
COMPARE  
A > B  
Figure 98. Signal Monitor Block  
The peak detector captures the largest signal within the  
observation period. This period observes only the magnitude of  
the signal. The resolution of the peak detector is a 13-bit value,  
and the observation period is 24 bits and represents converter  
output samples. The peak magnitude is derived by using the  
following equation:  
Figure 99 shows two different example configurations for the  
signal monitor control bit locations inside the JESD204B  
samples. There are a maximum of three control bits that can be  
inserted into the JESD204B samples; however, only one control  
bit is required for the signal monitor. Control bits are inserted  
from MSB to LSB. If only one control bit is to be inserted (CS = 1),  
only the most significant control bit is used (see Configuration 1  
and Configuration 2 in Figure 99). To select the SPORT over  
JESD204B option, program Register 0x559, Register 0x55A, and  
Register 0x58F. See the Memory Map Register Table section for  
more information on setting these bits.  
Peak Magnitude (dBFS) = 20 log(Peak Detector Value/213)  
The magnitude of the input port signal is monitored over a  
programmable time period that is determined by the signal  
monitor period registers (SMPRs). Only even values of the  
SMPR are supported. The peak detector function is enabled by  
setting Bit 1 of Register 0x270 in the signal monitor control  
register. The 24-bit SMPR must be programmed before  
activating this mode.  
Figure 100 shows the 25-bit frame data that encapsulates the  
peak detector value. The frame data is transmitted MSB first  
with five 5-bit subframes. Each subframe contains a start bit  
that can be used by a receiver to validate the deserialized data.  
Figure 101 shows the SPORT over the JESD204B signal monitor  
frame data with a monitor period timer set to 80 samples.  
Rev. C | Page 3ꢀ of 96  
 
 
 
Data Sheet  
AD6674  
16-BIT JESD204B SAMPLE SIZE (N' = 16)  
15-BIT CONVERTER RESOLUTION (N = 15)  
1-BIT  
CONTROL  
BIT  
(CS = 1)  
EXAMPLE  
CONFIGURATION 1  
(N' = 16, N = 15, CS = 1)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CTRL  
[BIT 2]  
X
S[14] S[13] S[12] S[11] S[10]  
S[9]  
X
S[8]  
X
S[7]  
X
S[6]  
X
S[5]  
X
S[4]  
X
S[3]  
X
S[2]  
X
S[1]  
X
S[0]  
X
X
X
X
X
X
SERIALIZED SIGNAL MONITOR  
FRAME DATA  
16-BIT JESD204B SAMPLE SIZE (N' = 16)  
14-BIT CONVERTER RESOLUTION (N = 14)  
1
CONTROL  
BIT  
(CS = 1)  
1 TAIL  
BIT  
EXAMPLE  
CONFIGURATION 2  
(N' = 16, N = 14, CS = 1)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CTRL  
[BIT 2]  
X
S[13] S[12] S[11] S[10]  
S[9]  
X
S[8]  
X
S[7]  
X
S[6]  
X
S[5]  
X
S[4]  
X
S[3]  
X
S[2]  
X
S[1]  
X
S[0]  
X
TAIL  
X
X
X
X
X
SERIALIZED SIGNAL MONITOR  
FRAME DATA  
Figure 99. Signal Monitor Control Bit Example Configurations  
5-BIT SUBFRAMES  
5-BIT IDLE  
IDLE IDLE IDLE IDLE IDLE  
SUBFRAME  
1
1
1
1
1
(OPTIONAL)  
5-BIT IDENTIFIER START ID[3]  
ID[2]  
0
ID[1]  
0
ID[0]  
1
0
0
SUBFRAME  
5-BIT DATA  
MSB  
START  
0
P[12]  
P[11]  
P[7]  
P[10]  
P[6]  
P[9]  
P5]  
SUBFRAME  
25-BIT  
FRAME  
5-BIT DATA  
SUBFRAME  
START  
0
P[8]  
P[4]  
P[0]  
5-BIT DATA  
SUBFRAME  
START  
0
P[3]  
0
P[2]  
0
P1]  
0
5-BIT DATA  
LSB  
SUBFRAME  
START  
0
P[] = PEAK MAGNITUDE VALUE  
Figure 100. SPORT over JESD204B Signal Monitor Frame Data  
Rev. C | Page 39 of 96  
 
 
AD6674  
Data Sheet  
SMPR = 80 SAMPLES (0x271 = 0x50; 0x272 = 0x00; 0x273 = 0x00)  
80-SAMPLE PERIOD  
PAYLOAD 3  
25-BIT FRAME (N)  
DATA  
MSB  
DATA  
LSB  
IDENT.  
IDENT.  
IDENT.  
DATA DATA  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
80-SAMPLE PERIOD  
PAYLOAD 3  
25-BIT FRAME (N + 1)  
DATA  
DATA  
LSB  
DATA DATA  
MSB  
IDLE  
IDLE  
IDLE  
IDLE  
80-SAMPLE PERIOD  
PAYLOAD 3  
25-BIT FRAME (N + 2)  
DATA  
DATA  
LSB  
DATA DATA  
MSB  
IDLE  
IDLE  
IDLE  
IDLE  
Figure 101. SPORT over JESD204B Signal Monitor Example with Period = 80 Samples  
Rev. C | Page 40 of 96  
 
Data Sheet  
AD6674  
DIGITAL DOWNCONVERTER (DDC)  
The AD6674 includes four digital downconverters (DDCs) that  
provide filtering and reduce the output data rate. This digital  
processing section includes an NCO, a half-band decimating  
filter, an FIR filter, a gain stage, and a complex to real conver-  
sion stage. Each of these processing blocks has control lines that  
allow it to be independently enabled and disabled to provide the  
desired processing function. The digital downconverter can be  
configured to output either real data or complex output data.  
ignore all DDC Q output ports. When any of the DDC channels  
are set to use complex I/Q outputs, the user must clear this bit  
to use both DDC Output Port I and DDC Output Port Q. For  
more information, see Figure 110.  
DDC GENERAL DESCRIPTION  
The four DDC blocks are used to extract a portion of the full  
digital spectrum captured by the ADC(s). They are intended for  
IF sampling or oversampled baseband radios requiring wide  
bandwidth input signals.  
The DDCs output a 16-bit stream. To enable this operation, the  
converter number of bits, N, is set to a default value of 16, even  
though the analog core only outputs 14 bits. In full bandwidth  
operation, the ADC outputs are the 14-bit word followed by two  
zeros, unless the tail bits are enabled.  
Each DDC block contains the following signal processing  
stages:  
Frequency translation stage (optional)  
Filtering stage  
Gain stage (optional)  
DDC I/Q INPUT SELECTION  
The AD6674 has two ADC channels and four DDC channels.  
Each DDC channel has two input ports that can be paired to  
support both real and complex inputs through the I/Q crossbar  
mux. For real signals, both DDC input ports must select the  
same ADC channel (that is, DDC Input Port I = ADC Channel A  
and DDC Input Port Q = ADC Channel A). For complex  
signals, each DDC input port must select different ADC  
channels (that is, DDC Input Port I = ADC Channel A and  
DDC Input Port Q = ADC Channel B).  
Complex to real conversion stage (optional)  
Frequency Translation Stage (Optional)  
This stage consists of a 12-bit complex NCO and quadrature  
mixers that can be used for frequency translation of both real  
and complex input signals. This stage shifts a portion of the  
available digital spectrum down to baseband.  
Filtering Stage  
After shifting down to baseband, this stage decimates the  
frequency spectrum using a chain of up to four half-band low-  
pass filters for rate conversion. The decimation process lowers  
the output data rate, which in turn reduces the output interface  
rate.  
The inputs to each DDC are controlled by the DDC input selec-  
tion registers (Register 0x311, Register 0x331, Register 0x351, and  
Register 0x371). See Table 45 for information on how to  
configure the DDCs.  
DDC I/Q OUTPUT SELECTION  
Gain Stage (Optional)  
Each DDC channel has two output ports that can be paired to  
support both real and complex outputs. For real output signals,  
only the DDC Output Port I is used (the DDC Output Port Q is  
invalid). For complex I/Q output signals, both DDC Output  
Port I and DDC Output Port Q are used.  
Due to losses associated with mixing a real input signal down to  
baseband, this stage compensates by adding an additional 0 dB  
or 6 dB of gain.  
Complex to Real Conversion Stage (Optional)  
When real outputs are necessary, this stage converts the  
complex outputs back to real by performing an fS/4 mixing  
operation plus a filter to remove the complex component of the  
signal.  
The I/Q outputs to each DDC channel are controlled by the  
DDC complex to real enable bit, Bit 3, in the DDC control  
registers (Register 0x310, Register 0x330, Register 0x350, and  
Register 0x370).  
Figure 102 shows the detailed block diagram of the DDCs  
implemented in the AD6674.  
The Chip Q ignore bit in the chip mode register (Register 0x200[5])  
controls the chip output muxing of all the DDC channels.  
When all DDC channels use real outputs, set this bit high to  
Rev. C | Page 41 of 96  
 
 
 
 
AD6674  
Data Sheet  
DDC 0  
DDC 1  
DDC 2  
DDC 3  
REAL/I  
I
REAL/I  
CONVERTER 0  
NCO  
+
MIXER  
(OPTIONAL)  
REAL/Q  
Q
Q CONVERTER 1  
ADC  
SAMPLING  
AT fS  
REAL/I  
SYSREF±  
I
REAL/I  
REAL/I  
CONVERTER 2  
NCO  
+
MIXER  
(OPTIONAL)  
REAL/Q  
Q
Q CONVERTER 3  
SYSREF±  
I
REAL/I  
REAL/I  
CONVERTER 4  
NCO  
+
MIXER  
(OPTIONAL)  
REAL/Q  
Q
Q CONVERTER 5  
ADC  
SAMPLING  
AT fS  
REAL/I  
SYSREF±  
I
REAL/I  
REAL/I  
CONVERTER 6  
NCO  
+
MIXER  
(OPTIONAL)  
REAL/Q  
Q
Q CONVERTER 7  
SYSREF  
SYSREF±  
SYNCHRONIZATION  
CONTROL CIRCUITS  
Figure 102. DDC Detailed Block Diagram  
Figure 103 shows an example usage of one of the four DDC  
blocks with a real input signal and four half-band filters (HB4 +  
HB3 + HB2 + HB1). It shows both complex (decimate by 16)  
and real (decimate by 8) output options.  
If the DDC soft reset is not issued, the output may potentially  
show amplitude variations.  
Table 11, Table 12, Table 13, Table 14, and Table 15 show the  
DDC samples when the chip decimation ratio is set to 1, 2, 4, 8,  
or 16, respectively. When DDCs have different decimation  
ratios, the chip decimation ratio must be set to the lowest  
decimation ratio of all the DDC channels. In this scenario,  
samples of higher decimation ratio DDCs are repeated to match  
the chip decimation ratio sample rate.  
When DDCs have different decimation ratios, the chip  
decimation ratio (Register 0x201) must be set to the lowest  
decimation ratio of all the DDC blocks. In this scenario,  
samples of higher decimation ratio DDCs are repeated to match  
the chip decimation ratio sample rate. Whenever the NCO  
frequency is set or changed, the DDC soft reset must be issued.  
Rev. C | Page 42 of 96  
 
Data Sheet  
AD6674  
ADC  
SAMPLING  
AT fS  
ADC  
REAL  
REAL  
REAL INPUT—SAMPLED AT fS  
BANDWIDTH OF  
INTEREST  
BANDWIDTH OF  
INTEREST IMAGE  
fS/32  
fS/32  
DC  
fS/2  
fS/3  
fS/4  
fS/8  
fS/16  
fS/16  
fS/8  
fS/4  
fS/3  
fS/2  
FREQUENCY TRANSLATION STAGE (OPTIONAL)  
I
DIGITAL MIXER + NCO FOR fS/3 TUNING, THE FREQUENCY  
TUNING WORD = ROUND ((fS/3)/fS × 4096) = +1365 (0x555)  
NCO TUNES CENTER OF  
BANDWIDTH OF INTEREST  
TO BASEBAND  
cos(wt)  
REAL  
12-BIT  
NCO  
90°  
0°  
–sin(wt)  
Q
BANDWIDTH OF  
INTEREST IMAGE  
(–6dB LOSS DUE TO  
NCO + MIXER)  
DIGITAL FILTER  
RESPONSE  
BANDWIDTH OF INTEREST  
(–6dB LOSS DUE TO  
NCO + MIXER)  
fS/32  
fS/32  
DC  
fS/2  
fS/3  
fS/4  
fS/8  
fS/16  
fS/16  
fS/8  
fS/4  
fS/3  
fS/2  
FILTERING STAGE  
4 DIGITAL HALF-BAND FILTERS  
(HB4 + HB3 + HB2 + HB1)  
HB4 FIR  
HB3 FIR  
HB2 FIR  
HB1 FIR  
HALF-  
HALF-  
HALF-  
BAND  
FILTER  
HALF-  
BAND  
FILTER  
BAND  
BAND  
I
I
FILTER  
FILTER  
2
2
2
2
2
2
HB4 FIR  
HB3 FIR  
HB2 FIR  
HB1 FIR  
HALF-  
BAND  
FILTER  
HALF-  
BAND  
FILTER  
HALF-  
BAND  
FILTER  
HALF-  
BAND  
FILTER  
Q
Q
6dB GAIN TO  
COMPENSATE FOR  
NCO + MIXER LOSS  
COMPLEX (I/Q) OUTPUTS  
GAIN STAGE (OPTIONAL)  
0dB OR 6dB GAIN  
DECIMATE BY 16  
DIGITAL FILTER  
RESPONSE  
I
I
2
+6dB  
GAIN STAGE (OPTIONAL)  
0dB OR 6dB GAIN  
Q
Q
2
+6dB  
fS/32  
fS/32  
fS/32  
fS/32  
DC  
COMPLEX TO REAL  
DC  
fS/8  
fS/16  
fS/16  
fS/8  
fS/16  
fS/16  
CONVERSION STAGE (OPTIONAL)  
DOWNSAMPLE BY 2  
fS/4 MIXING + COMPLEX FILTER TO REMOVE Q  
I
I
+6dB  
+6dB  
REAL (I) OUTPUTS  
DECIMATE BY 8  
COMPLEX  
TO  
REAL  
REAL/I  
Q
Q
6dB GAIN TO  
COMPENSATE FOR  
NCO + MIXER LOSS  
fS/32  
fS/32  
DC  
fS/8  
fS/16  
fS/16  
fS/8  
Figure 103. DDC Theory of Operation Example (Real Input, Decimate by 16)  
Rev. C | Page 43 of 96  
 
AD6674  
Data Sheet  
Table 11. DDC Samples When Chip Decimation Ratio = 1  
Real (I) Output (Complex to Real Enabled)  
Complex (I/Q) Outputs (Complex to Real Disabled)  
HB2 FIR +  
HB1 FIR  
HB3 FIR + HB2  
FIR + HB1 FIR  
(DCM1 = 4)  
HB4 FIR + HB3 FIR +  
HB2 FIR + HB1 FIR  
(DCM1 = 8)  
HB2 FIR +  
HB1 FIR  
HB3 FIR + HB2  
FIR + HB1 FIR  
(DCM1 = 8)  
HB4 FIR + HB3 FIR +  
HB2 FIR + HB1 FIR  
(DCM1 = 16)  
HB1 FIR  
HB1 FIR  
(DCM1 = 1) (DCM1 = 2)  
(DCM1 = 2) (DCM1 = 4)  
N
N
N
N
N
N
N
N
N + 1  
N + 2  
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
N + ꢀ  
N + 9  
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
N + 4  
N + 5  
N + 4  
N + 5  
N + 6  
N + 7  
N + 6  
N + 7  
N + ꢀ  
N + 9  
N + ꢀ  
N + 9  
N + 10  
N + 11  
N + 10  
N + 11  
N + 12  
N + 13  
N + 12  
N + 13  
N + 14  
N + 15  
N + 14  
N + 15  
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
N + 4  
N + 5  
N + 4  
N + 5  
N + 6  
N + 7  
N + 6  
N + 7  
N + ꢀ  
N + 9  
N + ꢀ  
N + 9  
N + 10  
N + 11  
N + 10  
N + 11  
N + 12  
N + 13  
N + 12  
N + 13  
N + 14  
N + 15  
N + 14  
N + 15  
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 4  
N + 5  
N + 4  
N + 5  
N + 4  
N + 5  
N + 4  
N + 5  
N + 6  
N + 7  
N + 6  
N + 7  
N + 6  
N + 7  
N + 6  
N + 7  
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 4  
N + 5  
N + 4  
N + 5  
N + 4  
N + 5  
N + 4  
N + 5  
N + 6  
N + 7  
N + 6  
N + 7  
N + 6  
N + 7  
N + 6  
N + 7  
N + 10  
N + 11  
N + 12  
N + 13  
N + 14  
N + 15  
N + 16  
N + 17  
N + 1ꢀ  
N + 19  
N + 20  
N + 21  
N + 22  
N + 23  
N + 24  
N + 25  
N + 26  
N + 27  
N + 2ꢀ  
N + 29  
N + 30  
N + 31  
N + 1  
1 DCM = decimation.  
Table 12. DDC Samples When Chip Decimation Ratio = 2  
Real (I) Output (Complex to Real Enabled)  
HB4 FIR +  
Complex (I/Q) Outputs (Complex to Real Disabled)  
HB4 FIR +  
HB3 FIR +  
HB2 FIR +  
HB1 FIR  
HB3 FIR +  
HB2 FIR +  
HB1 FIR  
HB3 FIR +  
HB2 FIR +  
HB1 FIR  
HB3 FIR +  
HB2 FIR +  
HB1 FIR  
HB2 FIR +  
HB1 FIR  
HB2 FIR +  
HB1 FIR  
HB1 FIR  
(DCM1 = 2)  
(DCM1 = 4)  
(DCM1 = 8)  
(DCM1 = 2)  
(DCM1 = 4)  
(DCM1 = 8)  
(DCM1 = 16)  
N
N
N
N
N
N
N
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
N + ꢀ  
N + 9  
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N + 2  
N + 3  
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
N + ꢀ  
N + 9  
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N + 2  
N + 3  
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
N + 4  
N + 5  
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
N + 4  
N + 5  
N + 1  
Rev. C | Page 44 of 96  
 
 
Data Sheet  
AD6674  
Real (I) Output (Complex to Real Enabled)  
Complex (I/Q) Outputs (Complex to Real Disabled)  
HB4 FIR +  
HB4 FIR +  
HB3 FIR +  
HB2 FIR +  
HB1 FIR  
HB3 FIR +  
HB2 FIR +  
HB1 FIR  
HB3 FIR +  
HB2 FIR +  
HB1 FIR  
HB3 FIR +  
HB2 FIR +  
HB1 FIR  
HB2 FIR +  
HB1 FIR  
HB2 FIR +  
HB1 FIR  
HB1 FIR  
(DCM1 = 2)  
(DCM1 = 4)  
(DCM1 = 8)  
(DCM1 = 2)  
(DCM1 = 4)  
(DCM1 = 8)  
(DCM1 = 16)  
N + 10  
N + 11  
N + 12  
N + 13  
N + 14  
N + 15  
N + 4  
N + 5  
N + 6  
N + 7  
N + 6  
N + 7  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 10  
N + 11  
N + 12  
N + 13  
N + 14  
N + 15  
N + 4  
N + 5  
N + 6  
N + 7  
N + 6  
N + 7  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N
N + 1  
N
N + 1  
N
N + 1  
1 DCM = decimation.  
Table 13. DDC Samples When Chip Decimation Ratio = 4  
Real (I) Output (Complex to Real Enabled)  
HB4 FIR + HB3 FIR +  
Complex (I/Q) Outputs (Complex to Real Disabled)  
HB4 FIR + HB3 FIR +  
HB2 FIR + HB1 FIR  
(DCM1 = 16)  
HB3 FIR + HB2 FIR +  
HB2 FIR + HB1 FIR  
HB2 FIR + HB1 FIR  
(DCM1 = 4)  
HB3 FIR + HB2 FIR +  
HB1 FIR (DCM1 = 8)  
HB1 FIR (DCM1 = 4)  
(DCM1 = 8)  
N
N
N
N
N
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
N + 1  
N
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
1 DCM = decimation.  
Table 14. DDC Samples When Chip Decimation Ratio = 8  
Real (I) Output (Complex to Real Enabled)  
Complex (I/Q) Outputs (Complex to Real Disabled)  
HB3 FIR + HB2 FIR + HB1 FIR  
HB4 FIR + HB3 FIR + HB2 FIR +  
HB1 FIR (DCM1 = 16)  
HB4 FIR + HB3 FIR + HB2 FIR + HB1 FIR (DCM1 = 8)  
(DCM1 = 8)  
N
N
N
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
N + 1  
N
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
1 DCM = decimation.  
Table 15. DDC Samples When Chip Decimation Ratio = 16  
Real (I) Output (Complex to Real Enabled)  
HB4 FIR + HB3 FIR + HB2 FIR + HB1 FIR (DCM1 = 16)  
Not applicable  
Complex (I/Q) Outputs (Complex to Real Disabled)  
HB4 FIR + HB3 FIR + HB2 FIR + HB1 FIR (DCM1 = 16)  
N
Not applicable  
Not applicable  
Not applicable  
N + 1  
N + 2  
N + 3  
1 DCM -= decimation.  
Rev. C | Page 45 of 96  
 
 
 
AD6674  
Data Sheet  
For example, if the chip decimation ratio is set to decimate by 4,  
DDC 0 is set to use HB2 + HB1 filters (complex outputs, decimate  
by 4) and DDC 1 is set to use HB4 + HB3 + HB2 + HB1 filters  
(real outputs, decimate by 8). DDC 1 repeats its output data two  
times for every one DDC 0 output. The resulting output samples  
are shown in Table 16.  
Table 16. DDC Output Samples When Chip DCM1 = 4, DDC 0 DCM1 = 4 (Complex), and DDC 1 DCM1 = 8 (Real)  
DDC 0 DDC 1  
Output Port Q Output Port Q  
Not applicable  
DDC Input Samples  
N
Output Port I  
Output Port I  
I0 (N)  
Q0 (N)  
I1 (N)  
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
I0 (N + 1)  
I0 (N + 2)  
I0 (N + 3)  
Q0 (N + 1)  
Q0 (N + 2)  
Q0 (N + 3)  
N + ꢀ  
N + 9  
I1 (N + 1)  
Not applicable  
N + 10  
N + 11  
N + 12  
N + 13  
N + 14  
N + 15  
1 DCM = decimation.  
Rev. C | Page 46 of 96  
 
