AD6684 [ADI]

135 MHz Quad IF Receiver;
AD6684
型号: AD6684
厂家: ADI    ADI
描述:

135 MHz Quad IF Receiver

文件: 总107页 (文件大小:2907K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
135 MHz Quad IF Receiver  
AD6684  
4 integrated wideband digital downconverters (DDCs)  
48-bit numerically controlled oscillator (NCO), up to  
4 cascaded half-band filters  
1.4 GHz analog input full power bandwidth  
Amplitude detect bits for efficient automatic gain control  
(AGC) implementation  
Differential clock input  
Integer clock divide by 1, 2, 4, or 8  
Data Sheet  
FEATURES  
JESD204B (Subclass 1) coded serial digital outputs  
Lane rates up to 15 Gbps  
1.68 W total power at 500 MSPS  
420 mW per analog-to-digital converter (ADC) channel  
SFDR = 82 dBFS at 305 MHz (1.8 V p-p input range)  
SNR = 66.8 dBFS at 305 MHz (1.8 V p-p input range)  
Noise density = −151.5 dBFS/Hz (1.8 V p-p input range)  
Analog input buffer  
On-chip dithering to improve small signal linearity  
Flexible differential input range  
1.44 V p-p to 2.16 V p-p (1.80 V p-p nominal)  
82 dB channel isolation/crosstalk  
0.975 V, 1.8 V, and 2.5 V dc supply operation  
Noise shaping requantizer (NSR) option for main receiver  
Variable dynamic range (VDR) option for digital  
predistortion (DPD)  
On-chip temperature diode  
Flexible JESD204B lane configurations  
APPLICATIONS  
Communications  
Diversity multiband, multimode digital receivers  
3G/4G, W-CDMA, GSM, LTE, LTE-A  
HFC digital reverse path receivers  
Digital predistortion observation paths  
General-purpose software radios  
FUNCTIONAL BLOCK DIAGRAM  
AVDD2  
(1.8V)  
AVDD3  
(2.5V)  
AVDD1 AVDD1_SR  
DVDD  
DRVDD1 DRVDD2  
SPIVDD  
(1.8V)  
(0.975V)  
(0.975V)  
(0.975V) (0.975V)  
(1.8V)  
SIGNAL PROCESSING  
BUFFER  
14  
VIN+A  
ADC  
CORE  
DIGITAL DOWNCONVERTER  
(×2)  
VIN–A  
VCM_AB  
FD_A  
2
JESD204B  
HIGH SPEED  
SERIALIZER  
SERDOUTAB0±  
SERDOUTAB1±  
Tx  
OUTPUTS  
NOISE SHAPED REQUANTIZER  
(×2)  
FAST  
DETECT  
SIGNAL  
MONITOR  
FD_B  
BUFFER  
VARIABLE DYNAMIC RANGE  
(×2)  
14  
VIN+B  
VIN–B  
ADC  
CORE  
SIGNAL MONITOR  
AND FAST DETECT  
SYSREF±  
JESD204B  
SUBCLASS 1  
CONTROL  
CLOCK  
GENERATION  
SYNCINB±AB  
SYNCINB±CD  
CLK+  
CLK–  
÷2  
÷4  
÷8  
SIGNAL PROCESSING  
BUFFER  
14  
VIN+C  
ADC  
CORE  
DIGITAL DOWNCONVERTER  
(×2)  
VIN–C  
VCM_CD  
FD_C  
2
JESD204B  
HIGH SPEED  
SERIALIZER  
SERDOUTCD0±  
SERDOUTCD1±  
Tx  
NOISE SHAPED REQUANTIZER  
(×2)  
OUTPUTS  
FAST  
DETECT  
SIGNAL  
MONITOR  
FD_D  
VARIABLE DYNAMIC RANGE  
(×2)  
BUFFER  
14  
VIN+D  
VIN–D  
ADC  
CORE  
SPI CONTROL  
PDWN/STBY  
AD6684  
AGND DRGND  
SDIO  
SCLK CSB  
Figure 1.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2016 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
AD6684  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
DDC Gain Stage ......................................................................... 44  
DDC Complex to Real Conversion ......................................... 44  
DDC Example Configurations ................................................. 45  
Noise Shaping Requantizer (NSR) ............................................... 49  
Decimating Half-Band Filter .................................................... 49  
NSR Overview ............................................................................ 50  
Variable Dynamic Range (VDR).................................................. 51  
VDR Real Mode.......................................................................... 52  
VDR Complex Mode ................................................................. 52  
Digital Outputs ............................................................................... 54  
Introduction to the JESD204B Interface ................................. 54  
JESD204B Overview .................................................................. 54  
Functional Overview ................................................................. 56  
JESD204B Link Establishment ................................................. 56  
Physical Layer (Driver) Outputs .............................................. 57  
JESD204B Tx Converter Mapping........................................... 59  
Setting Up the AD6684 Digital Interface................................ 60  
Latency............................................................................................. 64  
End-To-End Total Latency........................................................ 64  
Multichip Synchronization............................................................ 65  
SYSREF Setup/Hold Window Monitor................................. 67  
Test Modes....................................................................................... 69  
ADC Test Modes ........................................................................ 69  
JESD204B Block Test Modes .................................................... 70  
Serial Port Interface........................................................................ 72  
Configuration Using the SPI..................................................... 72  
Hardware Interface..................................................................... 72  
SPI Accessible Features.............................................................. 72  
Memory Map .................................................................................. 73  
Reading the Memory Map Register Table............................... 73  
Memory Map .................................................................................. 74  
Memory Map Summary ............................................................ 74  
Memory Map Details................................................................. 82  
Applications Information............................................................ 106  
Power Supply Recommendations........................................... 106  
Exposed Pad Thermal Heat Slug Recommendations.......... 106  
AVDD1_SR (Pin 64) and AGND_SR (Pin 63 and Pin 67). 106  
Outline Dimensions..................................................................... 107  
Ordering Guide ........................................................................ 107  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 3  
General Description......................................................................... 4  
Product Highlights ........................................................................... 4  
Specifications..................................................................................... 5  
DC Specifications ......................................................................... 5  
AC Specifications.......................................................................... 6  
Digital Specifications ................................................................... 8  
Switching Specifications .............................................................. 9  
Timing Specifications .................................................................. 9  
Absolute Maximum Ratings.......................................................... 11  
Thermal Characteristics ............................................................ 11  
ESD Caution................................................................................ 11  
Pin Configuration and Function Descriptions........................... 12  
Typical Performance Characteristics ........................................... 14  
Equivalent Circuits......................................................................... 21  
Theory of Operation ...................................................................... 23  
ADC Architecture ...................................................................... 23  
Analog Input Considerations.................................................... 23  
Voltage Reference ....................................................................... 25  
Clock Input Considerations...................................................... 26  
Temperature Diode .................................................................... 27  
ADC Overrange and Fast Detect.................................................. 28  
ADC Overrange.......................................................................... 28  
Fast Threshold Detection (FD_A, FD_B, FD_C and FD_D).... 28  
Signal Monitor ................................................................................ 29  
SPORT Over JESD204B............................................................. 29  
Digital Downconverter (DDC)..................................................... 32  
DDC I/Q Input Selection .......................................................... 32  
DDC I/Q Output Selection ....................................................... 32  
DDC General Description ........................................................ 32  
Frequency Translation ................................................................... 38  
General Description................................................................... 38  
DDC NCO + Mixer Loss and SFDR........................................ 39  
Numerically Controlled Oscillator........................................... 39  
FIR Filters ........................................................................................ 41  
General Description................................................................... 41  
Half-Band Filters ........................................................................ 42  
Rev. 0 | Page 2 of 107  
Data Sheet  
AD6684  
REVISION HISTORY  
10/2016—Revision 0: Initial Version  
Rev. 0 | Page 3 of 107  
 
AD6684  
Data Sheet  
GENERAL DESCRIPTION  
is truncated. This mask is based on DPD applications and  
supports tunable real IF sampling, and zero IF or complex IF  
receive architectures.  
The AD6684 is a 135 MHz bandwidth, quad intermediate  
frequency (IF) receiver. It consists of four 14-bit, 500 MSPS  
ADCs and various digital processing blocks consisting of four  
wideband DDCs, an NSR, and VDR monitoring. The device has  
an on-chip buffer and a sample-and-hold circuit designed for low  
power, small size, and ease of use. This device is designed to  
support communications applications. The analog full power  
bandwidth of the device is 1.4 GHz.  
Operation of the AD6684 in the DDC, NSR, and VDR modes is  
selectable via SPI-programmable profiles (the default mode is  
NSR at startup).  
In addition to the DDC blocks, the AD6684 has several functions  
that simplify the AGC function in the communications receiver.  
The programmable threshold detector allows monitoring of the  
incoming signal power using the fast detect output bits of the  
ADC. If the input signal level exceeds the programmable threshold,  
the fast detect indicator goes high. Because this threshold  
indicator has low latency, the user can quickly turn down the  
system gain to avoid an overrange condition at the ADC input.  
The quad ADC cores feature a multistage, differential pipelined  
architecture with integrated output error correction logic. Each  
ADC features wide bandwidth inputs supporting a variety of  
user-selectable input ranges. An integrated voltage reference  
eases design considerations. The AD6684 is optimized for wide  
input bandwidth, excellent linearity, and low power in a small  
package.  
Users can configure each pair of IF receiver outputs onto either  
one or two lanes of Subclass 1 JESD204B-based high speed  
serialized outputs, depending on the decimation ratio and the  
acceptable lane rate of the receiving logic device. Multiple device  
synchronization is supported through the SYSREF ,  
The analog inputs and clock signal input are differential. Each  
pair of ADC data outputs are internally connected to two DDCs  
through a crossbar mux. Each DDC consists of up to five cascaded  
signal processing stages: a 48-bit frequency translator, NCO, and  
up to four half-band decimation filters.  
SYNCINB AB, and SYNCINB CD input pins.  
Each ADC output is connected internally to an NSR block. The  
integrated NSR circuitry allows improved SNR performance in  
a smaller frequency band within the Nyquist bandwidth. The  
device supports two different output modes selectable via the  
serial port interface (SPI). With the NSR feature enabled, the  
outputs of the ADCs are processed such that the AD6684  
supports enhanced SNR performance within a limited portion  
of the Nyquist bandwidth while maintaining a 9-bit output  
resolution.  
The AD6684 has flexible power-down options that allow  
significant power savings when desired. All of these features can  
be programmed using the 1.8 V capable, 3-wire SPI.  
The AD6684 is available in a Pb-free, 72-lead LFCSP and is  
specified over the −40°C to +105°C junction temperature range.  
This product may be protected by one or more U.S. or international  
patents  
PRODUCT HIGHLIGHTS  
Each ADC output is also connected internally to a VDR block.  
This optional mode allows full dynamic range for defined input  
signals. Inputs that are within a defined mask (based on DPD  
applications) are passed unaltered. Inputs that violate this  
defined mask result in the reduction of the output resolution.  
1. Low power consumption per channel.  
2. JESD204B lane rate support up to 15 Gbps.  
3. Wide full power bandwidth supports IF sampling of signals  
up to 1.4 GHz.  
4. Buffered inputs ease filter design and implementation.  
5. Four integrated wideband decimation filters and NCO  
blocks supporting multiband receivers.  
With VDR, the dynamic range of the observation receiver is  
determined by a defined input frequency mask. For signals  
falling within the mask, the outputs are presented at the  
maximum resolution allowed. For signals exceeding defined  
power levels within this frequency mask, the output resolution  
6. Programmable fast overrange detection.  
7. On-chip temperature diode for system thermal management.  
Rev. 0 | Page 4 of 107  
 
 
Data Sheet  
AD6684  
SPECIFICATIONS  
DC SPECIFICATIONS  
AVDD1 = 0.975 V, AVDD1_SR = 0.975 V, AVDD2 = 1.8 V, AVDD3 = 2.5 V, DVDD = 0.975 V, DRVDD1 = 0.975 V, DRVDD2 = 1.8 V,  
SPIVDD = 1.8 V, specified maximum sampling rate, clock divider = 4, 1.8 V p-p full-scale differential input, 0.5 V internal reference, AIN =  
−1.0 dBFS, default SPI settings, unless otherwise noted. Minimum and maximum specifications are guaranteed for the full operating  
junction temperature (TJ) range of −40°C to +105°C. Typical specifications represent performance at TJ = 50°C (TA = 25°C).  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
RESOLUTION  
14  
Bits  
ACCURACY  
No Missing Codes  
Offset Error  
Offset Matching  
Gain Error  
Gain Matching  
Differential Nonlinearity (DNL)  
Integral Nonlinearity (INL)  
TEMPERATURE DRIFT  
Offset Error  
Guaranteed  
0
0
% FSR  
% FSR  
% FSR  
% FSR  
LSB  
−5.0  
+5.0  
1.0  
0.4  
1.0  
−0.7  
−5.1  
+0.7  
+5.1  
LSB  
8
ppm/°C  
ppm/°C  
Gain Error  
214  
INTERNAL VOLTAGE REFERENCE  
Voltage  
0.5  
2.6  
V
INPUT REFERRED NOISE  
ANALOG INPUTS  
LSB rms  
Differential Input Voltage Range (Programmable)  
1.44  
1.80  
1.34  
1.75  
200  
1.4  
2.16  
V p-p  
V
pF  
Ω
GHz  
Common-Mode Voltage (VCM  
)
Differential Input Capacitance  
Differential Input Resistance  
Analog Input Full Power Bandwidth  
POWER SUPPLY1  
AVDD1  
AVDD1_SR  
AVDD2  
AVDD3  
DVDD  
DRVDD1  
DRVDD2  
SPIVDD  
IAVDD1  
0.95  
0.95  
1.71  
2.44  
0.95  
0.95  
1.71  
1.71  
0.975  
0.975  
1.8  
1.00  
1.00  
1.89  
2.56  
1.00  
1.00  
1.89  
1.89  
482  
53  
473  
103  
198  
207  
29  
V
V
V
V
V
V
V
V
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
2.5  
0.975  
0.975  
1.8  
1.8  
319  
21  
438  
87  
145  
162  
23  
IAVDD1_SR  
IAVDD2  
IAVDD3  
2
IDVDD  
IDRVDD1  
IDRVDD2  
ISPIVDD  
1
1.6  
POWER CONSUMPTION  
Total Power Dissipation (Including Output Drivers)2  
Power-Down Dissipation  
Standby3  
1.68  
325  
1.20  
1.94  
W
mW  
W
1 Power is measured at NSR, 28% bandwidth, L, M, and F = 222.  
2 Default mode, no decimation enabled. For each link, L = 2, M = 2, and F = 2.  
3 Standby mode is controlled by the SPI.  
Rev. 0 | Page 5 of 107  
 
 
AD6684  
Data Sheet  
AC SPECIFICATIONS  
AVDD1 = 0.975 V, AVDD1_SR = 0.975 V, AVDD2 = 1.8 V, AVDD3 = 2.5 V, DVDD = 0.975 V, DRVDD1 = 0.975 V, DRVDD2 = 1.8 V,  
SPIVDD = 1.8 V, specified maximum sampling rate, clock divider = 4, 1.8 V p-p full-scale differential input, 0.5 V internal reference, AIN =  
−1.0 dBFS, default SPI settings, VDR mode (input mask not triggered), unless otherwise noted. Minimum and maximum specifications are  
guaranteed for the full operating junction temperature (TJ) range of −40°C to +105°C. Typical specifications represent performance at TJ = 50°C  
(TA = 25°C).  
Table 2.  
Analog Input Full Scale =  
1.44 V p-p  
Analog Input Full Scale =  
1.80 V p-p  
Analog Input Full Scale =  
2.16 V p-p  
Parameter1  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
ANALOG INPUT FULL SCALE  
NOISE DENSITY2  
SIGNAL-TO-NOISE RATIO (SNR)3  
VDR Mode  
1.44  
1.80  
2.16  
V p-p  
−149.7  
−151.5  
−153.0  
dBFS/Hz  
fIN = 10 MHz  
fIN = 155 MHz  
fIN = 305 MHz  
fIN = 450 MHz  
fIN = 765 MHz  
fIN = 985 MHz  
65.4  
65.3  
65.2  
65.0  
64.8  
64.5  
67.1  
67.0  
66.8  
66.6  
66.5  
66.0  
68.4  
68.3  
68.0  
67.8  
67.5  
66.9  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
64.8  
21% Bandwidth (BW) Mode  
(>105 MHz at 500 MSPS)  
fIN = 10 MHz  
fIN = 155 MHz  
fIN = 305 MHz  
fIN = 450 MHz  
fIN = 765 MHz  
fIN = 985 MHz  
72.1  
71.8  
71.9  
71.6  
71.0  
70.6  
73.8  
73.5  
73.5  
73.2  
72.7  
72.1  
75.1  
74.8  
74.7  
74.4  
73.7  
73.0  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
28% BW Mode (>135 MHz at  
500 MSPS)  
fIN = 10 MHz  
fIN = 155 MHz  
fIN = 305 MHz  
fIN = 450 MHz  
fIN = 765 MHz  
fIN = 985 MHz  
69.6  
69.1  
69.1  
69.4  
68.5  
68.5  
71.3  
70.8  
70.7  
71.0  
70.2  
70.0  
72.6  
72.1  
71.9  
72.2  
71.2  
70.9  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
SIGNAL-TO-NOISE-AND-DISTORTION  
RATIO (SINAD)3  
fIN = 10 MHz  
fIN = 155 MHz  
fIN = 305 MHz  
fIN = 450 MHz  
fIN = 765 MHz  
fIN = 985 MHz  
EFFECTIVE NUMBER OF BITS (ENOB)3  
fIN = 10 MHz  
fIN = 155 MHz  
fIN = 305 MHz  
fIN = 450 MHz  
fIN = 765 MHz  
fIN = 985 MHz  
65.3  
65.2  
65.1  
65.0  
64.7  
64.2  
67.0  
66.8  
66.6  
66.4  
66.1  
65.5  
68.2  
67.9  
67.6  
67.3  
66.9  
66.2  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
64.5  
10.4  
10.5  
10.5  
10.5  
10.5  
10.4  
10.3  
10.8  
10.8  
10.7  
10.7  
10.6  
10.6  
11.0  
10.9  
10.9  
10.8  
10.8  
10.7  
Bits  
Bits  
Bits  
Bits  
Bits  
Bits  
Rev. 0 | Page 6 of 107  
 
Data Sheet  
AD6684  
Analog Input Full Scale =  
1.44 V p-p  
Analog Input Full Scale =  
1.80 V p-p  
Analog Input Full Scale =  
2.16 V p-p  
Parameter1  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
SPURIOUS-FREE DYNAMIC RANGE  
(SFDR)3  
fIN = 10 MHz  
fIN = 155 MHz  
fIN = 305 MHz  
fIN = 450 MHz  
fIN = 765 MHz  
fIN = 985 MHz  
89  
89  
82  
82  
77  
82  
90  
85  
82  
83  
75  
79  
80  
77  
78  
77  
72  
76  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
75  
SPURIOUS-FREE DYNAMIC RANGE  
(SFDR) AT −3 dBFS3  
fIN = 10 MHz  
fIN = 155 MHz  
fIN = 305 MHz  
fIN = 450 MHz  
fIN = 765 MHz  
fIN = 985 MHz  
94  
94  
89  
87  
82  
85  
94  
90  
90  
86  
80  
82  
86  
82  
83  
84  
77  
79  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
WORST HARMONIC, SECOND OR  
THIRD3  
fIN = 10 MHz  
fIN = 155 MHz  
fIN = 305 MHz  
fIN = 450 MHz  
fIN = 765 MHz  
fIN = 985 MHz  
−89  
−89  
−82  
−82  
−77  
−82  
−90  
−85  
−82  
−83  
−75  
−79  
−80  
−77  
−78  
−77  
−72  
−76  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
−75  
WORST HARMONIC, SECOND OR  
THIRD AT −3 dBFS3  
fIN = 10 MHz  
fIN = 155 MHz  
fIN = 305 MHz  
fIN = 450 MHz  
fIN = 765 MHz  
fIN = 985 MHz  
−94  
−94  
−89  
−87  
−82  
−85  
−94  
−90  
−90  
−86  
−80  
−82  
−86  
−82  
−83  
−84  
−77  
−79  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
WORST OTHER, EXCLUDING SECOND  
OR THIRD HARMONIC3  
fIN = 10 MHz  
fIN = 155 MHz  
fIN = 305 MHz  
fIN = 450 MHz  
fIN = 765 MHz  
fIN = 985 MHz  
−96  
−97  
−97  
−95  
−92  
−90  
−98  
−97  
−98  
−96  
−91  
−89  
−99  
−97  
−97  
−96  
−88  
−86  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
−86  
TWO TONE INTERMODULATION  
DISTORTION (IMD), AIN1 AND  
AIN2 = −7 dBFS  
fIN1 = 154 MHz, fIN2 = 157 MHz  
fIN1 = 302 MHz, fIN2 = 305 MHz  
CROSSTALK4  
−93  
−90  
82  
−90  
−90  
82  
−84  
−84  
82  
dBFS  
dBFS  
dB  
FULL POWER BANDWIDTH5  
1.4  
1.4  
1.4  
GHz  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and for details on how these tests were completed.  
2 Noise density is measured with no analog input signal.  
3 See Table 9 for recommended settings for full-scale voltage and buffer current setting.  
4 Crosstalk is measured at 155 MHz with a −1.0 dBFS analog input on one channel and no input on the adjacent channel.  
5 Measured with circuit shown in Figure 58.  
Rev. 0 | Page 7 of 107  
AD6684  
Data Sheet  
DIGITAL SPECIFICATIONS  
AVDD1 = 0.975 V, AVDD1_SR = 0.975 V, AVDD2 = 1.8 V, AVDD3 = 2.5 V, DVDD = 0.975 V, DRVDD1 = 0.975 V, DRVDD2 = 1.8 V,  
SPIVDD = 1.8 V, specified maximum sampling rate, clock divider = 4, 1.8 V p-p full-scale differential input, 0.5 V internal reference, AIN =  
−1.0 dBFS, default SPI settings, unless otherwise noted. Minimum and maximum specifications are guaranteed for the full operating junction  
temperature (TJ) range of −40°C to +105°C. Typical specifications represent performance at TJ = 50°C (TA = 25°C).  
Table 3.  
Parameter  
Min  
Typ  
Max  
1600  
0.9  
Unit  
CLOCK INPUTS (CLK+, CLK−)  
Logic Compliance  
Differential Input Voltage  
Input Common-Mode Voltage  
Input Resistance (Differential)  
Input Capacitance  
LVDS/LVPECL  
400  
800  
0.69  
32  
mV p-p  
V
kΩ  
pF  
SYSREF INPUTS (SYSREF+, SYSREF−)1  
Logic Compliance  
LVDS/LVPECL  
Differential Input Voltage  
Input Common-Mode Voltage  
Input Resistance (Differential)  
Input Capacitance (Single-Ended per Pin)  
LOGIC INPUTS (PDWN/STBY)  
Logic Compliance  
400  
0.6  
18  
800  
0.69  
22  
1800  
2.2  
mV p-p  
V
kΩ  
pF  
0.7  
CMOS  
Logic 1 Voltage  
Logic 0 Voltage  
Input Resistance  
0.65 × SPIVDD  
0
V
V
MΩ  
0.35 × SPIVDD  
0.35 × SPIVDD  
0.45  
10  
LOGIC INPUTS (SDIO, SCLK, CSB)  
Logic Compliance  
Logic 1 Voltage  
Logic 0 Voltage  
Input Resistance  
CMOS  
0.65 × SPIVDD  
0
V
V
kΩ  
56  
LOGIC OUTPUT (SDIO)  
Logic Compliance  
Logic 1 Voltage (IOH = 800 μA)  
Logic 0 Voltage (IOL = 50 μA)  
SYNCIN INPUT (SYNCINB+AB, SYNCINB−AB, SYNCINB+CD, SYNCINB−CD)  
Logic Compliance  
CMOS  
SPIVDD − 0.45 V  
0
V
V
LVDS/LVPECL/CMOS  
Differential Input Voltage  
Input Common-Mode Voltage  
Input Resistance (Differential)  
Input Capacitance (Single-Ended per Pin)  
LOGIC OUTPUTS (FD_A, FD_B)  
Logic Compliance  
Logic 1 Voltage  
Logic 0 Voltage  
Input Resistance  
400  
0.6  
18  
800  
0.69  
22  
1800  
2.2  
mV p-p  
V
kΩ  
pF  
0.7  
CMOS  
56  
0.8 × SPIVDD  
0
V
V
kΩ  
0.5  
DIGITAL OUTPUTS (SERDOUTx , x = AB0, AB1, CD0, and CD1)  
Logic Compliance  
Differential Output Voltage  
CML  
455.8  
15  
mV p-p  
mA  
Short-Circuit Current (ID SHORT  
)
Differential Termination Impedance  
100  
Ω
1 DC-coupled input only.  
Rev. 0 | Page 8 of 107  
 