Data Sheet  
AD6674  
FREQUENCY TRANSLATION  
Variable IF Mode  
GENERAL DESCRIPTION  
NCO and mixers are enabled. NCO output frequency can be  
used to digitally tune the IF frequency.  
Frequency translation is accomplished by using a 12-bit  
complex NCO with a digital quadrature mixer. This stage  
translates either a real or complex input signal from an IF to a  
baseband complex digital output (carrier frequency = 0 Hz).  
0 Hz IF (ZIF) Mode  
The mixers are bypassed, and the NCO is disabled.  
fS/4 Hz IF Mode  
The frequency translation stage of each DDC can be controlled  
individually and supports four different IF modes using Bits[5:4]  
of the DDC control registers (Register 0x310, Register 0x330,  
Register 0x350, and Register 0x370). These IF modes are  
The mixers and the NCO are enabled in special downmixing by  
fS/4 mode to save power.  
Test Mode  
Variable IF mode  
0 Hz IF or zero IF (ZIF) mode  
fS/4 Hz IF mode  
Input samples are forced to 0.999 to positive full scale. The  
NCO is enabled. This test mode allows the NCOs to directly  
drive the decimation filters.  
Test mode  
Figure 104 and Figure 105 show examples of the frequency  
translation stage for both real and complex inputs.  
NCO FREQUENCY TUNING WORD (FTW) SELECTION  
12-BIT NCO FTW = MIXING FREQUENCY/ADC SAMPLE RATE × 4096  
I
cos(wt)  
ADC  
SAMPLING  
AT fS  
ADC + DIGITAL MIXER + NCO  
REAL INPUT—SAMPLED AT fS  
REAL  
REAL  
12-BIT  
NCO  
90°  
0°  
COMPLEX  
–sin(wt)  
Q
BANDWIDTH OF  
INTEREST  
BANDWIDTH OF  
INTEREST IMAGE  
fS/32  
fS/32  
DC  
fS/2  
fS/3  
fS/4  
fS/8  
fS/16  
fS/16  
fS/8  
fS/4  
fS/3  
fS/2  
–6dB LOSS DUE TO  
NCO + MIXER  
12-BIT NCO FTW =  
ROUND ((fS/3)/fS × 4096) = +1365 (0x555)  
POSITIVE FTW VALUES  
fS/32  
fS/32  
DC  
12-BIT NCO FTW =  
ROUND ((fS/3)/fS × 4096) = –1365 (0xAAB)  
NEGATIVE FTW VALUES  
fS/32  
fS/32  
DC  
Figure 104. DDC NCO Frequency Tuning Word Selection—Real Inputs  
Rev. C | Page 47 of 96  
 
 
 
AD6674  
Data Sheet  
NCO FREQUENCY TUNING WORD (FTW) SELECTION  
12-BIT NCO FTW = MIXING FREQUENCY/ADC SAMPLE RATE × 4096  
QUADRATURE MIXER  
ADC  
SAMPLING  
AT fS  
I
+
I
I
I
I
Q
QUADRATURE ANALOG MIXER +  
Q
2 ADCs + QUADRATURE DIGITAL  
MIXER + NCO  
12-BIT  
NCO  
REAL  
90°  
PHASE  
90°  
0°  
COMPLEX  
Q
COMPLEX INPUT—SAMPLED AT fS  
I
I
+
ADC  
SAMPLING  
AT fS  
Q
Q
Q
Q
+
BANDWIDTH OF  
INTEREST  
IMAGE DUE TO  
ANALOG I/Q  
MISMATCH  
fS/32  
fS/32  
fS/16  
fS/2  
fS/3  
fS/4  
fS/8  
fS/16  
fS/8  
fS/4  
fS/3  
fS/2  
DC  
12-BIT NCO FTW =  
ROUND ((fS/3)/fS × 4096) = +1365 (0x555)  
POSITIVE FTW VALUES  
fS/32  
DC  
fS/32  
Figure 105. DDC NCO Frequency Tuning Word Selection—Complex Inputs  
Setting Up the NCO FTW and POW  
DDC NCO + MIXER LOSS AND SFDR  
The NCO frequency value is given by the 12-bit twos  
complement number entered in the NCO FTW. Frequencies  
between −fS/2 and +fS/2 (fS/2 excluded) are represented using  
the following frequency words:  
When mixing a real input signal down to baseband, 6 dB of loss  
is introduced in the signal due to filtering of the negative image.  
An additional 0.05 dB of loss is introduced by the NCO. The  
total loss of a real input signal mixed down to baseband is  
6.05 dB. For this reason, it is recommended that the user  
compensate for this loss by enabling the 6 dB of gain in the gain  
stage of the DDC to recenter the dynamic range of the signal  
within the full scale of the output bits.  
0x800 represents a frequency of −fS/2.  
0x000 represents dc (frequency is 0 Hz).  
0x7FF represents a frequency of +fS/2 − fS/212.  
The NCO frequency tuning word can be calculated using the  
following equation:  
When mixing a complex input signal down to baseband, the  
maximum value each I/Q sample can reach is 1.414 × full scale  
after it passes through the complex mixer. To avoid overrange of  
the I/Q samples and to keep the data bit-widths aligned with  
real mixing, 3.06 dB of loss is introduced in the mixer for  
complex signals. An additional 0.05 dB of loss is introduced by  
the NCO. The total loss of a complex input signal mixed down  
to baseband is −3.11 dB.  
mod  
fC , fS  
fS  
12  
NCO _ FTW round 2  
where:  
NCO_FTW is a 12-bit twos complement number representing  
the NCO FTW.  
fC is the desired carrier frequency in Hz.  
fS is the AD6674 sampling frequency (clock rate) in Hz.  
mod( ) is a remainder function. For example, mod(110,100) =  
10 and for negative numbers, mod(–32,10) = −2.  
round( ) is a rounding function. For example, round(3.6) = 4  
and for negative numbers, round(–3.4) = −3.  
The worst case spurious signal from the NCO is greater than  
102 dBc SFDR for all output frequencies.  
NUMERICALLY CONTROLLED OSCILLATOR  
The AD6674 has a 12-bit NCO for each DDC that enables the  
frequency translation process. The NCO allows the input  
spectrum to be tuned to dc, where it can be effectively filtered  
by the subsequent filter blocks to prevent aliasing. The NCO  
can be set up by providing a frequency tuning word (FTW) and  
a phase offset word (POW).  
Note that this equation applies to the aliasing of signals in the  
digital domain (that is, aliasing introduced when digitizing  
analog signals).  
Rev. C | Page 4ꢀ of 96  
 
 
 
 
Data Sheet  
AD6674  
For example, if the ADC sampling frequency (fS) is 500 MSPS  
and the carrier frequency (fC) is 140.312 MHz, then  
Use the following two methods to synchronize multiple PAWs  
within the chip.  
NCO_FTW =  
Using the SPI. Use the DDC NCO soft reset bit in the DDC  
synchronization control register (Register 0x300[4]) to  
reset all the PAWs in the chip. This is accomplished by  
setting the DDC NCO soft reset bit high and then setting  
this bit low. Note that this method can only be used to  
synchronize DDC channels within the same AD6674 chip.  
Using the SYSREF pin. When the SYSREF pin is  
enabled in the SYSREF control registers (Register 0x120  
and Register 0x121) and the DDC synchronization is  
enabled in the DDC synchronization control register  
(Register 0x300[1:0]), any subsequent SYSREF event  
resets all the PAWs in the chip. Note that this method can  
be used to synchronize DDC channels within the same  
AD6674 chip or DDC channels within separate AD6674  
chips.  
mod 140.312,500  
   
round 212  
1149 MHz  
500  
This, in turn, converts to 0x47D in the 12-bit twos complement  
representation for NCO_FTW. The actual carrier frequency,  
C_ACTUAL, is calculated based on the following equation:  
f
NCO_FTWfS  
fC_ ACTUAL  
140.26MHz  
212  
A 12-bit POW is available for each NCO to create a known  
phase relationship between multiple AD6674 chips or  
individual DDC channels inside one AD6674 chip.  
The following procedure must be followed to update the FTW  
and/or POW registers to ensure proper operation of the NCO:  
Mixer  
1. Write to the FTW registers for all the DDCs.  
2. Write to the POW registers for all the DDCs.  
3. Synchronize the NCOs either through the DDC NCO soft  
reset bit (Register 0x300[4]) accessible through the SPI or  
through the assertion of the SYSREF pin.  
The NCO is accompanied by a mixer. Its operation is similar to  
an analog quadrature mixer. It performs the downconversion of  
input signals (real or complex) by using the NCO frequency as a  
local oscillator. For real input signals, this mixer performs a real  
mixer operation (with two multipliers). For complex input  
signals, the mixer performs a complex mixer operation (with  
four multipliers and two adders). The mixer adjusts its  
operation based on the input signal (real or complex) provided  
to each individual channel. The selection of real or complex  
inputs can be controlled individually for each DDC block using  
Bit 7 of the DDC control registers (Register 0x310, Register 0x330,  
Register 0x350, and Register 0x370).  
It is important to note that the NCOs must be synchronized  
either through the SPI or through the SYSREF pin after all  
writes to the FTW or POW registers have completed. This is  
necessary to ensure the proper operation of the NCO.  
NCO Synchronization  
Each NCO contains a separate phase accumulator word (PAW)  
that determines the instantaneous phase of the NCO. The initial  
reset value of each PAW is determined by the POW. The phase  
increment value of each PAW is determined by the FTW See  
the Setting Up the NCO FTW and POW section for more  
information.  
Rev. C | Page 49 of 96  
 
AD6674  
Data Sheet  
FIR FILTERS  
Table 17 shows the different bandwidths selectable by including  
different half-band filters. In all cases, the DDC filtering stage  
on the AD6674 provides <−0.001 dB of pass-band ripple and  
>100 dB of stop-band alias rejection.  
GENERAL DESCRIPTION  
There are four sets of decimate by 2, low-pass, half-band, finite  
impulse response (FIR) filters (labeled HB1 FIR, HB2 FIR, HB3  
FIR, and HB4 FIR in Figure 102) following the frequency  
translation stage. After the carrier of interest is tuned down to  
dc (carrier frequency = 0 Hz), these filters efficiently lower the  
sample rate, while providing sufficient alias rejection from  
unwanted adjacent carriers around the bandwidth of interest.  
Table 18 shows the amount of stop-band alias rejection for  
multiple pass-band ripple/cutoff points. The decimation ratio of  
the filtering stage of each DDC can be controlled individually  
through Bits[1:0] of the DDC control registers (Register 0x310,  
Register 0x330, Register 0x350, and Register 0x370).  
HB1 FIR is always enabled and cannot be bypassed. The HB2,  
HB3, and HB4 FIR filters are optional and can be bypassed for  
higher output sample rates.  
Table 17. DDC Filter Characteristics  
Real Output  
Complex (I/Q) Output  
Decimation  
Ratio  
Output  
Sample  
Rate  
Decimation  
Ratio  
Output Sample Rate  
(MSPS)  
ADC  
Sample  
Rate  
Alias  
Pass-  
Band  
Half Band  
Filter  
Selection  
Protected  
Bandwidth  
(MHz)  
Ideal SNR  
Alias  
Rejection  
(dB)  
Improvement1 Ripple  
(MSPS)  
(MSPS)  
(dB)  
(dB)  
1000  
HB1  
1
2
4
1000  
500  
2
4
8
500 (I) + 500 (Q)  
250 (I) + 250 (Q)  
125 (I) + 125 (Q)  
385.0  
192.5  
96.3  
1
4
7
<−0.001  
>100  
HB1 + HB2  
HB1 + HB2 +  
HB3  
250  
HB1 + HB2 +  
HB3 + HB4  
8
125  
16  
62.5 (I) + 62.5 (Q)  
48.1  
10  
750  
HB1  
1
2
4
750  
2
4
8
375 (I) + 375 (Q)  
288.8  
144.4  
72.2  
1
4
7
HB1 + HB2  
375  
187.5 (I) + 187.5 (Q)  
93.75 (I) + 93.75 (Q)  
HB1 + HB2 +  
HB3  
187.5  
HB1 + HB2 +  
HB3 + HB4  
8
93.75  
16  
46.875 (I) + 46.875 (Q)  
36.1  
10  
500  
HB1  
1
2
4
500  
250  
125  
2
4
8
250 (I) + 250 (Q)  
125 (I) + 125 (Q)  
62.5 (I) + 62.5 (Q)  
192.5  
96.3  
48.1  
1
4
7
HB1 + HB2  
HB1 + HB2 +  
HB3  
HB1 + HB2 +  
HB3 + HB4  
8
62.5  
16  
31.25 (I) + 31.25 (Q)  
24.1  
10  
1 Ideal SNR improvement due to oversampling and filtering = 10log(bandwidth/(fS/2)).  
Table 18. DDC Filter Alias Rejection  
Alias Rejection  
(dB)  
Pass-Band Ripple/Cutoff  
Point (dB)  
Alias Protected Bandwidth for Real  
(I) Outputs1  
Alias Protected Bandwidth for Complex  
(I/Q) Outputs  
>100  
90  
85  
63.3  
25  
19.3  
10.7  
<−0.001  
<−0.001  
<−0.001  
<−0.006  
−0.5  
<38.5% × fOUT  
<38.7% × fOUT  
<38.9% × fOUT  
<40% × fOUT  
44.4% × fOUT  
45.6% × fOUT  
48% × fOUT  
<77% × fOUT  
<77.4% × fOUT  
<77.8% × fOUT  
<80% × fOUT  
88.8% × fOUT  
91.2% × fOUT  
96% × fOUT  
−1.0  
−3.0  
1 fOUT = ADC input sample rate ÷ DDC decimation.  
Rev. C | Page 50 of 96  
 
 
 
 
Data Sheet  
AD6674  
Table 20. HB3 Filter Coefficients  
HALF-BAND FILTERS  
HB3 Coefficient  
Number  
Normalized  
Coefficient  
Decimal Coefficient  
(18-Bit)  
The AD6674 offers four half-band filters to enable digital signal  
processing of the ADC converted data. These half-band filters  
are bypassable and can be individually selected.  
C1, C11  
C2, C10  
C3, C9  
C4, Cꢀ  
C5, C7  
C6  
0.006554  
0
−0.050ꢀ19  
0
0.294266  
0.500000  
ꢀ59  
0
−6661  
0
3ꢀ,570  
65,536  
HB4 Filter  
The first decimate by 2, half-band, low-pass, FIR filter (HB4)  
uses an 11-tap, symmetrical, fixed coefficient filter implementa-  
tion that is optimized for low power consumption. The HB4  
filter is only used when complex outputs (decimate by 16) or  
real outputs (decimate by 8) are enabled; otherwise, it is  
bypassed. Table 19 and Figure 106 show the coefficients and  
response of the HB4 filter.  
0
–20  
–40  
Table 19. HB4 Filter Coefficients  
HB4 Coefficient  
Number  
Normalized  
Coefficient  
Decimal  
Coefficient (15-Bit)  
–60  
–80  
C1, C11  
C2, C10  
C3, C9  
C4, Cꢀ  
C5, C7  
C6  
0.006042  
0
−0.049316  
0
0.293273  
0.500000  
99  
0
−ꢀ0ꢀ  
0
4ꢀ05  
ꢀ192  
–100  
–120  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
NORMALIZED FREQUENCY (× π RAD/SAMPLE)  
0
Figure 107. HB3 Filter Response  
HB2 Filter  
–20  
The third decimate by 2, half-band, low-pass, FIR filter (HB2)  
uses a 19-tap, symmetrical, fixed coefficient filter implementa-  
tion that is optimized for low power consumption.  
–40  
–60  
The HB2 filter is only used when complex or real outputs  
(decimate by 4, 8, or 16) is enabled; otherwise, it is bypassed.  
–80  
Table 21 and Figure 108 show the coefficients and response of  
the HB2 filter.  
–100  
–120  
Table 21. HB2 Filter Coefficients  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
HB2 Coefficient  
Number  
Normalized  
Coefficient  
Decimal  
Coefficient (19-Bit)  
NORMALIZED FREQUENCY (× π RAD/SAMPLE)  
Figure 106. HB4 Filter Response  
C1, C19  
C2, C1ꢀ  
C3, C17  
C4, C16  
C5, C15  
C6, C14  
C7, C13  
Cꢀ, C12  
C9, C11  
C10  
0.000614  
0
−0.005066  
0
0.022179  
0
−0.073517  
0
0.3057ꢀ6  
0.500000  
161  
0
−132ꢀ  
0
5ꢀ14  
0
−19,272  
0
ꢀ0,160  
131,072  
HB3 Filter  
The second decimate by 2, half-band, low-pass, FIR filter (HB3)  
uses an 11-tap, symmetrical, fixed coefficient filter implementa-  
tion that is optimized for low power consumption. The HB3  
filter is only used when complex outputs (decimate by 8 or 16)  
or real outputs (decimate by 4 or 8) are enabled; otherwise, it is  
bypassed. Table 20 and Figure 107 show the coefficients and  
response of the HB3 filter.  
Rev. C | Page 51 of 96  
 
 
 
 
 
 
AD6674  
Data Sheet  
0
0
–20  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–100  
–120  
–120  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
NORMALIZED FREQUENCY (× π RAD/SAMPLE)  
NORMALIZED FREQUENCY (× π RAD/SAMPLE)  
Figure 108. HB2 Filter Response  
Figure 109. HB1 Filter Response  
HB1 Filter  
DDC GAIN STAGE  
The fourth and final decimate by 2, half-band, low-pass, FIR  
filter (HB1) uses a 55-tap, symmetrical, fixed coefficient filter  
implementation that is optimized for low power consumption.  
The HB1 filter is always enabled and cannot be bypassed.  
Table 22 and Figure 109 show the coefficients and response of  
the HB1 filter.  
Each DDC contains an independently controlled gain stage.  
The gain is selectable as either 0 dB or 6 dB. When mixing a real  
input signal down to baseband, it is recommended that the user  
enable the 6 dB of gain to recenter the dynamic range of the  
signal within the full scale of the output bits.  
When mixing a complex input signal down to baseband, the  
mixer has already recentered the dynamic range of the signal  
within the full scale of the output bits, and no additional gain is  
necessary. However, the optional 6 dB gain compensates for low  
signal strengths. The downsample by 2 portion of the HB1 FIR  
filter is bypassed when using the complex to real conversion  
stage.  
Table 22. HB1 Filter Coefficients  
HB1 Coefficient  
Number  
Normalized  
Coefficient  
Decimal  
Coefficient (21-Bit)  
C1, C55  
C2, C54  
C3, C53  
C4, C52  
C5, C51  
C6, C50  
C7, C49  
Cꢀ, C4ꢀ  
C9, C47  
C10, C46  
C11, C45  
C12, C44  
C13, C43  
C14, C42  
C15, C41  
C16, C40  
C17, C39  
C1ꢀ, C3ꢀ  
C19, C37  
C20, C36  
C21, C35  
C22, C34  
C23, C33  
C24, C32  
C25, C31  
C26, C30  
C27, C29  
C2ꢀ  
−0.000023  
0
0.000097  
0
−0.0002ꢀꢀ  
0
0.000696  
0
−0.0014725  
0
0.002ꢀ27  
0
−0.005039  
0
0.00ꢀ491  
0
−0.013717  
0
0.021591  
0
−0.033ꢀ33  
0
0.054ꢀ06  
0
−0.100557  
0
0.316421  
0.500000  
−24  
0
102  
0
−302  
0
730  
0
−1544  
0
2964  
0
−52ꢀ4  
0
ꢀ903  
0
−14,3ꢀ3  
0
22,640  
0
−35,476  
0
57,46ꢀ  
0
−105,442  
0
331,792  
524,2ꢀꢀ  
DDC COMPLEX TO REAL CONVERSION  
Each DDC contains an independently controlled complex to  
real conversion block. The complex to real conversion block  
reuses the last filter (HB1 FIR) in the filtering stage along with  
an fS/4 complex mixer to upconvert the signal. After upconvert-  
ing the signal, the Q portion of the complex mixer is no longer  
needed and is dropped.  
Figure 110 shows a simplified block diagram of the complex to  
real conversion.  
Rev. C | Page 52 of 96  
 
 
 
 
 
Data Sheet  
AD6674  
HB1 FIR  
GAIN STAGE  
COMPLEX TO  
REAL ENABLE  
LOW-PASS  
FILTER  
I
0dB  
OR  
I
I
0
2
I/REAL  
6dB  
1
COMPLEX TO REAL CONVERSION  
0dB  
OR  
6dB  
cos(wt)  
+
90°  
REAL  
fS/4  
0°  
sin(wt)  
0dB  
OR  
6dB  
Q
LOW-PASS  
FILTER  
Q
0dB  
OR  
6dB  
Q
Q
2
HB1 FIR  
Figure 110. Complex to Real Conversion Block  
DDC EXAMPLE CONFIGURATIONS  
Table 23 describes the register settings for multiple DDC example configurations.  
Table 23. DDC Example Configurations  
Chip  
Chip  
DDC  
No. of Virtual  
Bandwidth Converters  
Application Decimation DDC Input Output  
Layer  
Ratio  
Type  
Type  
Per DDC1  
Required  
Register Settings2  
One DDC  
2
Complex  
Complex 3ꢀ.5% × fS  
2
0x200 = 0x01 (one DDC; I/Q selected)  
0x201 = 0x01 (chip decimate by 2)  
0x310 = 0xꢀ3 (complex mixer; 0 dB gain;  
variable IF; complex outputs; HB1 filter)  
0x311 = 0x04 (DDC I input = ADC Channel A;  
DDC Q input = ADC Channel B)  
0x314, 0x315, 0x320, 0x321 = FTW and POW set  
as required by application for DDC 0  
One DDC  
4
Complex  
Complex 19.25% × fS  
2
0x200 = 0x01 (one DDC; I/Q selected)  
0x201 = 0x02 (chip decimate by 4)  
0x310= 0xꢀ0 (complex mixer; 0 dB gain;  
variable IF; complex outputs; HB2 + HB1 filters)  
0x311= 0x04 (DDC I input = ADC Channel A;  
DDC Q input = ADC Channel B)  
0x314, 0x315= FTW and POW set as required by  
application for DDC 0  
Rev. C | Page 53 of 96  
 
 
 