Data Sheet  
AD6684  
SWITCHING SPECIFICATIONS  
AVDD1 = 0.975 V, AVDD1_SR = 0.975 V, AVDD2 = 1.8 V, AVDD3 = 2.5 V, DVDD = 0.975 V, DRVDD1 = 0.975 V, DRVDD2 = 1.8 V,  
SPIVDD = 1.8 V, specified maximum sampling rate, clock divider = 4, 1.8 V p-p full-scale differential input, 0.5 V internal reference, AIN =  
−1.0 dBFS, default SPI settings, unless otherwise noted. Minimum and maximum specifications are guaranteed for the full operating junction  
temperature (TJ) range of −40°C to +105°C. Typical specifications represent performance at TJ = 50°C (TA = 25°C).  
Table 4.  
Parameter  
Min  
Typ  
Max  
Unit  
CLOCK  
Clock Rate at CLK+/CLK− Pins  
Maximum Sample Rate1  
Minimum Sample Rate2  
Clock Pulse Width High  
Clock Pulse Width Low  
OUTPUT PARAMETERS  
Unit Interval (UI)3  
Rise Time (tR) (20% to 80% into 100 Ω Load)  
Fall Time (tF) (20% to 80% into 100 Ω Load)  
Phase-Locked Loop (PLL) Lock Time  
Data Rate per Channel (NRZ)4  
LATENCY5  
0.3  
2.4  
GHz  
MSPS  
MSPS  
ps  
500  
240  
125  
125  
ps  
62.5  
100  
31.25  
31.37  
5
ps  
ps  
ps  
ms  
Gbps  
1.5625  
10  
15  
30  
Pipeline Latency  
Fast Detect Latency  
54  
Sample clock cycles  
Sample clock cycles  
APERTURE  
Aperture Delay (tA)  
Aperture Uncertainty (Jitter, tj)  
Out-of-Range Recovery Time  
160  
44  
1
ps  
fs rms  
Sample clock cycles  
1 The maximum sample rate is the clock rate after the divider.  
2 The minimum sample rate operates at 240 MSPS with L = 2 or L = 1. Refer to SPI Register 0x011A to reduce the threshold of the clock detect circuit.  
3 Baud rate = 1/UI. A subset of this range can be supported.  
4 Default L = 2. This number can be changed based on the sample rate and decimation ratio.  
5 No DDCs used. L = 2, M = 2, F = 2 for each link.  
TIMING SPECIFICATIONS  
Table 5.  
Parameter  
Test Conditions/Comments  
Min Typ  
Max Unit  
CLK+ to SYSREF+ TIMING REQUIREMENTS See Figure 3  
tSU_SR  
tH_SR  
Device clock to SYSREF+ setup time  
Device clock to SYSREF+ hold time  
−44.8  
64.4  
ps  
ps  
SPI TIMING REQUIREMENTS  
See Figure 4  
tDS  
tDH  
tCLK  
tS  
tH  
tHIGH  
tLOW  
tACCESS  
Setup time between the data and the rising edge of SCLK  
Hold time between the data and the rising edge of SCLK  
Period of the SCLK  
Setup time between CSB and SCLK  
Hold time between CSB and SCLK  
Minimum period that SCLK must be in a logic high state  
Minimum period that SCLK must be in a logic low state  
Maximum time delay between falling edge of SCLK and output  
data valid for a read operation  
4
2
40  
2
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10  
10  
6
10  
ns  
tDIS_SDIO  
Time required for the SDIO pin to switch from an output to an  
input relative to the CSB rising edge (not shown in Figure 4)  
10  
ns  
Rev. 0 | Page 9 of 107  
 
 
 
AD6684  
Data Sheet  
Timing Diagrams  
APERTURE  
DELAY  
SAMPLE N  
ANALOG  
INPUT  
SIGNAL  
N – 53  
N + 1  
N – 54  
N – 52  
N – 1  
N – 51  
N – 50  
CLK–  
CLK+  
Figure 2. Data Output Timing (NSR Mode, 21%, L, M, F = 222)  
CLK–  
CLK+  
tSU_SR  
tH_SR  
SYSREF–  
SYSREF+  
Figure 3. SYSREF Setup and Hold Timing  
tDS  
tHIGH  
tCLK  
tACCESS  
tH  
tS  
tDH  
tLOW  
CSB  
SCLK DON’T CARE  
SDIO DON’T CARE  
DON’T CARE  
DON’T CARE  
R/W  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
A7  
D7  
D6  
D3  
D2  
D1  
D0  
Figure 4. Serial Port Interface Timing Diagram  
Rev. 0 | Page 10 of 107  
 
 
Data Sheet  
AD6684  
ABSOLUTE MAXIMUM RATINGS  
THERMAL CHARACTERISTICS  
Table 6.  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Parameter  
Rating  
Electrical  
AVDD1 to AGND  
1.05 V  
AVDD1_SR to AGND  
AVDD2 to AGND  
AVDD3 to AGND  
1.05 V  
2.00 V  
2.70 V  
1.05 V  
1.05 V  
2.00 V  
2.00 V  
−0.3 V to AVDD3 + 0.3 V  
−0.3 V to AVDD1 + 0.3 V  
−0.3 V to SPIVDD + 0.3 V  
−0.3 V to SPIVDD + 0.3 V  
0 V to 2.5 V  
Table 7. Thermal Resistance  
Airflow Velocity  
(m/sec)  
PCB Type  
θJA  
θJCB  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
DVDD to DGND  
JEDEC  
0.0  
1.951, 3  
N/A4  
N/A4  
1.00  
21.581, 2  
17.941, 2  
16.581, 2  
9.74  
DRVDD1 to DRGND  
DRVDD2 to DRGND  
SPIVDD to AGND  
VIN x to AGND  
2s2p Board  
1.0  
2.5  
10-Layer Board 0.0  
1 Per JEDEC 51-7, plus JEDEC 51-5 2s2p test board.  
CLK to AGND  
2 Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air).  
3 Per MIL-STD 883, Method 1012.1.  
SCLK, SDIO, CSB to DGND  
PDWN/STBY to DGND  
SYSREF to AGND_SR  
SYNCIN AB/SYNCIN CD to DRGND  
Environmental  
4 N/A means not applicable.  
0 V to 2.5 V  
ESD CAUTION  
Operating Junction Temperature  
Range  
−40°C to +105°C  
Maximum Junction Temperature  
125°C  
Storage Temperature Range  
(Ambient)  
−65°C to +150°C  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. 0 | Page 11 of 107  
 
 
 
 
AD6684  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
AVDD3  
VIN–A  
VIN+A  
AVDD2  
AVDD2  
AVDD3  
VIN+B  
VIN–B  
AVDD2  
AVDD1 10  
AVDD1 11  
VCM_AB 12  
DVDD 13  
1
2
3
4
5
6
7
8
9
AVDD3  
VIN–C  
VIN+C  
AVDD2  
54  
53  
52  
51  
50 AVDD2  
49 AVDD3  
48 VIN+D  
47 VIN–D  
46 AVDD2  
AD6684  
TOP VIEW  
(Not to Scale)  
45  
44  
43  
AVDD1  
AVDD1  
VCM_CD/VREF  
42 DVDD  
41 DGND  
40 SPIVDD  
39 CSB  
DGND 14  
DRVDD2 15  
PDWN/STBY 16  
FD_A 17  
38 SCLK  
FD_B 18  
37 SDIO  
NOTES  
1. EXPOSED PAD. ANALOG GROUND. THE EXPOSED THERMAL PAD ON THE BOTTOM OF THE PACKAGE  
PROVIDES THE GROUND REFERENCE FOR AVDDx, SPIVDD, DVDD, DRVDD1, AND DRVDD2.  
THIS EXPOSED PAD MUST BE CONNECTED TO GROUND FOR PROPER OPERATION.  
Figure 5. Pin Configuration (Top View)  
Table 8. Pin Function Descriptions  
Pin No.  
Mnemonic  
Type  
Description  
0
AGND/EPAD  
Ground  
Exposed Pad. Analog Ground. The exposed thermal pad on  
the bottom of the package provides the ground reference for  
AVDDx, SPIVDD, DVDD, DRVDD1, and DRVDD2. This exposed  
pad must be connected to ground for proper operation.  
1, 6, 49, 54  
AVDD3  
Supply  
Input  
Analog Power Supply (2.5 V Nominal).  
ADC A Analog Input Complement/True.  
Analog Power Supply (1.8 V Nominal).  
ADC B Analog Input True/Complement.  
Analog Power Supply (0.975 V Nominal).  
2, 3  
VIN−A, VIN+A  
AVDD2  
4, 5, 9, 46, 50, 51, 55, 72  
7, 8  
Supply  
Input  
VIN+B, VIN−B  
AVDD1  
10, 11, 44, 45, 56, 57, 58, 59,  
62, 68, 69, 70, 71  
Supply  
12  
VCM_AB  
Output  
Common-Mode Level Bias Output for Analog Input Channel A  
and Channel B  
13, 42  
14, 41  
15  
DVDD  
Supply  
Ground  
Supply  
Input  
Digital Power Supply (0.975 V Nominal).  
DGND  
Ground Reference for DVDD and SPIVDD.  
Digital Power Supply for JESD204B PLL (1.8 V Nominal).  
DRVDD2  
PDWN/STBY  
16  
Power-Down Input (Active High). The operation of this pin  
depends on the SPI mode and can be configured as power-  
down or standby. Requires external 10 kΩ pull-down resistor.  
17, 18, 36, 35  
FD_A, FD_B, FD_C, FD_D  
SYNCINB−AB  
Output  
Input  
Fast Detect Outputs for Channel A, Channel B, Channel C, and  
Channel D.  
Active Low JESD204B LVDS Sync Input Complement for  
Channel A and Channel B.  
Active Low JESD204B LVDS/CMOS Sync Input True for Channel A  
and Channel B.  
19  
20  
SYNCINB+AB  
Input  
21, 32  
22, 31  
DRGND  
DRVDD1  
Ground  
Supply  
Ground Reference for DRVDD1 and DRVDD2.  
Digital Power Supply for SERDOUT Pins (0.975 V Nominal).  
Rev. 0 | Page 12 of 107  
 
Data Sheet  
AD6684  
Pin No.  
Mnemonic  
Type  
Description  
23, 24  
SERDOUTAB0−,  
SERDOUTAB0+  
Output  
Lane 0 Output Data Complement/True for Channel A and  
Channel B.  
25, 26  
27, 28  
29, 30  
33  
SERDOUTAB1−,  
SERDOUTAB1+  
SERDOUTCD1+,  
SERDOUTCD1−  
SERDOUTCD0+,  
SERDOUTCD0−  
SYNCINB+CD  
Output  
Output  
Output  
Input  
Lane 1 Output Data Complement/True for Channel A and  
Channel B.  
Lane 1 Output Data True/Complement for Channel C and  
Channel D.  
Lane 0 Output Data True/Complement for Channel C and  
Channel D.  
Active Low JESD204B LVDS/CMOS Sync Input True for Channel C  
and Channel D.  
34  
SYNCINB−CD  
Input  
Active Low JESD204B LVDS Sync Input Complement for  
Channel C and Channel D.  
37  
38  
39  
40  
43  
SDIO  
Input/output  
Input  
SPI Serial Data Input/Output.  
SPI Serial Clock.  
SCLK  
CSB  
Input  
SPI Chip Select (Active Low).  
Digital Power Supply for SPI (1.8 V Nominal).  
SPIVDD  
VCM_CD/VREF  
Supply  
Output/input Common-Mode Level Bias Output for Analog Input Channel C  
and Channel D/0.5 V Reference Voltage Input. This pin is  
configurable through the SPI as an output or an input. Use  
this pin as the common-mode level bias output if using the  
internal reference. This pin requires a 0.5 V reference voltage  
input if using an external voltage reference source.  
47, 48  
52, 53  
60, 61  
63, 67  
64  
VIN−D, VIN+D  
VIN+C, VIN−C  
CLK+, CLK−  
AGND_SR  
AVDD1_SR  
Input  
Input  
Input  
Ground  
Supply  
Input  
ADC D Analog Input Complement/True.  
ADC C Analog Input True/Complement.  
Clock Input True/Complement.  
Ground Reference for SYSREF .  
Analog Power Supply for SYSREF (0.975 V Nominal).  
65, 66  
SYSREF+, SYSREF−  
Active Low JESD204B LVDS System Reference (SYSREF) Input  
True/Complement. DC-coupled input only.  
Rev. 0 | Page 13 of 107  
AD6684  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVDD1 = 0.975 V, AVDD1_SR = 0.975 V, AVDD2 = 1.8 V, AVDD3 = 2.5 V, DVDD = 0.975 V, DRVDD1 = 0.975 V, DRVDD2 = 1.8 V,  
SPIVDD = 1.8 V, specified maximum sampling rate, clock divider = 4, 1.5 V p-p full-scale differential input, AIN = −1.0 dBFS, default SPI  
settings, VDR mode (input mask not triggered), unless otherwise noted. Minimum and maximum specifications are guaranteed for the full  
operating junction temperature (TJ) range of −40°C to +105°C. Typical specifications represent performance at TJ = 50°C (TA = 25°C).  
0
0
A
= –1dBFS  
A
= –1dBFS  
IN  
IN  
SNR = 67.10dB  
SFDR = 90dBFS  
ENOB = 10.8 BITS  
SNR = 66.6dB  
SFDR = 83dBFS  
ENOB = 10.7 BITS  
–20  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
50  
100  
150  
250  
0
50  
100  
150  
250  
200  
200  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 6. Single-Tone FFT with fIN = 10.3 MHz  
Figure 9. Single-Tone FFT with fIN = 453 MHz  
0
–20  
0
–20  
A
= –1dBFS  
A
= –1dBFS  
IN  
IN  
SNR = 67.0dB  
SFDR = 85dBFS  
ENOB = 10.8 BITS  
SNR = 66.5dB  
SFDR = 75dBFS  
ENOB = 10.6 BITS  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
50  
100  
150  
250  
0
50  
100  
150  
250  
200  
200  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 7. Single-Tone FFT with fIN = 155 MHz  
Figure 10. Single-Tone FFT with fIN = 765 MHz  
0
–20  
0
–20  
A
= –1dBFS  
A
= –1dBFS  
IN  
IN  
SNR = 66.8dB  
SFDR = 82dBFS  
ENOB = 10.7 BITS  
SNR = 66.0dB  
SFDR = 79dBFS  
ENOB = 10.6 BITS  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
50  
100  
150  
250  
200  
0
50  
100  
150  
250  
200  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 8. Single-Tone FFT with fIN = 305 MHz  
Figure 11. Single-Tone FFT with fIN = 985 MHz  
Rev. 0 | Page 14 of 107  
 
Data Sheet  
AD6684  
90  
85  
80  
75  
70  
65  
60  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
SFDR  
SNR  
ANALOG INPUT FREQUENCY (MHz)  
SAMPLE RATE (MHz)  
Figure 12. SNR/SFDR vs. Sample Rate (fS), fIN = 155 MHz  
Figure 15. SFDR vs. Analog Input Frequency (fIN), First and Second Nyquist  
Zones; AIN at −3 dBFS  
95  
90  
85  
80  
75  
70  
65  
60  
67.5  
67.0  
66.5  
SFDR (dBFS), –40°C  
SFDR (dBFS), +50°C  
SFDR (dBFS), +105°C  
SNRFS, –40°C  
SNRFS, +50°C  
SNRFS, +105°C  
66.0  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
Figure 13. SNR/SFDR vs. Analog Input Frequency (fIN  
)
Figure 16. SNR vs. Analog Input Frequency (fIN), Third Nyquist Zone  
AIN at −3 dBFS  
67.5  
67.4  
67.3  
67.2  
67.1  
67.0  
66.9  
66.8  
66.7  
66.6  
66.5  
66.4  
66.3  
66.2  
66.1  
66.0  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
Figure 14. SNR vs. Analog Input Frequency (fIN), First and Second Nyquist  
Zones; AIN at −3 dBFS  
Figure 17. SFDR vs. Analog Input Frequency (fIN), Third Nyquist Zone; AIN  
at −3 dBFS  
Rev. 0 | Page 15 of 107  
AD6684  
Data Sheet  
120  
110  
100  
90  
0
SFDR (dBFS)  
A
AND A  
= –7dBFS  
IN2  
IN1  
–20  
–40  
SFDR = 86.4dBFS  
80  
SNRFS  
70  
60  
–60  
50  
SFDR (dBc)  
40  
–80  
30  
20  
–100  
–120  
–140  
–160  
SNR  
10  
0
–10  
–20  
–30  
–40  
0
50  
100  
150  
250  
200  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
ANALOG INPUT FREQUENCY (MHz)  
0
FREQUENCY (MHz)  
Figure 18. Two Tone FFT; fIN1 = 153.5 MHz, fIN2 = 156.5 MHz  
Figure 21. SNR/SFDR vs. Analog Input Frequency, fIN = 155 MHz  
120  
0
SFDR (dBFS)  
110  
A
AND A  
= –7dBFS  
IN2  
IN1  
100  
90  
–20  
–40  
SFDR = 85.9dBFS  
80  
SNRFS  
70  
60  
–60  
50  
40  
SFDR (dBc)  
–80  
30  
SNR  
20  
–100  
–120  
–140  
–160  
10  
0
–10  
–20  
–30  
–40  
0
50  
100  
150  
250  
200  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
ANALOG INPUT FREQUENCY (MHz)  
0
FREQUENCY (MHz)  
Figure 19. Two Tone FFT; fIN1 = 303.5 MHz, fIN2 = 306.5 MHz  
Figure 22. SNR/SFDR vs. Analog Input Frequency, fIN = 305 MHz  
0
90  
SFDR  
–20  
85  
SFDR (dBc)  
–40  
–60  
80  
75  
IMD3 (dBc)  
–80  
SFDR (dBFS)  
70  
SNR  
–100  
65  
60  
–120  
–140  
IMD3 (dBFS)  
–90 –84 –78 –72 –66 –60 –54 –48 –42 –36 –30 –24 –18 –12  
0
ANALOG INPUT AMPLITUDE (dBFS)  
JUNCTION TEMPERATURE (°C)  
Figure 20. Two Tone SFDR/IMD3 vs. Analog Input Amplitude (AIN) with  
fIN1 = 303.5 MHz and fIN2 = 306.5 MHz  
Figure 23. SNR/SFDR vs. Junction Temperature, fIN = 155 MHz  
Rev. 0 | Page 16 of 107  
Data Sheet  
AD6684  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
2.0  
1.5  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–38 –21  
8
20  
43  
49  
59  
81  
100 115  
TEMPERATURE (°C)  
OUTPUT CODE  
Figure 27. NSR Mode Power Dissipation vs. Junction Temperature  
Figure 24. INL, fIN = 10.3 MHz  
1.85  
1.80  
1.75  
1.70  
1.0  
0.8  
0.6  
0.4  
0.2  
NSR  
1.65  
0
1.60  
1.55  
1.50  
1.45  
1.40  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
250  
300  
350  
400  
450  
500  
550  
600  
650  
SAMPLE RATE (MSPS)  
OUTPUT CODE  
Figure 28. Power Dissipation vs. Sample Rate (fS)  
Figure 25. DNL, fIN = 10.3 MHz  
0
–20  
6000  
5000  
4000  
3000  
2000  
1000  
0
A
= –1dBFS  
IN  
SNRFS = 65.94dB  
SFDR = 89.01dBFS  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
–125  
–75  
–25  
25  
75  
125  
FREQUENCY (MHz)  
CODE  
Figure 26. Input-Referred Noise Histogram  
Figure 29. DDC Mode (4 DDCs, DCM2, L, M, and F = 244) with fIN = 305 MHz  
Rev. 0 | Page 17 of 107  
AD6684  
Data Sheet  
0
0
–20  
A
= –1dBFS  
A
= –1dBFS  
IN  
IN  
SNRFS = 71.80dB  
SFDR = 98.27dBFS  
SNRFS = 74.50dB  
SFDR = 100.68dBFS  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–100  
–120  
–140  
–160  
5
25  
45  
65  
85  
105  
125  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 30. DDC Mode (4 DDCs, Decimate by 4, L, M, and F = 148) with  
IN = 305 MHz  
Figure 33. NSR Mode (Decimate by 2, L, M, and F = 124) with fIN = 305 MHz  
f
0
–20  
0
A
= –1dBFS  
IN  
A
= –1dBFS  
IN  
SNRFS = 71.80dB  
SFDR = 98.27dBFS  
SNRFS = 70.7dB  
SFDR = 82dBFS  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–100  
–120  
–140  
–31.25  
–21.25  
–11.25  
–1.25  
8.75  
18.75  
28.75  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 34. NSR Mode (LMF = 222) with fIN = 305 MHz  
Figure 31. DDC Mode (4 DDCs, Decimate by 8, L, M, and F = 148) with  
IN = 305 MHz  
f
0
–20  
67.0  
66.9  
66.8  
66.7  
66.6  
66.5  
66.4  
66.3  
66.2  
66.1  
66.0  
65.9  
65.8  
65.7  
65.6  
65.5  
A
= –1dBFS  
IN  
SNRFS = 74.50dB  
SFDR = 100.68dBFS  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
–15.625 –10.625  
–5.625  
–0.625  
4.375  
9.375  
14.375  
FREQUENCY (MHz)  
DIFFERENTIAL VOLTAGE (V)  
Figure 35. SNR vs. Clock Amplitude (Differential Voltage), fIN = 155.3 MHz  
Figure 32. DDC Mode (4 DDCs, Decimate by 16, L, M, and F = 148) with  
fIN = 305 MHz  
Rev. 0 | Page 18 of 107  
Data Sheet  
AD6684  
–95  
–94  
–93  
–92  
–91  
–90  
–89  
–88  
–87  
–86  
–85  
–84  
–83  
–82  
–81  
–80  
–79  
–78  
–77  
–76  
–75  
69  
68  
67  
66  
65  
64  
BUFFER CURRENT = 160µA  
BUFFER CURRENT = 200µA  
BUFFER CURRENT = 240µA  
BUFFER CURRENT = 280µA  
INPUT FULL SCALE = 2.16V  
INPUT FULL SCALE = 1.44V  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
Figure 36. SFDR vs. Analog Input Frequency with Different Buffer Current  
Settings (First and Second Nyquist Zones)  
Figure 39. SNR vs. Analog Input Frequency with Different Analog Input  
Full Scales (First and Second Nyquist Zones)  
–85  
–84  
–83  
–82  
–81  
–80  
–79  
–78  
–77  
–76  
–75  
–74  
69.0  
68.8  
68.6  
68.4  
INPUT FULL SCALE = 2.16V  
68.2  
68.0  
67.8  
67.6  
67.4  
67.2  
67.0  
66.8  
66.6  
66.4  
66.2  
66.0  
65.8  
65.6  
65.4  
65.2  
65.0  
64.8  
64.6  
64.4  
64.2  
64.0  
–73  
BUFFER CURRENT = 200µA  
–72  
–71  
–70  
–69  
–68  
–67  
–66  
–65  
BUFFER CURRENT = 240µA  
BUFFER CURRENT = 280µA  
BUFFER CURRENT = 320µA  
INPUT FULL SCALE = 1.44V  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
Figure 37. SFDR vs. Analog Input Frequency with Different Buffer Current  
Settings (Third Nyquist Zone)  
Figure 40. SNR vs. Analog Input Frequency with Different Analog Input  
Full Scales (Third Nyquist Zone)  
–80  
–78  
–76  
–74  
–72  
–70  
–68  
–66  
–64  
–62  
–60  
68  
67  
INPUT FULL SCALE = 2.16V  
66  
65  
INPUT FULL SCALE = 1.44V  
–58  
BUFFER CURRENT = 320µA  
–56  
–54  
–52  
–50  
–48  
–46  
–44  
–42  
–40  
BUFFER CURRENT = 360µA  
BUFFER CURRENT = 400µA  
BUFFER CURRENT = 440µA  
64  
63  
62  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
Figure 41. SNR vs. Analog Input Frequency with Different Analog Input  
Full Scales (Fourth Nyquist Zone)  
Figure 38. SFDR vs. Analog Input Frequency with Different Buffer Current  
Settings (Fourth Nyquist Zone)  
Rev. 0 | Page 19 of 107  
AD6684  
Data Sheet  
–90  
–89  
–88  
–87  
–86  
–85  
–84  
–83  
–82  
–81  
–80  
–79  
–78  
–77  
–76  
–75  
–74  
–73  
–72  
–71  
–70  
–81  
INPUT FULL SCALE = 1.44V  
–79  
–77  
–75  
–73  
–71  
–69  
–67  
–65  
–63  
–61  
–59  
–57  
–55  
INPUT FULL SCALE = 1.44V  
INPUT FULL SCALE = 2.16V  
INPUT FULL SCALE = 2.16V  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
Figure 44. SFDR vs. Analog Input Frequency with Different Analog Input  
Full Scales (Fourth Nyquist Zone)  
Figure 42. SFDR vs. Analog Input Frequency with Different Analog Input  
Full Scales (First and Second Nyquist Zones)  
–90  
–89  
–88  
–87  
–86  
–85  
–84  
–83  
–82  
–81  
–80  
–79  
–78  
–77  
–76  
–75  
–74  
–73  
–72  
–71  
–70  
INPUT FULL SCALE = 1.44V  
INPUT FULL SCALE = 2.16V  
ANALOG INPUT FREQUENCY (MHz)  
Figure 43. SFDR vs. Analog Input Frequency with Different Analog Input  
Full Scales (Third Nyquist Zone)  
Rev. 0 | Page 20 of 107  
Data Sheet  
AD6684  
EQUIVALENT CIRCUITS  
AVDD3  
EMPHASIS/SWING  
CONTROL (SPI)  
AVDD3  
DRVDD  
VIN+x  
SERDOUTABx+/  
DATA+  
DATA–  
SERDOUTCDx+  
x = 0, 1  
3.5pF  
AVDD3  
100  
100ꢀ  
DRGND  
DRVDD  
OUTPUT  
DRIVER  
400ꢀ  
V
CM  
SERDOUTABx–/  
SERDOUTCDx–  
x = 0, 1  
BUFFER  
10pF  
AVDD3  
DRGND  
AVDD3  
Figure 48. Digital Outputs  
VIN–x  
DRVDD  
3.5pF  
A
IN  
CONTROL  
(SPI)  
CMOS  
PATH  
SYNCINB PIN  
CONTROL (SPI)  
DRGND  
Figure 45. Analog Inputs  
2.5k  
DRVDD  
100ꢀ  
10kꢀ  
SYNCINB+AB/  
SYNCINB+CD  
AVDD1  
25  
1.9pF  
DRGND  
130kꢀ  
CLK+  
LEVEL  
TRANSLATOR  
DRGND  
130kꢀ  
DRVDD  
16kꢀ  
100ꢀ  
10kꢀ  
SYNCINB–AB/  
SYNCINB–CD  
AVDD1  
1.9pF  
25ꢀ  
DRGND  
CLK–  
16kꢀ  
DRGND  
V
= 0.69V  
CM  
Figure 49. SYNCINB AB, SYNCINB CD Inputs  
Figure 46. Clock Inputs  
SPIVDD  
ESD  
100  
10kꢀ  
PROTECTED  
SPIVDD  
DGND  
SYSREF+  
SCLK  
1.9pF  
130kꢀ  
56k  
DGND  
ESD  
PROTECTED  
LEVEL  
TRANSLATOR  
130kꢀ  
100ꢀ  
10kꢀ  
SYSREF–  
Figure 50. SCLK Input  
1.9pF  
SPIVDD  
ESD  
PROTECTED  
56kꢀ  
Figure 47. SYSREF Inputs  
CSB  
ESD  
PROTECTED  
DGND  
DGND  
Figure 51. CSB Input  
Rev. 0 | Page 21 of 107  
 
 
AD6684  
Data Sheet  
SPIVDD  
SPIVDD  
SPIVDD  
SDI  
ESD  
PROTECTED  
ESD  
PROTECTED  
PDWN/  
STBY  
DGND  
SDIO  
56k  
DGND  
SPIVDD  
ESD  
PROTECTED  
ESD  
PROTECTED  
PDWN  
CONTROL (SPI)  
SDO  
DGND  
DGND  
DGND  
DGND  
Figure 52. SDIO Input  
Figure 54. PDWN/STBY Input  
SPIVDD  
ESD  
TEMPERATURE  
AVDD2  
AGND  
DIODE VOLTAGE  
PROTECTED  
EXTERNAL REFERENCE  
VOLTAGE INPUT  
SPIVDD  
FD  
VREF  
FD_A/FD_B/  
FD_C/FD_D  
JESD204B LMFC  
JESD204B SYNC  
VREF PIN  
CONTROL (SPI)  
56k  
DGND DGND  
ESD  
PROTECTED  
Figure 55. VREF Input/Output  
FD_x PIN CONTROL (SPI)  
DGND  
Figure 53. FD_A/FD_B/FD_C/FD_D Outputs  
Rev. 0 | Page 22 of 107  
Data Sheet  
AD6684  
THEORY OF OPERATION  
the dither can slightly improve the SNR (by about 0.2 dB) at the  
expense of the small signal SFDR.  
ADC ARCHITECTURE  
The architecture of the AD6684 consists of an input buffered  
pipelined ADC. The input buffer is designed to provide a 200 Ω  
termination impedance to the analog input signal. The equivalent  
circuit diagram of the analog input termination is shown in  
Figure 45.  
Differential Input Configurations  
There are several ways to drive the AD6684, either actively or  
passively. However, optimum performance is achieved by  
driving the analog input differentially.  
The input buffer provides a linear high input impedance (for  
ease of drive) and reduces kickback from the ADC. The buffer  
is optimized for high linearity, low noise, and low power. The  
quantized outputs from each stage are combined into a final  
14-bit result in the digital correction logic. The pipelined  
architecture permits the first stage to operate with a new input  
sample while, at the same time, the remaining stages operate  
with the preceding samples. Sampling occurs on the rising edge  
of the clock.  
For applications where SNR and SFDR are key parameters,  
differential transformer coupling is the recommended input  
configuration (see Figure 57 and Figure 58) because the noise  
performance of most amplifiers is not adequate to achieve the  
true performance of the AD6684.  
For low to midrange frequencies, a double balun or double  
transformer network (see Figure 57) is recommended for  
optimum performance of the AD6684. For higher frequencies  
in the second or third Nyquist zones, it is recommended to  
remove some of the front-end passive components to ensure  
wideband operation (see Figure 58).  
ANALOG INPUT CONSIDERATIONS  
The analog input to the AD6684 is a differential buffer with an  
internal common-mode voltage of 1.34 V. The clock signal  
alternately switches the input circuit between sample mode and  
hold mode. Either a differential capacitor or two single-ended  
capacitors can be placed on the inputs to provide a matching  
passive network. This configuration ultimately creates a low-pass  
filter at the input, which limits unwanted broadband noise. See  
Figure 57 and Figure 58 for details on input network recom-  
mendations. For more information, see the Analog Dialogue  
article “Transformer-Coupled Front-End for Wideband A/D  
Converters(Volume 39, April 2005). In general, the precise  
values depend on the application.  
Input Common Mode  
The analog inputs of the AD6684 are internally biased to the  
common mode as shown in Figure 56.  
For dc-coupled applications, the recommended operation  
procedure is to export the common-mode voltage to the  
VCM_CD/VREF pin using the SPI writes listed in this section.  
The common-mode voltage must be set by the exported value  
to ensure proper ADC operation. Disconnect the internal  
common-mode buffer from the analog input using  
Register 0x1908.  
When performing SPI writes for dc coupling operation, use the  
following register settings in order:  
For best dynamic performance, the source impedances driving  
VIN+x and VIN−x must be matched such that common-mode  
settling errors are symmetrical. These errors are reduced by the  
common-mode rejection of the ADC. An internal reference  
buffer creates a differential reference that defines the span of the  
ADC core.  
1. Set Register 0x1908, Bit 2 to 1; this setting disconnects the  
internal common-mode buffer from the analog input.  
2. Set Register 0x18A6 to 0x00; this setting turns off the  
voltage reference.  
3. Set Register 0x18E6 to 0x00; this setting turns off the  
temperature diode export.  
4. Set Register 0x18E0 to 0x04.  
5. Set Register 0x18E1 to 0x1C.  
6. Set Register 0x18E2 to 0x14.  
7. Set Register 0x18E3, Bit 6 to 0x01; this setting turns on the  
VCM export.  
Maximum SNR performance is achieved by setting the ADC to  
the largest span in a differential configuration. In the case of the  
AD6684, the available span is programmable through the SPI  
port from 1.44 V p-p to 2.16 V p-p differential with 1.80 V p-p  
differential being the default.  
Dither  
The AD6684 has internal on-chip dither circuitry that improves  
the ADC linearity and SFDR, particularly at smaller signal levels. A  
known but random amount of white noise is injected into the  
input of the AD6684. This dither improves the small signal linearity  
within the ADC transfer function and is precisely subtracted  
out digitally. The dither is turned on by default and does not  
reduce the ADC input dynamic range. The data sheet specifications  
and limits are obtained with the dither turned on. The dither  
can be disabled using SPI writes to Register 0x0922. Disabling  
8. Set Register 0x18E3, Bits[5:0] to the buffer current setting  
(copy the buffer current setting from Register 0x1A4C and  
Register 0x1A4D to improve the accuracy of the common-  
mode export).  
Rev. 0 | Page 23 of 107  
 
 
 
 
AD6684  
Data Sheet  
Analog Input Controls and SFDR Optimization  
Using Register 0x1A4C and Register 0x1A4D, the buffer  
currents on each channel can be scaled to optimize the SFDR  
over various input frequencies and bandwidths of interest. As the  
input buffer currents are set, the amount of current required by  
the AVDD3 supply changes. This relationship is shown in  
Figure 59. For a complete list of buffer current settings, see  
Table 46.  
The AD6684 offers flexible controls for the analog inputs, such  
as buffer current and input full-scale adjustment. All of the  
available controls are shown in Figure 56.  
AVDD3  
AVDD3  
VIN+x  
3.5pF  
AVDD3  
100ꢀ  
400ꢀ  
V
CM  
BUFFER  
10pF  
AVDD3  
100ꢀ  
AVDD3  
VIN–x  
3.5pF  
A
IN  
CONTROL  
(SPI)  
Figure 56. Analog Input Controls  
AGND  
0  
2pF  
10ꢀ  
0.1µF  
10ꢀ  
VIN+x  
50ꢀ  
10ꢀ  
0.1µF  
BALUN  
2pF  
AGND  
50ꢀ  
0ꢀ  
10ꢀ  
0.1µF  
10ꢀ  
10ꢀ  
2pF  
AGND  
VIN–x  
Figure 57. Differential Transformer Coupled Configuration for First and Second Nyquist Frequencies  
AGND  
DNI  
0.1µF  
10ꢀ  
0ꢀ  
10ꢀ  
VIN+x  
50ꢀ  
DNI  
0.1µF  
BALUN  
DNI  
DNI  
AGND  
50ꢀ  
0ꢀ  
0.1µF  
10ꢀ  
10ꢀ  
DNI  
AGND  
VIN–x  
Figure 58. Differential Transformer Coupled Configuration for Third and Fourth Nyquist Zones  
Rev. 0 | Page 24 of 107  
 
 
 
Data Sheet  
AD6684  
0.20  
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
VIN+A/  
VIN+B  
VIN–A/  
VIN–B  
ADC  
INTERNAL  
VREF  
GENERATOR  
CORE  
FULL-SCALE  
VOLTAGE  
ADJUST  
INPUT FULL-SCALE  
RANGE ADJUST  
SPI REGISTER  
(0x1910)  
VREF  
VREF PIN  
CONTROL SPI  
REGISTER  
(0x18A6)  
Figure 60. Internal Reference Configuration and Controls  
100 150 200 250 300 350 400 450 500 550 600  
BUFFER CURRENT SETTING (µA)  
The SPI Register 0x18A6 enables the user to either use this  
internal 0.5 V reference, or to provide an external 0.5 V  
reference. When using an external voltage reference, provide a  
0.5 V reference. The full-scale adjustment is made using the SPI,  
irrespective of the reference voltage. For more information on  
adjusting the full-scale level of the AD6684, refer to the  
Memory Map section.  
Figure 59. AVDD3 Power vs. Buffer Current Setting  
In certain high frequency applications, the SFDR can be  
improved by reducing the full-scale setting.  
Table 9 shows the recommended buffer current settings for the  
different analog input frequency ranges.  
Table 9. SFDR Optimization for Input Frequencies  
The SPI writes required to use the external voltage reference, in  
order, are as follows:  
Input Buffer Current Control  
Setting, Register 0x1A4C and  
Nyquist Zone  
Register 0x1A4D  
1. Set Register 0x18E3 to 0x00 to turn off VCM export.  
2. Set Register 0x18E6 to 0x00 to turn off temperature diode  
export.  
3. Set Register 0x18A6 to 0x01 to turn on the external voltage  
reference.  
First, Second, and Third  
Nyquist  
Fourth Nyquist  
240 (Register 0x1A4C, Bits[5:0] =  
Register 0x1A4D, Bits[5:0] = 01100)  
400 (Register 0x1A4C, Bits[5:0] =  
Register 0x1A4D, Bits[5:0] = 10100)  
The use of an external reference may be necessary, in some  
applications, to enhance the gain accuracy of the ADC or to  
improve thermal drift characteristics.  
Absolute Maximum Input Swing  
The absolute maximum input swing allowed at the inputs of the  
AD6684 is 4.3 V p-p differential. Signals operating near or at  
this level can cause permanent damage to the ADC.  
The external reference has to be a stable 0.5 V reference. The  
ADR130 is a good option for providing the 0.5 V reference.  
Figure 61 shows how the ADR130 can be used to provide the  
external 0.5 V reference to the AD6684. The grayed out areas  
show unused blocks within the AD6684 while using the  
ADR130 to provide the external reference.  
VOLTAGE REFERENCE  
A stable and accurate 0.5 V voltage reference is built into the  
AD6684. This internal 0.5 V reference is used to set the full-  
scale input range of the ADC. The full-scale input range can be  
adjusted via the ADC function register (Register 0x1910). For  
more information on adjusting the input swing, see Table 46.  
Figure 60 shows the block diagram of the internal 0.5 V  
reference controls.  
INTERNAL  
VREF  
GENERATOR  
FULL-SCALE  
VOLTAGE  
ADJUST  
ADR130  
1
2
3
6
5
4
NC  
NC  
GND SET  
VREF  
INPUT  
V
V
OUT  
IN  
0.1µF  
0.1µF  
VREF PIN AND  
FULL-SCALE  
VOLTAGE  
CONTROL  
Figure 61. External Reference Using ADR130  
Rev. 0 | Page 25 of 107  
 
 
 
 
 
AD6684  
Data Sheet  
Input Clock Divider  
CLOCK INPUT CONSIDERATIONS  
The AD6684 contains an input clock divider with the ability to  
divide the input clock by 1, 2, 4, and 8. The divider ratios can be  
selected using Register 0x0108 (see Figure 65).  
For optimum performance, drive the AD6684 sample clock  
inputs (CLK+ and CLK−) with a differential signal. This signal  
is typically ac-coupled to the CLK+ and CLK− pins via a  
transformer or clock drivers. These pins are biased internally  
and require no additional biasing.  
In applications where the clock input is a multiple of the sample  
clock, care must be taken to program the appropriate divider  
ratio into the clock divider before applying the clock signal.  
This ratio ensures that the current transients during device  
startup are controlled.  
Figure 62 shows a preferred method for clocking the AD6684. The  
low jitter clock source is converted from a single-ended signal to  
a differential signal using an RF transformer.  
CLK+  
0.1µF  
1:1Z  
CLK–  
÷2  
÷4  
÷8  
CLK+  
ADC  
CLK–  
CLOCK  
INPUT  
100  
50ꢀ  
0.1µF  
Figure 62. Transformer-Coupled Differential Clock  
REG 0x0108  
Another option is to ac couple a differential CML or LVDS  
Figure 65. Clock Divider Circuit  
signal to the sample clock input pins, as shown in Figure 63 and  
Figure 64.  
The AD6684 clock divider can be synchronized using the external  
SYSREF input. A valid SYSREF causes the clock divider to  
reset to a programmable state. This synchronization feature  
allows multiple devices to have their clock dividers aligned to  
guarantee simultaneous input sampling.  
3.3V  
71  
33ꢀ  
10pF  
33ꢀ  
0.1µF  
Z0 = 50ꢀ  
Clock Jitter Considerations  
CLK+  
ADC  
CLK–  
High speed, high resolution ADCs are sensitive to the quality of  
the clock input. The degradation in SNR at a given input  
frequency (fA) due only to aperture jitter (tJ) can be calculated by  
0.1µF  
Z0 = 50ꢀ  
Figure 63. Differential CML Sample Clock  
SNR = −20 × log (2 × π × fA × tJ)  
0.1µF  
0.1µF  
0.1µF  
100ꢀ  
0.1µF  
In this equation, the rms aperture jitter represents the root  
mean square of all jitter sources, including the clock input,  
analog input signal, and ADC aperture jitter specifications. IF  
undersampling applications are particularly sensitive to jitter  
(see Figure 66).  
CLOCK INPUT  
CLOCK INPUT  
CLK+  
LVDS  
CLK+  
ADC  
DRIVER  
CLK–  
CLK–  
1
1
50ꢀ  
50ꢀ  
130  
12.5fS  
25fS  
50fS  
100fS  
200fS  
400fS  
800fS  
1
50RESISTORS ARE OPTIONAL.  
120  
110  
100  
90  
Figure 64. Differential LVDS Sample Clock  
Clock Duty Cycle Considerations  
Typical high speed ADCs use both clock edges to generate a  
variety of internal timing signals. The AD6684 contains an  
internal clock divider and a duty cycle stabilizer (DCS). In  
applications where the clock duty cycle cannot be guaranteed to  
be 50%, a higher multiple frequency clock along with the usage  
of the clock divider is recommended. When it is not possible to  
provide a higher frequency clock, it is recommended to turn on  
the DCS using Register 0x011C. The output of the divider offers  
a 50% duty cycle, high slew rate (fast edge) clock signal to the  
internal ADC. See the Memory Map section for more details on  
using this feature.  
80  
70  
60  
50  
40  
30  
10  
100  
1000  
10000  
ANALOG INPUT FREQUENCY (MHz)  
Figure 66. Ideal SNR vs. Analog Input Frequency and Jitter  
Rev. 0 | Page 26 of 107  
 
 
 
 
 
 
Data Sheet  
AD6684  
Treat the clock input as an analog signal in cases where aperture  
jitter may affect the dynamic range of the AD6684. Separate the  
power supplies for clock drivers from the ADC output driver  
supplies to avoid modulating the clock signal with digital noise.  
If the clock is generated from another type of source (by gating,  
dividing, or other methods), retime the clock by the original clock  
at the last step. Refer to the AN-501 Application Note and the  
AN-756 Application Note for more in-depth information about  
jitter performance as it relates to ADCs.  
that other voltages may be exported to the same pin at the same  
time, which may result in undefined behavior. Thus, to ensure a  
proper readout, switch off all other voltage exporting circuits as  
detailed in this section.  
The SPI writes required to export the temperature diode are as  
follows (see Table 46 for more information):  
1. Set Register 0x0009 to 0x03 to select both cores.  
2. Set Register 0x18E3 to 0x00 to turn off VCM export.  
3. Set Register 0x18A6 to 0x00 to turn off the voltage  
reference.  
4. Set Register 0x18E6 to 0x01 to turn on temperature diode  
export. The typical voltage response of the temperature  
diode is shown in Figure 67. However, it is recommended  
to take measurements from a pair of diodes into account  
when introducing another step.  
Figure 66 shows the estimated SNR of the AD6684 across input  
frequency for different clock induced jitter values. The SNR can  
be estimated by using the following equation:  
SNR  
SNR  
JITTER  
  
ADC  
  
10  
10  
SNR(dBFS)  10log 10  
10  
5. Set Register 0x18E6 to 0x02 to turn on the second  
temperature diode (that is, 20× the size) of the pair.  
Power-Down/Standby Mode  
The AD6684 has a PDWN/STBY pin that can be used to  
configure the device in power-down or standby mode. The  
default operation is power-down. The PDWN/STBY pin is a  
logic high pin. When in power-down mode, the JESD204B link  
is disrupted. The power-down option can also be set via  
Register 0x003F and Register 0x0040.  
For the method utilizing two diodes simultaneously giving a more  
accurate result, see the AN-1432 Application Note, Practical  
Thermal Modeling and Measurements in High Power ICs.  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
In standby mode, the JESD204B link is not disrupted and  
transmits zeros for all converter samples. This setting can be  
changed using Register 0x0571, Bit 7 to select /K/ characters.  
TEMPERATURE DIODE  
The AD6684 contains a diode-based temperature sensor for  
measuring the temperature of the die. The diode can output a  
voltage and serve as a coarse temperature sensor to monitor the  
internal die temperature.  
The temperature diode voltage can be output to the VCM_CD/  
VREF pin using the SPI. Use Register 0x18E6 to enable or disable  
the diode. Register 0x18E6 is a local register. Both cores must be  
selected in the core index register (Register 0x0009 = 0x03) to  
enable the temperature diode readout. It is important to note  
–40  
–20  
0
20  
40  
60  
80  
100  
JUNCTION TEMPERATURE (°C)  
Figure 67. Temperature Diode Voltage vs. Junction Temperature  
Rev. 0 | Page 27 of 107  
 
 
AD6684  
Data Sheet  
ADC OVERRANGE AND FAST DETECT  
In receiver applications, it is desirable to have a mechanism to  
reliably determine when the converter is about to be clipped.  
The standard overrange bit in the JESD204B outputs provides  
information on the state of the analog input that is of limited  
usefulness. Therefore, it is helpful to have a programmable  
threshold below full scale that allows time to reduce the gain  
before the clip actually occurs. In addition, because input signals  
can have significant slew rates, the latency of this function is of  
major concern. Highly pipelined converters can have significant  
latency. The AD6684 contains fast detect circuitry for individual  
channels to monitor the threshold and to assert the FD_A,  
FD_B, FD_C, and FD_D pins.  
The FD indicator is asserted if the input magnitude exceeds the  
value programmed in the fast detect upper threshold registers,  
located at Register 0x0247 and Register 0x0248. The selected  
threshold register is compared with the signal magnitude at the  
output of the ADC. The fast upper threshold detection has a  
latency of 30 clock cycles (maximum). The approximate upper  
threshold magnitude is defined by  
Upper Threshold Magnitude (dBFS) = 20log (Threshold  
Magnitude/213)  
The FD indicators are not cleared until the signal drops below  
the lower threshold for the programmed dwell time. The lower  
threshold is programmed in the fast detect lower threshold  
registers, located at Register 0x0249 and Register 0x024A. The  
fast detect lower threshold register is a 13-bit register that is  
compared with the signal magnitude at the output of the ADC.  
This comparison is subject to the ADC pipeline latency, but is  
accurate in terms of converter resolution. The lower threshold  
magnitude is defined by  
ADC OVERRANGE  
The ADC overrange indicator is asserted when an overrange is  
detected on the input of the ADC. The overrange indicator can  
be embedded within the JESD204B link as a control bit. The  
latency of this overrange indicator matches the sample latency.  
FAST THRESHOLD DETECTION (FD_A, FD_B, FD_C  
AND FD_D)  
Lower Threshold Magnitude (dBFS) = 20log (Threshold  
Magnitude/213)  
The FD bits (Register 0x0040, Bits[5:0]) are immediately set  
whenever the absolute value of the input signal exceeds the  
programmable upper threshold level. The FD bits are only  
cleared when the absolute value of the input signal drops below  
the lower threshold level for greater than the programmable  
dwell time. This feature provides hysteresis and prevents the  
FD bits from excessively toggling.  
For example, to set an upper threshold of −6 dBFS, write 0xFFF  
to Register 0x0247 and Register 0x0248. To set a lower threshold of  
−10 dBFS, write 0xA1D to Register 0x0249 and Register 0x024A.  
The dwell time can be programmed from 1 to 65,535 sample  
clock cycles by placing the desired value in the fast detect dwell  
time registers, located at Register 0x024B and Register 0x024C.  
See the Memory Map section (Register 0x040, and Register 0x245  
to Register 0x24C in Table 45) for more details.  
The operation of the upper threshold and lower threshold  
registers, along with the dwell time registers, is shown in  
Figure 68.  
UPPER THRESHOLD  
DWELL TIME  
TIMER RESET BY  
RISE ABOVE  
LOWER  
THRESHOLD  
LOWER THRESHOLD  
TIMER COMPLETES BEFORE  
SIGNAL RISES ABOVE  
LOWER THRESHOLD  
DWELL TIME  
FD_A OR FD_B  
Figure 68. Threshold Settings for the FD_A and FD_B Signals  
Rev. 0 | Page 28 of 107  
 