AD6674  
Data Sheet  
Chip  
Chip  
DDC  
No. of Virtual  
Bandwidth Converters  
Application Decimation DDC Input Output  
Layer  
Ratio  
Type  
Type  
Per DDC1  
Required  
Register Settings2  
Two DDCs  
2
Real  
Real  
19.25%× fS  
2
0x200 = 0x22 (two DDCs; I only selected)  
0x201 = 0x01 (chip decimate by 2)  
0x310, 0x330 = 0x4ꢀ (real mixer; 6 dB gain;  
variable IF; real output; HB2 + HB1 filters)  
0x311 = 0x00 (DDC 0 I input = ADC Channel A;  
DDC 0 Q input = ADC Channel A)  
0x331 = 0x05 (DDC 1 I input = ADC Channel B;  
DDC 1 Q input = ADC Channel B)  
0x314, 0x315, 0x320, 0x321 = FTW and POW set  
as required by application for DDC 0  
0x334, 0x335, 0x340, 0x341 = FTW and POW set  
as required by application for DDC 1  
Two DDCs  
Two DDCs  
Two DDCs  
Two DDCs  
2
4
4
4
Complex  
Complex  
Complex  
Real  
Complex 3ꢀ.5%× fS  
4
4
2
2
0x200 = 0x22 (two DDCs; I only selected)  
0x201 = 0x01 (chip decimate by 2)  
0x310, 0x330 = 0x4B (complex mixer; 6 dB gain;  
variable IF; complex output; HB1 filter)  
0x311, 0x331 = 0x04 (DDC 0 I input = ADC  
Channel A; DDC 0 Q input = ADC Channel B)  
0x314, 0x315, 0x320, 0x321 = FTW and POW set  
as required by application for DDC 0  
0x334, 0x335, 0x340, 0x341 = FTW and POW set  
as required by application for DDC 1  
Complex 19.25% × fS  
0x200 = 0x02 (two DDCs; I/Q selected)  
0x201 = 0x02 (chip decimate by 4)  
0x310, 0x330 = 0xꢀ0 (complex mixer; 0 dB gain;  
variable IF; complex outputs; HB2 + HB1 filters)  
0x311, 0x331 = 0x04 (DDC I input = ADC  
Channel A; DDC Q input = ADC Channel B)  
0x314, 0x315, 0x320, 0x321 = FTW and POW set  
as required by application for DDC 0  
0x334, 0x335, 0x340, 0x341 = FTW and POW set  
as required by application for DDC 1  
Real  
9.63% × fS  
0x200 = 0x22 (two DDCs; I only selected)  
0x201 = 0x02 (chip decimate by 4)  
0x310, 0x330 = 0xꢀ9 (complex mixer; 0 dB gain;  
variable IF; real output; HB3 + HB2 + HB1 filters)  
0x311, 0x331 = 0x04 (DDC I input = ADC  
Channel A; DDC Q input = ADC Channel B)  
0x314, 0x315, 0x320, 0x321 = FTW and POW set  
as required by application for DDC 0  
0x334, 0x335, 0x340, 0x341 = FTW and POW set  
as required by application for DDC 1  
Real  
9.63% × fS  
0x200 = 0x22 (two DDCs; I only selected)  
0x201 = 0x02 (chip decimate by 4)  
0x310, 0x330 = 0x49 (real mixer; 6 dB gain;  
variable IF; real output; HB3 + HB2 + HB1 filters)  
0x311 = 0x00 (DDC 0 I input = ADC Channel A;  
DDC 0 Q input = ADC Channel A)  
0x331 = 0x05 (DDC 1 I input = ADC Channel B;  
DDC 1 Q input = ADC Channel B)  
0x314, 0x315, 0x320, 0x321 = FTW and POW set  
as required by application for DDC 0  
0x334, 0x335, 0x340, 0x341 = FTW and POW set  
as required by application for DDC 1  
Rev. C | Page 54 of 96  
Data Sheet  
AD6674  
Chip  
Chip  
DDC  
No. of Virtual  
Bandwidth Converters  
Application Decimation DDC Input Output  
Layer  
Ratio  
Type  
Type  
Per DDC1  
Required  
Register Settings2  
Two DDCs  
4
Real  
Complex 19.25% × fS  
4
0x200 = 0x02 (two DDCs; I/Q selected)  
0x201 = 0x02 (chip decimate by 4)  
0x310, 0x330 = 0x40 (real mixer; 6 dB gain;  
variable IF; complex output; HB2 + HB1 filters)  
0x311 = 0x00 (DDC 0 I input = ADC Channel A;  
DDC 0 Q input = ADC Channel A)  
0x331 = 0x05 (DDC 1 I input = ADC Channel B;  
DDC 1 Q input = ADC Channel B)  
0x314, 0x315, 0x320, 0x321 = FTW and POW set  
as required by application for DDC 0  
0x334, 0x335, 0x340, 0x341 = FTW and POW set  
as required by application for DDC 1  
Two DDCs  
Real  
Real  
4.ꢀ1% × fS  
2
0x200 = 0x22 (two DDCs; I only selected)  
0x201 = 0x03 (chip decimate by ꢀ)  
0x310, 0x330 = 0x4A (real mixer; 6 dB gain;  
variable IF; real output; HB4 + HB3 + HB2 + HB1  
filters)  
0x311 = 0x00 (DDC 0 I input = ADC Channel A;  
DDC 0 Q input = ADC Channel A)  
0x331 = 0x05 (DDC 1 I input = ADC Channel B;  
DDC 1 Q input = ADC Channel B)  
0x314, 0x315, 0x320, 0x321 = FTW and POW set  
as required by application for DDC 0  
0x334, 0x335, 0x340, 0x341 = FTW and POW set  
as required by application for DDC 1  
Four DDCs  
Real  
Complex 9.63% × fS  
0x200 = 0x03 (four DDCs; I/Q selected)  
0x201 = 0x03 (chip decimate by ꢀ)  
0x310, 0x330, 0x350, 0x370 = 0x41 (real mixer;  
6 dB gain; variable IF; complex output; HB3 +  
HB2 + HB1 filters)  
0x311 = 0x00 (DDC 0 I input = ADC Channel A;  
DDC 0 Q input = ADC Channel A)  
0x331 = 0x00 (DDC 1 I input = ADC Channel A;  
DDC 1 Q input = ADC Channel A)  
0x351 = 0x05 (DDC 2 I input = ADC Channel B;  
DDC 2 Q input = ADC Channel B)  
0x371 = 0x05 (DDC 3 I input = ADC Channel B;  
DDC 3 Q input = ADC Channel B)  
0x314, 0x315, 0x320, 0x321 = FTW and POW set  
as required by application for DDC 0  
0x334, 0x335, 0x340, 0x341 = FTW and POW set  
as required by application for DDC 1  
0x354, 0x355, 0x360, 0x361 = FTW and POW set  
as required by application for DDC 2  
0x374, 0x375, 0x3ꢀ0, 0x3ꢀ1 = FTW and POW set  
as required by application for DDC 3  
Rev. C | Page 55 of 96  
AD6674  
Data Sheet  
Chip  
Chip  
DDC  
No. of Virtual  
Bandwidth Converters  
Application Decimation DDC Input Output  
Layer  
Ratio  
Type  
Type  
Per DDC1  
Required  
Register Settings2  
Four DDCs  
Real  
Real  
4.ꢀ1% × fS  
4
0x200 = 0x23 (four DDCs; I only selected)  
0x201 = 0x03 (chip decimate by ꢀ)  
0x310, 0x330, 0x350, 0x370 = 0x4A (real mixer;  
6 dB gain; variable IF; real output; HB4 + HB3 +  
HB2 + HB1 filters)  
0x311 = 0x00 (DDC 0 I input = ADC Channel A;  
DDC 0 Q input = ADC Channel A)  
0x331 = 0x00 (DDC 1 I input = ADC Channel A;  
DDC 1 Q input = ADC Channel A)  
0x351 = 0x05 (DDC 2 I input = ADC Channel B;  
DDC 2 Q input = ADC Channel B)  
0x371 = 0x05 (DDC 3 I input = ADC Channel B;  
DDC 3 Q input = ADC Channel B)  
0x314, 0x315, 0x320, 0x321 = FTW and POW set  
as required by application for DDC 0  
0x334, 0x335, 0x340, 0x341 = FTW and POW set  
as required by application for DDC 1  
0x354, 0x355, 0x360, 0x361 = FTW and POW set  
as required by application for DDC 2  
0x374, 0x375, 0x3ꢀ0, 0x3ꢀ1 = FTW and POW set  
as required by application for DDC 3  
Four DDCs  
16  
Real  
Complex 4.ꢀ1% × fS  
0x200 = 0x03 (four DDCs; I/Q selected)  
0x201 = 0x04 (chip decimate by 16)  
0x310, 0x330, 0x350, 0x370 = 0x42 (real mixer; 6  
dB gain; variable IF; complex output; HB4 + HB3  
+ HB2 + HB1 filters)  
0x311 = 0x00 (DDC 0 I input = ADC Channel A;  
DDC 0 Q input = ADC Channel A)  
0x331 = 0x00 (DDC 1 I input = ADC Channel A;  
DDC 1 Q input = ADC Channel A)  
0x351 = 0x05 (DDC 2 I input = ADC Channel B;  
DDC 2 Q input = ADC Channel B)  
0x371 = 0x05 (DDC 3 I input = ADC Channel B;  
DDC 3 Q input = ADC Channel B)  
0x314, 0x315, 0x320, 0x321 = FTW and POW set  
as required by application for DDC 0.  
0x334, 0x335, 0x040, 0x341 = FTW and POW set  
as required by application for DDC 1  
0x354, 0x355, 0x360, 0x361 = FTW and POW set  
as required by application for DDC 2  
0x374, 0x375, 0x3ꢀ0, 0x3ꢀ1 = FTW and POW set  
as required by application for DDC 3  
1 fS is the ADC sample rate. Bandwidths listed are <−0.001 dB of pass-band ripple and >100 dB of stop-band alias rejection.  
2 The NCOs must be synchronized either through the SPI or through the SYSREF pin after all writes to the FTW or POW registers have completed. This is necessary to  
ensure the proper operation of the NCO. See the NCO Synchronization section for more information.  
Rev. C | Page 56 of 96  
Data Sheet  
AD6674  
NOISE SHAPING REQUANTIZER (NSR)  
When operating the AD6674 with the NSR enabled, a decimating  
half-band filter that is optimized at certain input frequency  
bands can also be enabled. This filter offers the user the flexibility  
in signal bandwidth process and image rejection. Careful  
frequency planning can offer advantages in analog filtering  
preceding the ADC. The filter can function either in high-pass  
or low-pass mode. On the AD6674-750 and AD6674-1000, this  
filter is nonbypassable when the NSR is enabled. The filter can  
be optionally enabled on the AD6674-500 when the NSR is  
enabled. When operating with NSR enabled, the decimating  
half-band filter mode (low pass or high pass) is selected by  
setting Bit 7 in Register 0x41E.  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50  
DECIMATING HALF-BAND FILTER  
NORMALIZED FREQUENCY (× RAD/SAMPLE)  
The AD6674 decimating half-band filter reduces the input  
sample rate by a factor of 2 while rejecting aliases that fall into  
the band of interest. For an input sample clock of 1000 MHz,  
this reduces the output sample rate to 500 MSPS. This filter is  
designed to provide >40 dB of alias protection for 39.5% of the  
output sample rate (79% of the Nyquist band). For an ADC  
sample rate of 1000 MSPS, the filter provides a maximum  
usable bandwidth of 197.5 MHz.  
Figure 111. Low-Pass Half-Band Filter Response  
The half-band filter can also be utilized in high-pass mode. The  
usable bandwidth remains at 39.5% of the output sample rate  
(19.75% of the input sample clock), which is the same as in low-  
pass mode). Figure 112 shows the response of the half-band  
filter in high-pass mode with an input sample clock of 1000 MHz.  
In high-pass mode, operation is allowed in the second and third  
Nyquist zones, which includes frequencies from fS/2 to 3 fS/2,  
where fS is the decimated sample rate. For example, with an  
input clock of 1000 MHz, the output sample rate is 500 MSPS,  
fS/2 = 250 MHz, and 3 fS/2 = 750 MHz.  
Half-Band Filter Coefficients  
The 19-tap, symmetrical, fixed coefficient half-band filter has  
low power consumption due to its polyphase implementation.  
Table 24 lists the coefficients of the half-band filter in low-pass  
mode. In high-pass mode, Coefficient C9 is multiplied by −1.  
The normalized coefficients used in the implementation and  
the decimal equivalent values of the coefficients are listed.  
Coefficients not listed in Table 24 are 0s.  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
Table 24. Fixed Coefficients for Half-Band Filter  
Coefficient  
Number  
Normalized  
Coefficient  
Decimal Coefficient  
(12-Bit)  
0
0.012207  
−0.022949  
0.045410  
−0.094726  
0.314453  
0.500000  
25  
−47  
93  
−194  
644  
1024  
C2, C16  
C4, C14  
C6, C12  
Cꢀ, C10  
C9  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
NORMALIZED FREQUENCY (× π RAD/SAMPLE)  
Figure 112. High-Pass Half-Band Filter Response  
Half-Band Filter Features  
NSR OVERVIEW  
The half-band decimating filter is designed to provide approxi-  
mately 39.5% of the output sample rate in usable bandwidth  
(19.75% of the input sample clock). The filter provides >40 dB  
of rejection. The response of the half-band filter in low-pass  
mode is shown in Figure 111 for an input sample clock of  
1000 MHz. In low-pass mode, operation is allowed in the first  
Nyquist zone, which includes frequencies of up to fS/2, where fS  
is the decimated sample rate. For example, with an input clock  
of 1000 MHz, the output sample rate is 500 MSPS and fS/2 =  
250 MHz.  
The AD6674 features an NSR to allow higher than 9-bit SNR to  
be maintained in a subset of the Nyquist band. The harmonic  
performance of the receiver is unaffected by the NSR feature.  
When enabled, the NSR contributes an additional 3.0 dB of loss  
to the input signal, such that a 0 dBFS input is reduced to  
−3.0 dBFS at the output pins. This loss does not degrade the SNR  
performance of the AD6674.  
The NSR feature can be independently controlled per channel  
via the SPI.  
Rev. C | Page 57 of 96  
 
 
 
 
 
 
AD6674  
Data Sheet  
0
–20  
Two different bandwidth modes are provided; select the mode  
from the SPI port. In each of the two modes, the center frequency  
of the band can be tuned such that IFs can be placed anywhere  
in the Nyquist band. The NSR feature is enabled by default on  
the AD6674. The bandwidth and mode of the NSR operation  
are selected by setting the appropriate bits in Register 0x420 and  
Register 0x422. By selecting the appropriate profile and mode  
bits in these two registers, the NSR feature can be enabled for  
the desired mode of operation.  
A
= 1dBFS  
IN  
SNR = 74.0dBFS  
ENOB = 11.8 BITS  
SFDR = 95dBFS  
BUFFER ONTROL 1 = 1.5×  
–40  
–60  
–80  
–100  
–120  
–140  
21% BW Mode (>75 MHz at 375 MSPS)  
The first NSR mode offers excellent noise performance across a  
bandwidth that is 21% of the ADC output sample rate (42% of  
the Nyquist band) and can be centered by setting the NSR mode  
bits in the NSR mode register (Address 0x420) to 000. In this  
mode, set the useful frequency range using the 6-bit tuning  
word in the NSR tuning register (Address 0x422). There are 59  
possible tuning words (TW), from 0 to 58; each step is 0.5% of  
the ADC sample rate.  
0
25  
50  
75  
100  
125  
150  
175  
FREQUENCY (MHz)  
Figure 114. AD6674-750, fCLOCK = 750 MHz, fS = 375 MSPS, fIN = 90.3 MHz,  
21% BW Mode, Tuning Word = 26 (fS/4 Tuning)  
0
A
= 1dBFS  
SNR = 73.9dBFS  
ENOB = 11.9 BITS  
SFDR = 93dBFS  
BUFFER CONTROL 1 = 1.5×  
IN  
–20  
–40  
f0 = fADC × 0.005 × TW  
where:  
–60  
f0 is the left band edge.  
f
ADC is the ADC sample rate.  
TW is the tuning word.  
CENTER = f0 + 0.105 × fADC  
–80  
–100  
–120  
–140  
f
where fCENTER is the channel center.  
f1 = f0 + 0.21 × fADC  
0
25  
50  
75  
100  
125  
150  
175  
where f1 is the right band edge.  
FREQUENCY (MHz)  
Figure 115. AD6674-750, fCLOCK = 750 MHz, fS = 375 MSPS, fIN = 140.3 MHz,  
21% BW Mode, Tuning Word = 58  
Figure 113 to Figure 115 show the typical spectrum that can be  
expected from the AD6674 in the 21% BW mode for three  
different tuning words.  
28% BW Mode (>100 MHz at 375 MSPS)  
0
The second NSR mode offers excellent noise performance  
across a bandwidth that is 28% of the ADC output sample rate  
(56% of the Nyquist band) and can be centered by setting the  
NSR mode bits in the NSR mode register (Address 0x420) to  
001. In this mode, the useful frequency range can be set using  
the 6-bit tuning word in the NSR tuning register (Address 0x422).  
There are 44 possible tuning words (TW, from 0 to 43); each  
step is 0.5% of the ADC sample rate.  
A
= 1dBFS  
IN  
SNR = 74.0dBFS  
ENOB = 11.8 BITS  
SFDR = 92dBFS  
–20  
–40  
BUFFER ONTROL 1 = 1.5×  
–60  
–80  
–100  
–120  
–140  
f0 = fADC × 0.005 × TW  
where:  
f0 is the left band edge.  
f
ADC is the ADC sample rate.  
TW is the tuning word.  
CENTER = f0 + 0.14 × fADC  
0
25  
50  
75  
100  
125  
150  
175  
FREQUENCY (MHz)  
Figure 113. AD6674-750, fCLOCK = 750 MHz, fS = 375 MSPS, fIN = 10.3 MHz,  
21% BW Mode, Tuning Word = 0  
f
where fCENTER is the channel center.  
f1 = f0 + 0.28 × fADC  
where f1 is the right band edge.  
Rev. C | Page 5ꢀ of 96  
 
 
Data Sheet  
AD6674  
0
–20  
Figure 116 to Figure 118 show the typical spectrum that can be  
expected from the AD6674 in the 28% BW mode for three  
different tuning words.  
A
= 1dBFS  
IN  
SNR = 72.4dBFS  
ENOB = 11.2 BITS  
SFDR = 96dBFS  
BUFFER CONTROL 1 = 1.5×  
0
–40  
A
= 1dBFS  
IN  
SNR = 73.0dBFS  
ENOB = 11.3 BITS  
SFDR = 93dBFS  
–20  
–40  
–60  
BUFFER CONTROL 1 = 1.5×  
–80  
–60  
–100  
–120  
–140  
–80  
–100  
–120  
–140  
0
25  
50  
75  
100  
125  
150  
175  
FREQUENCY (MHz)  
Figure 117. AD6674-750, fCLOCK = 750 MHz, fS = 375 MSPS, fIN = 90.3 MHz,  
28% BW Mode, Tuning Word = 19 (fS/4 Tuning)  
0
25  
50  
75  
100  
125  
150  
175  
0
FREQUENCY (MHz)  
A
= 1dBFS  
IN  
SNR = 72.5dBFS  
ENOB = 11.3 BITS  
SFDR = 94dBFS  
Figure 116. AD6674-750, fCLOCK = 750 MHz, fS = 375 MSPS, fIN = 10.3 MHz,  
28% BW Mode, Tuning Word = 0  
–20  
–40  
BUFFER CONTROL 1 = 1.5×  
–60  
–80  
–100  
–120  
–140  
0
25  
50  
75  
100  
125  
150  
175  
FREQUENCY (MHz)  
Figure 118. AD6674-750, fCLOCK = 750 MHz, fS = 375 MSPS, fIN = 140.3 MHz,  
28% BW Mode, Tuning Word = 43  
Rev. C | Page 59 of 96  
 
 
 
AD6674  
Data Sheet  
VARIABLE DYNAMIC RANGE (VDR)  
The AD6674 features a VDR digital processing block to allow  
up to a 14-bit dynamic range to be maintained in a subset of the  
Nyquist band. Across the full Nyquist band, a minimum 9-bit  
dynamic range is available at all times. This operation is suitable  
for applications such as DPD processing. The harmonic perfor-  
mance of the receiver is unaffected by this feature. When  
enabled, VDR does not contribute loss to the input signal but  
operates by effectively changing the output resolution at the  
output pins. This feature can be independently controlled per  
channel via the SPI.  
Table 25. VDR Reduced Output Resolution Values  
VDR Punish Bits[1:0]  
Output Resolution (Bits)  
00  
01  
10  
11  
14  
13  
12 or 11  
10 or 9  
The frequency zones of the mask are defined by the bandwidth  
mode selected in Register 0x430. The upper amplitude limit for  
input signals located in these frequency zones is −30 dBFS. If  
the input signal level in the disallowed frequency zones goes  
above an amplitude level of –30 dBFS (into the gray shaded  
areas), the VDR block triggers a reduction in the output  
resolution, as shown in Figure 119. The VDR block engages and  
begins limiting output resolution gradually as the signal  
amplitudes increase in the mask regions. As the signal  
amplitude level increases into the mask regions, the output  
resolution is gradually lowered. For every 6 dB increase in  
signal level above −30 dBFS, one bit of output resolution is  
discarded from the output data by the VDR block, as shown in  
Table 26. These zones can be tuned within the Nyquist band by  
setting Bits[3:0] in Register 0x434 to determine the VDR center  
frequency (fVDR). The VDR center frequency in complex mode  
can be adjusted from 1/16 fS to 15/16 fS in 1/16 fS steps. In real  
mode, fVDR can be adjusted from 1/8 fS to 3/8 fS in 1/16 fS steps.  
The VDR block operates in either complex or real mode. In  
complex mode, VDR has selectable bandwidths of 25% and 43%  
of the output sample rate. In real mode, the bandwidth of  
operation is limited to 25% of the output sample rate. The  
bandwidth and mode of the VDR operation are selected by  
setting the appropriate bits in Register 0x430.  
When the VDR block is enabled, input signals that violate a  
defined mask (signified by gray shaded areas in Figure 119)  
result in the reduction of the output resolution of the AD6674.  
The VDR block analyzes the peak value of the aggregate signal  
level in the disallowed zones to determine the reduction of the  
output resolution. To indicate that the AD6674 is reducing  
output, the resolution VDR punish bits and/or a VDR high/low  
resolution bit can optionally be inserted into the output data  
stream as control bits by programming the appropriate value  
into Register 0x559 and Register 0x55A. Up to two control bits  
can be used without the need to change the converter resolution  
parameter, N. Up to three control bits can be used, but if using  
three, the converter resolution parameter, N, must be changed  
to 13. The VDR high/low resolution bit can be programmed  
into either of the three available control bits and simply  
Table 26. VDR Reduced Output Resolution Values  
Signal Amplitude Violating Defined  
VDR Mask  
Output Resolution  
(Bits)  
Amplitude ≤ −30 dBFS  
14  
13  
12  
11  
10  
9
−30 dBFS < amplitude ≤ −24 dBFS  
−24 dBFS < amplitude ≤ −1ꢀ dBFS  
−1ꢀ dBFS < amplitude ≤ −12 dBFS  
−12 dBFS < amplitude ≤ −6 dBFS  
−6 dBFS < amplitude ≤ 0 dBFS  
indicates if VDR is reducing output resolution (bit value is a 1),  
or if full resolution is available (bit value is a 0). Enable the two  
punish bits to give a clearer indication of the available  
resolution of the sample. To decode these two bits, see Table 25.  
dBFS  
–30  
0
0
fS  
fS  
INTERMODULATION PRODUCTS < –30dBFS  
INTERMODULATION PRODUCTS > –30dBFS  
Figure 119. VDR Operation—Reduction in Output Resolution  
Rev. C | Page 60 of 96  
 
 
 
 
Data Sheet  
AD6674  
VDR REAL MODE  
VDR COMPLEX MODE  
The real mode of VDR works over a bandwidth of 25% of the  
sample rate (50% of the Nyquist band). The output bandwidth  
of the AD6674 can be 25% only when operating in real mode.  
Figure 120 shows the frequency zones for the 25% bandwidth  
real output VDR mode tuned to a center frequency (fVDR) of fS/4  
(tuning word = 0x04). The frequency zones where the  
amplitude may not exceed −30 dBFS are the upper and lower  
portions of the Nyquist band signified by the red shaded areas.  
dBFS  
The complex mode of VDR works with selectable bandwidths  
of 25% of the sample rate (50% of the Nyquist band) and 43%  
of the sample rate (86% of the Nyquist band). Figure 121 and  
Figure 122 show the frequency zones for VDR in the complex  
mode. When operating VDR in complex mode, place I input  
signal data on Channel A and place Q input signal data on  
Channel B.  
Figure 121 shows the frequency zones for the 25% bandwidth  
VDR mode with a center frequency of fS/4 (tuning word =  
0x04). The frequency zones where the amplitude may not  
exceed –30 dBFS are the upper and lower portions of the  
Nyquist band extending into the complex domain.  
dBFS  
–30  
–30  
0
–1/2 fS  
1/8 fS  
3/8 fS 1/2 fS  
Figure 121. 25% VDR Bandwidth, Complex Mode  
0
1/8 fS  
3/8 fS  
1/2 fS  
The center frequency (fVDR) of the VDR function can be tuned  
within the Nyquist band from 0 to 15/16 fS in 1/16 fS steps. In  
complex mode, Tuning Word 0 (0x00) through Tuning Word 15  
(0x0F) are valid. Table 29 and Table 30 show the tuning words  
and frequency values for the 25% complex mode. Table 29 shows  
the relative frequency values, and Table 30 shows the absolute  
frequency values based on a sample rate of 737.28 MSPS.  
Figure 120. 25% VDR Bandwidth, Real Mode  
The center frequency (fVDR) of the VDR function can be tuned  
within the Nyquist band from 1/8 fS to 3/8 fS in 1/16 fS steps. In  
real mode, Tuning Word 2 (0x02) through Tuning Word 6  
(0x06) are valid. Table 27 shows the relative frequency values,  
and Table 28 shows the absolute frequency values based on a  
sample rate of 737.28 MSPS.  
Table 29. VDR Tuning Words and Relative Frequency  
Values, 25% BW, Complex Mode  
Table 27. VDR Tuning Words and Relative Frequency  
Values, 25% BW, Real Mode  
Lower  
Center  
Frequency  
Upper Band  
Edge  
Tuning  
Word  
Lower Band  
Edge  
Center  
Frequency  
Upper Band  
Edge  
Tuning Word Band Edge  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
ꢀ (0x0ꢀ)  
9 (0x09)  
10 (0x0A)  
11 (0x0B)  
12 (0x0C)  
13 (0x0D)  
14 (0x0E)  
15 (0x0F)  
–1/ꢀ fS  
–1/16 fS  
0
1/16 fS  
1/ꢀ fS  
3/16 fS  
1/4 fS  
5/16 fS  
3/ꢀ fS  
7/16 fS  
1/2 fS  
9/16 fS  
5/ꢀ fS  
11/16 fS  
3/4 fS  
13/16 fS  
0
1/ꢀ fS  
3/16 fS  
1/4 fS  
5/16 fS  
3/ꢀ fS  
7/16 fS  
1/2 fS  
9/16 fS  
5/ꢀ fS  
11/16 fS  
3/4 fS  
13/16 fS  
7/ꢀ fS  
15/16 fS  
fS  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
0
1/ꢀ fS  
3/16 fS  
1/4 fS  
5/16 fS  
3/ꢀ fS  
1/4 fS  
5/16 fS  
3/ꢀ fS  
7/16 fS  
1/2 fS  
1/16 fS  
1/ꢀ fS  
3/16 fS  
1/4 fS  
5/16 fS  
3/ꢀ fS  
7/16 fS  
1/2 fS  
9/16 fS  
5/ꢀ fS  
11/16 fS  
3/4 fS  
13/16 fS  
7/ꢀ fS  
15/16 fS  
1/16 fS  
1/ꢀ fS  
3/16 fS  
1/4 fS  
Table 28. VDR Tuning Words and Absolute Frequency  
Values, 25% BW, Real Mode with fS = 737.28 MSPS  
Center  
Tuning  
Word  
Lower Band  
Edge (MHz)  
Frequency  
(MHz)  
Upper Band  
Edge (MHz)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
0
92.16  
1ꢀ4.32  
230.40  
276.4ꢀ  
322.56  
36ꢀ.64  
46.0ꢀ  
92.16  
13ꢀ.24  
1ꢀ4.32  
13ꢀ.24  
1ꢀ4.32  
230.40  
276.4ꢀ  
17/16 fS  
Rev. C | Page 61 of 96  
 
 
 
 
 
 
 
AD6674  
Data Sheet  
Table 30. VDR Tuning Words and Absolute Frequency  
Values, 25% BW, Complex Mode (fS = 737.28 MSPS)  
Table 31. VDR Tuning Words and Relative Frequency  
Values, 43% BW, Complex Mode  
Center  
Lower  
Band Edge Frequency  
Center  
Tuning  
Word  
Upper Band  
Edge (MHz)  
Lower Band  
Tuning Word Edge (MHz)  
Frequency  
(MHz)  
Upper Band  
Edge (MHz)  
(MHz)  
−92.16  
−46.0ꢀ  
0.00  
(MHz)  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
ꢀ (0x0ꢀ)  
9 (0x09)  
10 (0x0A)  
11 (0x0B)  
12 (0x0C)  
13 (0x0D)  
14 (0x0E)  
15 (0x0F)  
0.00  
46.0ꢀ  
92.16  
92.16  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
ꢀ (0x0ꢀ)  
9 (0x09)  
10 (0x0A)  
11 (0x0B)  
12 (0x0C)  
13 (0x0D)  
14 (0x0E)  
15 (0x0F)  
–14/65 fS  
–11/72 fS  
–1/11 fS  
–1/36 fS  
1/29 fS  
7/72 fS  
4/25 fS  
2/9 fS  
2/7 fS  
25/72 fS  
34/ꢀ3 fS  
17/36 fS  
23/43 fS  
43/72 fS  
31/47 fS  
13/1ꢀ fS  
0
14/65 fS  
5/1ꢀ fS  
13ꢀ.24  
1ꢀ4.32  
230.40  
276.4ꢀ  
322.56  
36ꢀ.64  
414.72  
460.ꢀ0  
506.ꢀꢀ  
552.96  
599.04  
645.12  
691.20  
737.2ꢀ  
7ꢀ3.36  
1/16 fS  
1/ꢀ fS  
3/16 fS  
1/4 fS  
5/16 fS  
3/ꢀ fS  
7/16 fS  
1/2 fS  
9/16 fS  
5/ꢀ fS  
11/16 fS  
3/4 fS  
13/16 fS  
7/ꢀ fS  
15/16 fS  
16/47 fS  
29/72 fS  
20/43 fS  
19/36 fS  
49/ꢀ3 fS  
47/72 fS  
5/7 fS  
46.0ꢀ  
92.16  
13ꢀ.24  
1ꢀ4.32  
230.40  
276.4ꢀ  
322.56  
36ꢀ.64  
414.72  
460.ꢀ0  
506.ꢀꢀ  
552.96  
599.04  
645.12  
691.20  
13ꢀ.24  
1ꢀ4.32  
230.40  
276.4ꢀ  
322.56  
36ꢀ.64  
414.72  
460.ꢀ0  
506.ꢀꢀ  
552.96  
599.04  
7/9 fS  
21/25 fS  
65/72 fS  
2ꢀ/29 fS  
37/36 fS  
12/11 fS  
ꢀ3/72 fS  
Table 31 and Table 32 show the tuning words and frequency  
values for the 43% complex mode. Table 31 shows the relative  
frequency values, and Table 32 shows the absolute frequency  
values based on a sample rate of 737.28 MSPS. Figure 122 shows  
the frequency zones for the 43% BW VDR mode with a center  
frequency (fVDR) of fS/4 (tuning word = 0x04). The frequency  
zones where the amplitude may not exceed –30 dBFS are the  
upper and lower portions of the Nyquist band extending into  
the complex domain.  
Table 32. VDR Tuning Words and Absolute Frequency  
Values, 43% BW, Complex Mode (fS = 737.28 MSPS)  
Center  
Lower Band  
Tuning Word Edge (MHz)  
Frequency  
(MHz)  
Upper Band  
Edge (MHz)  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
ꢀ (0x0ꢀ)  
9 (0x09)  
10 (0x0A)  
11 (0x0B)  
12 (0x0C)  
13 (0x0D)  
14 (0x0E)  
15 (0x0F)  
−15ꢀ.ꢀ0  
−112.64  
−67.03  
−20.4ꢀ  
25.42  
0.00  
46.0ꢀ  
92.16  
15ꢀ.ꢀ0  
204.ꢀ0  
250.99  
296.96  
342.92  
3ꢀ9.12  
435.26  
4ꢀ1.2ꢀ  
526.63  
573.44  
619.32  
665.60  
711.ꢀ6  
757.76  
ꢀ04.31  
ꢀ49.92  
13ꢀ.24  
1ꢀ4.32  
230.40  
276.4ꢀ  
322.56  
36ꢀ.64  
414.72  
460.ꢀ0  
506.ꢀꢀ  
552.96  
599.04  
645.12  
691.20  
dBFS  
71.6ꢀ  
117.96  
163.ꢀ4  
210.65  
256.00  
302.02  
34ꢀ.16  
394.36  
440.32  
4ꢀ6.29  
532.4ꢀ  
–1/2 fS  
0
1/4 fS  
1/2 fS  
20/43 fS  
1/29 fS  
Figure 122. 43% VDR Bandwidth, Complex Mode  
Rev. C | Page 62 of 96  
 
 
 
 
Data Sheet  
AD6674  
DIGITAL OUTPUTS  
S is the number of samples transmitted per single converter  
per frame cycle (AD6674 value = set automatically based  
on L, M, F, and N΄)  
HD is high density mode (AD6674 = set automatically  
based on L, M, F, and N΄)  
INTRODUCTION TO JESD204B INTERFACE  
The AD6674 digital outputs are designed to the JEDEC Standard  
No. JESD204B serial interface for data converters. JESD204B is  
a protocol to link the AD6674 to a digital processing device  
over a serial interface with lane rates of up to 12.5 Gbps. The  
benefits of the JESD204B interface over LVDS include a reduction  
in required board area for data interface routing, and enabling  
smaller packages for converter and logic devices.  
CF is the number of control words per frame clock cycle  
per converter device (AD6674 value = 0)  
Figure 123 shows a simplified block diagram of the AD6674  
JESD204B link. By default, the AD6674 is configured to use two  
converters and four lanes. Converter A data is output to  
SERDOUT0 /SERDOUT1 , and Converter B is output to  
SERDOUT2 /SERDOUT3 . The AD6674 allows other  
configurations such as combining the outputs of both  
converters onto a single lane or changing the mapping of the A  
and B digital output paths. These modes are set up through a  
quick configuration register in the SPI register map, along with  
additional customizable options.  
JESD204B OVERVIEW  
The JESD204B data transmit block assembles the parallel data  
from the ADC into frames and uses 8B/10B encoding as well as  
optional scrambling to form serial output data. Lane synchroniza-  
tion is supported through the use of special control characters  
during the initial establishment of the link. Additional control  
characters are embedded in the data stream to maintain  
synchronization thereafter. A JESD204B receiver is required to  
complete the serial link. For additional details on the JESD204B  
interface, users are encouraged to refer to the JESD204B  
standard.  
By default in the AD6674, the 14-bit converter word from each  
converter is broken into two octets (eight bits of data). Bit 13  
(MSB) through Bit 6 are in the first octet. The second octet  
contains Bit 5 through Bit 0 (LSB) and two tail bits. The tail bits  
can be configured as zeros or a pseudorandom number (PN)  
sequence. The tail bits can also be replaced with control bits  
indicating an overrange, SYSREF , signal monitor output, VDR  
punish bits, or fast detect output. Control bits are filled and  
inserted MSB first, such that enabling CS = 1 activates Control  
Bit 2, enabling CS = 2 activates Control Bit 2 and Control Bit 1,  
and enabling CS = 3 activates Control Bit 2, Control Bit 1, and  
Control Bit 0.  
The AD6674 JESD204B data transmit block maps up to two  
physical ADCs or up to eight virtual converters (when DDCs  
are enabled) over a link. A link can be configured to use one,  
two, or four JESD204B lanes. The JESD204B specification refers  
to a number of parameters to define the link and these parameters  
must match between the JESD204B transmitter (AD6674  
output) and receiver (logic device input).  
The JESD204B link is described according to the following  
parameters:  
L is the number of lanes per converter device (lanes per  
link) (AD6674 value = 1, 2, or 4)  
M is the number of converters per converter device (virtual  
converters per link) (AD6674 value = 1, 2, 4, or 8)  
F is the number of octets per frame (AD6674 value = 1, 2,  
4, 8, or 16)  
N΄ is the number of bits per sample (JESD204B word size)  
(AD6674 value = 8 or 16)  
N is the converter resolution (AD6674 value = 7 to 16)  
CS is the number of control bits per sample (AD6674 value  
= 0, 1, 2, or 3)  
The two resulting octets can be scrambled. Scrambling is  
optional; however, it is recommended to avoid spectral peaks  
when transmitting similar digital data patterns. The scrambler  
uses a self synchronizing, polynomial-based algorithm defined  
by the equation 1 + x14 + x15. The descrambler in the receiver  
must be a self synchronizing version of the scrambler polynomial.  
The two octets are then encoded with an 8B/10B encoder. The  
8B/10B encoder works by taking eight bits of data (an octet) and  
encoding them into a 10-bit symbol. Figure 124 shows how the  
14-bit data is transferred from the ADC, the tail bits are added,  
the two octets are scrambled, and the octets are encoded into  
two 10-bit symbols. Figure 124 illustrates the default data format.  
K is the number of frames per multiframe  
(AD6674 value = 4, 8, 12, 16, 20, 24, 28, or 32 )  
Rev. C | Page 63 of 96  
 
 
 
AD6674  
Data Sheet  
CONVERTER 0  
CONVERTER A  
INPUT  
NOISE  
ADC  
A
SHAPING  
SERDOUT0–,  
SERDOUT0+  
REQUANTIZER  
MUX/  
FORMAT  
(SPI  
REG 0x561,  
REG 0x564)  
JESD204B LINK  
CONTROL  
LANE MUX  
AND MAPPING  
(SPI  
REG 0x5B0,  
REG 0x5B2,  
REG 0x5B3,  
REG 0x5B5,  
REG 0x5B6)  
SERDOUT1–,  
SERDOUT1+  
(L, M, F)  
(SPI REG 0x570)  
SERDOUT2–,  
SERDOUT2+  
CONVERTER B  
INPUT  
NOISE  
SHAPING  
REQUANTIZER  
ADC  
B
SERDOUT3–,  
SERDOUT3+  
CONVERTER 1  
SYSREF±  
SYNCINB±  
Figure 123. Transmit Link Simplified Block Diagram Showing NSR Mode (Register 0x200 = 0x07)  
JESD204B  
INTERFACE  
TEST PATTERN  
JESD204B DATA  
(REG 0x573,  
LINK LAYER TEST  
PATTERNS  
REG 0x574[2:0]  
REG 0x551 TO  
REG 0x558)  
JESD204B  
LONG TRANSPORT  
TEST PATTERN  
REG 0x571[5]  
SERDOUT0±  
SERDOUT1±  
SERIALIZER  
ADC TEST PATTERNS  
SCRAMBLER  
1 + x + x  
(OPTIONAL)  
FRAME  
CONSTRUCTION  
(RE0x550,  
8-BIT/10-BIT  
ENCODER  
14  
15  
REG 0x551 TO  
REG 0x558)  
a
b
i
j
a
b
i
j
JESD204B SAMPLE  
CONSTRUCTION  
MSB A13  
SYMBOL0  
SYMBOL1  
a
a
b
b
c
c
d
d
e
e
f
f
g
g
h
h
i
i
j
j
A12  
A11  
A10  
A9  
MSB S7 S7  
MSB A13 A5  
A12 A4  
A11 A3  
A10 A2  
A9 A1  
ADC  
S6 S6  
S5 S5  
A8  
TAIL BITS  
0x571[6]  
A7  
S4 S4  
A6  
S3 S3  
A5  
S2 S2  
A8 A0  
A4  
S1 S1  
A7 C2  
A3  
LSB S0 S0  
LSB A6  
T
A2  
A1  
LSB A0  
C2  
C1  
C0  
CONTROL BITS  
Figure 124. ADC Output Datapath Showing Data Framing  
TRANSPORT  
LAYER  
DATA LINK  
LAYER  
PHYSICAL  
LAYER  
PROCESSED  
ALIGNMENT  
CHARACTER  
GENERATION  
SAMPLE  
FRAME  
8-BIT/10-BIT  
ENCODER  
CROSSBAR  
MUX  
SAMPLES  
SCRAMBLER  
SERIALIZER  
Tx  
OUTPUT  
CONSTRUCTION CONSTRUCTION  
FROM ADC  
SYSREF±  
SYNCINB±  
Figure 125. Data Flow  
Data Link Layer  
FUNCTIONAL OVERVIEW  
The data link layer is responsible for the low level functions of  
passing data across the link. These include optionally  
scrambling the data, inserting control characters for multichip  
synchronization/lane alignment/monitoring, and encoding  
8-bit octets into 10-bit symbols. The data link layer is also  
responsible for sending the ILAS, which contains the link  
configuration data, used by the receiver to verify the settings in  
the transport layer.  
The block diagram in Figure 125 shows the flow of data through  
the JESD204B hardware from the sample input to the physical  
output. The processing can be divided into layers that are derived  
from the open-source initiative (OSI) model that is widely used  
to describe the abstractions layers of communications systems.  
These are the transport layer, data link layer, and physical layer  
(serializer and output driver).  
Transport Layer  
Physical Layer  
The transport layer packs the data (consisting of samples and  
optional control bits) into JESD204B frames, which are mapped  
to 8-bit octets that are sent to the data link layer. The transport  
layer mapping is controlled by rules derived from the link  
parameters. Tail bits are added to fill gaps where required. Use  
the following equation to determine the number of tail bits  
within a sample (JESD204B word):  
The physical layer consists of the high speed circuitry clocked at  
the serial clock rate. In this section, parallel data is converted  
into one, two, or four lanes of high speed differential serial data.  
JESD204B LINK ESTABLISHMENT  
The AD6674 JESD204B Tx interface operates in Subclass 1 as  
defined in the JEDEC Standard No. 204B (July 2011) specification.  
The link establishment process is divided into the following  
steps: code group synchronization, ILAS, and user data.  
T = N CS  
Rev. C | Page 64 of 96  
 
 
 
 
 
Data Sheet  
AD6674  
The ILAS sequence construction is shown in Figure 126. The  
four multiframes include the following:  
Code Group Synchronization (CGS) and SYNCINB  
Code group synchronization (CGS) is the process by which the  
JESD204B receiver finds the boundaries between the 10-bit  
symbols in the stream of data. During the CGS phase, the  
JESD204B transmit block transmits /K28.5/ characters. The  
receiver must locate /K28.5/ characters in its input data stream  
using clock and data recovery (CDR) techniques.  
Multiframe 1: Begins with an /R/ character [K28.0] and  
ends with an /A/ character (K28.3).  
Multiframe 2: Begins with an /R/ character followed by a  
/Q/ (K28.4) character, followed by link configuration  
parameters over 14 configuration octets (see Table 33), and  
ends with an /A/ character. Many of the parameter values  
are of the value − 1 notation.  
The receiver issues a synchronization request by asserting the  
SYNCINB pin of the AD6674 low. The JESD204B Tx begins  
sending /K/ characters. After the receiver has synchronized, it  
waits for the correct reception of at least four consecutive /K/  
symbols. It then deasserts SYNCINB . The AD6674 then  
transmits an ILAS on the following LMFC boundary.  
Multiframe 3: Begins with an /R/ character (K28.0) and  
ends with an /A/ character (K28.3).  
Multiframe 4: Begins with an /R/ character (K28.0) and  
ends with an /A/ character (K28.3).  
For more information on the CGS phase, refer to the JEDEC  
Standard No. 204B (July 2011), Section 5.3.3.1.  
User Data and Error Detection  
After the ILAS is complete, the user data is sent. Normally, in a  
frame all characters are user data. However, to monitor the frame  
clock and multiframe clock synchronization, there is a mechanism  
for replacing characters with /F/ or /A/ alignment characters  
when the data meets certain conditions. These conditions are  
different for unscrambled and scrambled data. The scrambling  
operation is enabled by default but can be disabled using the SPI.  
The SYNCINB pin operation can also be controlled by the  
SPI. The SYNCINB signal is a differential LVDS mode signal  
by default, but it can also be driven single-ended. For more  
information on configuring the SYNCINB pin operation, refer  
to Register 0x572. The SYNCINB pin can also be configured  
to run in CMOS (single-ended) mode by setting Bit 4 in  
Register 0x572. When running SYNCINB in CMOS mode,  
connect the CMOS SYNCINB signal to Pin 21 (SYNCINB+)  
and leave Pin 20 (SYNCINB–) floating.  
For scrambled data, any 0xFC character at the end of a frame is  
replaced by an /F/ and any 0x7C character at the end of a  
multiframe is replaced with an /A/. The JESD204B Rx checks  
for /F/ and /A/ characters in the received data stream and verifies  
that they only occur in the expected locations. If an unexpected  
/F/ or /A/ character is found, the receiver handles the situation  
by using dynamic realignment or asserting the SYNCINB  
signal for more than four frames to initiate a resynchronization.  
For unscrambled data, if the final character of two subsequent  
frames is equal, the second character is replaced with an /F/ if it  
is at the end of a frame, and an /A/ if it is at the end of a multiframe.  
Initial Lane Alignment Sequence (ILAS)  
The ILAS phase follows the CGS phase and begins on the next  
LMFC boundary. The ILAS consists of four multiframes, with  
an /R/ character marking the beginning and an /A/ character  
marking the end. The ILAS begins by sending an /R/ character  
followed by 0 to 255 ramp data for one multiframe. On the  
second multiframe the link configuration data is sent, starting  
with the third character. The second character is a /Q/ character  
to confirm that the link configuration data follows. All undefined  
data slots are filled with ramp data. The ILAS sequence is never  
scrambled.  
Insertion of alignment characters can be modified using the SPI.  
The frame alignment character insertion is enabled by default. For  
more information on the link controls, see Register 0x571 in the  
Memory Map section.  
K
K
R
D
D
A
R
Q
C
C
D
D
A
R
D
D
A
R
D
D A D  
END OF  
MULTIFRAME  
START OF  
ILAS  
START OF LINK  
CONFIGURATION DATA  
START OF  
USER DATA  
Figure 126. Initial Lane Alignment Sequence  
Table 33. AD6674 Control Characters Used in JESD204B  
Abbreviation  
Control Symbol  
8-Bit Value  
000 11100  
011 11100  
100 11100  
101 11100  
111 11100  
10-Bit Value, RD1 = −1  
001111 0100  
10-Bit Value, RD1 = +1  
110000 1011  
Description  
/R/  
/A/  
/Q/  
/K/  
/F/  
K2ꢀ.0  
Start of multiframe  
Lane alignment  
K2ꢀ.3  
001111 0011  
110000 1100  
K2ꢀ.4  
001111 0010  
110000 1101  
Start of link configuration data  
Group synchronization  
Frame alignment  
K2ꢀ.5  
001111 1010  
110000 0101  
K2ꢀ.7  
001111 1000  
110000 0111  
1 RD is running disparity.  
Rev. C | Page 65 of 96  
 