 
 
 
Data Sheet  
AD6684  
SIGNAL MONITOR  
The signal monitor block provides additional information about  
the signal being digitized by the ADC. The signal monitor  
computes the peak magnitude of the digitized signal. This  
information can be used to drive an AGC loop to optimize the  
range of the ADC in the presence of real-world signals.  
decimated clock rate. The magnitude of the input signal is  
compared with the value in the internal magnitude storage  
register (not accessible to the user), and the greater of the two  
is updated as the current peak level. The initial value of the  
magnitude storage register is set to the current ADC input signal  
magnitude. This comparison continues until the monitor period  
timer reaches a count of 1.  
The results of the signal monitor block can be obtained either  
by reading back the internal values from the SPI port or by  
embedding the signal monitoring information into the  
JESD204B interface as special control bits. A global, 24-bit  
programmable period controls the duration of the measurement.  
Figure 69 shows the simplified block diagram of the signal  
monitor block.  
When the monitor period timer reaches a count of 1, the 13-bit  
peak level value is transferred to the signal monitor holding  
register, which can be read through the memory map or output  
through the SPORT over the JESD204B interface. The monitor  
period timer is reloaded with the value in the SMPR, and the  
countdown restarts. In addition, the magnitude of the first  
input sample is updated in the magnitude storage register, and  
the comparison and update procedure, as explained previously,  
continues.  
SIGNAL MONITOR  
FROM  
MEMORY  
MAP  
PERIOD REGISTER  
(SMPR)  
DOWN  
COUNTER  
IS  
COUNT = 1?  
0x0271, 0x0272, 0x0273  
LOAD  
CLEAR  
LOAD  
SPORT OVER JESD204B  
MAGNITUDE  
STORAGE  
REGISTER  
SIGNAL  
MONITOR  
HOLDING  
REGISTER  
TO SPORT OVER  
JESD204B AND  
MEMORY MAP  
FROM  
INPUT  
The signal monitor data can also be serialized and sent over the  
JESD204B interface as control bits. These control bits must be  
deserialized from the samples to reconstruct the statistical data.  
The signal control monitor function is enabled by setting Bits[1:0]  
of Register 0x0279 and Bit 1 of Register 0x027A. Figure 70  
shows two different example configurations for the signal monitor  
control bit locations inside the JESD204B samples. A maximum of  
three control bits can be inserted into the JESD204B samples;  
however, only one control bit is required for the signal monitor.  
Control bits are inserted from MSB to LSB. If only one control bit  
is to be inserted (CS = 1), only the most significant control bit is  
used (see Example Configuration 1 and Example Configuration 2  
in Figure 70). To select the SPORT over JESD204B option,  
program Register 0x0559, Register 0x055A, and Register 0x058F.  
See Table 46 for more information on setting these bits.  
LOAD  
COMPARE  
A > B  
Figure 69. Signal Monitor Block  
The peak detector captures the largest signal within the  
observation period. The detector only observes the magnitude  
of the signal. The resolution of the peak detector is a 13-bit  
value, and the observation period is 24 bits and represents  
converter output samples. The peak magnitude can be derived  
by using the following equation:  
Peak Magnitude (dBFS) = 20log(Peak Detector Value/213)  
The magnitude of the input port signal is monitored over a  
programmable time period, which is determined by the signal  
monitor period register (SMPR). The peak detector function is  
enabled by setting Bit 1 of Register 0x0270 in the signal monitor  
control register. The 24-bit SMPR must be programmed before  
activating this mode.  
Figure 71 shows the 25-bit frame data that encapsulates the  
peak detector value. The frame data is transmitted MSB first  
with five 5-bit subframes. Each subframe contains a start bit  
that can be used by a receiver to validate the deserialized data.  
Figure 72 shows the SPORT over JESD204B signal monitor data  
with a monitor period timer set to 80 samples.  
After enabling peak detection mode, the value in the SMPR is  
loaded into a monitor period timer, which decrements at the  
Rev. 0 | Page 29 of 107  
 
 
 
AD6684  
Data Sheet  
16-BIT JESD204B SAMPLE SIZE (N' = 16)  
15-BIT CONVERTER RESOLUTION (N = 15)  
1-BIT  
CONTROL  
BIT  
(CS = 1)  
EXAMPLE  
CONFIGURATION 1  
(N' = 16, N = 15, CS = 1)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CTRL  
[BIT 2]  
X
S[14] S[13] S[12] S[11] S[10]  
S[9]  
X
S[8]  
X
S[7]  
X
S[6]  
X
S[5]  
X
S[4]  
X
S[3]  
X
S[2]  
X
S[1]  
X
S[0]  
X
X
X
X
X
X
SERIALIZED SIGNAL MONITOR  
FRAME DATA  
16-BIT JESD204B SAMPLE SIZE (N' = 16)  
14-BIT CONVERTER RESOLUTION (N = 14)  
1
CONTROL  
BIT  
(CS = 1)  
1 TAIL  
BIT  
EXAMPLE  
CONFIGURATION 2  
(N' = 16, N = 14, CS = 1)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CTRL  
[BIT 2]  
X
S[13] S[12] S[11] S[10]  
S[9]  
X
S[8]  
X
S[7]  
X
S[6]  
X
S[5]  
X
S[4]  
X
S[3]  
X
S[2]  
X
S[1]  
X
S[0]  
X
TAIL  
X
X
X
X
X
SERIALIZED SIGNAL MONITOR  
FRAME DATA  
Figure 70. Signal Monitor Control Bit Locations  
5-BIT SUBFRAMES  
5-BIT IDLE  
SUBFRAME  
(OPTIONAL)  
IDLE IDLE IDLE IDLE IDLE  
1
1
1
1
1
5-BIT IDENTIFIER START ID[3]  
ID[2]  
0
ID[1]  
0
ID[0]  
1
0
0
SUBFRAME  
5-BIT DATA  
MSB  
START  
0
P[12]  
P[11]  
P[7]  
P[10]  
P[6]  
P[9]  
P5]  
SUBFRAME  
25-BIT  
FRAME  
5-BIT DATA  
SUBFRAME  
START  
0
P[8]  
P[4]  
P[0]  
5-BIT DATA  
SUBFRAME  
START  
0
P[3]  
0
P[2]  
0
P[1]  
0
5-BIT DATA  
LSB  
SUBFRAME  
START  
0
P[ ] = PEAK MAGNITUDE VALUE  
Figure 71. SPORT over JESD204B Signal Monitor Frame Data  
Rev. 0 | Page 30 of 107  
 
 
Data Sheet  
AD6684  
SMPR = 80 SAMPLES (0x0271 = 0x50; 0x0272 = 0x00; 0x0273 = 0x00)  
80 SAMPLE PERIOD  
PAYLOAD 3  
25-BIT FRAME (N)  
IDENT- DATA  
DATA  
LSB  
DATA DATA  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
IFIER  
MSB  
80 SAMPLE PERIOD  
PAYLOAD 3  
25-BIT FRAME (N + 1)  
DATA  
DATA  
LSB  
IDENT-  
IFIER  
DATA DATA  
MSB  
IDLE  
IDLE  
IDLE  
IDLE  
80 SAMPLE PERIOD  
PAYLOAD 3  
25-BIT FRAME (N + 2)  
IDENT- DATA  
IFIER MSB  
DATA  
LSB  
DATA DATA  
IDLE  
IDLE  
IDLE  
IDLE  
Figure 72. SPORT over JESD204B Signal Monitor Example with Period = 80 Samples  
Rev. 0 | Page 31 of 107  
 
AD6684  
Data Sheet  
DIGITAL DOWNCONVERTER (DDC)  
The AD6684 includes four DDCs that provide filtering and reduce  
the output data rate. This digital processing section includes an  
NCO, a half-band decimating filter, a finite impulse response  
(FIR) filter, a gain stage, and a complex to real conversion stage.  
Each of these processing blocks has control lines that allow it to be  
independently enabled and disabled to provide the desired  
processing function. Each pair of ADC channels has two DDCs  
(DDC0 and DDC1) for a total of four DDCs. The digital down-  
converter can be configured to output either real data or  
complex output data.  
The Chip Q ignore bit in the chip mode register (Register 0x0200,  
Bit 5) controls the chip output muxing of all the DDC channels.  
When all DDC channels use real outputs, set this bit high to  
ignore all DDC Q output ports. When any of the DDC channels  
are set to use complex I/Q outputs, the user must clear this bit  
to use both DDC Output Port I and DDC Output Port Q. For  
more information, see Figure 81.  
DDC GENERAL DESCRIPTION  
The four DDC blocks are used to extract a portion of the full  
digital spectrum captured by the ADC(s). The DDC blocks are  
intended for IF sampling or oversampled baseband radios  
requiring wide bandwidth input signals.  
The DDCs output a 16-bit stream. To enable this operation, the  
converter number of bits, N, is set to a default value of 16, even  
though the analog core only outputs 14 bits. In full bandwidth  
operation, the ADC outputs are 9-bit words followed by seven  
zeros, unless the tail bits are enabled.  
Each DDC block contains the following signal processing stages:  
Frequency translation stage (optional)  
Filtering stage  
Gain stage (optional)  
DDC I/Q INPUT SELECTION  
The AD6684 has four ADC channels and four DDC channels.  
Each DDC channel has two input ports that can be paired to  
support both real and complex inputs through the I/Q crossbar  
mux. For real signals, both DDC input ports must select the  
same ADC channel (that is, DDC Input Port I = ADC Channel A  
and DDC Input Port Q = ADC Channel A). For complex  
signals, each DDC input port must select different ADC  
channels (that is, DDC Input Port I = ADC Channel A and  
DDC Input Port Q = ADC Channel B, or DDC Input Port I =  
ADC Channel C and DDC Input Port Q = ADC Channel D).  
Complex to real conversion stage (optional)  
Frequency Translation Stage (Optional)  
This stage consists of a 48-bit complex NCO and quadrature  
mixers that can be used for frequency translation of both real  
and complex input signals. This stage shifts a portion of the  
available digital spectrum down to baseband.  
Filtering Stage  
After shifting down to baseband, this stage decimates the  
frequency spectrum using a chain of up to four half-band, low-  
pass filters for rate conversion. The decimation process lowers the  
output data rate, which in turn reduces the output interface rate.  
The inputs to each DDC are controlled by the DDC input selec-  
tion registers (Register 0x0311 and Register 0x0331) in conjunction  
with the pair index register (Register 0x0009). See Table 45 and  
Table 46 for information on how to configure the DDCs.  
Gain Stage (Optional)  
To compensate for losses associated with mixing a real input  
signal down to baseband, this stage adds an additional 0 dB or  
6 dB of gain.  
DDC I/Q OUTPUT SELECTION  
Each DDC channel has two output ports that can be paired to  
support both real and complex outputs. For real output signals,  
only the DDC Output Port I is used (the DDC Output Port Q is  
invalid). For complex I/Q output signals, both DDC Output  
Port I and DDC Output Port Q are used.  
Complex to Real Conversion Stage (Optional)  
When real outputs are necessary, this stage converts the complex  
outputs back to real by performing an fS/4 mixing operation  
plus a filter to remove the complex component of the signal.  
The I/Q outputs to each DDC channel are controlled by the  
DDC complex to real enable bit, Bit 3 in the DDC control  
registers (Register 0x0310 and Register 0x0330) in conjunction  
with the pair index register (Register 0x0009).  
Figure 73 shows the detailed block diagram of the DDCs  
implemented in the AD6684.  
Rev. 0 | Page 32 of 107  
 
 
 
 
Data Sheet  
AD6684  
DDC 0  
DDC 1  
DDC 0  
DDC 1  
REAL/I  
I
REAL/I  
CONVERTER 0  
NCO  
+
ADC  
REAL/I  
REAL/Q  
REAL/I  
SAMPLING  
AT fS  
MIXER  
(OPTIONAL)  
REAL/Q  
Q
Q CONVERTER 1  
L
JESD204B  
LANES  
SYSREF±  
I
AT UP TO  
15Gbps  
REAL/I  
REAL/I  
CONVERTER 2  
NCO  
ADC  
SAMPLING  
AT fS  
+
MIXER  
(OPTIONAL)  
REAL/Q  
Q
Q CONVERTER 3  
SYSREF±  
I
REAL/I  
REAL/I  
CONVERTER 0  
NCO  
ADC  
SAMPLING  
AT fS  
+
MIXER  
(OPTIONAL)  
REAL/Q  
Q
Q CONVERTER 1  
L
JESD204B  
LANES  
SYSREF±  
I
AT UP TO  
15Gbps  
REAL/I  
REAL/I  
CONVERTER 2  
NCO  
ADC  
SAMPLING  
AT fS  
REAL/Q  
+
MIXER  
(OPTIONAL)  
REAL/Q  
Q
Q CONVERTER 3  
SYSREF±  
SYSREF  
SYNCHRONIZATION  
CONTROL CIRCUITS  
Figure 73. DDC Detailed Block Diagram  
Figure 74 shows an example usage of one of the four DDC  
blocks with a real input signal and four half-band filters (HB4 +  
HB3 + HB2 + HB1). It shows both complex (decimate by 16)  
and real (decimate by 8) output options.  
issued. If the DDC soft reset is not issued, the output may  
potentially show amplitude variations.  
Table 10, Table 11, Table 12, Table 13, and Table 14 show the  
DDC samples when the chip decimation ratio is set to 1, 2, 4, 8,  
or 16, respectively. When DDCs have different decimation  
ratios, the chip decimation ratio must be set to the lowest  
decimation ratio of all the DDC channels in the respective  
channel pair (Channel A/Channel B or Channel C/Channel D).  
In this scenario, samples of higher decimation ratio DDCs are  
repeated to match the chip decimation ratio sample rate.  
When DDCs have different decimation ratios, the chip  
decimation ratio (Register 0x0201) must be set to the lowest  
decimation ratio of all the DDC blocks on a per pair basis in  
conjunction with the pair index (Register 0x0009). In this  
scenario, samples of higher decimation ratio DDCs are repeated  
to match the chip decimation ratio sample rate. Whenever the  
NCO frequency is set or changed, the DDC soft reset must be  
Rev. 0 | Page 33 of 107  
 
AD6684  
Data Sheet  
ADC  
SAMPLING  
AT fS  
ADC  
REAL  
REAL  
REAL INPUT—SAMPLED AT fS  
BANDWIDTH OF  
INTEREST  
BANDWIDTH OF  
INTEREST IMAGE  
fS/32  
fS/32  
fS/16  
fS/2  
fS/3  
fS/4  
fS/8  
fS/16  
fS/8  
fS/4  
fS/3  
fS/2  
DC  
FREQUENCY TRANSLATION STAGE (OPTIONAL)  
DIGITAL MIXER + NCO FOR fS/3 TUNING, THE FREQUENCY TUNING  
WORD = ROUND ((fS/3)/fS × 2 ) = +9.3825 (0x555555555555)  
I
48  
13  
NCO TUNES CENTER OF  
BANDWIDTH OF INTEREST  
TO BASEBAND  
cos(ωt)  
REAL  
48-BIT  
NCO  
90°  
0°  
–sin(ωt)  
Q
BANDWIDTH OF  
INTEREST IMAGE  
(–6dB LOSS DUE TO  
NCO + MIXER)  
DIGITAL FILTER  
RESPONSE  
BANDWIDTH OF INTEREST  
(–6dB LOSS DUE TO  
NCO + MIXER)  
fS/32  
fS/32  
DC  
fS/2  
fS/3  
fS/4  
fS/8  
fS/16  
fS/16  
fS/8  
fS/4  
fS/3  
fS/2  
FILTERING STAGE  
4 DIGITAL HALF-BAND FILTERS  
(HB4 + HB3 + HB2 + HB1)  
HB4 FIR  
HB3 FIR  
HB2 FIR  
HB1 FIR  
HALF-  
HALF-  
HALF-  
HALF-  
BAND  
BAND  
BAND  
BAND  
I
I
FILTER  
FILTER  
FILTER  
FILTER  
2
2
2
2
2
2
2
HB4 FIR  
HB3 FIR  
HB2 FIR  
HB1 FIR  
HALF-  
BAND  
FILTER  
HALF-  
BAND  
FILTER  
HALF-  
BAND  
FILTER  
HALF-  
BAND  
FILTER  
Q
Q
2
6dB GAIN TO  
COMPENSATE FOR  
NCO + MIXER LOSS  
COMPLEX (I/Q) OUTPUTS  
DECIMATE BY 16  
GAIN STAGE (OPTIONAL)  
0dB OR 6dB GAIN  
DIGITAL FILTER  
RESPONSE  
I
I
2
+6dB  
GAIN STAGE (OPTIONAL)  
0dB OR 6dB GAIN  
Q
Q
2
+6dB  
fS/32  
fS/32  
fS/32  
fS/32  
DC  
COMPLEX TO REAL  
DC  
fS/8  
fS/16  
fS/16  
fS/8  
fS/16  
fS/16  
CONVERSION STAGE (OPTIONAL)  
DOWNSAMPLE BY 2  
fS/4 MIXING + COMPLEX FILTER TO REMOVE Q  
I
I
+6dB  
+6dB  
REAL (I) OUTPUTS  
DECIMATE BY 8  
COMPLEX  
TO  
REAL  
REAL/I  
Q
Q
6dB GAIN TO  
COMPENSATE FOR  
NCO + MIXER LOSS  
fS/32  
fS/32  
DC  
fS/8  
fS/16  
fS/16  
fS/8  
Figure 74. DDC Theory of Operation Example (Real Input, Decimate by 16)  
Rev. 0 | Page 34 of 107  
 
Data Sheet  
AD6684  
Table 10. DDC Samples in Each JESD204B Link When Chip Decimation Ratio = 1  
Real (I) Output (Complex to Real Enabled)  
Complex (I/Q) Outputs (Complex to Real Disabled)  
HB2 FIR +  
HB1 FIR  
HB3 FIR + HB2  
FIR + HB1 FIR  
(DCM1 = 4)  
HB4 FIR + HB3 FIR +  
HB2 FIR + HB1 FIR  
(DCM1 = 8)  
HB2 FIR +  
HB1 FIR  
HB3 FIR + HB2  
FIR + HB1 FIR  
(DCM1 = 8)  
HB4 FIR + HB3 FIR +  
HB2 FIR + HB1 FIR  
(DCM1 = 16)  
HB1 FIR  
HB1 FIR  
(DCM1 = 1) (DCM1 = 2)  
(DCM1 = 2) (DCM1 = 4)  
N
N
N
N
N
N
N
N
N + 1  
N
N
N
N
N
N
N
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
N + 8  
N + 9  
N + 1  
N + 1  
N + 2  
N + 2  
N + 3  
N + 3  
N + 4  
N + 4  
N + 5  
N + 5  
N + 6  
N + 6  
N + 7  
N + 7  
N + 8  
N + 8  
N + 9  
N + 9  
N + 10  
N + 10  
N + 11  
N + 11  
N + 12  
N + 12  
N + 13  
N + 13  
N + 14  
N + 14  
N + 15  
N + 15  
N
N
N
N
N
N
N
N
N + 1  
N + 1  
N + 2  
N + 2  
N + 3  
N + 3  
N + 4  
N + 4  
N + 5  
N + 5  
N + 6  
N + 6  
N + 7  
N + 7  
N + 8  
N + 8  
N + 9  
N + 9  
N + 10  
N + 10  
N + 11  
N + 11  
N + 12  
N + 12  
N + 13  
N + 13  
N + 14  
N + 14  
N + 15  
N + 15  
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N + 1  
N + 1  
N + 1  
N + 1  
N + 1  
N + 1  
N + 1  
N + 1  
N + 1  
N + 1  
N + 1  
N + 1  
N + 1  
N + 1  
N + 1  
N + 1  
N + 1  
N + 1  
N + 1  
N + 1  
N + 2  
N + 2  
N + 2  
N + 2  
N + 3  
N + 3  
N + 3  
N + 3  
N + 4  
N + 4  
N + 4  
N + 4  
N + 5  
N + 5  
N + 5  
N + 5  
N + 6  
N + 6  
N + 6  
N + 6  
N + 7  
N + 7  
N + 7  
N + 7  
N + 1  
N + 1  
N + 1  
N + 1  
N + 2  
N + 2  
N + 2  
N + 2  
N + 3  
N + 3  
N + 3  
N + 3  
N + 4  
N + 4  
N + 4  
N + 4  
N + 5  
N + 5  
N + 5  
N + 5  
N + 6  
N + 6  
N + 6  
N + 6  
N + 7  
N + 7  
N + 7  
N + 7  
N + 1  
N + 1  
N + 1  
N + 1  
N + 1  
N + 1  
N + 1  
N + 1  
N + 2  
N + 2  
N + 2  
N + 2  
N + 2  
N + 2  
N + 2  
N + 2  
N + 3  
N + 3  
N + 3  
N + 3  
N + 3  
N + 3  
N + 3  
N + 3  
N + 1  
N + 1  
N + 1  
N + 1  
N + 1  
N + 1  
N + 1  
N + 1  
N + 2  
N + 2  
N + 2  
N + 2  
N + 2  
N + 2  
N + 2  
N + 2  
N + 3  
N + 3  
N + 3  
N + 3  
N + 3  
N + 3  
N + 3  
N + 3  
N + 10  
N + 11  
N + 12  
N + 13  
N + 14  
N + 15  
N + 16  
N + 17  
N + 18  
N + 19  
N + 20  
N + 21  
N + 22  
N + 23  
N + 24  
N + 25  
N + 26  
N + 27  
N + 28  
N + 29  
N + 30  
N + 31  
1 DCM means decimation.  
Table 11. DDC Samples in Each JESD204B Link When Chip Decimation Ratio = 2  
Real (I) Output (Complex to Real Enabled)  
Complex (I/Q) Outputs (Complex to Real Disabled)  
HB4 FIR +  
HB4 FIR +  
HB3 FIR +  
HB2 FIR +  
HB1 FIR  
HB3 FIR +  
HB2 FIR +  
HB1 FIR  
HB3 FIR +  
HB2 FIR +  
HB1 FIR  
HB3 FIR +  
HB2 FIR +  
HB1 FIR  
HB2 FIR +  
HB1 FIR  
HB2 FIR +  
HB1 FIR  
HB1 FIR  
(DCM1 = 2)  
(DCM1 = 4)  
(DCM1 = 8)  
(DCM1 = 2)  
(DCM1 = 4)  
(DCM1 = 8)  
(DCM1 = 16)  
N
N
N
N
N
N
N
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
N + 8  
N + 9  
N
N
N
N
N + 1  
N + 1  
N + 1  
N + 1  
N + 2  
N + 2  
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
N + 8  
N + 9  
N
N
N
N
N + 1  
N + 1  
N + 1  
N + 1  
N + 2  
N + 2  
N
N
N
N
N
N
N
N + 1  
N + 1  
N + 1  
N + 1  
N + 2  
N + 2  
N + 3  
N + 3  
N + 4  
N + 4  
N + 1  
N + 1  
N + 2  
N + 2  
N + 3  
N + 3  
N + 4  
N + 4  
Rev. 0 | Page 35 of 107  
 