 
AD6674  
Data Sheet  
8B/10B Encoder  
The AD6674 digital outputs can interface with custom ASICs  
and FPGA receivers, providing superior switching performance  
in noisy environments. Single point-to-point network topologies  
are recommended with a single differential 100 Ω termination  
resistor placed as close to the receiver inputs as possible. The  
common mode of the digital output automatically biases itself  
to half the DRVDD supply of 1.2 V (VCM = 0.6 V). See Figure 128  
for an example of dc coupling the outputs to the receiver logic.  
The 8B/10B encoder converts 8-bit octets into 10-bit symbols  
and inserts control characters into the stream when needed.  
The control characters used in JESD204B are shown in Table 33.  
The 8B/10B encoding ensures that the signal is dc balanced by  
using the same number of ones and zeros across multiple symbols.  
The 8B/10B interface has options that can be controlled via the  
SPI. These operations include bypass and invert. These options  
are intended to be a troubleshooting tool for the verification of  
the digital front end (DFE). Refer to the Memory Map section,  
Register 0x572[2:1], for information on configuring the 8B/10B  
encoder.  
DRVDD  
100  
DIFFERENTIAL  
TRACE PAIR  
SERDOUTx+  
RECEIVER  
100ꢀ  
SERDOUTx–  
PHYSICAL LAYER (DRIVER) OUTPUTS  
Digital Outputs, Timing and Controls  
OUTPUT SWING = 300mV p-p  
V
= DRVDD/2  
CM  
The AD6674 physical layer consists of drivers that are defined  
in the JEDEC Standard No. 204B (July 2011). The differential  
digital outputs are powered up by default. The drivers use a  
dynamic 100 Ω internal termination to reduce unwanted  
reflections.  
Figure 128. DC-Coupled Digital Output Termination Example  
If there is no far-end receiver termination, or if there is poor  
differential trace routing, timing errors may result. To avoid  
such timing errors, it is recommended that the trace length be  
less than six inches, and that the differential output traces be  
close together and at equal lengths.  
Place a 100 ꢀ differential termination resistor at each receiver  
input, which results in a nominal 300 mV p-p swing at the  
receiver (see Figure 127). Alternatively, single-ended 50 ꢀ  
termination resistors can be used. When single-ended  
termination is used, the termination voltage is DRVDD/2;  
otherwise, 0.1 μF ac coupling capacitors can be used to  
terminate to any single-ended voltage.  
Figure 129 to Figure 131, Figure 132 to Figure 134, and Figure 135  
to Figure 137 show examples of the digital output data eye, time  
interval error (TIE) jitter histogram, and bathtub curve for one  
AD6674 lane running at 10 Gbps, 7.37 Gbps, and 6 Gbps,  
respectively. The format of the output data is twos complement  
by default. To change the output data format, see the Memory  
Map section (Register 0x561 in Table 45).  
V
RXCM  
50  
50ꢀ  
De-Emphasis  
DRVDD  
100ꢀ  
DIFFERENTIAL  
TRACE PAIR  
0.1µF  
0.1µF  
De-emphasis enables the receiver eye diagram mask to be met  
in conditions where the interconnect insertion loss does not  
meet the JESD204B specification. Use the de-emphasis feature  
only when the receiver is unable to recover the clock due to  
excessive insertion loss. Under normal conditions, it is disabled  
to conserve power. Additionally, enabling and setting too high a  
de-emphasis value on a short link may cause the receiver eye  
diagram to fail. Use the de-emphasis setting with caution  
because it may increase EMI. See the Memory Map section  
(Register 0x5C1 to Register 0x5C5 in Table 45) for more  
information.  
SERDOUTx+  
RECEIVER  
100ꢀ  
OR  
SERDOUTx–  
OUTPUT SWING = 300mV p-p  
V
= V  
RXCM  
CM  
Figure 127. AC-Coupled Digital Output Termination Example  
PLL  
The PLL is used to generate the serializer clock, which operates  
at the JESD204B lane rate. The JESD204B lane rate control bit  
(Register 0x56E[4]) must be set to correspond with the lane rate.  
Rev. C | Page 66 of 96  
 
 
 
Data Sheet  
AD6674  
Tx EYE  
MASK  
Figure 129. Digital Output Data Eye, External 100 Ω Terminations at 10 Gbps  
Figure 130. Histogram, External 100 Ω Terminations at 10 Gbps  
Figure 131. Bathtub, External 100 Ω Terminations at 10 Gbps  
Figure 134. Bathtub, External 100 Ω Terminations at 7.37 Gbps  
Tx EYE MASK  
Figure 135. Digital Output Data Eye, External 100 Ω Terminations at 6 Gbps  
Figure 136. Histogram, External 100 Ω Terminations at 6 Gbps  
Figure 132. Digital Output Data Eye, External 100 Ω Terminations at 7.37 Gbps  
Figure 137. Bathtub, External 100 Ω Terminations at 6 Gbps  
Figure 133. Histogram, External 100 Ω Terminations at 7.37 Gbps  
Rev. C | Page 67 of 96  
 
 
 
 
 
 
AD6674  
Data Sheet  
DDC 0  
ADC A  
SAMPLING  
AT fS  
REAL/I  
REAL/I  
REAL/I  
CONVERTER 0  
Q
I
I
REAL/Q  
Q
Q
CONVERTER 1  
DDC 1  
REAL/I  
REAL/I  
CONVERTER 2  
Q
I
I
REAL/Q  
Q
Q
I/Q  
CROSSBAR  
MUX  
CONVERTER 3  
OUTPUT  
INTERFACE  
DDC 2  
REAL/I  
REAL/I  
CONVERTER 4  
Q
I
I
REAL/Q  
Q
Q
CONVERTER 5  
DDC 3  
ADC B  
SAMPLING  
AT fS  
REAL/I  
REAL/I  
CONVERTER 6  
Q
REAL/Q  
I
I
REAL/Q  
Q
Q
CONVERTER 7  
Figure 138. DDCs and Virtual Converter Mapping  
JESD204B Tx CONVERTER MAPPING  
CONFIGURING THE JESD204B LINK  
To support the different chip operating modes, the AD6674  
design treats each sample stream (real or I/Q) as originating  
from separate virtual converters. The I/Q samples are always  
mapped in pairs with the I samples mapped to the first virtual  
converter, and the Q samples mapped to the second virtual  
converter. With this transport layer mapping, the number of  
virtual converters are the same whether a single real converter is  
used along with a DDC block producing I/Q outputs, or an  
analog downconversion is used with two real converters  
producing I/Q outputs.  
The AD6674 has one JESD204B link. It offers an easy way to  
set up the JESD204B link through the quick configuration  
register (Register 0x570). The serial outputs (SERDOUT0 to  
SERDOUT3 ) are considered to be part of one JESD204B link.  
The basic parameters that determine the link setup are  
Number of lanes per link (L)  
Number of converters per link (M)  
Number of octets per frame (F)  
If the internal DDCs are used for on-chip digital processing,  
the M value represents the number of virtual converters. The  
virtual converter mapping setup is shown in Figure 138.  
Figure 139 shows a block diagram of the two scenarios  
described for I/Q transport layer mapping.  
DIGITAL DOWNCONVERSION  
The maximum lane rate allowed by the JESD204B specification  
is 12.5 Gbps. The lane rate is related to the JESD204B  
parameters using the following equation:  
M = 2  
I
CONVERTER 0  
DIGITAL  
JESD204B  
Tx  
REAL  
REAL  
DOWN  
L LANES  
10  
8
L
ADC  
CONVERSION  
MN'  
f  
OUT   
Q
CONVERTER 1  
LaneLine Rate   
where:  
fOUT  
I/Q ANALOG MIXING  
M = 2  
I
fADC _CLOCK  
I
CONVERTER 0  
ADC  
Decimation Ratio  
REAL  
90°  
PHASE  
JESD204B  
Tx  
L LANES  
Σ
The decimation ratio (DCM) is the parameter programmed in  
Register 0x201.  
Q
Q
CONVERTER 1  
ADC  
Use the following steps to configure the output:  
Figure 139. I/Q Transport Layer Mapping  
1. Power down the link.  
2. Select the quick configuration options.  
3. Configure detailed options.  
4. Set output lane mapping (optional).  
5. Set additional driver configuration options (optional).  
6. Power up the link.  
The JESD204B Tx block for AD6674 supports up to four digital  
DDC blocks. Each DDC block outputs either two sample streams  
(I/Q) for the complex data components (real + imaginary) or  
one sample stream for real (I) data. The JESD204B interface can  
be configured to use up to eight virtual converters depending  
on the DDC configuration. Figure 138 shows the virtual converters  
and their relationship to DDC outputs when complex outputs  
are used. Table 34 shows the virtual converter mapping for each  
chip operating mode when channel swapping is disabled.  
If the lane rate calculated is less than 6.25 Gbps, select the low  
lane rate option by programming a value of 0x10 to Register 0x56E.  
Rev. C | Page 6ꢀ of 96  
 
 
 
 
Data Sheet  
AD6674  
Table 35 and Table 36 show the JESD204B output configura-  
tions supported for both N΄ = 16 and N΄ = 8, respectively, for a  
given number of virtual converters. Take care to ensure that the  
serial lane rate for a given configuration is within the supported  
range of 3.125 Gbps to 12.5 Gbps.  
See the Example 1: ADC with DDC Option (Two ADCs + Four  
DDCs) section and the Example 2: ADC with NSR Option  
(Two ADCs + NSR) section for two examples describing which  
JESD204B transport layer settings are valid for a given chip  
mode.  
Table 34. Virtual Converter Mapping  
Chip  
Virtual Converter Mapping  
No. of  
Virtual  
Operating  
Mode  
Chip Q  
Ignore  
Converters  
Supported  
(Register  
0x200[3:0])  
(Register  
0x200[5])  
0
1
2
3
4
5
6
7
1
One DDC  
mode (0x1)  
Real (I only)  
(0x1)  
DDC 0 I  
samples  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
2
One DDC  
mode (0x1)  
Two DDC  
mode (0x2)  
Two DDC  
mode (0x2)  
Four DDC  
mode (0x3)  
Complex  
(I/Q) (0x0)  
Real (I only)  
(0x1)  
Complex  
(I/Q) (0x0)  
Real (I only)  
(0x1)  
DDC 0 I  
DDC 0 Q Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
DDC 3 Q  
samples samples  
DDC 0 I DDC 1 I  
samples samples  
DDC 0 I DDC 0 Q DDC 1 I  
samples samples samples samples  
DDC 0 I DDC 1 I DDC 2 I DDC 3 I  
samples samples samples samples  
DDC 0 I DDC 0 Q DDC 1 I DDC 1 Q DDC 2 I  
2
Unused  
4
DDC 1 Q Unused  
4
Unused  
Four DDC  
Complex  
DDC 2 Q DDC 3 I  
mode (0x3)  
(I/Q) (0x0)  
samples samples samples samples samples samples samples samples  
1 to 2  
NSR mode  
(0x7)  
Real or  
complex  
(0x0)  
ADC A  
Samples Samples  
ADC B  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
1 to 2  
VDR mode  
(0xꢀ)  
Real or  
complex  
(0x0)  
ADC A  
Samples Samples  
ADC B  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Table 35. JESD204B Output Configurations for N΄ = 16  
Number of Virtual  
Converters Supported Configuration  
(Same Value as M)  
JESD204B Quick  
JESD204B  
Serial Lane  
Rate1  
JESD204B Transport Layer Settings2  
(Register 0x570)  
0x01  
0x40  
0x41  
0xꢀ0  
L
1
2
2
4
4
1
2
4
4
1
2
4
1
2
4
M
1
1
1
1
1
2
2
2
2
4
4
4
F
2
1
2
1
2
4
2
1
2
4
2
16  
4
S
1
1
2
2
4
1
1
1
2
1
1
1
1
1
1
HD  
0
N
N΄ CS  
K3  
1
20 × fOUT  
10 × fOUT  
10 × fOUT  
5 × fOUT  
ꢀ to 16 16 0 to 3 Only valid K values  
that are divisible by 4  
are supported  
1
0
1
0
ꢀ to 16 16 0 to 3  
ꢀ to 16 16 0 to 3  
ꢀ to 16 16 0 to 3  
ꢀ to 16 16 0 to 3  
ꢀ to 16 16 0 to 3  
ꢀ to 16 16 0 to 3  
ꢀ to 16 16 0 to 3  
ꢀ to 16 16 0 to 3  
ꢀ to 16 16 0 to 3  
ꢀ to 16 16 0 to 3  
ꢀ to 16 16 0 to 3  
ꢀ to 16 16 0 to 3  
ꢀ to 16 16 0 to 3  
ꢀ to 16 16 0 to 3  
0xꢀ1  
5 × fOUT  
2
0x0A  
0x49  
0xꢀꢀ  
0xꢀ9  
40 × fOUT  
20 × fOUT  
10 × fOUT  
10 × fOUT  
ꢀ0 × fOUT  
40 × fOUT  
20 × fOUT  
160 × fOUT  
ꢀ0 × fOUT  
40 × fOUT  
0
0
1
0
4
0x13  
0x52  
0x91  
0
0
0
0x1C  
0x5B  
0x9A  
0
0
0
1 fOUT is the output sample rate. fOUT = ADC sample rate/chip decimation. The JESD204B serial lane rate must be ≥3.125 Gbps and ≤12.5 Gbps; when the serial lane rate is  
≤12.5 Gbps and ≥6.25 Gbps, the low lane rate mode must be disabled (set Bit 4 to 0x0 in Register 0x56E). When the serial lane rate is <6.25 Gbps and ≥3.125 Gbps, the  
low lane rate mode must be enabled (set Bit 4 to 0x1 in Register 0x56E).  
2 JESD204B transport layer descriptions are as described in the JESD204B Overview section.  
3 For F = 1, K = 20, 24, 2ꢀ, and 32. For F = 2, K = 12, 16, 20, 24, 2ꢀ, and 32. For F = 4, K = ꢀ, 12, 16, 20, 24, 2ꢀ, and 32. For F = ꢀ and F = 16, K = 4, ꢀ, 12, 16, 20, 24, 2ꢀ, and 32.  
Rev. C | Page 69 of 96  
 
 
AD6674  
Data Sheet  
Table 36. JESD204B Output Configurations for N΄ = 8  
Number of Virtual  
JESD204B Quick  
JESD204B Transport Layer Settings2  
Converters Supported Configuration  
(Same Value as M)  
(Register 0x570)  
0x00  
Serial Lane Rate1  
10 × fOUT  
10 × fOUT  
5 × fOUT  
L
1
1
2
2
2
4
4
1
2
2
4
4
4
M
1
1
1
1
1
1
1
2
2
2
2
2
2
F
1
2
1
2
4
1
2
2
1
2
1
2
4
S
1
2
2
4
4
1
1
2
2
4
HD  
0
0
N
N΄  
CS  
0 to 1 Only valid K  
K3  
1
7 to ꢀ  
7 to ꢀ  
7 to ꢀ  
7 to ꢀ  
7 to ꢀ  
7 to ꢀ  
7 to ꢀ  
7 to ꢀ  
7 to ꢀ  
7 to ꢀ  
7 to ꢀ  
7 to ꢀ  
7 to ꢀ  
values that  
are divisible  
by 4 are  
0x01  
0 to 1  
0 to 1  
0 to 1  
0 to 1  
0 to 1  
0 to 1  
0 to 1  
0 to 1  
0 to 1  
0 to 1  
0 to 1  
0 to 1  
0x40  
0
0x41  
5 × fOUT  
0
supported  
0x42  
5 × fOUT  
0
0xꢀ0  
2.5 × fOUT  
2.5 × fOUT  
20 × fOUT  
10 × fOUT  
10 × fOUT  
5 × fOUT  
0
0xꢀ1  
0
2
0x09  
0
0x4ꢀ  
0
0x49  
0
0xꢀꢀ  
0
0xꢀ9  
5 × fOUT  
0
0xꢀA  
5 × fOUT  
0
1 fOUT is the output sample rate. fOUT = ADC sample rate/chip decimation. The JESD204B serial lane rate must be ≥3.125 Gbps and ≤12.5 Gbps; when the serial lane rate is  
≤12.5 Gbps and ≥6.25 Gbps, the low lane rate mode must be disabled (set Bit 4 to 0x0 in Register 0x56E). When the serial lane rate is <6.25 Gbps and ≥3.125 Gbps, the  
low lane rate mode must be enabled (set Bit 4 to 0x1 in Register 0x56E).  
2 JESD204B transport layer descriptions are as described in the JESD204B Overview section.  
3 For F = 1, K = 20, 24, 2ꢀ, and 32. For F = 2, K = 12, 16, 20, 24, 2ꢀ, and 32. For F = 4, K = ꢀ, 12, 16, 20, 24, 2ꢀ, and 32. For F = ꢀ and F = 16, K = 4, ꢀ, 12, 16, 20, 24, 2ꢀ, and 32.  
Example 1: ADC with DDC Option (Two ADCs + Four DDCs)  
Example 2: ADC with NSR Option (Two ADCs + NSR)  
The chip application mode is four-DDC mode (see Figure 140)  
with the following characteristics:  
The chip application mode is NSR mode (see Figure 141) with  
the following characteristics:  
Two 14-bit converters at 1 GSPS  
Four DDCs application layer mode with complex outputs  
(I/Q)  
Two 14-bit converters at 500 MSPS  
NSR blocks enabled for each channel  
Chip decimation ratio = 1  
Chip decimation ratio = 16  
DDC decimation ratio = 16 (see Table 15)  
The JESD204B output configuration is as follows:  
Virtual converters required = 2 (see Table 35)  
Output sample rate (fOUT) = 500 MSPS  
The JESD204B output configuration is as follows:  
Virtual converters required = 8 (see Table 35)  
Output sample rate (fOUT) = 1000/16 = 62.5 MSPS  
Supported JESD204B output configurations (see Table 35)  
include  
Supported JESD204B output configurations (see Table 35)  
include  
N΄ = 16 bits  
N = 9 bits  
N΄ = 16 bits  
N = 14 bits  
L = 2, M = 2, and F = 2; L = 4, M = 2, and F = 1 (quick  
configuration = 0x49 or 0x88)  
CS = 0 to 2  
L = 1, M = 8, and F = 16; or L = 2, M = 8, and F = 8 (quick  
configuration = 0x1C or 0x5B)  
CS = 0 to 1  
K = 32  
Output serial lane rate = 10 Gbps per lane (L = 2) or  
5 Gbps per lane (L = 4)  
For L = 2, low lane rate mode disabled  
For L = 4, low lane rate mode enabled  
K = 32  
Output serial lane rate = 10 Gbps per lane (L = 1) or  
5 Gbps per lane (L = 2)  
For L = 1, low lane rate mode disabled  
For L = 2, low lane rate mode enabled  
Example 2 shows the flexibility in the digital and lane  
configurations for the AD6674. The sample rate is 500 MSPS,  
but the outputs are all combined into either two or four lanes  
depending on the I/O speed capability of the receiving device.  
Example 1 shows the flexibility in the digital and lane  
configurations for the AD6674. The sample rate is 1 GSPS, but  
the outputs are all combined into either one or two lanes  
depending on the I/O speed capability of the receiving device.  
Rev. C | Page 70 of 96  
 
 
 
Data Sheet  
AD6674  
I
ADC A  
SAMPLING  
AT fS  
REAL  
CONVERTER 0  
Q
CONVERTER 1  
REAL/I  
DDC 0  
DDC 1  
DDC 2  
DDC 3  
L
I
JESD204B  
LANES  
AT UP TO  
10Gbps  
CONVERTER 2  
Q
CONVERTER 3  
REAL/Q  
L JESD204B  
LANES UP TO  
10Gbps  
I/Q  
CROSSBAR  
MUX  
I
CONVERTER 4  
Q
CONVERTER 5  
REAL/I  
ADC B  
SAMPLING  
AT fS  
I
REAL  
REAL/Q  
CONVERTER 6  
Q
CONVERTER 7  
SYSREF±  
SYNCHRONIZATION  
CONTROL CIRCUITS  
Figure 140. Two-ADC + Four-DDC Mode  
CMOS  
FAST  
DETECTION  
AD6674  
14-BIT CORE  
AT 500MSPS  
NSR  
REAL  
REAL  
2 TO 4  
(21% OR 28%  
BANDWIDTH)  
LANES  
AT UP TO  
10Gbps  
CONVERTER 0  
AT 500MSPS  
AD6674  
14-BIT CORE  
AT 500MSPS  
NSR  
(21% OR 28%  
BANDWIDTH)  
CONVERTER 1  
AT 500MSPS  
FAST  
DETECTION  
CMOS  
Figure 141. Two-ADC + NSR Mode  
Rev. C | Page 71 of 96  
 
 
AD6674  
Data Sheet  
MULTICHIP SYNCHRONIZATION  
AD6674. The AD6674 supports several features that aid users in  
meeting the requirements for capturing a SYSREF signal. The  
SYSREF sample event is defined as either a synchronous low to  
high transition or a synchronous high to low transition. Addition-  
ally, the AD6674 allows the SYSREF signal to be sampled  
using either the rising edge or falling edge of the CLK input.  
The AD6674 also has the ability to ignore a programmable  
number (up to 16) of SYSREF events. The SYSREF control  
options can be selected using Register 0x120 and Register 0x121.  
The AD6674 has a SYSREF input that allows the user flexible  
options for synchronizing the internal blocks. The SYSREF  
input is a source synchronous system reference signal that  
enables multichip synchronization. The input clock divider,  
DDCs, signal monitor block, and JESD204B link can be  
synchronized using the SYSREF input. For the highest level of  
timing accuracy, SYSREF must meet setup and hold require-  
ments relative to the CLK input.  
The flowchart in Figure 142 describes the internal mechanism  
by which multichip synchronization can be achieved in the  
Rev. C | Page 72 of 96  
 
Data Sheet  
AD6674  
START  
INCREMENT  
SYSREF± IGNORE  
COUNTER  
NO  
NO  
NO  
SYSREF±  
IGNORE  
COUNTER  
EXPIRED?  
(0x121)  
UPDATE  
SETUP/HOLD  
DETECTOR STATUS  
(0x128)  
RESET  
SYSREF± IGNORE  
COUNTER  
SYSREF±  
ENABLED?  
(0x120)  
NO  
YES  
SYSREF±  
ASSERTED?  
YES  
YES  
INPUT  
CLOCK  
CLOCK  
DIVIDER  
AUTO ADJUST  
ENABLED?  
(0x10D)  
INCREMENT  
SYSREF±  
COUNTER  
(0x12A)  
CLOCK  
DIVIDER  
> 1?  
ALIGN CLOCK  
DIVIDER  
PHASE TO  
SYSREF±  
YES  
YES  
YES  
DIVIDER  
ALIGNMENT  
REQUIRED?  
(0x10B)  
NO  
NO  
NO  
TIMESTAMP  
MODE  
SYSREF±  
TIMESTAMP  
DELAY  
SYSREF±  
SYSREF±  
YES  
CONTROL BITS?  
(0x559, 0x55A,  
0x58F)  
INSERTED  
IN JESD204B  
CONTROL BITS  
SYNCHRONIZATION  
MODE?  
(0x123)  
(0x1FF)  
NO  
RAMP  
TEST  
SYSREF± RESETS  
RAMP TEST  
MODE  
YES  
MODE  
NORMAL  
MODE  
BACK TO START  
ENABLED?  
(0x550)  
GENERATOR  
NO  
ALIGN PHASE  
JESD204B  
LMFC  
ALIGNMENT  
REQUIRED?  
SEND INVALID  
NORMAL  
OF ALL  
YES  
YES  
SYNC~  
ASSERTED  
8B/10B  
CHARACTERS  
(ALL 0s)  
SEND K28.5  
CHARACTERS  
JESD204B  
INTERNAL CLOCKS  
(INCLUDING LMFC)  
TO SYSREF±  
INITIALIZATION  
NO  
NO  
SIGNAL  
MONITOR  
ALIGNMENT  
ENABLED?  
(0x26F)  
DDC NCO  
ALIGN DDC  
NCO PHASE  
ACCUMULATOR  
ALIGN SIGNAL  
YES  
YES  
ALIGNMENT  
ENABLED?  
(0x300)  
MONITOR  
BACK TO START  
COUNTERS  
NO  
NO  
Figure 142. Multichip Synchronization  
Rev. C | Page 73 of 96  
 
AD6674  
Data Sheet  
status values for different phases of SYSREF . The setup  
SYSREF SETUP/HOLD WINDOW MONITOR  
detector returns the status of the SYSREF signal before the  
CLK edge and the hold detector returns the status of the  
SYSREF signal after the CLK edge. Register 0x128 stores the  
status of SYSREF and lets the user know if the SYSREF signal  
was successfully captured by the ADC.  
To assist in ensuring a valid SYSREF capture, the AD6674 has  
a SYSREF setup and hold window monitor. This feature allows  
the system designer to determine the location of the SYSREF  
signals relative to the CLK signals by reading back the amount  
of setup/hold margin on the interface through the memory  
map. Figure 143 and Figure 144 show both the setup and hold  
0xF  
0xE  
0xD  
0xC  
0xB  
0xA  
0x9  
0x8  
0x7  
0x6  
0x5  
0x4  
0x3  
0x2  
0x1  
0x0  
REG 0x128[3:0]  
CLK±  
INPUT  
SYSREF±  
INPUT  
VALID  
FLIP-FLOP  
HOLD (MIN)  
FLIP-FLOP  
SETUP (MIN)  
FLIP-FLOP  
HOLD (MIN)  
Figure 143. SYSREF Setup Detector  
Rev. C | Page 74 of 96  
 