 
AD6684  
Data Sheet  
Real (I) Output (Complex to Real Enabled)  
Complex (I/Q) Outputs (Complex to Real Disabled)  
HB4 FIR +  
HB3 FIR +  
HB2 FIR +  
HB1 FIR  
HB4 FIR +  
HB3 FIR +  
HB2 FIR +  
HB1 FIR  
HB3 FIR +  
HB2 FIR +  
HB1 FIR  
HB3 FIR +  
HB2 FIR +  
HB1 FIR  
HB2 FIR +  
HB1 FIR  
HB2 FIR +  
HB1 FIR  
HB1 FIR  
(DCM1 = 2)  
(DCM1 = 4)  
(DCM1 = 8)  
(DCM1 = 2)  
(DCM1 = 4)  
(DCM1 = 8)  
(DCM1 = 16)  
N + 10  
N + 11  
N + 12  
N + 13  
N + 14  
N + 15  
N + 5  
N + 5  
N + 6  
N + 6  
N + 7  
N + 7  
N + 2  
N + 2  
N + 3  
N + 3  
N + 3  
N + 3  
N + 10  
N + 11  
N + 12  
N + 13  
N + 14  
N + 15  
N + 5  
N + 5  
N + 6  
N + 6  
N + 7  
N + 7  
N + 2  
N + 2  
N + 3  
N + 3  
N + 3  
N + 3  
N + 1  
N + 1  
N + 1  
N + 1  
N + 1  
N + 1  
1 DCM means decimation.  
Table 12. DDC Samples in Each JESD204B Link When Chip Decimation Ratio = 4  
Real (I) Output (Complex to Real Enabled)  
Complex (I/Q) Outputs (Complex to Real Disabled)  
HB4 FIR + HB3 FIR +  
HB2 FIR + HB1 FIR  
(DCM1 = 8)  
HB4 FIR + HB3 FIR +  
HB2 FIR + HB1 FIR  
(DCM1 = 16)  
HB3 FIR + HB2 FIR +  
HB2 FIR + HB1 FIR  
(DCM1 = 4)  
HB3 FIR + HB2 FIR +  
HB1 FIR (DCM1 = 8)  
HB1 FIR (DCM1 = 4)  
N
N
N
N
N
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
N
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
N
N
N
N
N + 1  
N + 1  
N + 1  
N + 1  
N + 1  
N + 1  
N + 2  
N + 2  
N + 3  
N + 3  
N + 1  
N + 1  
N + 2  
N + 2  
N + 3  
N + 3  
1 DCM means decimation.  
Table 13. DDC Samples in Each JESD204B Link When Chip Decimation Ratio = 8  
Real (I) Output (Complex to Real Enabled)  
Complex (I/Q) Outputs (Complex to Real Disabled)  
HB3 FIR + HB2 FIR + HB1 FIR  
HB4 FIR + HB3 FIR + HB2 FIR +  
HB1 FIR (DCM1 = 16)  
HB4 FIR + HB3 FIR + HB2 FIR + HB1 FIR (DCM1 = 8)  
(DCM1 = 8)  
N
N
N
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
N
N + 1  
N + 1  
N + 2  
N + 2  
N + 3  
N + 3  
1 DCM means decimation.  
Table 14. DDC Samples in Each JESD204B Link When Chip Decimation Ratio = 16  
Real (I) Output (Complex to Real Enabled)  
HB4 FIR + HB3 FIR + HB2 FIR + HB1 FIR (DCM1 = 16)  
Not applicable  
Complex (I/Q) Outputs (Complex to Real Disabled)  
HB4 FIR + HB3 FIR + HB2 FIR + HB1 FIR (DCM1 = 16)  
N
Not applicable  
Not applicable  
Not applicable  
N + 1  
N + 2  
N + 3  
1 DCM means decimation.  
Rev. 0 | Page 36 of 107  
 
 
 
 
Data Sheet  
AD6684  
For example, if the chip decimation ratio is set to decimate by 4,  
DDC 0 is set to use HB2 + HB1 filters (complex outputs, decimate  
by 4) and DDC 1 is set to use HB4 + HB3 + HB2 + HB1 filters  
(real outputs, decimate by 8). DDC 1 repeats its output data two  
times for every one DDC 0 output. The resulting output samples  
are shown in Table 15.  
Table 15. DDC Output Samples in Each JESD204B Link When Chip DCM1 = 4, DDC 0 DCM1 = 4 (Complex), and DDC 1 DCM1 = 8 (Real)  
DDC 0 DDC 1  
Output Port Q Output Port Q  
Not applicable  
DDC Input Samples  
N
Output Port I  
Output Port I  
I0 (N)  
Q0 (N)  
I1 (N)  
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
I0 (N + 1)  
I0 (N + 2)  
I0 (N + 3)  
Q0 (N + 1)  
Q0 (N + 2)  
Q0 (N + 3)  
N + 8  
N + 9  
I1 (N + 1)  
Not applicable  
N + 10  
N + 11  
N + 12  
N + 13  
N + 14  
N + 15  
1 DCM means decimation.  
Rev. 0 | Page 37 of 107  
 
AD6684  
Data Sheet  
FREQUENCY TRANSLATION  
Variable IF Mode  
GENERAL DESCRIPTION  
NCO and mixers are enabled. NCO output frequency can be  
used to digitally tune the IF frequency.  
Frequency translation is accomplished by using a 48-bit  
complex NCO with a digital quadrature mixer. This stage  
translates either a real or complex input signal from an IF to a  
baseband complex digital output (carrier frequency = 0 Hz).  
0 Hz IF (ZIF) Mode  
The mixers are bypassed, and the NCO is disabled.  
fS/4 Hz IF Mode  
The frequency translation stage of each DDC can be controlled  
individually and supports four different IF modes using Bits[5:4]  
of the DDC control registers (Register 0x0310 and Register 0x0330)  
in conjunction with the pair index register (Register 0x0009).  
These IF modes are  
The mixers and the NCO are enabled in special downmixing by  
fS/4 mode to save power.  
Test Mode  
Input samples are forced to 0.9599 to positive full scale. The  
NCO is enabled. This test mode allows the NCOs to directly  
drive the decimation filters.  
Variable IF mode  
0 Hz IF or zero IF (ZIF) mode  
fS/4 Hz IF mode  
Test mode  
Figure 75 and Figure 76 show examples of the frequency  
translation stage for both real and complex inputs.  
NCO FREQUENCY TUNING WORD (FTW) SELECTION  
48-BIT NCO FTW = MIXING FREQUENCY/ADC SAMPLE RATE × 2  
48  
I
cos(ωt)  
ADC  
SAMPLING  
AT fS  
ADC + DIGITAL MIXER + NCO  
REAL INPUT—SAMPLED AT fS  
REAL  
REAL  
48-BIT  
NCO  
90°  
0°  
COMPLEX  
–sin(ωt)  
Q
BANDWIDTH OF  
INTEREST  
BANDWIDTH OF  
INTEREST IMAGE  
fS/32  
fS/32  
DC  
fS/2  
fS/3  
fS/4  
fS/8  
fS/16  
fS/16  
fS/8  
fS/4  
fS/3  
fS/2  
–6dB LOSS DUE TO  
NCO + MIXER  
48-BIT NCO FTW =  
48  
ROUND ((fS/3)/fS × 2 ) =  
POSITIVE FTW VALUES  
13  
+9.3825 (0x555555555555)  
fS/32  
fS/32  
DC  
48-BIT NCO FTW =  
NEGATIVE FTW VALUES  
48  
ROUND ((–fS/3)/fS × 2 ) =  
13  
–9.3825 (0xFFFF000000000000)  
fS/32  
fS/32  
DC  
Figure 75. DDC NCO Frequency Tuning Word Selection—Real Inputs  
Rev. 0 | Page 38 of 107  
 
 
 
Data Sheet  
AD6684  
NCO FREQUENCY TUNING WORD (FTW) SELECTION  
48-BIT NCO FTW = MIXING FREQUENCY/ADC SAMPLE RATE × 2  
48  
QUADRATURE MIXER  
ADC  
SAMPLING  
AT fS  
I
+
I
I
I
I
Q
QUADRATURE ANALOG MIXER +  
Q
2 ADCs + QUADRATURE DIGITAL  
MIXER + NCO  
48-BIT  
NCO  
REAL  
90°  
PHASE  
90°  
0°  
COMPLEX  
Q
COMPLEX INPUT—SAMPLED AT fS  
I
I
+
ADC  
SAMPLING  
AT fS  
Q
Q
Q
Q
+
BANDWIDTH OF  
INTEREST  
IMAGE DUE TO  
ANALOG I/Q  
MISMATCH  
fS/32  
fS/32  
fS/16  
fS/2  
fS/3  
fS/4  
fS/8  
fS/16  
fS/8  
fS/4  
fS/3  
fS/2  
DC  
48-BIT NCO FTW =  
48  
ROUND ((fS/3)/fS × 2 ) =  
POSITIVE FTW VALUES  
13  
+9.3825 (0x555555555555)  
fS/32  
fS/32  
DC  
Figure 76. DDC NCO Frequency Tuning Word Selection—Complex Inputs  
Setting Up the NCO FTW and POW  
DDC NCO + MIXER LOSS AND SFDR  
The NCO frequency value is given by the 48-bit twos  
complement number entered in the NCO FTW. Frequencies  
between −fS/2 and +fS/2 (fS/2 excluded) are represented using  
the following frequency words:  
When mixing a real input signal down to baseband, 6 dB of loss  
is introduced in the signal due to filtering of the negative image.  
An additional 0.05 dB of loss is introduced by the NCO. The  
total loss of a real input signal mixed down to baseband is  
6.05 dB. For this reason, it is recommended that the user  
compensate for this loss by enabling the 6 dB of gain in the gain  
stage of the DDC to recenter the dynamic range of the signal  
within the full scale of the output bits.  
0x8000 0000 0000 represents a frequency of −fS/2.  
0x0000 0000 0000 represents dc (frequency is 0 Hz).  
0x7FFF FFFF FFFF represents a frequency of +fS/2 − fS/248.  
The NCO frequency tuning word can be calculated using the  
following equation:  
When mixing a complex input signal down to baseband, the  
maximum value that each I/Q sample can reach is 1.414 × full  
scale after it passes through the complex mixer. To avoid over-  
range of the I/Q samples and to keep the data bit widths aligned  
with real mixing, 3.06 dB of loss is introduced in the mixer for  
complex signals. An additional 0.05 dB of loss is introduced by  
the NCO. The total loss of a complex input signal mixed down  
to baseband is −3.11 dB.  
mod  
fC , fS  
fS  
48  
NCO _ FTW round 2  
where:  
NCO_FTW is a 48-bit twos complement number representing  
the NCO FTW.  
fC is the desired carrier frequency in Hz.  
fS is the AD6684 sampling frequency (clock rate) in Hz.  
mod( ) is a remainder function. For example, mod(110,100) =  
10 and for negative numbers, mod(–32,10) = −2.  
round( ) is a rounding function. For example, round(3.6) = 4  
and for negative numbers, round(–3.4) = −3.  
The worst case spurious signal from the NCO is greater than  
102 dBc SFDR for all output frequencies.  
NUMERICALLY CONTROLLED OSCILLATOR  
The AD6684 has a 48-bit NCO for each DDC that enables the  
frequency translation process. The NCO allows the input  
spectrum to be tuned to dc, where it can be effectively filtered  
by the subsequent filter blocks to prevent aliasing. The NCO  
can be set up by providing a frequency tuning word (FTW) and  
a phase offset word (POW).  
Note that this equation applies to the aliasing of signals in the  
digital domain (that is, aliasing introduced when digitizing  
analog signals).  
Rev. 0 | Page 39 of 107  
 
 
 
 
AD6684  
Data Sheet  
For example, if the ADC sampling frequency (fS) is 500 MSPS  
and the carrier frequency (fC) is 140.312 MHz, then  
of the NCO. See the Setting Up the NCO FTW and POW section  
for more information.  
Use the following two methods to synchronize multiple PAWs  
within the chip.  
48 mod 140.312,500  
2
NCO_FTW = round  
=
500  
7.89886 × 1013 Hz  
Using the SPI. Use the DDC NCO soft reset bit in the DDC  
synchronization control register (Register 0x0300, Bit 4) to  
reset all the PAWs in the chip. This is accomplished by  
setting the DDC NCO soft reset bit high and then setting  
this bit low. Note that this method can only be used to  
synchronize DDC channels within the same pair (A/B or  
C/D) of a AD6684 chip.  
This, in turn, converts to 0x47D in the 48-bit twos complement  
representation for NCO_FTW. The actual carrier frequency,  
C_ACTUAL, is calculated based on the following equation:  
f
NCO _ FTW fS  
fC_ACTUAL  
=
= 140.312 MHz  
248  
Using the SYSREF pin. When the SYSREF pin is enabled  
in the SYSREF control registers (Register 0x0120 and  
Register 0x0121) and the DDC synchronization is enabled  
in the DDC synchronization control register (Register 0x0300,  
Bits[1:0]), any subsequent SYSREF event resets all the  
PAWs in the chip. Note that this method can be used to  
synchronize DDC channels within the same AD6684 chip  
or DDC channels within separate AD6684 chips.  
A 48-bit POW is available for each NCO to create a known phase  
relationship between multiple AD6684 chips or individual DDC  
channels inside one AD6684 chip.  
The POW registers can be updated in the NCO at any time  
without disrupting the phase accumulators, allowing phase  
adjustments to occur during normal operation. However, the  
following procedure must be followed to update the FTW  
registers to ensure proper operation of the NCO:  
Mixer  
1. Write to the FTW registers for all the DDCs.  
2. Synchronize the NCOs either through the DDC NCO soft  
reset bit (Register 0x0300, Bit 4), which is accessible  
through the SPI, or through the assertion of the SYSREF  
pin.  
The NCO is accompanied by a mixer. Its operation is similar to  
an analog quadrature mixer. It performs the downconversion of  
input signals (real or complex) by using the NCO frequency as a  
local oscillator. For real input signals, this mixer performs a real  
mixer operation (with two multipliers). For complex input  
signals, the mixer performs a complex mixer operation (with  
four multipliers and two adders). The mixer adjusts its operation  
based on the input signal (real or complex) provided to each  
individual channel. The selection of real or complex inputs can  
be controlled individually for each DDC block using Bit 7 of the  
DDC control registers (Register 0x0310 and Register 0x0330) in  
conjunction with the pair index register (Register 0x0009).  
It is important to note that the NCOs must be synchronized  
either through the SPI or through the SYSREF pin after all  
writes to the FTW or POW registers are complete. This step  
is necessary to ensure the proper operation of the NCO.  
NCO Synchronization  
Each NCO contains a separate phase accumulator word (PAW).  
The initial reset value of each PAW is set to zero, and the phase  
increment value of each PAW is determined by the FTW. The  
POW is added to the PAW to produce the instantaneous phase  
Rev. 0 | Page 40 of 107  
 
Data Sheet  
AD6684  
FIR FILTERS  
Table 16 shows the different bandwidths selectable by including  
different half-band filters. In all cases, the DDC filtering stage  
on the AD6684 provides <−0.001 dB of pass-band ripple and  
>100 dB of stop-band alias rejection.  
GENERAL DESCRIPTION  
There are four sets of decimate by 2, low-pass, half-band, FIR  
filters (labeled HB1 FIR, HB2 FIR, HB3 FIR, and HB4 FIR in  
Figure 73) following the frequency translation stage. After the  
carrier of interest is tuned down to dc (carrier frequency = 0 Hz),  
these filters efficiently lower the sample rate, while providing  
sufficient alias rejection from unwanted adjacent carriers  
around the bandwidth of interest.  
Table 17 shows the amount of stop-band alias rejection for  
multiple pass-band ripple/cutoff points. The decimation ratio of  
the filtering stage of each DDC can be controlled individually  
through Bits[1:0] of the DDC control registers (Register 0x0310  
and Register 0x0330) in conjunction with the pair index register  
(Register 0x0009).  
HB1 FIR is always enabled and cannot be bypassed. The HB2,  
HB3, and HB4 FIR filters are optional and can be bypassed for  
higher output sample rates.  
Table 16. DDC Filter Characteristics  
Real Output  
Output  
Sample  
Decimation Rate  
Complex (I/Q) Output  
Output  
Sample  
Decimation Rate  
Alias  
Half Band  
Filter  
Selection  
Protected  
Bandwidth  
(MHz)  
Ideal SNR  
Improvement1  
(dB)  
Alias  
Rejection  
Ripple (dB) (dB)  
Pass-Band  
Ratio  
(MSPS)  
Ratio  
(MSPS)  
HB1  
1
500  
2
250 (I) +  
250 (Q)  
200  
100  
50  
1
<−0.0001 >100  
HB1 + HB2  
2
4
8
250  
125  
62.5  
4
125 (I) +  
125 (Q)  
4
HB1 + HB2 +  
HB3  
8
62.5 (I) +  
62.5 (Q)  
7
HB1 + HB2 +  
HB3 + HB4  
16  
31.25 (I) +  
31.25 (Q)  
25  
10  
1 Ideal SNR improvement due to oversampling and filtering = 10log(bandwidth/(fS/2)).  
Table 17. DDC Filter Alias Rejection  
Alias Rejection  
(dB)  
Pass-Band Ripple/Cutoff  
Point (dB)  
Alias Protected Bandwidth for Real  
(I) Outputs1  
Alias Protected Bandwidth for Complex  
(I/Q) Outputs  
>100  
95  
90  
85  
80  
25.07  
19.3  
10.7  
<−0.0001  
<−0.0002  
<−0.0003  
<−0.0005  
<−0.0009  
−0.5  
<40% × fOUT  
<80% × fOUT  
<40.12% × fOUT  
<40.23% × fOUT  
<40.36% × fOUT  
<40.53% × fOUT  
45.17% × fOUT  
46.2% × fOUT  
<80.12% × fOUT  
<80.46% × fOUT  
<80.72% × fOUT  
<81.06% × fOUT  
90.34% × fOUT  
92.4% × fOUT  
−1.0  
−3.0  
48.29% × fOUT  
96.58% × fOUT  
1 fOUT = ADC input sample rate ÷ DDC decimation.  
Rev. 0 | Page 41 of 107  
 
 
 
 
AD6684  
Data Sheet  
Table 19. HB3 Filter Coefficients  
HALF-BAND FILTERS  
HB3 Coefficient  
Number  
Decimal  
Coefficient  
Quantized  
Coefficient (17-Bit)  
The AD6684 offers four half-band filters to enable digital signal  
processing of the ADC converted data. These half-band filters  
are bypassable and can be individually selected.  
C1, C11  
C2, C10  
C3, C9  
C4, C8  
C5, C7  
C6  
0.006638  
0
−0.051055  
0
0.294418  
0.500000  
435  
0
−3,346  
0
19,295  
32,768  
HB4 Filter  
The first decimate by 2, half-band, low-pass, FIR filter (HB4)  
uses an 11-tap, symmetrical, fixed coefficient filter implementa-  
tion that is optimized for low power consumption. The HB4  
filter is only used when complex outputs (decimate by 16) or  
real outputs (decimate by 8) are enabled; otherwise, it is  
bypassed. Table 18 and Figure 77 show the coefficients and  
response of the HB4 filter.  
–20  
–40  
Table 18. HB4 Filter Coefficients  
–60  
HB4 Coefficient  
Number  
Decimal  
Coefficient  
Quantized  
Coefficient (15-Bit)  
–80  
–100  
–120  
–140  
–160  
–180  
C1, C11  
C2, C10  
C3, C9  
C4, C8  
C5, C7  
C6  
0.006042  
0
−0.049377  
0
0.293334  
0.500000  
99  
0
−809  
0
4806  
8192  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
NORMALIZED FREQUENCY (× RAD/SAMPLE)  
Figure 78. HB3 Filter Response  
HB2 Filter  
–50  
–100  
–150  
–200  
–250  
The third decimate by 2, half-band, low-pass, FIR filter (HB2)  
uses a 19-tap, symmetrical, fixed coefficient filter implementa-  
tion that is optimized for low power consumption.  
The HB2 filter is only used when complex or real outputs  
(decimate by 4, 8, or 16) is enabled; otherwise, it is bypassed.  
Table 20 and Figure 79 show the coefficients and response of  
the HB2 filter.  
Table 20. HB2 Filter Coefficients  
HB2 Coefficient  
Number  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
Decimal  
Coefficient  
Quantized  
Coefficient (18-Bit)  
NORMALIZED FREQUENCY (× RAD/SAMPLE)  
Figure 77. HB4 Filter Response  
C1, C19  
C2, C18  
C3, C17  
C4, C16  
C5, C15  
C6, C14  
C7, C13  
C8, C12  
C9, C11  
C10  
0.000671  
0
−0.005325  
0
0.022743  
0
−0.074181  
0
0.306091  
0.500000  
88  
0
−698  
0
2,981  
0
−9,723  
0
40,120  
65,536  
HB3 Filter  
The second decimate by 2, half-band, low-pass, FIR filter (HB3)  
uses an 11-tap, symmetrical, fixed coefficient filter implementa-  
tion that is optimized for low power consumption. The HB3  
filter is only used when complex outputs (decimate by 8 or 16)  
or real outputs (decimate by 4 or 8) are enabled; otherwise, it is  
bypassed. Table 19 and Figure 78 show the coefficients and  
response of the HB3 filter.  
Rev. 0 | Page 42 of 107  
 
 
 
 
 
 
Data Sheet  
AD6684  
Table 21. HB1 Filter Coefficients  
–20  
–40  
HB1 Coefficient  
Number  
Decimal  
Coefficient  
Quantized  
Coefficient (20-Bit)  
C1, C63  
C2, C62  
C3, C61  
C4, C60  
C5, C59  
C6, C58  
C7, C57  
C8, C56  
C9, C55  
C10, C54  
C11, C53  
C12, C52  
C13, C51  
C14, C50  
C15, C49  
C16, C48  
C17, C47  
C18, C46  
C19, C45  
C20, C44  
C21, C43  
C22, C42  
C23, C41  
C24, C40  
C25, C39  
C26, C38  
C27, C37  
C28, C36  
C29, C35  
C30, C34  
C31, C33  
C32  
−0.000019  
0
0.000072  
0
−0.000194  
0
0.000442  
0
−0.000891  
0
0.001644  
0
−0.002840  
0
0.004653  
0
−0.007311  
0
0.011121  
0
−0.016553  
0
0.024420  
0
−0.036404  
0
0.056866  
0
−0.101892  
0
0.316883  
0.500000  
−10  
0
38  
0
−102  
0
232  
0
−467  
0
862  
0
−1,489  
0
2,440  
0
−3,833  
0
5,831  
0
−8,679  
0
12,803  
0
−19,086  
0
29,814  
0
–60  
–80  
–100  
–120  
–140  
–160  
–180  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
NORMALIZED FREQUENCY (× RAD/SAMPLE)  
Figure 79. HB2 Filter Response  
HB1 Filter  
The fourth and final decimate by 2, half-band, low-pass, FIR  
filter (HB1) uses a 63-tap, symmetrical, fixed coefficient filter  
implementation that is optimized for low power consumption.  
The HB1 filter is always enabled and cannot be bypassed.  
Table 21 and Figure 80 show the coefficients and response of  
the HB1 filter.  
–20  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
−53,421  
0
166,138  
262,144  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
NORMALIZED FREQUENCY (× RAD/SAMPLE)  
Figure 80. HB1 Filter Response  
Rev. 0 | Page 43 of 107  
 
 
 
 
AD6684  
Data Sheet  
DDC GAIN STAGE  
DDC COMPLEX TO REAL CONVERSION  
Each DDC contains an independently controlled gain stage.  
The gain is selectable as either 0 dB or 6 dB. When mixing a real  
input signal down to baseband, it is recommended that the user  
enable the 6 dB of gain to recenter the dynamic range of the  
signal within the full scale of the output bits.  
Each DDC contains an independently controlled complex to  
real conversion block. The complex to real conversion block  
reuses the last filter (HB1 FIR) in the filtering stage along with  
an fS/4 complex mixer to upconvert the signal. After upconvert-  
ing the signal, the Q portion of the complex mixer is no longer  
needed and is dropped.  
When mixing a complex input signal down to baseband, the mixer  
has already recentered the dynamic range of the signal within  
the full scale of the output bits, and no additional gain is necessary.  
However, the optional 6 dB gain compensates for low signal  
strengths. The downsample by 2 portion of the HB1 FIR filter is  
bypassed when using the complex to real conversion stage.  
Figure 81 shows a simplified block diagram of the complex to  
real conversion.  
HB1 FIR  
GAIN STAGE  
COMPLEX TO  
REAL ENABLE  
LOW-PASS  
FILTER  
I
0dB  
OR  
I
I
0
2
I/REAL  
6dB  
1
COMPLEX TO REAL CONVERSION  
0dB  
OR  
6dB  
cos(ωt)  
+
90°  
REAL  
fS/4  
0°  
sin(ωt)  
0dB  
OR  
6dB  
Q
LOW-PASS  
FILTER  
Q
0dB  
OR  
6dB  
Q
Q
2
HB1 FIR  
Figure 81. Complex to Real Conversion Block  
Rev. 0 | Page 44 of 107  
 
 
 
Data Sheet  
AD6684  
DDC EXAMPLE CONFIGURATIONS  
Table 22 describes the register settings for multiple DDC example configurations.  
Table 22. DDC Example Configurations (Per ADC Channel Pair)  
No. of  
Virtual  
Chip  
Chip  
DDC  
Application Decimation DDC Input Output  
Bandwidth Converters  
Layer  
Ratio  
Type  
Type  
Per DDC1  
Required  
Register Settings2  
One DDC  
2
Complex  
Complex 40% × fS  
2
0x0009 = 0x01, 0x02, or 0x03 (pair selection)  
0x0200 = 0x01 (one DDC; I/Q selected)  
0x0201 = 0x01 (chip decimate by 2)  
0x0310 = 0x83 (complex mixer; 0 dB gain; variable  
IF; complex outputs; HB1 filter)  
0x0311 = 0x04 (DDC I input = ADC Channel A/  
Channel C; DDC Q input = ADC Channel B/  
Channel D)  
0x0314, 0x0315, 0x0316, 0x0317, 0x0318, 0x031A,  
0x031D, 0x031E, 0x031F, 0x0320, 0x0321, 0x0322 =  
FTW and POW set as required by application for  
DDC 0  
One DDC  
4
Complex  
Complex 20% × fS  
2
0x0009 = 0x01, 0x02, or 0x03 (pair selection)  
0x0200 = 0x01 (one DDC; I/Q selected)  
0x0201 = 0x02 (chip decimate by 4)  
0x0310= 0x80 (complex mixer; 0 dB gain; variable  
IF; complex outputs; HB2 + HB1 filters)  
0x0311= 0x04 (DDC I input = ADC Channel A/  
Channel C; DDC Q input = ADC Channel B/  
Channel D)  
0x0314, 0x0315, 0x0316, 0x0317, 0x0318, 0x031A,  
0x031D, 0x031E, 0x031F, 0x0320, 0x0321, 0x0322 =  
FTW and POW set as required by application for  
DDC 0  
Two DDCs  
2
Real  
Real  
20%× fS  
2
0x0009 = 0x01, 0x02, or 0x03 (pair selection)  
0x0200 = 0x22 (two DDCs; I only selected)  
0x0201 = 0x01 (chip decimate by 2)  
0x0310, 0x0330 = 0x48 (real mixer; 6 dB gain;  
variable IF; real output; HB2 + HB1 filters)  
0x0311 = 0x00 (DDC 0 I input = ADC Channel A/  
Channel C; DDC 0 Q input = ADC Channel A/  
Channel C)  
0x0331 = 0x05 (DDC 1 I input = ADC Channel B/  
Channel D; DDC 1 Q input = ADC Channel B/  
Channel D)  
0x0314, 0x0315, 0x0316, 0x0317, 0x0318, 0x031A,  
0x031D, 0x031E, 0x031F, 0x0320, 0x0321, 0x0322 =  
FTW and POW set as required by application for  
DDC 0  
0x0334, 0x0335, 0x0336, 0x0337, 0x0338, 0x033A,  
0x033D, 0x033E, 0x033F, 0x0340, 0x0341, 0x0342 =  
FTW and POW set as required by application for  
DDC 1  
Rev. 0 | Page 45 of 107  
 
 
AD6684  
Data Sheet  
No. of  
Virtual  
Bandwidth Converters  
Chip  
Chip  
DDC  
Application Decimation DDC Input Output  
Layer  
Ratio  
Type  
Type  
Per DDC1  
Required  
Register Settings2  
Two DDCs  
2
Complex  
Complex 40%× fS  
4
0x0009 = 0x01, 0x02, or 0x03 (pair selection)  
0x0200 = 0x22 (two DDCs; I only selected)  
0x0201 = 0x01 (chip decimate by 2)  
0x0310, 0x0330 = 0x4B (complex mixer; 6 dB gain;  
variable IF; complex output; HB1 filter)  
0x0311, 0x0331 = 0x04 (DDC 0 I input = ADC  
Channel A/Channel C; DDC 0 Q input = ADC  
Channel B/Channel D)  
0x0314, 0x0315, 0x0316, 0x0317, 0x0318, 0x031A,  
0x031D, 0x031E, 0x031F, 0x0320, 0x0321, 0x0322 =  
FTW and POW set as required by application for  
DDC 0  
0x0334, 0x0335, 0x0336, 0x0337, 0x0338, 0x033A,  
0x033D, 0x033E, 0x033F, 0x0340, 0x0341, 0x0342=  
FTW and POW set as required by application for  
DDC 1  
Two DDCs  
4
Complex  
Complex 20% × fS  
4
0x0009 = 0x01, 0x02, or 0x03 (pair selection)  
0x0200 = 0x02 (two DDCs; I/Q selected)  
0x0201 = 0x02 (chip decimate by 4)  
0x0310, 0x0330 = 0x80 (complex mixer; 0 dB gain;  
variable IF; complex outputs; HB2 + HB1 filters)  
0x0311, 0x0331 = 0x04 (DDC I input = ADC  
Channel A/Channel C; DDC Q input = ADC  
Channel B/Channel D)  
0x0314, 0x0315, 0x0316, 0x0317, 0x0318, 0x031A,  
0x031D, 0x031E, 0x031F, 0x0320, 0x0321, 0x0322 =  
FTW and POW set as required by application for  
DDC 0  
0x0334, 0x0335, 0x0336, 0x0337, 0x0338, 0x033A,  
0x033D, 0x033E, 0x033F, 0x0340, 0x0341, 0x0342=  
FTW and POW set as required by application for  
DDC 1  
Two DDCs  
4
Complex  
Real  
10% × fS  
2
0x0009 = 0x01, 0x02, or 0x03 (pair selection)  
0x0200 = 0x22 (two DDCs; I only selected)  
0x0201 = 0x02 (chip decimate by 4)  
0x0310, 0x0330 = 0x89 (complex mixer; 0 dB gain;  
variable IF; real output; HB3 + HB2 + HB1 filters)  
0x0311, 0x0331 = 0x04 (DDC I input = ADC  
Channel A/Channel C; DDC Q input = ADC  
Channel B/Channel D)  
0x0314, 0x0315, 0x0316, 0x0317, 0x0318, 0x031A,  
0x031D, 0x031E, 0x031F, 0x0320, 0x0321, 0x0322 =  
FTW and POW set as required by application for  
DDC 0  
0x0334, 0x0335, 0x0336, 0x0337, 0x0338, 0x033A,  
0x033D, 0x033E, 0x033F, 0x0340, 0x0341, 0x0342=  
FTW and POW set as required by application for  
DDC 1  
Rev. 0 | Page 46 of 107  
Data Sheet  
AD6684  
No. of  
Virtual  
Bandwidth Converters  
Chip  
Chip  
DDC  
Application Decimation DDC Input Output  
Layer  
Ratio  
Type  
Type  
Per DDC1  
Required  
Register Settings2  
Two DDCs  
4
Real  
Real  
10% × fS  
2
0x0009 = 0x01, 0x02, or 0x03 (pair selection)  
0x0200 = 0x22 (two DDCs; I only selected)  
0x0201 = 0x02 (chip decimate by 4)  
0x0310, 0x0330 = 0x49 (real mixer; 6 dB gain;  
variable IF; real output; HB3 + HB2 + HB1 filters)  
0x0311 = 0x00 (DDC 0 I input = ADC Channel A/  
Channel C; DDC 0 Q input = ADC Channel A/  
Channel C)  
0x0331 = 0x05 (DDC 1 I input = ADC Channel B/  
Channel D; DDC 1 Q input = ADC Channel B/  
Channel D)  
0x0314, 0x0315, 0x0316, 0x0317, 0x0318, 0x031A,  
0x031D, 0x031E, 0x031F, 0x0320, 0x0321, 0x0322 =  
FTW and POW set as required by application for  
DDC 0  
0x0334, 0x0335, 0x0336, 0x0337, 0x0338, 0x033A,  
0x033D, 0x033E, 0x033F, 0x0340, 0x0341, 0x0342=  
FTW and POW set as required by application for  
DDC 1  
Two DDCs  
4
Real  
Complex 20% × fS  
4
0x0009 = 0x01, 0x02, or 0x03 (pair selection)  
0x0200 = 0x02 (two DDCs; I/Q selected)  
0x0201 = 0x02 (chip decimate by 4)  
0x0310, 0x0330 = 0x40 (real mixer; 6 dB gain;  
variable IF; complex output; HB2 + HB1 filters)  
0x0311 = 0x00 (DDC 0 I input = ADC Channel A/  
Channel C; DDC 0 Q input = ADC Channel A/  
Channel C)  
0x0331 = 0x05 (DDC 1 I input = ADC Channel B/  
Channel D; DDC 1 Q input = ADC Channel B/  
Channel D)  
0x0314, 0x0315, 0x0316, 0x0317, 0x0318, 0x031A,  
0x031D, 0x031E, 0x031F, 0x0320, 0x0321, 0x0322 =  
FTW and POW set as required by application for  
DDC 0  
0x0334, 0x0335, 0x0336, 0x0337, 0x0338, 0x033A,  
0x033D, 0x033E, 0x033F, 0x0340, 0x0341, 0x0342=  
FTW and POW set as required by application for  
DDC 1  
Rev. 0 | Page 47 of 107  
AD6684  
Data Sheet  
No. of  
Virtual  
Bandwidth Converters  
Chip  
Chip  
DDC  
Application Decimation DDC Input Output  
Layer  
Ratio  
Type  
Type  
Per DDC1  
Required  
Register Settings2  
Two DDCs  
8
Real  
Real  
5% × fS  
2
0x0009 = 0x01, 0x02, or 0x03 (pair selection)  
0x0200 = 0x22 (two DDCs; I only selected)  
0x0201 = 0x03 (chip decimate by 8)  
0x0310, 0x0330 = 0x4A (real mixer; 6 dB gain;  
variable IF; real output; HB4 + HB3 + HB2 + HB1  
filters)  
0x0311 = 0x00 (DDC 0 I input = ADC Channel A/  
Channel C; DDC 0 Q input = ADC Channel A/  
Channel C)  
0x0331 = 0x05 (DDC 1 I input = ADC Channel B/  
Channel D; DDC 1 Q input = ADC Channel B/  
Channel D)  
0x0314, 0x0315, 0x0316, 0x0317, 0x0318, 0x031A,  
0x031D, 0x031E, 0x031F, 0x0320, 0x0321, 0x0322 =  
FTW and POW set as required by application for  
DDC 0  
0x0334, 0x0335, 0x0336, 0x0337, 0x0338, 0x033A,  
0x033D, 0x033E, 0x033F, 0x0340, 0x0341, 0x0342=  
FTW and POW set as required by application for  
DDC 1  
1 fS is the ADC sample rate. Bandwidths listed are <−0.001 dB of pass-band ripple and >100 dB of stop-band alias rejection.  
2 The NCOs must be synchronized either through the SPI or through the SYSREF pin after all writes to the FTW or POW registers have completed. This is necessary to  
ensure the proper operation of the NCO. See the NCO Synchronization section for more information.  
Rev. 0 | Page 48 of 107  
Data Sheet  
AD6684  
NOISE SHAPING REQUANTIZER (NSR)  
When operating the AD6684 with the NSR enabled, a decimating  
half-band filter that is optimized at certain input frequency bands  
can also be enabled. This filter offers the user the flexibility in  
signal bandwidth processing and image rejection. Careful  
frequency planning can offer advantages in analog filtering  
preceding the ADC. The filter can function either in high-pass  
or low-pass mode. The filter can be optionally enabled on the  
AD6684 when the NSR is enabled. When operating with the  
NSR enabled, the decimating half-band filter mode (low pass or  
high pass) is selected by setting Bit 7 in Register 0x041E. When the  
decimating half-band filter is enabled, the chip decimation ratio  
register (Register 0x0201) must be set to a decimation rate of 2  
(register value = 0x01).  
Half-Band Filter Features  
The half-band decimating filter provides approximately 39.5%  
of the output sample rate in usable bandwidth (19.75% of the  
input sample clock). The filter provides >40 dB of rejection. The  
normalized response of the half-band filter in low-pass mode is  
shown in Figure 82. In low-pass mode, operation is allowed in  
the first Nyquist zone, which includes frequencies of up to fS/2,  
where fS is the decimated sample rate. For example, with an  
input clock of 500 MHz, the output sample rate is 250 MSPS  
and fS/2 = 125 MHz.  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
DECIMATING HALF-BAND FILTER  
The AD6684 optional decimating half-band filter reduces the  
input sample rate by a factor of 2 while rejecting aliases that fall  
into the band of interest. For an input sample clock of 500 MHz,  
this filter reduces the output sample rate to 250 MSPS. This filter is  
designed to provide >40 dB of alias protection for 39.5% of the  
output sample rate (79% of the Nyquist band). For an ADC sample  
rate of 500 MSPS, the filter provides a maximum usable  
bandwidth of 98.75 MHz.  
0
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50  
NORMALIZED FREQUENCY (× RAD/SAMPLE)  
Half-Band Filter Coefficients  
The 19-tap, symmetrical, fixed coefficient half-band filter has  
low power consumption due to its polyphase implementation.  
Table 23 lists the coefficients of the half-band filter in low-pass  
mode. In high-pass mode, Coefficient C9 is multiplied by −1.  
The decimal coefficients used in the implementation and the  
decimal equivalent values of the coefficients are listed.  
Coefficients not listed in Table 23 are 0s.  
Figure 82. Low-Pass, Half-Band Filter Response  
The half-band filter can also be used in high-pass mode. The  
usable bandwidth remains at 39.5% of the output sample rate  
(19.75% of the input sample clock), which is the same as in low-  
pass mode). Figure 83 shows the normalized response of the  
half-band filter in high-pass mode. In high-pass mode, operation  
is allowed in the second and third Nyquist zones, which includes  
frequencies from fS/2 to 3fS/2, where fS is the decimated sample  
rate. For example, with an input clock of 500 MHz, the output  
sample rate is 250 MSPS, fS/2 = 125 MHz, and 3fS/2 = 375 MHz.  
10  
Table 23. Fixed Coefficients for Half-Band Filter  
Coefficient  
Number  
Decimal  
Coefficient  
Quantized  
Coefficient (12-Bit)  
0
0.012207  
−0.022949  
0.045410  
−0.094726  
0.314453  
0.500000  
25  
−47  
93  
−194  
644  
1024  
C2, C16  
C4, C14  
C6, C12  
C8, C10  
C9  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
NORMALIZED FREQUENCY (× π RAD/SAMPLE)  
Figure 83. High-Pass, Half-Band Filter Response  
Rev. 0 | Page 49 of 107  
 
 
 
 
 
AD6684  
Data Sheet  
mode, the useful frequency range can be set using the 6-bit  
NSR OVERVIEW  
tuning word in the NSR tuning register (Address 0x0422).  
There are 59 possible tuning words (TW), from 0 to 58; each  
step is 0.5% of the ADC sample rate. The following three  
equations describe the left band edge (f0), the channel center  
(fCENTER), and the right band edge (f1), respectively:  
The AD6684 features an NSR to allow higher than 9-bit SNR to  
be maintained in a subset of the Nyquist band. The harmonic  
performance of the receiver is unaffected by the NSR feature.  
When enabled, the NSR contributes an additional 3.0 dB of loss  
to the input signal, such that a 0 dBFS input is reduced to  
−3.0 dBFS at the output pins. This loss does not degrade the SNR  
performance of the AD6684.  
f0 = fADC × 0.005 × TW  
f
CENTER = f0 + 0.105 × fADC  
The NSR feature can be independently controlled per channel  
via the SPI.  
f1 = f0 + 0.21 × fADC  
28% BW Mode (>130 MHz at 491.52 MSPS)  
Two different bandwidth modes are provided; select the mode  
from the SPI port. In each of the two modes, the center frequency  
of the band can be tuned such that IFs can be placed anywhere  
in the Nyquist band. The NSR feature is enabled by default on  
the AD6684. The bandwidth and mode of the NSR operation  
are selected by setting the appropriate bits in Register 0x0420  
and Register 0x0422. By selecting the appropriate profile and  
mode bits in these two registers, the NSR feature can be enabled  
for the desired mode of operation.  
The second NSR mode offers excellent noise performance  
across a bandwidth that is 28% of the ADC output sample rate  
(56% of the Nyquist band) and can be centered by setting the  
NSR mode bits in the NSR mode register (Address 0x0420) to  
001. In this mode, the useful frequency range can be set using  
the 6-bit tuning word in the NSR tuning register (Address 0x0422).  
There are 44 possible tuning words (TW, from 0 to 43); each step is  
0.5% of the ADC sample rate. The following three equations  
describe the left band edge (f0), the channel center (fCENTER), and  
the right band edge (f1), respectively:  
21% BW Mode (>100 MHz at 491.52 MSPS)  
The first NSR mode offers excellent noise performance across a  
bandwidth that is 21% of the ADC output sample rate (42% of  
the Nyquist band) and can be centered by setting the NSR mode  
bits in the NSR mode register (Address 0x0420) to 000. In this  
f0 = fADC × 0.005 × TW  
f
CENTER = f0 + 0.14 × fADC  
f1 = f0 + 0.28 × fADC  
Rev. 0 | Page 50 of 107  
 
Data Sheet  
AD6684  
VARIABLE DYNAMIC RANGE (VDR)  
The AD6684 features a VDR digital processing block to allow  
up to a 14-bit dynamic range to be maintained in a subset of the  
Nyquist band. Across the full Nyquist band, a minimum 9-bit  
dynamic range is available at all times. This operation is suitable  
for applications such as DPD processing. The harmonic perfor-  
mance of the receiver is unaffected by this feature. When enabled,  
VDR does not contribute loss to the input signal but operates by  
effectively changing the output resolution at the output pins.  
This feature can be independently controlled per channel via  
the SPI.  
Table 24. VDR Reduced Output Resolution Values  
VDR Punish Bits[1:0]  
Output Resolution (Bits)  
00  
01  
10  
11  
14  
13  
12 or 11  
10 or 9  
The frequency zones of the mask are defined by the bandwidth  
mode selected in Register 0x0430. The upper amplitude limit  
for input signals located in these frequency zones is −30 dBFS.  
If the input signal level in the disallowed frequency zones exceeds  
an amplitude level of –30 dBFS (into the gray shaded areas), the  
VDR block triggers a reduction in the output resolution, as shown  
in Figure 84. The VDR block engages and begins limiting output  
resolution gradually as the signal amplitudes increase in the  
mask regions. As the signal amplitude level increases into the  
mask regions, the output resolution is gradually lowered. For  
every 6 dB increase in signal level above −30 dBFS, one bit of  
output resolution is discarded from the output data by the VDR  
block, as shown in Table 25. These zones can be tuned within  
the Nyquist band by setting Bits[3:0] in Register 0x0434 to  
determine the VDR center frequency (fVDR). The VDR center  
frequency in complex mode can be adjusted from 1/16 fS to  
15/16 fS in 1/16 fS steps. In real mode, fVDR can be adjusted from  
1/8 fS to 3/8 fS in 1/16 fS steps.  
The VDR block operates in either complex or real mode. In  
complex mode, VDR has selectable bandwidths of 25% and 43%  
of the output sample rate. In real mode, the bandwidth of  
operation is limited to 25% of the output sample rate. The  
bandwidth and mode of the VDR operation are selected by  
setting the appropriate bits in Register 0x0430.  
When the VDR block is enabled, input signals that violate a  
defined mask (signified by the gray shaded areas in Figure 84)  
result in the reduction of the output resolution of the AD6684.  
The VDR block analyzes the peak value of the aggregate signal  
level in the disallowed zones to determine the reduction of the  
output resolution. To indicate that the AD6684 is reducing  
output, the resolution VDR punish bits and/or a VDR high/low  
resolution bit can optionally be inserted into the output data  
stream as control bits by programming the appropriate value  
into Register 0x0559 and Register 0x055A. Up to two control  
bits can be used without the need to change the converter  
resolution parameter, N. Up to three control bits can be used,  
but if using three, the converter resolution parameter, N, must  
be changed to 13. The VDR high/low resolution bit can be  
programmed into either of the three available control bits and  
indicates if VDR is reducing output resolution (bit value is a 1),  
or if full resolution is available (bit value is a 0). Enable the two  
punish bits to provide a clearer indication of the available resolution  
of the sample. To decode these two bits, see Table 24.  
Table 25. VDR Reduced Output Resolution Values  
Signal Amplitude Violating Defined  
VDR Mask  
Output Resolution  
(Bits)  
Amplitude ≤ −30 dBFS  
14  
13  
12  
11  
10  
9
−30 dBFS < amplitude ≤ −24 dBFS  
−24 dBFS < amplitude ≤ −18 dBFS  
−18 dBFS < amplitude ≤ −12 dBFS  
−12 dBFS < amplitude ≤ −6 dBFS  
−6 dBFS < amplitude ≤ 0 dBFS  
dBFS  
–30  
0
0
fS  
fS  
INTERMODULATION PRODUCTS < –30dBFS  
INTERMODULATION PRODUCTS > –30dBFS  
Figure 84. VDR Operation—Reduction in Output Resolution  
Rev. 0 | Page 51 of 107  
 
 
 
 
AD6684  
Data Sheet  
VDR REAL MODE  
VDR COMPLEX MODE  
The real mode of VDR works over a bandwidth of 25% of the  
sample rate (50% of the Nyquist band). The output bandwidth  
of the AD6684 can be 25% only when operating in real mode.  
Figure 85 shows the frequency zones for the 25% bandwidth  
real output VDR mode tuned to a center frequency (fVDR) of fS/4  
(tuning word = 0x04). The frequency zones where the amplitude  
cannot exceed −30 dBFS are the upper and lower portions of  
the Nyquist band signified by the gray shaded areas.  
dBFS  
The complex mode of VDR works with selectable bandwidths  
of 25% of the sample rate (50% of the Nyquist band) and 43% of  
the sample rate (86% of the Nyquist band). Figure 86 and Figure 87  
show the frequency zones for VDR in the complex mode. When  
operating VDR in complex mode, place in-phase (I) input signal  
data in Channel A and place quadrature (Q) signal data in  
Channel B.  
Figure 86 shows the frequency zones for the 25% bandwidth  
VDR mode with a center frequency of fS/4 (tuning word =  
0x04). The frequency zones where the amplitude may not  
exceed −30 dBFS are the upper and lower portions of the  
Nyquist band extending into the complex domain.  
dBFS  
–30  
–30  
0
–1/2 fS  
1/8 fS  
3/8 fS 1/2 fS  
Figure 86. 25% VDR Bandwidth, Complex Mode  
0
1/8 fS  
3/8 fS  
1/2 fS  
The center frequency (fVDR) of the VDR function can be tuned  
within the Nyquist band from 0 to 15/16 fS in 1/16 fS steps. In  
complex mode, Tuning Word 0 (0x00) through Tuning Word 15  
(0x0F) are valid. Table 28 and Table 29 show the tuning words  
and frequency values for the 25% complex mode. Table 28  
shows the relative frequency values, and Table 29 shows the  
absolute frequency values based on a sample rate of 491.52 MSPS.  
Figure 85. 25% VDR Bandwidth, Real Mode  
The center frequency (fVDR) of the VDR function can be tuned  
within the Nyquist band from 1/8 fS to 3/8 fS in 1/16 fS steps. In  
real mode, Tuning Word 2 (0x02) through Tuning Word 6  
(0x06) are valid. Table 26 shows the relative frequency values,  
and Table 27 shows the absolute frequency values based on a  
sample rate of 491.52 MSPS.  
Table 28. VDR Tuning Words and Relative Frequency  
Values, 25% BW, Complex Mode  
Table 26. VDR Tuning Words and Relative Frequency  
Values, 25% BW, Real Mode  
Lower  
Center  
Frequency  
Upper Band  
Edge  
Tuning Word Band Edge  
Tuning  
Word  
Lower Band  
Edge  
Center  
Frequency  
Upper Band  
Edge  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
8 (0x08)  
9 (0x09)  
10 (0x0A)  
11 (0x0B)  
12 (0x0C)  
13 (0x0D)  
14 (0x0E)  
15 (0x0F)  
−1/8 fS  
−1/16 fS  
0
1/16 fS  
1/8 fS  
3/16 fS  
1/4 fS  
5/16 fS  
3/8 fS  
7/16 fS  
1/2 fS  
9/16 fS  
5/8 fS  
11/16 fS  
3/4 fS  
13/16 fS  
0
1/8 fS  
3/16 fS  
1/4 fS  
5/16 fS  
3/8 fS  
7/16 fS  
1/2 fS  
9/16 fS  
5/8 fS  
11/16 fS  
3/4 fS  
13/16 fS  
7/8 fS  
15/16 fS  
fS  
1/16 fS  
1/8 fS  
3/16 fS  
1/4 fS  
5/16 fS  
3/8 fS  
7/16 fS  
1/2 fS  
9/16 fS  
5/8 fS  
11/16 fS  
3/4 fS  
13/16 fS  
7/8 fS  
15/16 fS  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
0
1/8 fS  
3/16 fS  
1/4 fS  
5/16 fS  
3/8 fS  
1/4 fS  
5/16 fS  
3/8 fS  
7/16 fS  
1/2 fS  
1/16 fS  
1/8 fS  
3/16 fS  
1/4 fS  
Table 27. VDR Tuning Words and Absolute Frequency  
Values, 25% BW, Real Mode (fS = 491.52 MSPS)  
Center  
Tuning  
Word  
Lower Band  
Edge (MHz)  
Frequency  
(MHz)  
Upper Band  
Edge (MHz)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
0
61.44  
92.16  
122.88  
153.6  
184.32  
122.88  
153.6  
184.32  
215.04  
245.76  
30.72  
61.44  
92.16  
122.88  
17/16 fS  
Rev. 0 | Page 52 of 107  
 