 
Data Sheet  
AD6674  
0xF  
0xE  
0xD  
0xC  
0xB  
0xA  
0x9  
0x8  
0x7  
0x6  
0x5  
0x4  
0x3  
0x2  
0x1  
0x0  
REG 0x128[7:4]  
CLK±  
INPUT  
SYSREF±  
INPUT  
VALID  
FLIP-FLOP  
SETUP (MIN)  
FLIP-FLOP  
HOLD (MIN)  
FLIP-FLOP  
HOLD (MIN)  
Figure 144. SYSREF Hold Detector  
Table 37 shows the description of the contents of Register 0x128 and how to interpret them.  
Table 37. SYSREF Setup/Hold Monitor, Register 0x128  
Register 0x128[7:4] Hold  
Status  
Register 0x128[3:0] Setup  
Status  
Description  
0x0  
0x0 to 0xꢀ  
0xꢀ  
0x0 to 0x7  
0xꢀ  
0x9 to 0xF  
0x0  
Possible setup error; the smaller this number, the smaller the setup margin  
No setup or hold error (best hold margin)  
No setup or hold error (best setup and hold margin)  
No setup or hold error (best setup margin)  
0xꢀ  
0x9 to 0xF  
0x0  
0x0  
0x0  
Possible hold error; the larger this number, the smaller the hold margin  
Possible setup or hold error  
Rev. C | Page 75 of 96  
 
 
AD6674  
Data Sheet  
TEST MODES  
ADC TEST MODES  
JESD204B BLOCK TEST MODES  
The AD6674 has various test options that aid in the system level  
implementation. The AD6674 has ADC test modes that are  
available in Register 0x550. These test modes are described in  
Table 38. When an output test mode is enabled, the analog  
section of the ADC is disconnected from the digital back-end  
blocks and the test pattern is run through the output formatting  
block. Some of the test patterns are subject to output formatting,  
and some are not. The PN generators from the PN sequence  
tests can be reset by setting Bit 4 or Bit 5 of Register 0x550.  
These tests can be performed with or without an analog signal  
(if present, the analog signal is ignored), but they do require an  
encode clock.  
In addition to the ADC test modes, the AD6674 also has flexible  
test modes in the JESD204B block. These test modes are listed  
in Register 0x573 and Register 0x574. These test patterns can be  
inserted at various points along the output data path. These test  
insertion points are shown in Figure 124. Table 39 describes the  
various test modes available in the JESD204B block. For the  
AD6674, a transition from the test modes (Register 0x573 ≠  
0x00) to normal mode (0x573 = 0x00) require a SPI soft reset.  
This is done by writing 0x81 to Register 0x00 (self cleared).  
Transport Layer Sample Test Mode  
The transport layer samples are implemented in the AD6674 as  
defined by Section 5.1.6.3 in the JEDEC JESD204B specification.  
These tests are enabled via Register 0x571[5]. The test pattern is  
equivalent to the raw samples from the ADC.  
If the application mode is set to select a DDC mode of operation,  
the test modes must be enabled for each DDC enabled. The test  
patterns can be enable via Bit 2 and Bit 0 of Register 0x327,  
Register 0x347, and Register 0x367, depening on which DDC(s)  
are selected. The (I) data uses the test patterns selected for Channel  
A and the (Q) data uses the test patterns selected for Channel B.  
For the case of DDC3 only, the (I) data uses the test patterns from  
Channel A, and the (Q) data does not output test patterns. Bit 0 of  
Register 0x387 selects the Channel A test patterns to be used for the  
(I) data. For more information, see the AN-877 Application Note,  
Interfacing to High Speed ADCs via SPI.  
Interface Test Modes  
The interface test modes are described in Register 0x573, Bits[3:0].  
These test modes are also explained in Table 39. The interface  
tests can be inserted at various points along the data. See Figure 124  
for more information on the test insertion points. Register 0x573,  
Bits[5:4], show where these tests are inserted.  
Table 38. ADC Test Modes  
Output Test Mode  
Bit Sequence  
Default/Seed  
Value  
Pattern Name  
Off (default)  
Expression  
Sample (N, N + 1, N + 2, …)  
Not applicable  
0000  
Not applicable  
00 0000 0000 0000  
01 1111 1111 1111  
10 0000 0000 0000  
10 1010 1010 1010  
x23 + x1ꢀ + 1  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
0x3AFF  
0001  
Midscale short  
+Full-scale short  
−Full-scale short  
Checkerboard  
Not applicable  
0010  
Not applicable  
0011  
Not applicable  
0100  
0x1555, 0x2AAA, 0x1555, 0x2AAA, 0x1555  
0x3FD7, 0x0002, 0x26E0, 0x0A3D, 0x1CA6  
0x125B, 0x3C9A, 0x2660, 0x0c65, 0x0697  
0x0000, 0x3FFF, 0x0000, 0x3FFF, 0x0000  
0101  
PN sequence long  
PN sequence short  
0110  
x9 + x5 + 1  
0x0092  
0111  
One-/zero word toggle 11 1111 1111 1111  
Not applicable  
Not applicable  
1000  
User input  
Register 0x551 to  
Register 0x55ꢀ  
For repeat mode: User Pattern 1[15:2], User Pattern 2[15:2],  
User Pattern 3[15:2], User Pattern 4[15:2], User Pattern 1[15:2]…  
For single mode: User Pattern 1[15:2], User Pattern 2[15:2],  
User Pattern 3[15:2], User Pattern 4[15:2], 0x0000…  
(x) % 214, (x + 1) % 214, (x + 2) % 214, (x + 3) % 214  
1111  
Ramp output  
(x) % 214  
Not applicable  
Table 39. JESD204B Interface Test Modes  
Output Test Mode Bit  
Sequence  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1110  
1111  
Pattern Name  
Expression  
Default  
Off (default)  
Not applicable  
0x5555, 0xAAAA, 0x5555…  
0x0000, 0xFFFF, 0x0000…  
x31 + x2ꢀ + 1  
x23 + x1ꢀ + 1  
x15 + x14 + 1  
x9 + x5 + 1  
x7 + x6 + 1  
(x) % 216  
Not applicable  
Alternating checker board  
1/0 word toggle  
Not applicable  
Not applicable  
31-bit PN sequence  
23-bit PN sequence  
15-bit PN sequence  
9-bit PN sequence  
7-bit PN sequence  
Ramp output  
0x0003AFFF  
0x003AFF  
0x03AF  
0x092  
0x07  
Ramp size depends on test insertion point  
Continuous/repeat user test  
Single user test  
Register 0x551 to Register 0x55ꢀ  
Register 0x551 to Register 0x55ꢀ  
User Pattern 1 to User Pattern 4, then repeat  
User Pattern 1 to User Pattern 4, then zeros  
Rev. C | Page 76 of 96  
 
 
 
 
 
Data Sheet  
AD6674  
Table 40, Table 41, and Table 42 show examples of some of the  
test modes when inserted at the JESD204B sample input,  
physical layer (PHY) 10-bit input, and scrambler 8-bit input.  
UP in the Table 40 to Table 42 represent the user pattern control  
bits from the memory map register table (see Table 45).  
Data Link Layer Test Modes  
The data link layer test modes are implemented in the AD6674  
as defined by Section 5.3.3.8.2 in the JEDEC JESD204B specifica-  
tion. These tests are shown in Register 0x574, Bits[2:0]. Test  
patterns inserted at this point are useful for verifying the  
functionality of the data link layer. When the data link layer  
test modes are enabled, disable SYNCINB by writing 0xC0 to  
Register 0x572.  
Table 40. JESD204B Sample Input for M = 2, S = 2, N΄ = 16 (Register 0x573[5:4] = 'b00)  
Frame  
No.  
Converter Sample  
Alternating  
Checkerboard  
1/0 Word  
Toggle  
User  
Repeat  
User  
Single  
No.  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
No.  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Ramp  
PN9  
PN23  
0
0
0
0
1
1
1
1
2
2
2
2
3
3
3
3
4
4
4
4
0x5555  
0x5555  
0x5555  
0x5555  
0xAAAA  
0xAAAA  
0xAAAA  
0xAAAA  
0x5555  
0x5555  
0x5555  
0x5555  
0xAAAA  
0xAAAA  
0xAAAA  
0xAAAA  
0x5555  
0x5555  
0x5555  
0x5555  
0x0000  
0x0000  
0x0000  
0x0000  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0x0000  
0x0000  
0x0000  
0x0000  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0x0000  
0x0000  
0x0000  
0x0000  
(x) % 216  
0x496F  
0x496F  
0x496F  
0x496F  
0xC9A9  
0xC9A9  
0xC9A9  
0xC9A9  
0x9ꢀ0C  
0x9ꢀ0C  
0x9ꢀ0C  
0x9ꢀ0C  
0x651A  
0x651A  
0x651A  
0x651A  
0x5FD1  
0x5FD1  
0x5FD1  
0x5FD1  
0xFF5C UP1[15:0]  
0xFF5C UP1[15:0]  
0xFF5C UP1[15:0]  
0xFF5C UP1[15:0]  
0x0029 UP2[15:0]  
0x0029 UP2[15:0]  
0x0029 UP2[15:0]  
0x0029 UP2[15:0]  
0xBꢀ0A UP3[15:0]  
0xBꢀ0A UP3[15:0]  
0xBꢀ0A UP3[15:0]  
0xBꢀ0A UP3[15:0]  
0x3D72 UP4[15:0]  
0x3D72 UP4[15:0]  
0x3D72 UP4[15:0]  
0x3D72 UP4[15:0]  
0x9B26 UP1[15:0]  
0x9B26 UP1[15:0]  
0x9B26 UP1[15:0]  
0x9B26 UP1[15:0]  
UP1[15:0]  
UP1[15:0]  
UP1[15:0]  
UP1[15:0]  
UP2[15:0]  
UP2[15:0]  
UP2[15:0]  
UP2[15:0]  
UP3[15:0]  
UP3[15:0]  
UP3[15:0]  
UP3[15:0]  
UP4[15:0]  
UP4[15:0]  
UP4[15:0]  
UP4[15:0]  
0x0000  
(x) % 216  
(x) % 216  
(x) % 216  
(x + 1) % 216  
(x + 1) % 216  
(x + 1) % 216  
(x + 1) % 216  
(x + 2) % 216  
(x + 2) % 216  
(x + 2) % 216  
(x + 2) % 216  
(x + 3) % 216  
(x + 3) % 216  
(x + 3) % 216  
(x + 3) % 216  
(x + 4) % 216  
(x + 4) % 216  
(x + 4) % 216  
(x + 4) % 216  
0x0000  
0x0000  
0x0000  
Table 41. Physical Layer 10-Bit Input (Register 0x573[5:4] = 'b01)  
10-Bit Symbol No. Alternating Checkerboard 1/0 Word Toggle Ramp  
PN9  
PN23  
User Repeat User Single  
0
0x155  
0x2AA  
0x155  
0x2AA  
0x155  
0x2AA  
0x155  
0x2AA  
0x155  
0x2AA  
0x155  
0x2AA  
0x000  
0x3FF  
0x000  
0x3FF  
0x000  
0x3FF  
0x000  
0x3FF  
0x000  
0x3FF  
0x000  
0x3FF  
(x) % 210  
0x125  
0x2FC  
0x26A  
0x19ꢀ  
0x031  
0x251  
0x297  
0x3FD UP1[15:6]  
0x1C0 UP2[15:6]  
0x00A UP3[15:6]  
0x1Bꢀ UP4[15:6]  
0x02ꢀ UP1[15:6]  
0x3D7 UP2[15:6]  
0x0A6 UP3[15:6]  
UP1[15:6]  
UP2[15:6]  
UP3[15:6]  
UP4[15:6]  
0x000  
0x000  
0x000  
0x000  
0x000  
1
2
3
4
5
6
7
(x + 1) % 210  
(x + 2) % 210  
(x + 3) % 210  
(x + 4) % 210  
(x + 5) % 210  
(x + 6) % 210  
(x + 7) % 210  
(x + ꢀ) % 210  
(x + 9) % 210  
(x + 10) % 210  
(x + 11) % 210  
0x3D1 0x326 UP4[15:6]  
0x1ꢀE  
0x2CB  
0x0F1  
0x10F UP1[15:6]  
0x3FD UP2[15:6]  
0x31E UP3[15:6]  
9
10  
11  
0x000  
0x000  
0x000  
0x3DD 0x00ꢀ UP4[15:6]  
Rev. C | Page 77 of 96  
 
 
AD6674  
Data Sheet  
Table 42. Scrambler 8-Bit Input (Register 0x573[5:4] = 'b10)  
8-Bit Octet No.  
Alternating Checkerboard  
1/0 Word Toggle  
Ramp  
PN9  
PN23 User Repeat  
User Single  
UP1[15:9]  
UP2[15:9]  
UP3[15:9]  
UP4[15:9]  
0x00  
0x00  
0x00  
0x00  
0x00  
0
1
2
3
4
5
6
7
9
10  
11  
0x55  
0xAA  
0x55  
0xAA  
0x55  
0xAA  
0x55  
0xAA  
0x55  
0xAA  
0x55  
0xAA  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
(x) % 2ꢀ  
0x49  
0x6F  
0xC9  
0xA9  
0x9ꢀ  
0x0C  
0x65  
0x1A  
0x5F  
0xFF  
0x5C  
0x00  
0x29  
0xBꢀ  
0x0A  
0x3D  
0x72  
0x9B  
UP1[15:9]  
UP2[15:9]  
UP3[15:9]  
UP4[15:9]  
UP1[15:9]  
UP2[15:9]  
UP3[15:9]  
UP4[15:9]  
UP1[15:9]  
UP2[15:9]  
UP3[15:9]  
UP4[15:9]  
(x + 1) % 2ꢀ  
(x + 2) % 2ꢀ  
(x + 3) % 2ꢀ  
(x + 4) % 2ꢀ  
(x + 5) % 2ꢀ  
(x + 6) % 2ꢀ  
(x + 7) % 2ꢀ  
(x + ꢀ) % 2ꢀ  
(x + 9) % 2ꢀ  
(x + 10) % 2ꢀ  
(x + 11) % 2ꢀ  
0xD1 0x26  
0x63 0x43  
0xAC 0xFF  
0x00  
0x00  
0x00  
Rev. C | Page 7ꢀ of 96  
 
Data Sheet  
AD6674  
SERIAL PORT INTERFACE (SPI)  
The AD6674 SPI allows the user to configure the converter for  
specific functions or operations through a structured register  
space provided inside the ADC. The SPI gives the user added  
flexibility and customization, depending on the application.  
Addresses are accessed via the serial port and can be written to  
or read from via the serial port. Memory is organized into bytes  
that can be further divided into fields. These fields are docu-  
mented in the Memory Map section. For detailed operational  
information, see the Serial Control Interface Standard.  
In addition to word length, the instruction phase determines  
whether the serial frame is a read or write operation, allowing  
the serial port to be used both to program the chip and to read  
the contents of the on-chip memory. If the instruction is a readback  
operation, performing a readback causes the SDIO pin to change  
direction from an input to an output at the appropriate point in  
the serial frame.  
Data can be sent in MSB first mode or in LSB first mode. MSB  
first is the default on power-up and can be changed via the SPI  
port configuration register. For more information about this  
and other features, see the Serial Control Interface Standard.  
CONFIGURATION USING THE SPI  
Three pins define the SPI of this ADC: the SCLK pin, the SDIO  
pin, and the CSB pin (see Table 43). The SCLK (serial clock) pin is  
used to synchronize the read and write data presented from/to the  
ADC. The SDIO (serial data input/output) pin is a dual-purpose  
pin that allows data to be sent and read from the internal ADC  
memory map registers. The CSB (chip select bar) pin is an active  
low control that enables or disables the read and write cycles.  
HARDWARE INTERFACE  
The pins described in Table 43 comprise the physical interface  
between the user programming device and the serial port of the  
AD6674. The SCLK pin and the CSB pin function as inputs  
when using the SPI. The SDIO pin is bidirectional, functioning  
as an input during write phases and as an output during  
readback.  
Table 43. Serial Port Interface Pins  
The SPI interface is flexible enough to be controlled by either  
FPGAs or microcontrollers. One method for SPI configuration  
is described in detail in the AN-812 Application Note,  
Pin  
Function  
SCLK Serial clock. The serial shift clock input, which is used to  
synchronize serial interface reads and writes.  
SDIO Serial data input/output. A dual-purpose pin that  
typically serves as an input or an output, depending on  
the instruction being sent and the relative position in the  
timing frame.  
Microcontroller-Based Serial Port Interface (SPI) Boot Circuit.  
Do not activate the SPI port during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK signal, the CSB signal, and the SDIO signal are typically  
asynchronous to the ADC clock, noise from these signals can  
degrade converter performance. If the on-board SPI bus is used  
for other devices, it may be necessary to provide buffers between  
this bus and the AD6674 to prevent these signals from  
transitioning at the converter inputs during critical sampling  
periods.  
CSB  
Chip select bar. An active low control that gates the read  
and write cycles.  
The falling edge of CSB, in conjunction with the rising edge of  
SCLK, determines the start of the framing. See Figure 4 and  
Table 5 for an example of the serial timing and its definitions.  
Other modes involving the CSB pin are available. The CSB pin  
can be held low indefinitely, which permanently enables the  
device; this is called streaming. The CSB can stall high between  
bytes to allow additional external timing. When CSB is tied  
high, SPI functions are placed in a high impedance mode. This  
mode turns on any SPI pin secondary functions.  
SPI ACCESSIBLE FEATURES  
Table 44 provides a brief description of the general features that  
are accessible via the SPI. These features are described in detail  
in the Serial Control Interface Standard. The AD6674 device  
specific features are described in the Memory Map section.  
All data is composed of 8-bit words. The first bit of each  
individual byte of serial data indicates whether a read or write  
command is issued. This bit allows the SDIO pin to change  
direction from an input to an output.  
Table 44. Features Accessible Using the SPI  
Feature Name  
Description  
Allows the user to set either power-down mode or standby mode  
Mode  
Clock  
Test I/O  
Output Mode  
Allows the user to access the clock divider via the SPI  
Allows the user to set test modes to have known data on output bits  
Allows the user to set up outputs  
Serializer/Deserializer (SERDES) Output Setup  
Allows the user to vary SERDES settings, including swing and emphasis  
Rev. C | Page 79 of 96  
 
 
 
 
 
 
AD6674  
Data Sheet  
MEMORY MAP  
“Clear a bit” is synonymous with “bit is set to Logic 0” or  
“writing Logic 0 for the bit.”  
“X” denotes a “don’t care.  
READING THE MEMORY MAP REGISTER TABLE  
Each row in the memory map register table has eight bit locations.  
The memory map is roughly divided into seven sections: the  
Analog Devices SPI registers, the analog input buffer control  
registers, ADC function registers, the DDC function registers,  
NSR decimate by 2 and noise shaping requantizer registers,  
variable dynamic range registers, and the digital outputs and  
test modes registers.  
Channel Specific Registers  
Some channel setup functions such as buffer input termination  
(Register 0x016) can be programmed to a different value for  
each channel. In these cases, channel address locations are  
internally duplicated for each channel. These registers and bits are  
designated in Table 45 as local. These local registers and bits can  
be accessed by setting the appropriate Channel A or Channel B  
bits in Register 0x008. If both bits are set, the subsequent write  
affects the registers of both channels. In a read cycle, set only  
Channel A or Channel B to read one of the two registers. If both  
bits are set during an SPI read cycle, the device returns the value  
for Channel A. Registers and bits designated as global in Table 45  
affect the entire device and the channel features for which  
independent settings are not allowed between channels. The  
settings in Register 0x008 do not affect the global registers and  
bits.  
Table 45 (see the Memory Map Register Table section)  
documents the default hexadecimal value for each hexadecimal  
address shown. The column with the heading Bit 7 (MSB) is the  
start of the default hexadecimal value given. For example,  
Address 0x561, the output mode register, has a hexadecimal  
default value of 0x01. This means that Bit 0 = 1, and the  
remaining bits are 0s. This setting is the default output format  
value, which is twos complement. For more information on this  
function and others, see the Table 45.  
Open and Reserved Locations  
All address and bit locations that are not included in Table 45  
are not currently supported for this device. Write unused bits of  
a valid address location with 0s unless the default value is set  
otherwise. Writing to these locations is required only when part  
of an address location is open (for example, Address 0x561). If  
the entire address location is open (for example, Address 0x013),  
do not write to this address location.  
SPI Soft Reset  
After issuing a soft reset by programming 0x81 to Register 0x000,  
the AD6674 requires 5 ms to recover. Therefore, when program-  
ming the AD6674 for application setup, ensure that an adequate  
delay is programmed into the firmware after asserting the soft  
reset and before starting the device setup.  
Default Values  
Datapath Soft Reset  
After the AD6674 is reset, critical registers are loaded with  
default values. The default values for the registers are given in  
the memory map register table, Table 45.  
After programming the desired settings to the SPI registers, issue a  
datapath soft reset by programming 0x02 to Register 0x001. This  
reset function is implemented upon the next rising edge of the  
input clock, after the register is programmed to issue the  
datapath soft reset. This reset does not affect the contents of the  
memory map registers; it only resets the datapath.  
Logic Levels  
An explanation of logic level terminology follows:  
“Bit is set” is synonymous with “bit is set to Logic 1” or  
“writing Logic 1 for the bit.”  
Rev. C | Page ꢀ0 of 96  
 
 
Data Sheet  
AD6674  
MEMORY MAP REGISTER TABLE  
All address and bit locations that are not included in Table 45 are not currently supported for this device.  
Table 45. Memory Map Registers  
Reg.  
Addr.  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
Default  
Notes  
Analog Devices SPI Registers  
0x000  
0x001  
INTERFACE_  
CONFIG_A  
Soft reset  
(self  
clearing):  
clears  
memory  
map  
registers  
LSB first  
0 = MSB  
1 = LSB  
Address  
ascension  
0
0
Address  
ascension  
LSB first  
0 = MSB  
1 = LSB  
Soft reset  
(self  
clearing):  
clears  
memory  
map  
registers  
0x00  
INTERFACE_  
CONFIG_B  
Single  
instruc-  
tion  
0
0
0
0
0
Datapath  
soft  
reset  
0
0x00  
(self  
clearing):  
does not  
clear  
memory  
map  
registers  
0x002  
DEVICE_  
CONFIG  
(local)  
0
0
0
0
0
0
00 = normal operation  
10 = standby  
11 = power-down  
0x00  
0x003  
0x004  
0x005  
0x006  
CHIP_TYPE  
011 = high speed ADC  
0x03  
0xCF  
0x00  
X
Read  
only  
CHIP_ID  
(low byte)  
1
0
1
0
0
0
0
0
1
0
0
1
0
X
1
0
X
1
0
X
0
CHIP_ID  
(high byte)  
0
CHIP_  
GRADE  
Chip speed grade  
Read  
only  
1010 = 1000 MSPS  
0111 = 750 MSPS  
0101 = 500 MSPS  
0x00ꢀ  
0x00A  
Device  
index  
0
0
0
0
0
0
Channel  
B
Channel A  
0x03  
Scratch pad  
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
1
0
0
1
0
1
0
0x00  
0x01  
0x56  
0x00B SPI revision  
0x00C Vendor ID  
(low byte)  
Read  
only  
0x00D Vendor ID  
(high byte)  
0
0
0
0
0
1
0
0
0x04  
Read  
only  
Analog Input Buffer Control Registers  
0x015  
Analog  
Input (local)  
0
0
0
0
0
0
0
Input  
disable  
0x00  
0 = normal  
operation  
1 = input  
disabled  
0x016  
Input  
termination  
(local)  
Analog input differential termination  
0000 = 400 Ω  
1110 =AD6674-1000 and AD6674-750  
1100 = AD6674-500  
0x0C;  
0x0E for  
AD6674  
-1000  
0001 = 200 Ω  
0010 = 100 Ω  
0110 = 50 Ω  
and  
AD6674  
-750  
0x934  
Input  
capacitance  
(local)  
0
0
0
0x1F = 3 pF to GND (default)  
0x00 = 1.5 pF to GND  
0x1F  
Rev. C | Page ꢀ1 of 96  
 
 
AD6674  
Data Sheet  
Reg.  
Addr.  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
Default  
Notes  
0x01ꢀ  
Buffer  
Control 1  
(local)  
0000 = 1.0× buffer current  
0001 = 1.5× buffer current  
0010 = 2.0× buffer current (default for  
AD6674-500)  
0011 = 2.5× buffer current  
0100 = 3.0× buffer current (default for  
AD6674-750 and AD6674-1000)  
0101 = 3.5× buffer current  
0
0
0
0
0x40;  
0x20  
for  
AD6674  
-500  
1111 = ꢀ.5× buffer current  
0x019  
0x01A  
0x11A  
Buffer  
Control 2  
(local)  
0100 = Setting 1 (default for AD6674-750)  
0101 = Setting 2 (default for AD6674-1000)  
0110 = Setting 3 (default for AD6674-500)  
0111 = Setting 4  
0
0
0
0
0xXX  
(see Table 10 for setting per frequency range)  
Buffer  
Control 3  
(local)  
0
0
0
0
0
1000 = Setting 1  
0x09;  
0x0A  
for  
AD6674  
-500  
1001 = Setting 2 (default for AD6674-750 and  
AD6674-1000)  
1010 = Setting 3 (default for AD6674-500)  
(see Table 10 for setting per frequency range)  
Buffer  
Control 4  
(local)  
0
0
High  
0
0
0
0
0
0x00  
frequency  
setting  
0 = off  
(default)  
1 = on  
0x935  
0x025  
Buffer  
Control 5  
(local)  
0
0
0
0
Low  
0
0
0x04  
frequency  
operation  
0 = off  
1 = on  
(default)  
Input full-  
scale range  
(local)  
0
0
0
0
Full-scale adjust  
0000 = 1.94 V  
1000 = 1.46 V  
1001 = 1.5ꢀ V  
0x0A;  
0x0C  
for  
V p-p  
differ-  
ential;  
AD6674 use in  
1010 = 1.70 V (default for AD6674-750 and  
AD6674-1000)  
-500  
con-  
junction  
with  
1011 = 1.ꢀ2 V  
1100 = 2.06 V (default for AD6674-500)  
Reg.  
0x030  
0x030  
Input full-  
scale control  
(local)  
0
0
0
Full-scale control  
0
0
0xXX  
Used in  
conjunc-  
tion  
See Table 10 for recommended settings  
for different frequency bands;  
default values:  
with  
AD6674-1000 = 110  
Reg.  
AD6674-750 = 101  
0x025  
AD6674-500 = 001  
AD6674-500 = 110 (for <1.ꢀ2 V)  
ADC Function Registers  
0x024  
V_1P0  
control  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1.0 V  
0x00  
0x00  
reference  
select  
0 =  
internal  
1 =  
external  
0x02ꢀ  
Temp-  
erature  
diode  
Diode  
selection  
0 = no  
diode  
selected  
1 =  
temper-  
ature diode  
selected  
Rev. C | Page ꢀ2 of 96  
Data Sheet  
AD6674  
Reg.  
Addr.  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
Default  
Notes  
0x03F  
PDWN/  
STBY pin  
control  
(local)  
0 =  
PDWN/  
STBY  
enabled  
1 =  
0
0
0
0
0
0
0
0x00  
Used in  
conjunc-  
tion  
with  
Reg.  
disabled  
0x040  
0x040  
Chip pin  
control  
PDWN/STBY function  
00 = power down  
01 = standby  
Fast Detect B (FD_B)  
000 = Fast Detect B output  
001 = JESD204B LMFC output  
010 = JESD204B internal SYNC~  
output  
Fast Detect A (FD_A)  
000 = Fast Detect A output  
001 = JESD204B LMFC output  
010 = JESD204B internal SYNC~  
output  
0x3F  
10 = disabled  
111 = disabled  
011 = temperature diode  
111 = disabled  
0x10B Clock  
divider  
0
0
0
0
0
0
0
0
0
000 = divide by 1  
001 = divide by 2  
011 = divide by 4  
111 = divide by ꢀ  
0x00  
0x00  
0x10C Clock  
divider  
Independently controls Channel A and Channel B  
clock divider phase offset  
phase  
(local)  
0000 = 0 input clock cycles delayed  
0001 = ½ input clock cycles delayed  
0010 = 1 input clock cycles delayed  
0011 = 1½ input clock cycles delayed  
0100 = 2 input clock cycles delayed  
0101 = 2½ input clock cycles delayed  
1111 = 7½ input clock cycles delayed  
0x10D Clock  
Clock  
divider  
auto-  
phase  
adjust  
0 =  
disabled  
1 =  
enabled  
0
0
0
Clock divider negative  
skew window  
00 = no negative skew  
01 = 1 device clock of  
negative skew  
10 = 2 device clocks of  
negative skew  
11 = 3 device clocks of  
negative skew  
Clock divider positive  
skew window  
00 = no positive skew  
01 = 1 device clock of  
positive skew  
10 = 2 device clocks of  
positive skew  
11 = 3 device clocks of  
positive skew  
0x00  
Clock  
dvider  
must be  
>1  
divider and  
SYSREF  
control  
0x117  
Clock delay  
control  
0
0
0
0
0
0
0
clock fine  
delay  
0x00  
Enabling  
the  
adjustment  
enable  
0 =  
disabled  
1 =  
clock  
fine  
delay  
adjust  
causes a  
datapath  
soft  
enabled  
reset  
0x11ꢀ  
Clock fine  
delay  
Clock Fine Delay Adjust[7:0]  
twos complement coded control to adjust the fine sample clock skew in ~1.7 ps steps  
0x00  
Used in  
conjunc-  
tion  
with  
Reg.  
≤−ꢀꢀ = −151.7 ps skew  
−ꢀ7 = −150.0 ps skew  
0 = 0 ps skew  
0x117  
≥ +ꢀ7 = +150 ps skew  
0x11C Clock status  
0
0
0
0
0
0
0
0
0
0 = no  
0x00  
0x00  
Read  
only  
input clock  
detected  
1 = input  
clock  
detected  
0x120  
SYSREF  
Control 1  
SYSREF  
SYSREF  
transition  
select  
0 = low to  
high  
1 = high to 1 =  
low falling  
CLK  
SYSREF mode select  
00 = disabled  
01 = continuous  
10 = N shot  
0
flag reset  
0 = normal  
operation  
1 = flags  
held in  
edge  
select  
0 =  
rising  
reset  
Rev. C | Page ꢀ3 of 96  
AD6674  
Data Sheet  
Reg.  
Addr.  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
Default  
Notes  
0x121  
SYSREF  
Control 2  
0
0
0
0
SYSREF N shot ignore counter select  
0000 = next SYSREF only  
0x00  
Mode  
select  
0001 = ignore the first SYSREF transitions  
0010 = ignore the first two SYSREF transitions  
(Reg.  
0x120,  
Bits[2:1])  
must be  
N shot  
1111 = ignore the first 16 SYSREF transitions  
0x123  
SYSREF  
timestamp  
delay  
SYSREF Timestamp Delay[6:0]  
0x00  
Ignored  
when  
Reg.  
0x1FF =  
0x00  
0x00 = no delay  
0x01 = 1 clock delay  
control  
0x7F = 127 clocks delay  
0x12ꢀ  
0x129  
SYSREF  
Status 1  
SYSREF hold status  
Refer to Table 37  
SYSREF setup status  
Refer to Table 37  
Read  
only  
SYSREF  
and clock  
divider  
status  
0
0
0
0
Clock divider phase when SYSREF was captured  
0000 = in phase  
Read  
only  
0001 = SYSREF is ½ cycle delayed from clock  
0010 = SYSREF is 1 cycle delayed from clock  
0011 = 1½ input clock cycles delayed  
0100 = 2 input clock cycles delayed  
0101 = 2½ input clock cycles delayed  
1111 = 7½ input clock cycles delayed  
0x12A  
0x1FF  
SYSREF  
counter  
SYSREF counter, Bits[7:0], increments when a SYSREF signal is captured  
Read  
only  
Chip sync  
mode  
0
0
0
0
0
0
0
0
0
Synchronization mode  
00 = normal  
0x00  
0x07  
01 = timestamp  
0x200  
Chip  
application  
mode  
Chip Q  
ignore  
0 =  
Chip operating mode  
0001 = DDC 0 on  
0010 = DDC 0 and DDC 1 on  
normal  
(I/Q)  
1 =  
0011 = DDC 0, DDC 1, DDC 2, and DDC3 on  
0111 = NSR enabled (default)  
1000 = VDR enabled  
ignore  
(I only)  
0x201  
Chip  
decimation  
ratio  
0
0
0
0
0
0
0
Chip decimation ratio select  
000 = decimate by 1  
001 = decimate by 2  
010 = decimate by 4  
011 = decimate by ꢀ  
100 = decimate by 16  
0x01;  
0x00  
for  
AD6674  
-500  
0x22ꢀ  
0x245  
Customer  
offset  
Offset adjust in LSBs from +127 to −12ꢀ (twos complement format)  
0x00  
Fast detect  
(FD) control  
(local)  
0
0
Force  
FD_A/  
FD_B  
pins;  
0 =  
Force value  
of FD_A/  
0
Enable fast 0x00  
detect  
output  
FD_B pins; if  
force pins is  
true, this  
normal  
func-  
tion;  
value is  
output on  
FD_x pins  
1 = force  
to value  
0x247  
0x24ꢀ  
0x249  
0x24A  
FD upper  
threshold  
LSB (local)  
Fast Detect Upper Threshold[7:0]  
0x00  
0x00  
0x00  
0x00  
FD upper  
threshold  
MSB (local)  
0
0
0
0
0
0
Fast Detect Upper Threshold[12:ꢀ]  
FD lower  
threshold  
LSB (local)  
Fast Detect Lower Threshold[7:0]  
FD lower  
threshold  
MSB (local)  
Fast Detect Lower Threshold[12:ꢀ]  
Rev. C | Page ꢀ4 of 96  
Data Sheet  
AD6674  
Reg.  
Addr.  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
Default  
Notes  
0x24B FD dwell  
time LSB  
Fast Detect Dwell Time[7:0]  
0x00  
(local)  
0x24C FD dwell  
time MSB  
Fast Detect Dwell Time[15:ꢀ]  
0x00  
0x00  
(local)  
0x26F  
Signal  
0
0
0
0
0
0
0
0
0
0
0
0
Synchronization mode  
00 = disabled  
See the  
Signal  
Monitor  
section  
monitor  
synchro-  
nization  
control  
01 = continuous  
11 = 1 shot  
0x270  
Signal  
Peak  
0
0x00  
monitor  
control  
(local)  
detector  
0 =  
disabled  
1 =  
enabled  
0x271  
0x272  
0x273  
0x274  
Signal  
Monitor  
Period  
Register 0  
(local)  
Signal Monitor Period[7:1]  
0
0xꢀ0  
0x00  
0x00  
0x01  
In dec-  
imated  
output  
clock  
cycles  
Signal  
Monitor  
Period  
Register 1  
(local)  
Signal Monitor Period[15:ꢀ]  
In dec-  
imated  
output  
clock  
cycles  
Signal  
Monitor  
Period  
Register 2  
(local)  
Signal Monitor Period[23:16]  
In dec-  
imated  
output  
clock  
cycles  
Signal  
monitor  
result  
control  
(local)  
0
0
0
Result  
0
0
0
Result  
selection  
0 =  
reserved  
1 = Peak  
detector  
update  
1 = update  
results  
(self clear)  
0x275  
0x276  
0x277  
0x27ꢀ  
Signal  
Monitor  
Result  
Register 0  
(local)  
Signal Monitor Result[7:0]  
Read  
only  
Updated  
based  
on Reg.  
0x0274,  
Bit 4  
When 0x0274[0] = 1, Result Bits[19:7] = Peak Detector Absolute Value[12:0]; Result Bits[6:0] = 0  
Signal Monitor Result[15:ꢀ]  
Signal  
Monitor  
Result  
Register 1  
(local)  
Read-  
only  
Updated  
based  
on Reg.  
0x0274,  
Bit 4  
Signal  
Monitor  
Result  
Register 1  
(local)  
0
0
0
0
Signal Monitor Result[19:16]  
Read-  
only  
Updated  
based  
on Reg.  
0x0274,  
Bit 4  
Signal  
monitor  
period  
counter  
result  
Period Count Result[7:0]  
Read-  
only  
Updated  
based  
on Reg.  
0x0274,  
Bit 4  
(local)  
0x279  
Signal  
0
0
0
0
0
0
00 = reserved  
11 = enabled  
0x00  
monitor  
SPORT over  
JESD204B  
control  
(local)  
Rev. C | Page ꢀ5 of 96  
AD6674  
Data Sheet  
Reg.  
Addr.  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
Default  
Notes  
0x27A SPORT over  
JESD204B  
input  
0
0
0
0
0
0
Peak  
detector  
0 =  
0
0x02  
selection  
(local)  
disabled  
1 =  
enabled  
Digital Downconverter (DDC) Function Registers—see the Digital Downconverter (DDC) section  
0x300  
DDC  
0
0
0
DDC NCO  
soft reset  
0 = normal  
operation  
1 = reset  
0
0
Synchronization mode  
00 = disabled  
0x00  
synchro-  
nization  
control  
01 = continuous  
11 = one shot  
0x310  
DDC 0  
control  
Mixer  
select  
0 = real  
mixer  
1 =  
complex  
mixer  
Gain select  
0 = 0 dB  
gain  
1 = 6 dB  
gain  
IF mode  
Complex  
to real  
enable  
0 =  
disabled  
1 =  
0
Decimation ratio select 0x00  
(complex to real  
00 = variable IF mode  
(mixers and NCO  
enabled)  
01 = 0 Hz IF mode  
(mixer bypassed, NCO  
disabled)  
10 = fADC/4 Hz IF mode  
(fADC/4 downmixing  
mode)  
11 = test mode (mixer  
inputs forced to +FS,  
NCO enabled)  
disabled)  
11 = decimate by 2  
00 = decimate by 4  
01 = decimate by ꢀ  
10 = decimate by 16  
(complex to real  
enabled  
enabled)  
11 = decimate by 1  
00 = decimate by 2  
01 = decimate by 4  
10 = decimate by ꢀ  
0x311  
DDC 0  
input  
0
0
0
0
0
Q input  
select  
0
I input  
select  
0x00  
selection  
0 = Ch. A  
1 = Ch. B  
0 = Ch. A  
1 = Ch. B  
0x314  
0x315  
DDC 0  
frequency  
LSB  
DDC 0 NCO FTW[7:0] twos complement  
0x00  
0x00  
DDC 0  
frequency  
MSB  
X
X
X
X
DDC 0 NCO FTW[11:ꢀ] twos complement  
0x320  
0x321  
0x327  
DDC 0  
phase LSB  
DDC 0 NCO POW[7:0] twos complement  
0x00  
0x00  
0x00  
DDC 0  
phase MSB  
X
0
X
0
X
0
X
0
DDC0 NCO POW[11:ꢀ] twos complement  
DDC 0  
output test  
mode  
0
Q output  
test mode  
enable  
0
I output  
test mode  
enable  
0 =  
disabled  
1 =  
selection  
0 = disabled  
1 = enabled  
from Ch. B  
enabled  
from Ch. A  
0x330  
DDC 1  
control  
Mixer  
select  
0 = real  
mixer  
1 =  
Gain select  
0 = 0 dB  
gain  
1 = 6 dB  
gain  
IF mode  
Complex  
to real  
enable  
0 =  
disabled  
1 =  
0
Decimation ratio select 0x00  
(complex to real  
00 = variable IF mode  
(mixers and NCO  
enabled)  
01 = 0 Hz IF mode  
(mixer bypassed, NCO  
disabled)  
10 = fADC/4 Hz IF mode  
(fADC/4 downmixing  
mode)  
11 = test mode (mixer  
inputs forced to +FS,  
NCO enabled)  
disabled)  
11 = decimate by 2  
00 = decimate by 4  
01 = decimate by ꢀ  
10 = decimate by 16  
(complex to real  
complex  
mixer  
enabled  
enabled)  
11 = decimate by 1  
00 = decimate by 2  
01 = decimate by 4  
10 = decimate by ꢀ  
0x331  
DDC 1  
input  
0
0
0
0
0
Q input  
select  
0
I input  
select  
0x05  
selection  
0 = Ch. A  
1 = Ch. B  
0 = Ch. A  
1 = Ch. B  
Rev. C | Page ꢀ6 of 96  
Data Sheet  
AD6674  
Reg.  
Addr.  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
Default  
Notes  
0x334  
DDC 1  
frequency  
LSB  
DDC 1 NCO FTW[7:0] twos complement  
0x00  
0x335  
DDC 1  
frequency  
MSB  
X
X
X
X
DDC1 NCO FTW[11:ꢀ] twos complement  
0x00  
0x340  
0x341  
0x347  
DDC 1  
phase LSB  
DDC 1 NCO POW[7:0] twos complement  
0x00  
0x00  
0x00  
DDC 1  
phase MSB  
X
0
X
0
X
0
X
0
DDC1 NCO POW[11:ꢀ] twos complement  
DDC 1  
output test  
mode  
0
Q output  
0
I output  
test mode  
enable  
0 =  
disabled  
1 =  
test mode  
enable  
0 = disabled  
1 = enabled  
from Ch. B  
selection  
enabled  
from Ch. A  
0x350  
DDC 2  
control  
Mixer  
select  
0 = real  
mixer  
1 =  
complex  
mixer  
Gain select  
0 = 0 dB  
gain  
1 = 6 dB  
gain  
IF mode  
Complex  
to real  
enable  
0 =  
disabled  
1 =  
0
Decimation ratio select 0x00  
(complex to real  
00 = variable IF mode  
(mixers and NCO  
enabled)  
01 = 0 Hz IF mode  
(mixer bypassed, NCO  
disabled)  
10 = fADC/4 Hz IF mode  
(fADC/4 downmixing  
mode)  
11 = test mode (mixer  
inputs forced to +FS,  
NCO enabled)  
disabled)  
11 = decimate by 2  
00 = decimate by 4  
01 = decimate by ꢀ  
10 = decimate by 16  
(complex to real  
enabled  
enabled)  
11 = decimate by 1  
00 = decimate by 2  
01 = decimate by 4  
10 = decimate by ꢀ  
0x351  
DDC 2  
input  
0
0
0
0
0
Q input  
select  
0
I input  
select  
0x00  
selection  
0 = Ch. A  
1 = Ch. B  
0 = Ch. A  
1 = Ch. B  
0x354  
0x355  
DDC 2  
frequency  
LSB  
DDC 2 NCO FTW[7:0] twos complement  
0x00  
0x00  
DDC 2  
frequency  
MSB  
X
X
X
X
DDC2 NCO FTW[11:ꢀ] twos complement  
0x360  
0x361  
0x367  
DDC 2  
phase LSB  
DDC 2 NCO Phase Offset[7:0] twos complement  
0x00  
0x00  
0x00  
DDC 2  
phase MSB  
X
0
X
0
X
0
X
0
DDC2 NCO Phase Offset[11:ꢀ] twos complement  
DDC 2  
output test  
mode  
0
Q output  
test mode  
enable  
0
I output  
test mode  
enable  
0 =  
disabled  
1 =  
selection  
0 = disabled  
1 = enabled  
from Ch. B  
enabled  
from Ch. A  
0x370  
DDC 3  
control  
Mixer  
select  
0 = real  
mixer  
1 =  
complex  
mixer  
Gain select  
0 = 0 dB  
gain  
1 = 6 dB  
gain  
IF mode  
Complex  
to real  
enable  
0 =  
disabled  
1 =  
0
Decimation ratio select 0x00  
(complex to real  
00 = variable IF mode  
(mixers and NCO  
enabled)  
01 = 0 Hz IF mode  
(mixer bypassed, NCO  
disabled)  
10 = fS/4 Hz IF mode  
(fS/4 downmixing  
mode)  
11 = test mode (mixer  
inputs forced to +FS,  
NCO enabled)  
disabled)  
11 = decimate by 2  
00 = decimate by 4  
01 = decimate by ꢀ  
10 = decimate by 16  
(complex to real  
enabled  
enabled)  
11 = decimate by 1  
00 = decimate by 2  
01 = decimate by 4  
10 = decimate by ꢀ  
Rev. C | Page ꢀ7 of 96  
AD6674  
Data Sheet  
Reg.  
Addr.  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
Default  
Notes  
0x371  
DDC 3  
input  
0
0
0
0
0
Q input  
select  
0
I input  
select  
0x05  
selection  
0 = Ch. A  
1 = Ch. B  
0 = Ch. A  
1 = Ch. B  
0x374  
0x375  
DDC 3  
frequency  
LSB  
DDC3 NCO FTW[7:0] twos complement  
0x00  
0x00  
DDC 3  
frequency  
MSB  
X
X
X
X
DDC3 NCO FTW[11:ꢀ] twos complement  
0x3ꢀ0  
0x3ꢀ1  
0x3ꢀ7  
DDC 3  
phase LSB  
DDC3 NCO POW[7:0] twos complement  
0x00  
0x00  
0x00  
DDC 3  
phase MSB  
X
0
X
0
X
0
X
0
DDC3 NCO POW[11:ꢀ] twos complement  
DDC 3  
output test  
mode  
0
0
0
I output  
test mode  
enable  
0 =  
selection  
disabled  
1 =  
enabled  
from Ch. A  
NSR Decimate by 2 and Noise Shaping Requantizer (NSR)  
0x41E  
NSR  
decimate  
by 2  
High-  
pass/  
low-pass  
mode:  
0 =  
X
0
0
X
X
X
NSR  
decimate  
by 2  
enable  
0 =  
0x01;  
0x00  
for  
AD6674 AD6674  
-500  
Bit 0 is  
ignored  
on  
-750  
enable  
LPF  
1 =  
enable  
HPF  
disabled  
1 =  
enabled  
and  
AD6674  
-1000  
when in  
NSR  
mode  
0x420  
0x422  
NSR mode  
NSR tuning  
X
X
X
X
X
X
NSR mode  
000 = 21% BW mode  
001 = 2ꢀ% BW mode  
X
0x00  
0x00  
NSR tuning word; see the Noise Shaping Requantizer (NSR) section; equations  
for the tuning word are dependent on the NSR mode  
Variable Dynamic Range (VDR)  
0x430 VDR control X  
X
X
0
X
X
VDR BW  
mode  
0 = 25%  
BW  
0 = dual  
real mode  
1 = dual  
complex  
mode  
0x01  
mode  
1 = 43%  
BW  
(Channel A  
= I,  
mode  
(only  
Channel B  
= Q)  
available  
for dual  
complex  
mode)  
0x434  
VDR tuning  
X
X
X
X
VDR center frequency; see the Variable Dynamic  
0x00  
Range (VDR) section for more details on the center  
frequency, which is dependent on the VDR mode  
Digital Outputs and Test Modes  
Rev. C | Page ꢀꢀ of 96  
Data Sheet  
AD6674  
Reg.  
Addr.  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
Default  
Notes  
0x550  
ADC test  
modes  
(local)  
User  
0
Reset PN  
long gen  
0 = long  
PN  
enable  
1 = long  
PN reset  
Reset PN  
short gen  
0 = short  
PN enable  
1 = short  
PN reset  
Test mode selection  
0000 = off (normal operation)  
0001 = midscale short  
0010 = positive full scale  
0011 = negative full scale  
0100 = alternating checker board  
0101 = PN sequence, long  
0x00  
pattern  
selection  
0 =  
contin-  
uous  
repeat  
1 = single  
pattern  
0110 = PN sequence, short  
0111 = 1/0 word toggle  
1000 = user pattern test mode (used with  
Register 0x550, Bit 7, and User Pattern 1 to  
User Patten 4 registers)  
1111 = ramp output  
0x551  
0x552  
0x553  
0x554  
0x555  
0x556  
0x557  
0x55ꢀ  
User  
Pattern 1  
LSB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Used  
with  
Reg.  
0x550,  
Reg.  
0x573  
User  
Pattern 1  
MSB  
Used  
with  
Reg.  
0x550,  
Reg.  
0x573  
User  
Pattern 2  
LSB  
Used  
with  
Reg.  
0x550,  
Reg.  
0x573  
User  
Pattern 2  
MSB  
Used  
with  
Reg.  
0x550,  
Reg.  
0x573  
User  
Pattern 3  
LSB  
Used  
with  
Reg.  
0x550,  
Reg.  
0x573  
User  
Pattern 3  
MSB  
Used  
with  
Reg.  
0x550,  
Reg.  
0x573  
User  
Pattern 4  
LSB  
Used  
with  
Reg.  
0x550,  
Reg.  
0x573  
User  
Pattern 4  
MSB  
Used  
with  
Reg.  
0x550,  
Reg.  
0x573  
Rev. C | Page ꢀ9 of 96  
AD6674  
Data Sheet  
Reg.  
Addr.  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
Default  
0x00  
Notes  
0x559  
Output  
Mode  
Control 1  
0
0
0
Converter Control Bit 1 selection (only  
used when CS (0x5ꢀF) = 2 or 3)  
000 = tie low (1’b0)  
0
Converter Control Bit 0 selection (only  
used when CS (0x5ꢀF) = 3)  
000 = tie low (1’b0)  
001 = overrange bit  
010 = signal monitor bit or  
VDR Punish Bit 0  
011 = fast detect (FD) bit or  
VDR Punish Bit 1  
001 = overrange bit  
010 = signal monitor bit or  
VDR Punish Bit 0  
011 = fast detect (FD) bit or VDR  
Punish Bit 1  
100 = VDR high/low resolution bit  
101 = system reference  
100 = VDR high/low resolution bit  
101 = system reference  
0x55A  
Output  
Mode  
Control 2  
0
0
0
0
Converter Control Bit 2 selection (used 0x01  
when CS (0x5ꢀF) = 1, 2, or 3)  
000 = tie low (1’b0)  
001 = overrange bit  
010 = signal monitor bit or  
VDR Punish Bit 0  
011 = fast detect (FD) bit or VDR  
Punish Bit 1  
100 = VDR high/low resolution bit  
101 = system reference  
0x561  
0x562  
Output  
mode  
0
0
0
0
Sample  
invert  
0 = normal  
1 = sample  
invert  
Data format select  
00 = offset binary  
01 = twos complement  
0x01  
0x00  
Output  
overrange  
(OR) clear  
Virtual  
Con-  
verter 7  
OR  
0 = OR bit enabled  
enabled 1 = OR bit  
1 = OR bit cleared  
cleared  
Virtual  
Converter  
6 OR  
Virtual  
Con-  
verter 5  
OR  
0 = OR  
bit  
enabled  
1 = OR  
bit  
Virtual  
Converter  
4 OR  
0 = OR bit  
enabled  
1 = OR bit  
cleared  
Virtual  
Con-  
verter 3  
OR  
0 = OR  
bit  
enabled  
1 = OR  
bit  
Virtual  
Converter 2  
OR  
0 = or bit  
enabled  
1 = OR bit  
cleared  
Virtual  
Con-  
verter 1  
OR  
0 = OR  
bit  
enabled  
1 = OR  
bit  
Virtual  
Converter 0  
OR  
0 = OR bit  
enabled  
1 = OR bit  
cleared  
0 = OR bit  
cleared  
cleared  
cleared  
0x563  
Output  
overrange  
status  
Virtual  
Con-  
verter 7  
OR  
0 = no OR 1 = OR  
1 = OR  
Virtual  
Converter  
6 OR  
Virtual  
Con-  
verter 5  
OR  
0 = no  
OR  
Virtual  
Converter  
4 OR  
0 = no OR  
1 = OR  
occurred  
Virtual  
Con-  
verter 3  
OR  
0 = no  
OR  
Virtual  
Converter 2  
OR  
0 = no OR  
1 = OR  
occurred  
Virtual  
Con-  
verter 1  
OR  
0 = no  
OR  
Virtual  
Converter 0  
OR  
0 = no OR  
1 = OR  
occurred  
0x00  
Read  
only  
0 = no OR  
occurred  
occurred  
1 = OR  
occurred  
1 = OR  
occurre  
d
1 = OR  
occurre  
d
0x564  
Output  
channel  
select  
0
0
0
0
0
0
0
Converter  
channel  
swap  
0x00  
0 = normal  
channel  
ordering  
1 =  
channel  
swap  
enabled  
0x56E  
JESD204B  
lane rate  
control  
0
0
0
0 = serial  
lane rate ≥  
6.25 Gbps  
and ≤  
0
0
0
0
0x10  
12.5 Gbps  
1 = serial  
lane rate  
must be ≥  
3.125 Gbps  
and  
<6.25 Gbps  
Rev. C | Page 90 of 96  
Data Sheet  
AD6674  
Reg.  
Addr.  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
Default  
Notes  
0x56F  
JESD204B  
PLL lock  
status  
PLL lock  
0 = not  
locked  
1 =  
0
0
0
0
0
0
0
0x00  
Read  
only  
locked  
0x570  
0x571  
JESD204B  
quick  
configur-  
ation  
JESD204B quick configuration  
Number of lanes (L) = 20x570[7:6]  
0xꢀꢀ  
0x14  
Refer to  
Table 35  
and  
Number of converters (M) = 20x570[5:3]  
Number of octets/frame (F) = 20x570[2:0]  
Table 36  
JESD204B  
Link Mode  
Control 1  
Standby  
mode  
0 = all  
con-  
verter  
outputs 0 N’ − N −  
Tail bit (T)  
PN  
Long  
trans-  
Lane  
ILAS sequence mode  
Frame  
align-  
ment  
Link  
control  
0 = active  
synchron-  
0 = disable port layer ization  
00 = ILAS disabled  
01 = ILAS enabled  
1 = enable  
T =  
test  
0 =  
0 = disable  
FACI uses  
/K2ꢀ.7/  
11 = ILAS always on test character 1 = power  
mode  
insertion  
(FACI)  
0 =  
enabled  
1 =  
down  
disable  
1 =  
enable  
1 = CGS  
(K2ꢀ.5)  
CS  
1 = enable  
FACI uses  
/K2ꢀ.3/  
and  
disabled  
/K2ꢀ.7/  
0x572  
JESD204B  
Link Mode  
Control 2  
SYNCINB pin control  
00 = normal  
10 = ignore SYNCINB  
(force CGS)  
SYNCINB  
pin invert pin type  
0 = active 0 =  
SYNCINB  
0
ꢀB/10B  
bypass  
0 = normal  
1 = bypass  
ꢀB/10B  
bit  
invert  
0 =  
0
0x00  
low  
differential  
11 = ignore SYNCINB  
(force ILAS/user data)  
1 = active 1 = CMOS  
high  
normal  
1 =  
invert  
abcde  
fghij  
symbols  
0x573  
JESD204B  
Link Mode  
Control 3  
CHKSUM mode  
00 = sum of all ꢀ-bit link  
configuration registers  
01 = sum of individual  
link configuration bit  
fields  
Test insertion point  
00 = N’ sample input  
01 = 10-bit data at  
ꢀB/10B output (for PHY  
testing)  
JESD204B test mode patterns  
0000 = normal operation (test mode disabled)  
0001 = alternating checker board  
0010 = 1/0 word toggle  
0x00  
0011 = 31-bit PN sequence—x31 + x2ꢀ + 1  
0100 = 23-bit PN sequence—x23 + x1ꢀ + 1  
0101 = 15-bit PN sequence—x15 + x14 + 1  
0110 = 9-bit PN sequence—x9 + x5 + 1  
0111 = 7-bit PN sequence—x7 + x6 + 1  
1000 = ramp output  
10 = ꢀ-bit data at  
scrambler input  
10 = checksum set to  
zero  
1110 = continuous/repeat user test  
1111 = single user test  
0x574  
JESD204B  
Link Mode  
Control 4  
ILAS delay  
0
Link layer test mode  
000 = normal operation (link layer test  
mode disabled)  
001 = continuous sequence of /D21.5/  
characters  
0x00  
0000 = transmit ILAS on first LMFC after SYNCINB  
deasserted  
0001 = transmit ILAS on second LMFC after  
SYNCINB deasserted  
100 = modified RPAT test sequence  
101 = JSPAT test sequence  
110 = JTSPAT test sequence  
1111 = transmit ILAS on 16th LMFC after SYNCINB  
deasserted  
0x57ꢀ  
0x5ꢀ0  
0x5ꢀ1  
0x5ꢀ3  
JESD204B  
LMFC offset  
0
0
0
LMFC Phase Offset Value[4:0]  
0x00  
0x00  
0x00  
0x00  
JESD204B  
DID config  
JESD204B Tx DID Value[7:0]  
0 JESD204B Tx BID Value[3:0]  
JESD204B  
BID config  
0
0
0
0
0
0
JESD204B  
LID  
Config 1  
Lane 0 LID Value[4:0]  
Lane 1 LID Value[4:0]  
Lane 2 LID Value[4:0]  
0x5ꢀ4  
0x5ꢀ5  
JESD204B  
LID  
Config 2  
0
0
0
0
0
0
0x01  
0x01  
JESD204B  
LID  
Config 3  
Rev. C | Page 91 of 96  
AD6674  
Data Sheet  
Reg.  
Addr.  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
Default  
Notes  
0x5ꢀ6  
JESD204B  
LID  
0
0
0
Lane 3 LID Value[4:0]  
0x03  
Config 4  
0x5ꢀB JESD204B  
parameters  
JESD204B  
scram-  
bling  
0
0
0
0
0
JESD204B lanes (L)  
00 = 1 lane  
0xꢀ3  
(SCR/L)  
01 = 2 lanes  
(SCR)  
11 = 4 lanes  
0 =  
disabled  
1 =  
read only; see  
Register 0x570  
enabled  
0x5ꢀC JESD204B F  
config  
Number of octets per frame, F = 0x5ꢀC[7:0] + 1  
0x00  
Read  
only,  
see Reg.  
0x570  
0x5ꢀD JESD204B K  
config  
0
0
0
Number of frames per multi-frame, K = 0x5ꢀD[4:0] + 1  
Only values where (F × K) mod 4 = 0 are supported  
Number of Converters per Link[7:0]  
0x1F  
0x01  
See Reg.  
0x570  
0x5ꢀE  
JESD204B  
M config  
Read  
only  
0x00 = link connected to one virtual converter (M = 1)  
0x01 = link connected to two virtual converters (M = 2)  
0x03 = link connected to four virtual converters (M = 4)  
0x07 = link connected to eight virtual converters (M = ꢀ)  
0x5ꢀF  
JESD204B  
parameters  
(CS/N)  
Number of control bits  
(CS) per sample  
00 = no control bits  
(CS = 0)  
01 = 1 control bit (CS =  
1); Control Bit 2 only  
10 = 2 control bits (CS =  
2); Control Bit 2 and  
Control Bit 1 only  
11 = 3 control bits  
(CS = 3); all control bits  
(2, 1, 0)  
0
Converter resolution (N)  
0x06 = 7-bit resolution  
0x07 = ꢀ-bit resolution  
0x0ꢀ = 9-bit resolution  
0x09 = 10-bit resolution  
0x0A = 11-bit resolution  
0x0B = 12-bit resolution  
0x0C = 13-bit resolution  
0x0D = 14-bit resolution  
0x0E = 15-bit resolution  
0x0F = 16-bit Resolution  
0x0F  
0x590  
JESD204B  
parameter  
(NP)  
Subclass support  
000 = Subclass 0 (no deterministic  
latency)  
Number of bits per sample (N’)  
0x7 = ꢀ bits  
0x2F  
0xF = 16 bits  
001 = Subclass 1  
0x591  
0x592  
JESD204B  
parameter  
(S)  
0
0
1
0
Samples per converter frame cycle (S)  
S value = 0x591[4:0] +1  
0x20  
0xꢀ0  
Read  
only  
JESD204B  
parameters  
HD value  
0 =  
0
Control words per frame clock cycle per link (CF)  
CF value = 0x592[4:0]  
Read  
only  
(HD and CF) disabled  
1 =  
enabled  
0x5A0  
0x5A1  
0x5A2  
0x5A3  
JESD204B  
CHKSUM 0  
CHKSUM value for SERDOUT0 [7:0]  
0xꢀ1  
0xꢀ2  
0xꢀ2  
0xꢀ4  
0xAA  
Read  
only  
JESD204B  
CHKSUM 1  
CHKSUM value for SERDOUT1 [7:0]  
CHKSUM value for SERDOUT2 [7:0]  
CHKSUM value for SERDOUT3 [7:0]  
Read  
only  
JESD204B  
CHKSUM 2  
Read  
only  
JESD204B  
CHKSUM 3  
Read  
only  
0x5B0 JESD204B  
lane power-  
down  
1
SER-  
1
SER-  
1
SERDOUT1  
0 = on  
1 = off  
1
SER-  
DOUT3  
0 = on  
1 = off  
DOUT2  
0 = on  
1 = off  
DOUT0  
0 = on  
1 = off  
0x5B2 JESD204B  
lane  
X
X
X
X
0
Physical Lane 0 assignment  
000 = Logical Lane 0  
001 = Logical Lane 1  
010 = Logical Lane 2  
011 = Logical Lane 3  
0x00  
SERDOUT0  
assign  
Rev. C | Page 92 of 96  
Data Sheet  
AD6674  
Reg.  
Addr.  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
Default  
Notes  
0x5B3 JESD204B  
lane  
X
X
X
0
X
X
X
0
Physical Lane 1 assignment  
000 = Logical Lane 0  
001 = Logical Lane 1  
010 = Logical Lane 2  
011 = Logical Lane 3  
0x11  
SERDOUT1  
assign  
0x5B5 JESD204B  
lane  
X
X
0
X
X
0
X
X
0
0
0
Physical Lane 2 assignment  
000 = Logical Lane 0  
001 = Logical Lane 1  
010 = Logical Lane 2  
011 = Logical Lane 3  
0x22  
0x33  
0x05  
SERDOUT2  
assign  
0x5B6 JESD204B  
lane  
Physical Lane 3 assignment  
000 = Logical Lane 0  
001 = Logical Lane 1  
010 = Logical Lane 2  
011 = Logical Lane 3  
SERDOUT3  
assign  
0x5BF  
JESD  
serializer  
drive adjust  
Swing voltage  
0000 = 237.5 mV  
0001 = 250 mV  
0010 = 262.5 mV  
0011 = 275 mV  
0100 = 2ꢀ7.5 mV  
0101 = 300 mV  
0110 = 312.5 mV  
0111 = 325 mV  
1000 = 337.5 mV  
1001 = 350 mV  
1010 = 362.5 mV  
1011 = 375 mV  
1100 = 3ꢀ7.5 mV  
1101 = 400 mV  
1110 = 412.5 mV  
1111 = 425 mV  
0x5C1 De-  
emphasis  
select  
0
0
SER-  
DOUT3  
0 = disable  
1 = enable  
0
0
SER-  
DOUT2  
0 = disable  
1 = enable  
0
SERDOUT1  
0 = disable  
1 = enable  
0
SER-  
DOUT0  
0 = disable  
1 = enable  
0x00  
0x00  
0x5C2 De-  
0
0
0
0
0
0
De-emphasis settings  
0000 = de-emphasis disabled  
1000 = 0.5 dB  
emphasis  
setting for  
SERDOUT0  
1001 = 1.0 dB  
1010 = 1.7 dB  
1011 = 2.5 dB  
1100 = 3.5 dB  
1101 = 4.9 dB  
1110 = 6.7 dB  
1111 = 9.6 dB  
0x5C3 De-  
0
0
De-emphasis settings  
0000 = de-emphasis disabled  
1000 = 0.5 dB  
0x00  
emphasis  
setting for  
SERDOUT1  
1001 = 1.0 dB  
1010 = 1.7 dB  
1011 = 2.5 dB  
1100 = 3.5 dB  
1101 = 4.9 dB  
1110 = 6.7 dB  
1111 = 9.6 dB  
0x5C4 De-  
0
0
De-emphasis settings  
0000 = de-emphasis disabled  
1000 = 0.5 dB  
0x00  
emphasis  
setting for  
SERDOUT2  
1001 = 1.0 dB  
1010 = 1.7 dB  
1011 = 2.5 dB  
1100 = 3.5 dB  
1101 = 4.9 dB  
1110 = 6.7 dB  
1111 = 9.6 dB  
Rev. C | Page 93 of 96  
AD6674  
Data Sheet  
Reg.  
Addr.  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
Default  
0x00  
Notes  
0x5C5 De-  
emphasis  
0
0
0
0
De-emphasis settings  
0000 = de-emphasis disabled  
1000 = 0.5 dB  
setting for  
SERDOUT3  
1001 = 1.0 dB  
1010 = 1.7 dB  
1011 = 2.5 dB  
1100 = 3.5 dB  
1101 = 4.9 dB  
1110 = 6.7 dB  
1111 = 9.6 dB  
Rev. C | Page 94 of 96  
Data Sheet  
AD6674  
APPLICATIONS INFORMATION  
thermal performance of the AD6674. Connect an exposed  
POWER SUPPLY RECOMMENDATIONS  
continuous copper plane on the PCB to the AD6674 exposed  
pad, Pin 0. The copper plane must have several vias to achieve  
the lowest possible resistive thermal path for heat dissipation to  
flow through the bottom of the PCB. These vias must be solder  
filled or plugged. The number of vias and the fill determine the  
resultant θJA measured on the board.  
The AD6674 must be powered by the following seven supplies:  
AVDD1 = 1.25 V, AVDD2 = 2.5 V, AVDD3 = 3.3 V, AVDD1_SR  
= 1.25 V, DVDD = 1.25 V, DRVDD = 1.25 V, SPIVDD = 1.8 V.  
For applications requiring an optimal high power efficiency and  
low noise performance, it is recommended that the ADP2164  
and ADP2370 switching regulators be used to convert the 3.3 V,  
5.0 V, or 12 V input rails to an intermediate rail (1.8 V and  
3.8 V). These intermediate rails are then postregulated by very  
low noise, low dropout (LDO) regulators (ADP1741, ADM7172,  
and ADP125). Figure 145 shows the recommended method. For  
more detailed information on the recommended power  
To maximize the coverage and adhesion between the ADC and  
PCB, partition the continuous copper plane by overlaying a  
silkscreen on the PCB into several uniform sections. This  
provides several tie points between the ADC and PCB during  
the reflow process, whereas using one continuous plane with no  
partitions only guarantees one tie point. See Figure 146 for a  
PCB layout example. For detailed information on packaging  
and the PCB layout of chip scale packages, see the AN-772  
Application Note, A Design and Manufacturing Guide for the  
Lead Frame Chip Scale Package (LFCSP).  
solution, refer to the AD6674 evaluation board documentation.  
AVDD1  
1.25V  
ADP1741  
1.8V  
AVDD1_SR  
1.25V  
DVDD  
1.25V  
ADP1741  
ADP125  
DRVDD  
1.25V  
SPIVDD  
(1.8V OR 3.3V)  
3.6V  
3.3V  
AVDD3  
3.3V  
ADM7172  
OR  
AVDD2  
2.5V  
ADP1741  
Figure 145. High Efficiency, Low Noise Power Solution for the AD6674  
It is not necessary to split all of these power domains in all  
cases. The recommended solution shown in Figure 145 provides  
the lowest noise, highest efficiency power delivery system for  
the AD6674. If only one 1.25 V supply is available, it must be  
routed to AVDD1 first and then tapped off and isolated with a  
ferrite bead or a filter choke preceded by decoupling capacitors  
for AVDD1_SR, DVDD, and DRVDD, in that order. The user  
can use several different decoupling capacitors to cover both  
high and low frequencies. These must be located close to the  
point of entry at the PCB level and close to the devices, with  
minimal trace lengths.  
Figure 146. Recommended PCB Layout of Exposed Pad for the AD6674  
AVDD1_SR (PIN 57) AND AGND (PIN 56, PIN 60)  
AVDD1_SR (Pin 57) and AGND (Pin 56 and Pin 60) can be  
used to provide a separate power supply node to the SYSREF  
circuits of the AD6674. If running in Subclass 1, the AD6674  
can support periodic one-shot or gapped signals. To minimize  
the coupling of this supply into the AVDD1 supply node,  
adequate supply bypassing is needed.  
EXPOSED PAD THERMAL HEAT SLUG  
RECOMMENDATIONS  
It is required that the exposed pad on the underside of the ADC  
be connected to ground to achieve the best electrical and  
Rev. C | Page 95 of 96  
 