 
 
 
 
 
 
Data Sheet  
AD6684  
Table 29. VDR Tuning Words and Absolute Frequency  
Values, 25% BW, Complex Mode (fS = 491.52 MSPS)  
Table 30. VDR Tuning Words and Relative Frequency  
Values, 43% BW, Complex Mode  
Center  
Lower  
Band Edge Frequency  
Center  
Tuning  
Word  
Upper Band  
Edge (MHz)  
Lower Band  
Tuning Word Edge (MHz)  
Frequency  
(MHz)  
Upper Band  
Edge (MHz)  
(MHz)  
−61.44  
−30.72  
0.00  
(MHz)  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
8 (0x08)  
9 (0x09)  
10 (0x0A)  
11 (0x0B)  
12 (0x0C)  
13 (0x0D)  
14 (0x0E)  
15 (0x0F)  
0.00  
30.72  
61.44  
61.44  
92.16  
122.88  
153.6  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
8 (0x08)  
9 (0x09)  
10 (0x0A)  
11 (0x0B)  
12 (0x0C)  
13 (0x0D)  
14 (0x0E)  
15 (0x0F)  
−14/65 fS  
−11/72 fS  
−1/11 fS  
−1/36 fS  
1/29 fS  
7/72 fS  
4/25 fS  
2/9 fS  
2/7 fS  
25/72 fS  
34/83 fS  
17/36 fS  
23/43 fS  
43/72 fS  
31/47 fS  
13/18 fS  
0
14/65 fS  
5/18 fS  
1/16 fS  
1/8 fS  
3/16 fS  
1/4 fS  
5/16 fS  
3/8 fS  
7/16 fS  
1/2 fS  
9/16 fS  
5/8 fS  
11/16 fS  
3/4 fS  
13/16 fS  
7/8 fS  
15/16 fS  
16/47 fS  
29/72 fS  
20/43 fS  
19/36 fS  
49/83 fS  
47/72 fS  
5/7 fS  
30.72  
92.16  
61.44  
92.16  
122.88  
153.6  
184.32  
215.04  
245.76  
276.48  
307.2  
337.92  
368.64  
399.36  
122.88  
153.6  
184.32  
215.04  
245.76  
276.48  
307.2  
337.92  
368.64  
399.36  
430.08  
460.8  
184.32  
215.04  
245.76  
276.48  
307.2  
337.92  
368.64  
399.36  
430.08  
460.8  
7/9 fS  
21/25 fS  
65/72 fS  
28/29 fS  
37/36 fS  
12/11 fS  
83/72 fS  
491.52  
522.24  
Table 31. VDR Tuning Words and Absolute Frequency  
Values, 43% BW, Complex Mode (fS = 491.52 MSPS)  
Center  
Table 30 and Table 31 show the tuning words and frequency  
values for the 43% complex mode. Table 30 shows the relative  
frequency values, and Table 31 shows the absolute frequency  
values based on a sample rate of 491.52 MSPS. Figure 87 shows  
the frequency zones for the 43% BW VDR mode with a center  
frequency (fVDR) of fS/4 (tuning word = 0x04). The frequency  
zones where the amplitude may not exceed −30 dBFS are the  
upper and lower portions of the Nyquist band extending into  
the complex domain.  
Lower Band  
Tuning Word Edge (MHz)  
Frequency  
(MHz)  
Upper Band  
Edge (MHz)  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
8 (0x08)  
9 (0x09)  
10 (0x0A)  
11 (0x0B)  
12 (0x0C)  
13 (0x0D)  
14 (0x0E)  
15 (0x0F)  
−105.37  
−75.09  
−44.68  
−13.65  
16.95  
0.00  
30.72  
61.44  
92.16  
122.88  
153.6  
184.32  
215.04  
245.76  
276.48  
307.2  
337.92  
368.64  
399.36  
430.08  
460.8  
105.87  
136.53  
167.33  
197.97  
228.61  
259.41  
290.17  
320.85  
351.09  
382.29  
412.88  
443.73  
474.57  
505.17  
536.2  
dBFS  
47.79  
78.64  
109.23  
140.43  
170.67  
201.35  
232.11  
262.91  
293.55  
324.19  
354.99  
–30  
–1/2 fS  
0
1/4 fS  
1/2 fS  
20/43 fS  
1/29 fS  
Figure 87. 43% VDR Bandwidth, Complex Mode  
566.61  
Rev. 0 | Page 53 of 107  
 
 
 
 
AD6684  
Data Sheet  
DIGITAL OUTPUTS  
K = number of frames per multiframe  
INTRODUCTION TO THE JESD204B INTERFACE  
(AD6684 value = 4, 8, 12, 16, 20, 24, 28, or 32 )  
S = samples transmitted per single converter per frame cycle  
(AD6684 value = set automatically based on L, M, F, and N΄)  
HD = high density mode (AD6684 = set automatically based  
on L, M, F, and N΄)  
The AD6684 digital outputs are designed to the JEDEC standard  
JESD204B, serial interface for data converters. JESD204B is a  
protocol to link the AD6684 to a digital processing device over  
a serial interface with lane rates of up to 15 Gbps. The benefits  
of the JESD204B interface over LVDS include a reduction in  
required board area for data interface routing, and an ability to  
enable smaller packages for converter and logic devices.  
CF = number of control words per frame clock cycle per  
converter device (AD6684 value = 0)  
Figure 88 shows a simplified block diagram of the AD6684  
JESD204B link. By default, the AD6684 is configured to use four  
converters and four lanes. The Converter A and Converter B  
data is output to SERDOUTAB0 and SERDOUTAB1 , and the  
Converter C and Converter D data is output to SERDOUTCD0  
and SERDOUTCD1 . The AD6684 allows other configurations,  
such as combining the outputs of each pair of converters into a  
single lane, or changing the mapping of the digital output paths.  
These modes are set up via a quick configuration register in the  
SPI register map, along with additional customizable options.  
JESD204B OVERVIEW  
The JESD204B data transmit blocks assemble the parallel data  
from the ADC into frames and uses 8-bit/10-bit encoding as  
well as optional scrambling to form serial output data. Lane  
synchronization is supported through the use of special control  
characters during the initial establishment of the link. Additional  
control characters are embedded in the data stream to maintain  
synchronization thereafter. A JESD204B receiver is required to  
complete the serial link. For additional details on the JESD204B  
interface, refer to the JESD204B standard.  
By default in the AD6684, the 14-bit converter word from each  
converter is broken into two octets (eight bits of data). Bit 13  
(MSB) through Bit 6 are in the first octet. The second octet  
contains Bit 5 through Bit 0 (LSB) and two tail bits. The tail bits  
can be configured as zeros or a pseudorandom number sequence.  
The tail bits can also be replaced with control bits indicating  
overrange, SYSREF , VDR punish bits, or fast detect output.  
Control bits are filled and inserted MSB first such that enabling  
CS = 1 activates Control Bit 2, enabling CS = 2 activates Control  
Bit 2 and Control Bit 1, and enabling CS = 3 activates Control Bit 2,  
Control Bit 1, and Control Bit 0.  
The JESD204B data transmit blocks in the AD6684 map up to  
two physical ADCs or up to four virtual converters (when the  
DDCs are enabled) over each of the two JESD204B links. Each  
link can be configured to use one or two JESD204B lanes for up  
to a total of four lanes for the AD6684 chip. The JESD204B  
specification refers to a number of parameters to define the  
link, and these parameters must match between the JESD204B  
transmitter (the AD6684 output) and the JESD204B receiver  
(the logic device input). The JESD204B outputs of the AD6684  
function effectively as two individual JESD204B links. The two  
JESD204B links can be synchronized, if desired, using the  
SYSREF input.  
The two resulting octets can be scrambled. Scrambling is  
optional; however, it is recommended to avoid spectral peaks  
when transmitting similar digital data patterns. The scrambler  
uses a self synchronizing, polynomial-based algorithm defined  
by the equation 1 + x14 + x15. The descrambler in the receiver is  
a self synchronizing version of the scrambler polynomial.  
Each JESD204B link is described according to the following  
parameters:  
L = number of lanes per converter device (lanes per link)  
(AD6684 value = 1 or 2)  
M = number of converters per converter device (virtual  
converters per link)  
The two octets are then encoded with an 8-bit/10-bit encoder.  
The 8-bit/10-bit encoder works by taking eight bits of data (an  
octet) and encoding them into a 10-bit symbol. Figure 89 shows  
how the 14-bit data is taken from the ADC, the tail bits are  
added, the two octets are scrambled, and how the octets are  
encoded into two 10-bit symbols. Figure 89 shows the default  
data format.  
(AD6684 value = 1, 2, or 4)  
F = octets per frame (AD6684 value = 1, 2, 4, or 8)  
N΄ = number of bits per sample (JESD204B word size)  
(AD6684 value = 8 or 16)  
N = converter resolution  
(AD6684 value = 7 to 16)  
CS = number of control bits per sample  
(AD6684 value = 0, 1, 2, or 3)  
Rev. 0 | Page 54 of 107  
 
 
 
Data Sheet  
AD6684  
CONVERTER A  
INPUT  
ADC A  
LANE MUX  
AND MAPPING  
(SPI  
REGISTERS:  
0x05B0,  
JESD204B PAIR  
A/B LINK  
CONTROL  
(L, M, F)  
(SPI REGISTER  
0x0570)  
SERDOUTAB0+  
SERDOUTAB0–  
MUX/  
FORMAT  
(SPI REGISTERS:  
0x0561, 0x0564)  
SERDOUTAB1+  
SERDOUTAB1–  
0x05B2,  
0x05B3)  
CONVERTER B  
INPUT  
ADC B  
SYSREF±  
SYNCINAB±  
SYNCINCD±  
CONVERTER C  
INPUT  
ADC C  
LANE MUX  
AND MAPPING  
(SPI  
REGISTERS:  
0x05B0,  
JESD204B PAIR  
A/B LINK  
CONTROL  
(L, M, F)  
(SPI REGISTER  
0x0570)  
MUX/  
FORMAT  
(SPI REGISTERS:  
0x0561, 0x0564)  
SERDOUTCD0+  
SERDOUTCD0–  
SERDOUTCD1+  
SERDOUTCD1–  
0x05B2,  
0x05B3)  
CONVERTER D  
INPUT  
ADC D  
Figure 88. Transmit Link Simplified Block Diagram Showing Full Bandwidth Mode (Register 0x0200 = 0x00)  
JESD204B DATA  
JESD204B  
INTERFACE TEST  
PATTERNS  
LINK LAYER TEST  
PATTERNS  
JESD204B LONG  
TRANSPORT TEST  
PATTERN  
REG 0x0574[2:0]  
(REG 0x0573,  
REG 0x0551 TO REG 0x0558)  
REG 0x0571[5]  
SERDOUTAB0±/  
SERDOUTCD0±/  
SERDOUTAB0±/  
SERDOUTCD0±/  
SERIALIZER  
SCRAMBLER  
1 + x14  
(OPTIONAL)  
8-BIT/10-BIT  
ENCODER  
x15  
ADC TEST PATTERNS  
(REG 0x0550,  
REG 0x0551 TO REG 0x0558)  
+
FRAME  
CONSTRUCTION  
a
b
. . . .  
i
j
a
b
. . . .  
i j  
A13  
MSB  
JESD204B SAMPLE  
CONSTRUCTION  
SYMBOL0  
SYMBOL1  
A12  
A11  
A10  
A9  
a
a
b
b
c
c
d
d
e
e
f
f
g
g
h
h
i
i
j
j
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
ADC  
A13 A5  
S7  
S6  
S5  
S4  
S3  
S2  
S1  
S0  
S7  
S6  
S5  
S4  
S3  
S2  
S1  
S0  
MSB  
LSB  
MSB  
A12 A4  
A11 A3  
A10 A2  
A9 A1  
A8 A0  
A7 C2  
TAIL BITS  
REG 0x0571[6]  
A6  
T
LSB  
LSB  
CONTROL BITS  
C2  
C1  
C0  
Figure 89. ADC Output Datapath Showing Data Framing  
TRANSPORT  
LAYER  
DATA LINK  
LAYER  
PHYSICAL  
LAYER  
PROCESSED  
ALIGNMENT  
8-BIT/10-BIT  
SAMPLE  
FRAME  
CROSSBAR  
MUX  
SAMPLES  
SCRAMBLER  
CHARACTER  
GENERATION  
SERIALIZER  
Tx  
OUTPUT  
CONSTRUCTION CONSTRUCTION  
ENCODER  
FROM ADC  
SYSREF±  
SYNCINB±  
Figure 90. Data Flow  
Rev. 0 | Page 55 of 107  
 
 
 
AD6684  
Data Sheet  
characters in its input data stream using clock and data recovery  
(CDR) techniques.  
FUNCTIONAL OVERVIEW  
The block diagram in Figure 90 shows the flow of data through  
each of the two JESD204B links from the sample input to the  
physical output. The processing can be divided into layers that  
are derived from the open source initiative (OSI) model widely  
used to describe the abstraction layers of communications  
systems. These layers are the transport layer, data link layer, and  
physical layer (serializer and output driver).  
The receiver issues a synchronization request by asserting the  
SYNCINB AB and SYNCINB CD pins of the AD6684 low.  
The JESD204B Tx then begins sending /K/ characters. After the  
receiver synchronizes, it waits for the correct reception of at  
least four consecutive /K/ symbols. It then deasserts SYNCINB AB  
and SYNCINB CD. The AD6684 then transmits an ILAS on  
the following local multiframe clock (LMFC) boundary.  
Transport Layer  
For more information on the code group synchronization  
phase, refer to the JEDEC Standard JESD204B, July 2011,  
Section 5.3.3.1.  
The transport layer handles packing the data (consisting of  
samples and optional control bits) into JESD204B frames that  
are mapped to 8-bit octets. These octets are sent to the data link  
layer. The transport layer mapping is controlled by rules derived  
from the link parameters. Tail bits are added to fill gaps where  
required. The following equation can be used to determine the  
number of tail bits within a sample (JESD204B word):  
The SYNCINB AB and SYNCINB CD pin operation can also  
be controlled by the SPI. The SYNCINB AB and SYNCINB CD  
signals are differential LVDS mode signals by default, but can  
also be driven single-ended. For more information on configuring  
the SYNCINB AB and SYNCINB CD pin operation, refer to  
Register 0x0572.  
T = N CS  
Data Link Layer  
Initial Lane Alignment Sequence (ILAS)  
The data link layer is responsible for the low level functions of  
passing data across the link. These functions include optionally  
scrambling the data, inserting control characters for multichip  
synchronization, lane alignment, or monitoring, and encoding  
8-bit octets into 10-bit symbols. The data link layer is also  
responsible for sending the initial lane alignment sequence  
(ILAS), which contains the link configuration data used by the  
receiver to verify the settings in the transport layer.  
The ILAS phase follows the CGS phase and begins on the next  
LMFC boundary. The ILAS consists of four mulitframes, with  
an /R/ character marking the beginning and an /A/ character  
marking the end. The ILAS begins by sending an /R/ character  
followed by 0 to 255 ramp data for one multiframe. On the  
second multiframe, the link configuration data is sent, starting  
with the third character. The second character is a /Q/ character  
to confirm that the link configuration data follows. All  
undefined data slots are filled with ramp data. The ILAS  
sequence is never scrambled.  
Physical Layer  
The physical layer consists of the high speed circuitry clocked at  
the serial clock rate. In this layer, parallel data is converted into  
one, two, or four lanes of high speed differential serial data.  
The ILAS sequence construction is shown in Figure 91. The  
four multiframes include the following:  
JESD204B LINK ESTABLISHMENT  
Multiframe 1. Begins with an /R/ character (/K28.0/) and  
ends with an /A/ character (/K28.3/).  
The AD6684 JESD204B transmitter (Tx) interface operates in  
Subclass 1 as defined in the JEDEC Standard 204B (July 2011  
specification). The link establishment process is divided into the  
following steps: code group synchronization and SYNCINB AB/  
SYNCINB CD, initial lane alignment sequence, and user data  
and error correction.  
Multiframe 2. Begins with an /R/ character followed by a  
/Q/ (/K28.4/) character, followed by link configuration  
parameters over 14 configuration octets (see Table 32) and  
ends with an /A/ character. Many of the parameter values  
are of the value – 1 notation.  
Multiframe 3. Begins with an /R/ character (/K28.0/) and  
ends with an /A/ character (/K28.3/).  
Multiframe 4. Begins with an /R/ character (/K28.0/) and  
ends with an /A/ character (/K28.3/).  
Code Group Synchronization (CGS) and SYNCINB  
The CGS is the process by which the JESD204B receiver finds  
the boundaries between the 10-bit symbols in the stream of  
data. During the CGS phase, the JESD204B transmit block  
transmits /K28.5/ characters. The receiver must locate /K28.5/  
K
K
R
D
D
A
R
Q
C
C
D
D
A
R
D
D
A
R
D
D A D  
END OF  
MULTIFRAME  
START OF  
ILAS  
START OF LINK  
CONFIGURATION DATA  
START OF  
USER DATA  
Figure 91. Initial Lane Alignment Sequence  
Rev. 0 | Page 56 of 107  
 
 
 
Data Sheet  
AD6684  
User Data and Error Detection  
The 8-bit/10-bit interface has options that can be controlled via  
the SPI. These operations include bypass and invert. These options  
are intended to be troubleshooting tools for the verification of  
the digital front end (DFE). Refer to the Memory Map section,  
Register 0x0572, Bits[2:1] for information on configuring the 8-bit/  
10-bit encoder.  
After the initial lane alignment sequence is complete, the user  
data is sent. Normally, within a frame, all characters are considered  
user data. However, to monitor the frame clock and multiframe  
clock synchronization, there is a mechanism for replacing  
characters with /F/ or /A/ alignment characters when the data  
meets certain conditions. These conditions are different for  
unscrambled and scrambled data. The scrambling operation is  
enabled by default, but it can be disabled using the SPI.  
PHYSICAL LAYER (DRIVER) OUTPUTS  
Digital Outputs, Timing, and Controls  
The AD6684 physical layer consists of drivers that are defined  
in the JEDEC Standard JESD204B, July 2011. The differential  
digital outputs are powered up by default. The drivers use a  
dynamic 100 Ω internal termination to reduce unwanted  
reflections.  
For scrambled data, any 0xFC character at the end of a frame is  
replaced with an /F/, and any 0xFD character at the end of a multi-  
frame is replaced with an /A/. The JESD204B receiver (Rx)  
checks for /F/ and /A/ characters in the received data stream  
and verifies that they only occur in the expected locations. If an  
unexpected /F/ or /A/ character is found, the receiver handles  
the situation by using dynamic realignment or asserting the  
SYNCINB signal for more than four frames to initiate a  
resynchronization. For unscrambled data, if the final character  
of two subsequent frames are equal, the second character is  
replaced with an /F/ if it is at the end of a frame, and an /A/ if it  
is at the end of a multiframe.  
Place a 100 ꢀ differential termination resistor at each receiver  
input to result in a nominal 300 mV p-p swing at the receiver  
(see Figure 92). Alternatively, single-ended 50 ꢀ termination  
can be used. When single-ended termination is used, the  
termination voltage is DRVDD1/2. Otherwise, 0.1 μF  
ac coupling capacitors can be used to terminate to any single-  
ended voltage.  
V
RXCM  
Insertion of alignment characters can be modified using the  
SPI. The frame alignment character insertion (FACI) is enabled  
by default. More information on the link controls is available in  
the Memory Map section, Register 0x0571.  
50  
50ꢀ  
DRVDD  
100ꢀ  
DIFFERENTIAL  
TRACE PAIR  
0.1µF  
0.1µF  
SERDOUTx+  
RECEIVER  
100ꢀ  
OR  
8-Bit/10-Bit Encoder  
SERDOUTx–  
The 8-bit/10-bit encoder converts 8-bit octets into 10-bit symbols  
and inserts control characters into the stream when needed. The  
control characters used in JESD204B are shown in Table 32. The  
8-bit/10-bit encoding ensures that the signal is dc balanced by  
using the same number of ones and zeros across multiple  
symbols.  
OUTPUT SWING = 300mV p-p  
V
= V  
RXCM  
CM  
Figure 92. AC-Coupled Digital Output Termination Example  
Table 32. AD6684 Control Characters used in JESD204B  
10-Bit Value,  
10-Bit Value,  
Abbreviation  
Control Symbol  
/K28.0/  
/K28.3/  
/K28.4/  
/K28.5/  
8-Bit Value  
000 11100  
011 11100  
100 11100  
101 11100  
111 11100  
RD1 = −1  
RD1 = +1  
Description  
/R/  
/A/  
/Q/  
/K/  
/F/  
001111 0100  
001111 0011  
001111 0100  
001111 1010  
001111 1000  
110000 1011  
110000 1100  
110000 1101  
110000 0101  
110000 0111  
Start of multiframe  
Lane alignment  
Start of link configuration data  
Group synchronization  
Frame alignment  
/K28.7/  
1 RD means running disparity.  
Rev. 0 | Page 57 of 107  
 
 
 
 
AD6684  
Data Sheet  
500  
400  
The AD6684 digital outputs can interface with custom application  
specific integrated circuits (ASICs) and field programmable gate  
array (FPGA) receivers, providing superior switching performance  
in noisy environments. Single point to point network topologies  
are recommended with a single differential 100 Ω termination  
resistor placed as close to the receiver inputs as possible. The  
common mode of the digital output automatically biases itself  
to half the DRVDD1 supply of 1.25 V (VCM = 0.6 V). See Figure 93  
for an example of dc coupling the outputs to the receiver logic.  
300  
200  
100  
0
Tx EYE  
MASK  
–100  
–200  
–300  
–400  
–500  
DRVDD  
100  
DIFFERENTIAL  
TRACE PAIR  
SERDOUTx+  
RECEIVER  
100ꢀ  
–60  
–40  
–20  
0
20  
40  
60  
SERDOUTx–  
TIME (ps)  
Figure 94. AD6684 Digital Outputs Data Eye Diagram; External 100 Ω  
Terminations at 15 Gbps  
OUTPUT SWING = 300mV p-p  
V
= DRVDD/2  
CM  
16000  
14000  
12000  
10000  
8000  
6000  
4000  
2000  
0
Figure 93. DC-Coupled Digital Output Termination Example  
If there is no far end receiver termination, or if there is poor  
differential trace routing, timing errors may result. To avoid  
such timing errors, it is recommended that the trace length be  
less than six inches, and that the differential output traces be  
close together and at equal lengths.  
Figure 94, Figure 95, and Figure 96 show examples of the digital  
output data eye, time interval error (TIE) jitter histogram, and  
bathtub curve, respectively, for one AD6684 lane running at  
15 Gbps. The format of the output data is twos complement by  
default. To change the output data format, see the Memory Map  
section (Register 0x0561 in Table 45 and Table 46).  
–4  
–2  
0
2
4
6
TIME (ps)  
De-Emphasis  
Figure 95. AD6684 Digital Outputs Histogram; External 100 Ω Terminations  
at 15 Gbps  
De-emphasis enables the receiver eye diagram mask to be met  
in conditions where the interconnect insertion loss does not  
meet the JESD204B specification. Use the preemphasis feature  
only when the receiver is unable to recover the clock due to  
excessive insertion loss. Under normal conditions, preemphasis  
is disabled to conserve power. Additionally, enabling and setting  
too high a preemphasis value on a short link can cause the  
receiver eye diagram to fail. Use the preemphasis setting with  
caution because it can increase electromagnetic interference  
(EMI). See the Memory Map section (Registers 0x05C4 and  
Register 0x05C6 in Table 45 and Table 46) for more details.  
1
–2  
1
–4  
1
–6  
1
–8  
1
–10  
1
–12  
1
–14  
1
Phase-Locked Loop  
–16  
1
The phase-locked loop (PLL) is used to generate the serializer  
clock, which operates at the JESD204B lane rate. The status  
of the PLL lock can be checked in the PLL lock status bit  
(Register 0x056F, Bit 7). This read only bit lets the user know if  
the PLL has achieved a lock for the specific setup. The JESD204B  
lane rate control bit, Bit 4 of Register 0x056E, must be set to  
correspond with the lane rate.  
–0.5 –0.4 –0.3 –0.2 –0.1  
0
0.1  
0.2  
0.3  
0.4  
0.5  
UI  
Figure 96. AD6684 Digital Outputs Bathtub Curve; External 100 Ω  
Terminations at 15 Gbps  
Rev. 0 | Page 58 of 107  
 
 
 
 
Data Sheet  
AD6684  
Figure 97 shows a block diagram of the two scenarios described  
for I/Q transport layer mapping.  
JESD204B Tx CONVERTER MAPPING  
To support the different chip operating modes, the AD6684  
design treats each sample stream (real or I/Q) as originating  
from separate virtual converters. The I/Q samples are always  
mapped in pairs with the I samples mapped to the first virtual  
converter and the Q samples mapped to the second virtual  
converter. With this transport layer mapping, the number of  
virtual converters are the same whether  
The JESD204B Tx block for AD6684 supports up to four DDC  
blocks. Each DDC block outputs either two sample streams  
(I/Q) for the complex data components (real + imaginary), or  
one sample stream for real (I) data. The JESD204B interface can  
be configured to use up to eight virtual converters depending on  
the DDC configuration. Figure 98 shows the virtual converters  
and their relationship to the DDC outputs when complex outputs  
are used. Table 33 shows the virtual converter mapping for each  
chip operating mode when channel swapping is disabled.  
A single real converter is used along with a digital  
downconverter block producing I/Q outputs, or  
An analog downconversion is used with two real  
converters producing I/Q outputs.  
DIGITAL DOWNCONVERSION  
M = 2  
I
CONVERTER 0  
DIGITAL  
DOWNCONVERSION  
JESD204B  
Tx  
REAL  
REAL  
L LANES  
ADC  
Q
CONVERTER 1  
I/Q ANALOG MIXING  
M = 2  
I
I
CONVERTER 0  
ADC  
REAL  
90°  
PHASE  
JESD204B  
Tx  
L LANES  
Σ
Q
Q
CONVERTER 1  
ADC  
Figure 97. I/Q Transport Layer Mapping  
DDC 0  
ADC  
SAMPLING  
AT fS  
REAL/I  
REAL/Q  
REAL/I  
REAL/Q  
REAL/I  
REAL/I  
CONVERTER 0  
Q
I
I
REAL/Q  
Q
Q
I/Q  
CROSSBAR  
MUX  
CONVERTER 1  
OUTPUT  
INTERFACE  
DDC 1  
DDC 0  
DDC 1  
ADC  
SAMPLING  
AT fS  
REAL/I  
REAL/I  
CONVERTER 2  
Q
I
I
REAL/Q  
Q
Q
CONVERTER 3  
ADC A  
SAMPLING  
AT fS  
REAL/I  
REAL/I  
CONVERTER 4  
Q
I
I
REAL/Q  
Q
Q
I/Q  
CROSSBAR  
MUX  
CONVERTER 5  
OUTPUT  
INTERFACE  
ADC  
SAMPLING  
AT fS  
REAL/I  
REAL/I  
CONVERTER 6  
Q
I
I
REAL/Q  
Q
Q
CONVERTER 7  
Figure 98. DDCs and Virtual Converter Mapping  
Rev. 0 | Page 59 of 107  
 
 
 
AD6684  
Data Sheet  
The maximum lane rate allowed by the JESD204B specification  
is 15 Gbps. The lane line rate is related to the JESD204B  
parameters using the following equation:  
SETTING UP THE AD6684 DIGITAL INTERFACE  
The following SPI writes are required for the AD6684 at startup  
and each time the ADC is reset (datapath reset, soft reset, link  
power-down/power-up, or hard reset):  
10  
8
M N '  
f  
OUT  
1. Write 0x4F to Register 0x1228.  
2. Write 0x0F to Register 0x1228.  
3. Write 0x04 to Register 0x1222.  
4. Write 0x00 to Register 0x1222.  
5. Write 0x08 to Register 0x1262.  
6. Write 0x00 to Register 0x1262.  
Lane Line Rate =  
where:  
OUT   
L
fADC_CLOCK  
Decimation Ratio  
f
The decimation ratio (DCM) is the parameter programmed in  
Register 0x0201.  
The AD6684 has two JESD204B links. The device offers an easy  
way to set up the JESD204B link through the JESD04B quick  
configuration register (Register 0x0570). The serial outputs  
(SERDOUTABx and SERDOUTCDx ) are considered to be  
part of one JESD204B link. The basic parameters that determine  
the link setup are  
Use the following steps to configure the output:  
1. Power down the link.  
2. Select quick configuration options.  
3. Configure detailed options  
4. Set output lane mapping (optional).  
5. Set additional driver configuration options (optional).  
6. Power up the link.  
Number of lanes per link (L)  
Number of converters per link (M)  
Number of octets per frame (F)  
If the lane line rate calculated is less than 6.25 Gbps, select the  
low line rate option by programming a value of 0x10 to  
Register 0x056E.  
If the internal DDCs are used for on-chip digital processing, M  
represents the number of virtual converters. The virtual  
converter mapping setup is shown in Figure 98.  
Table 34 and Table 35 show the JESD204B output configurations  
for both N΄ = 16 and N΄ = 8 for a given number of virtual  
converters. Take care to ensure that the serial line rate for given  
configuration is within the supported range of 1.5625 Gbps to  
15 Gbps.  
Table 33. Virtual Converter Mapping (Per Link)  
Chip Application Mode  
(Register 0x0200,  
Bits[3:0])  
Chip Q Ignore  
(Register 0x0200,  
Bit 5)  
Virtual Converter Mapping  
Number of Virtual  
Converters Supported  
0
1
2
3
1 to 2  
Full bandwidth mode (0x0) Real or complex (0x0)  
ADC A/C  
samples  
ADC B/D  
samples  
Unused  
Unused  
1
2
2
4
One DDC mode (0x1)  
One DDC mode (0x1)  
Two DDC mode (0x2)  
Two DDC mode (0x2)  
Real (I only) (0x1)  
Complex (I/Q) (0x0)  
Real (I only) (0x1)  
Complex (I/Q) (0x0)  
DDC 0  
I samples  
DDC 0  
I samples  
DDC 0  
I samples  
DDC 0  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
DDC 0  
Q samples  
DDC 1  
I samples  
DDC 0  
DDC 1  
DDC 1  
I samples  
Q samples  
I samples  
Q samples  
Rev. 0 | Page 60 of 107  
 
 
Data Sheet  
AD6684  
Table 34. JESD204B Output Configurations for N΄= 16  
Number of Virtual  
JESD204B Transport Layer Settings2  
Converters  
Supported (Same  
Value as M)  
JESD204B Quick  
Configuration  
(0x0570)  
JESD204B Serial  
Line Rate1  
L
1
2
2
1
2
1
2
M
1
1
1
2
2
4
4
F
2
1
2
4
2
8
4
S
1
1
2
1
1
1
1
HD  
0
N
N΄ CS  
K3  
1
0x01  
0x40  
0x41  
0x0A  
0x49  
0x13  
0x52  
20 × fOUT  
10 × fOUT  
10 × fOUT  
40 × fOUT  
20 × fOUT  
80 × fOUT  
40 × fOUT  
8 to 16 16 0 to 3  
8 to 16 16 0 to 3  
8 to 16 16 0 to 3  
8 to 16 16 0 to 3  
8 to 16 16 0 to 3  
8 to 16 16 0 to 3  
8 to 16 16 0 to 3  
Only valid K  
values that  
are divisible  
by 4 are  
1
0
2
4
0
supported  
0
0
0
1 fOUT = output sample rate = ADC sample rate/chip decimation ratio. The JESD204B serial line rate must be ≥1687.5 Mbps and ≤15,000 Mbps. When the serial line rate is  
≤15 Gbps and ≥13.5 Gbps, set Bits[7:4] to 0x3 in Register 0x056E. When the serial line rate is ≤13.5 Gbps and ≥6.75 Gbps, set Bits[7:4] to 0x0 in Register 0x056E. When  
the serial line rate is <6.75 Gbps and ≥3.375 Gbps, set Bits[7:4] to 0x1 in Register 0x056E. When the serial line rate is ≤3.375 Gbps and ≥1687.5 Mbps, set Bits[7:4] to 0x5  
in Register 0x056E.  
2 JESD204B transport layer descriptions are as described in the JESD204B Overview section.  
3 For F = 1, K = 20, 24, 28, and 32. For F = 2, K = 12, 16, 20, 24, 28, and 32. For F = 4, K = 8, 12, 16, 20, 24, 28, and 32. For F = 8 and F = 16, K = 4, 8, 12, 16, 20, 24, 28, and 32.  
Table 35. JESD204B Output Configurations for N΄= 8  
Number of Virtual  
JESD204B Quick  
JESD204B Transport Layer Settings2  
Converters Supported Configuration  
(Same Value as M)  
(Register 0x0570) Serial Line Rate1  
L
1
1
2
2
2
1
2
2
M
1
1
1
1
1
2
2
2
F
1
2
1
2
4
2
1
2
S
1
2
2
4
8
1
1
2
HD  
0
0
N
N΄  
8
8
CS  
0 to 1 Only valid K  
K3  
1
0x00  
0x01  
0x40  
0x41  
0x42  
0x09  
0x48  
0x49  
10 × fOUT  
10 × fOUT  
5 × fOUT  
7 to 8  
7 to 8  
7 to 8  
7 to 8  
7 to 8  
7 to 8  
7 to 8  
7 to 8  
values which  
are divisible  
by 4 are  
0 to 1  
0 to 1  
0 to 1  
0 to 1  
0 to 1  
0 to 1  
0 to 1  
0
8
5 × fOUT  
0
8
supported  
5 × fOUT  
0
8
2
20 × fOUT  
10 × fOUT  
10 × fOUT  
0
8
0
8
0
8
1 fOUT = output sample rate = ADC sample rate/chip decimation ratio. The JESD204B serial line rate must be ≥1687.5 Mbps and ≤15,000 Mbps. When the serial line rate is  
≤15 Gbps and ≥13.5 Gbps, set Bits[7:4] to 0x3 in Register 0x056E. When the serial line rate is ≤13.5 Gbps and ≥6.75 Gbps, set Bits[7:4] to 0x0 in Register 0x056E. When  
the serial line rate is <6.75 Gbps and ≥3.375 Gbps, set Bits[7:4] to 0x1 in Register 0x056E. When the serial line rate is ≤3.375 Gbps and ≥1687.5 Mbps, set Bits[7:4] to 0x5  
in Register 0x056E.  
2 JESD204B transport layer descriptions are as described in the JESD204B Overview section.  
3 For F = 1, K = 20, 24, 28, and 32. For F = 2, K = 12, 16, 20, 24, 28, and 32. For F = 4, K = 8, 12, 16, 20, 24, 28, and 32. For F = 8 and F = 16, K = 4, 8, 12, 16, 20, 24, 28, and 32.  
Rev. 0 | Page 61 of 107  
 
 
AD6684  
Data Sheet  
Example 1: ADC with DDC Option (Two ADCs Plus Two  
DDCs in Each Pair)  
N = 16 bits  
L = 1, M = 4, and F = 8 (quick configuration = 0x13)  
CS = 0 to 1  
K = 32  
Output serial line rate = 5 Gbps per lane (L = 1) or  
2.5 Gbps per lane (L = 2)  
The chip application mode is DDC mode (seeFigure 99) with  
the following characteristics:  
Chip application mode = two DDC mode (see Figure 99)  
Two 14-bit converters at 500 MSPS  
Two DDC application layer mode with complex outputs (I/Q)  
Chip decimation ratio = 4  
For L = 1, set Bits[7:4] to 0x1 in Register 0x056E. For L = 2, set  
Bits[7:4] to 0x5 in Register 0x056E.  
DDC decimation ratio = 4 (see Table 33)  
Example 1 shows the flexibility in the digital and lane  
configurations for the AD6684. The sample rate is 500 MSPS,  
but the outputs are all combined in either one or two lanes,  
depending on the I/O speed capability of the receiving device.  
The JESD204B output configuration is as follows:  
Virtual converters required = 4 (see Table 33)  
Output sample rate (fOUT) = 500/4 = 125 MSPS  
N΄ = 16 bits  
DDC 0  
REAL/I  
I
REAL/I  
CONVERTER 0  
NCO  
+
ADC  
SAMPLING  
AT fS  
REAL/I  
REAL/Q  
REAL/I  
MIXER  
(OPTIONAL)  
REAL/Q  
Q
Q CONVERTER 1  
L
JESD204B  
LANES  
SYSREF±  
I
AT UP TO  
15Gbps  
DDC 1  
DDC 0  
DDC 1  
REAL/I  
REAL/I  
CONVERTER 2  
NCO  
+
ADC  
SAMPLING  
AT fS  
MIXER  
(OPTIONAL)  
REAL/Q  
Q
Q CONVERTER 3  
SYSREF±  
I
REAL/I  
REAL/I  
CONVERTER 0  
NCO  
+
ADC  
SAMPLING  
AT fS  
MIXER  
(OPTIONAL)  
REAL/Q  
Q
Q CONVERTER 1  
L
JESD204B  
LANES  
SYSREF±  
I
AT UP TO  
15Gbps  
REAL/I  
REAL/I  
CONVERTER 2  
NCO  
+
ADC  
SAMPLING  
AT fS  
REAL/Q  
MIXER  
(OPTIONAL)  
REAL/Q  
Q
Q CONVERTER 3  
SYSREF±  
SYSREF  
SYNCHRONIZATION  
CONTROL CIRCUITS  
Figure 99. Two ADC + Four DDC Mode in Each Pair  
Rev. 0 | Page 62 of 107  
 
Data Sheet  
AD6684  
The JESD204B output configuration is as follows:  
Example 2: ADC with NSR Option (Two ADCs + NSR in  
Each Pair)  
Virtual converters required = 2 (see Table 33).  
Output sample rate (fOUT) = 500 MSPS  
N΄ = 16 bits  
The chip application mode is NSR mode (see Figure 100) with  
the following characteristics:  
Two 14-bit converters at 500 MSPS  
NSR blocks enabled for each channel  
Chip decimation ratio = 1  
N = 9 bits  
L = 2, M = 2, and F = 2 (quick configuration = 0x49)  
CS = 0 to 2  
K = 32  
Output serial lane rate = 10 Gbps per lane (L = 2)  
Set Bits[7:4] to 0x0 in Register 0x056E  
NSR  
(21% OR 28%  
BANDWIDTH)  
14-BIT ADC  
CORE  
AT 500MSPS  
CONVERTER 0  
AT 500MSPS  
REAL  
REAL  
REAL  
JESD204B  
1 OR 2 LANES  
TRANSMIT  
INTERFACE  
(JTX)  
AT UP TO 15Gbps  
NSR  
(21% OR 28%  
BANDWIDTH)  
CONVERTER 1  
AT 500MSPS  
14-BIT ADC  
CORE  
AT 500MSPS  
NSR  
(21% OR 28%  
BANDWIDTH)  
14-BIT ADC  
CORE  
AT 500MSPS  
CONVERTER 0  
AT 500MSPS  
JESD204B  
TRANSMIT  
INTERFACE  
(JTX)  
1 OR 2 LANES  
AT UP TO 15Gbps  
NSR  
(21% OR 28%  
BANDWIDTH)  
14-BIT ADC  
CORE  
CONVERTER 1  
AT 500MSPS  
REAL  
AT 500MSPS  
Figure 100. Two ADC + NSR Mode  
Rev. 0 | Page 63 of 107  
 
AD6684  
Data Sheet  
LATENCY  
latency must be calculated based on the DSP options selected  
and the JESD204B configuration.  
END-TO-END TOTAL LATENCY  
Total latency in the AD6684 is dependent on the various digital  
signal processing (DSP) and JESD204B configuration modes.  
Latency is fixed at 28 encode clocks through the ADC itself, but  
the latency through the DSP and JESD204B blocks can vary  
greatly, depending on the configuration. Therefore, the total  
Table 36 shows the combined latency through the ADC, DSP,  
and JESD204B blocks for some of the different application  
modes supported by the AD6684. Latency is in units of the  
encode clock.  
Table 36. Latency Through the AD6684  
JESD204B Transport Layer Settings  
Latency (Number of Encode Clocks)  
ADC Application Mode  
Full Bandwidth (9-Bit)  
DDC (HB1)1  
DDC (HB2 + HB1)1  
DDC (HB3 +HB2 + HB1)1  
DDC (HB4 + HB3 + HB2 + HB1)1  
Decimate by 2 + NSR  
NSR  
L
2
2
1
1
1
1
2
M
2
4
4
4
4
2
2
F
2
4
8
8
8
4
2
ADC + DSP  
JESD204B  
Total  
44  
30  
92  
162  
292  
548  
64  
14  
17  
13  
28  
39  
6
109  
175  
320  
587  
70  
38  
16  
54  
1 No mixer, complex outputs.  
Rev. 0 | Page 64 of 107  
 
 
 
Data Sheet  
AD6684  
MULTICHIP SYNCHRONIZATION  
The AD6684 has a SYSREF input that provides flexible options  
for synchronizing the internal blocks. The SYSREF input is a  
source synchronous system reference signal that enables multichip  
synchronization. The input clock divider, DDCs, signal monitor  
block, and JESD204B link can be synchronized using the SYSREF  
input. For the highest level of timing accuracy, SYSREF must  
meet setup and hold requirements relative to the CLK input.  
The flowchart in Figure 101 describes the internal mechanism  
for multichip synchronization in the AD6684. The AD6684  
supports several features that aid users in meeting the requirements  
set out for capturing a SYSREF signal. The SYSREF sample  
event can be defined as either a synchronous low to high transition,  
or a synchronous high to low transition. Additionally, the AD6684  
allows the SYSREF signal to be sampled using either the rising  
edge or falling edge of the CLK input. The AD6684 also has the  
ability to ignore a programmable number (up to 16) of SYSREF  
events. The SYSREF control options can be selected using  
Register 0x0120 and Register 0x0121.  
Rev. 0 | Page 65 of 107  
 
AD6684  
Data Sheet  
START  
INCREMENT  
SYSREF± IGNORE  
COUNTER  
NO  
NO  
NO  
SYSREF±  
IGNORE  
COUNTER  
EXPIRED?  
(0x0121)  
UPDATE  
SETUP/HOLD  
DETECTOR STATUS  
(0x0128)  
RESET  
SYSREF± IGNORE  
COUNTER  
SYSREF±  
ENABLED?  
(0x0120)  
NO  
YES  
SYSREF±  
ASSERTED?  
YES  
YES  
INPUT  
CLOCK  
CLOCK  
DIVIDER  
AUTO ADJUST  
ENABLED?  
(0x0108)  
INCREMENT  
SYSREF±  
COUNTER  
(0x012A)  
CLOCK  
DIVIDER  
> 1?  
ALIGN CLOCK  
DIVIDER  
PHASE TO  
SYSREF  
YES  
YES  
YES  
DIVIDER  
ALIGNMENT  
REQUIRED?  
(0x010B)  
NO  
NO  
NO  
TIMESTAMP  
MODE  
SYSREF±  
TIMESTAMP  
DELAY  
SYSREF±  
SYSREF±  
YES  
CONTROL BITS?  
(0x0559, 0x055A,  
0x058F)  
INSERTED  
IN JESD204B  
CONTROL BITS  
SYNCHRONIZATION  
MODE?  
(0x0123)  
(0x01FF)  
NO  
RAMP  
TEST  
SYSREF± RESETS  
RAMP TEST  
MODE  
YES  
MODE  
NORMAL  
MODE  
BACK TO START  
ENABLED?  
(0x0550)  
GENERATOR  
NO  
ALIGN PHASE  
JESD204B  
LMFC  
ALIGNMENT  
REQUIRED?  
SEND INVALID  
NORMAL  
OF ALL  
YES  
YES  
SYNC~  
ASSERTED  
8-BIT/10-BIT  
CHARACTERS  
(ALL ZEROS)  
SEND K28.5  
CHARACTERS  
JESD204B  
INTERNAL CLOCKS  
(INCLUDING LMFC)  
TO SYSREF±  
INITIALIZATION  
NO  
NO  
SIGNAL  
MONITOR  
ALIGNMENT  
ENABLED?  
(0x026F)  
DDC NCO  
ALIGN DDC  
NCO PHASE  
ACCUMULATOR  
ALIGN SIGNAL  
YES  
YES  
ALIGNMENT  
ENABLED?  
(0x0300)  
MONITOR  
BACK TO START  
COUNTERS  
NO  
NO  
Figure 101. Multichip Synchronization  
Rev. 0 | Page 66 of 107  
 
Data Sheet  
AD6684  
Figure 102 and Figure 103 show the setup and hold status values  
for different phases of SYSREF . The setup detector returns the  
status of the SYSREF signal before the CLK edge, and the  
hold detector returns the status of the SYSREF signal after the  
CLK edge. Register 0x0128 stores the status of SYSREF and  
lets the user know if the SYSREF signal is captured by the ADC.  
SYSREF SETUP/HOLD WINDOW MONITOR  
To ensure a valid SYSREF signal capture, the AD6684 has a  
SYSREF setup/hold window monitor. This feature allows the  
system designer to determine the location of the SYSREF signals  
relative to the CLK signals by reading back the amount of  
setup/hold margin on the interface through the memory map.  
0xF  
0xE  
0xD  
0xC  
0xB  
0xA  
0x9  
REG 0x0128[3:0]  
0x8  
0x7  
0x6  
0x5  
0x4  
0x3  
0x2  
0x1  
0x0  
CLK±  
INPUT  
SYSREF±  
INPUT  
VALID  
FLIP FLOP  
HOLD (MIN)  
FLIP FLOP  
SETUP (MIN)  
FLIP FLOP  
HOLD (MIN)  
Figure 102. SYSREF Setup Detector  
Rev. 0 | Page 67 of 107  
 
 
AD6684  
Data Sheet  
0xF  
0xE  
0xD  
0xC  
0xB  
0xA  
0x9  
REG 0x0128[7:4] 0x8  
0x7  
0x6  
0x5  
0x4  
0x3  
0x2  
0x1  
0x0  
CLK±  
INPUT  
SYSREF±  
INPUT  
VALID  
FLIP FLOP  
SETUP (MIN)  
FLIP FLOP  
HOLD (MIN)  
FLIP FLOP  
HOLD (MIN)  
Figure 103. SYSREF Hold Detector  
Table 37 shows the description of the contents of Register 0x0128 and how to interpret them.  
Table 37. SYSREF Setup/Hold Monitor, Register 0x0128  
Register 0x0128, Bits[7:4]  
Hold Status  
Register 0x0128, Bits[3:0]  
Setup Status  
Description  
0x0  
0x0 to 0x8  
0x8  
0x0 to 0x7  
0x8  
0x9 to 0xF  
0x0  
Possible setup error. The smaller this number, the smaller the setup margin.  
No setup or hold error (best hold margin).  
No setup or hold error (best setup and hold margin).  
No setup or hold error (best setup margin).  
0x8  
0x9 to 0xF  
0x0  
0x0  
0x0  
Possible hold error. The larger this number, the smaller the hold margin.  
Possible setup or hold error.  
Rev. 0 | Page 68 of 107  
 
 
Data Sheet  
AD6684  
TEST MODES  
present, the analog signal is ignored); however, they do require  
an encode clock.  
ADC TEST MODES  
The AD6684 has various test options that aid in the system level  
implementation. The AD6684 has ADC test modes that are  
available in Register 0x0550. These test modes are described in  
Table 38. When an output test mode is enabled, the analog section  
of the ADC is disconnected from the digital back-end blocks,  
and the test pattern is run through the output formatting block.  
Some of the test patterns are subject to output formatting, and  
some are not. The PN generators from the PN sequence tests  
can be reset by setting Bit 4 or Bit 5 of Register 0x0550. These  
tests can be performed with or without an analog signal (if  
If the application mode is set to select a DDC mode of  
operation, the test modes must be enabled for each DDC  
enabled. The test patterns can be enabled via Bit 2 and Bit 0 of  
Register 0x0327, Register 0x0347, depending on which DDC(s)  
are selected. The (I) data uses the test patterns selected