 
 
 
 
 
AD6674  
Data Sheet  
OUTLINE DIMENSIONS  
9.10  
9.00 SQ  
8.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
49  
64  
1
48  
0.50  
BSC  
EXPOSED  
PAD  
7.70  
7.60 SQ  
7.50  
33  
16  
32  
17  
0.45  
0.40  
0.35  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
7.50 REF  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.203 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WMMD  
Figure 147. 64-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
9 mm × 9 mm Body, Very Very Thin Quad  
(CP-64-15)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +ꢀ5°C  
Package Description2  
Package Option  
CP-64-15  
CP-64-15  
CP-64-15  
CP-64-15  
AD6674BCPZ-500  
AD6674BCPZRL7-500  
AD6674BCPZ-750  
AD6674BCPZRL7-750  
AD6674BCPZ-1000  
AD6674BCPZRL7-1000  
AD6674-500EBZ  
64-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
64-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
64-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
64-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
64-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
64-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
−40°C to +ꢀ5°C  
−40°C to +ꢀ5°C  
−40°C to +ꢀ5°C  
−40°C to +ꢀ5°C  
−40°C to +ꢀ5°C  
CP-64-15  
CP-64-15  
Evaluation Board for AD6674-500 (Optimized for Full Analog  
Input Bandwidth)  
AD6674-750EBZ  
Evaluation Board for AD6674-750 (Optimized for Full Analog  
Input Bandwidth)  
AD6674-1000EBZ  
AD6674-LF500EBZ  
AD6674-LF750EBZ  
AD6674-LF1000EBZ  
Evaluation Board for AD6674-1000 (Optimized for Full  
Analog Input Bandwidth)  
Evaluation Board for AD6674-500 (Optimized for Up to  
1 GHz Analog Input Bandwidth)  
Evaluation Board for AD6674-750 (Optimized for Up to  
1 GHz Input Bandwidth)  
Evaluation Board for AD6674-1000 (Optimized for Up to  
1 GHz Analog Input Bandwidth)  
1 Z = RoHS Compliant Part.  
2 The AD6674-500EBZ, AD6674-750EBZ, and AD6674-1000EBZ evaluation boards are optimized for the full analog input frequency range.  
©2014–2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12400-0-8/16(C)  
Rev. C | Page 96 of 96  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY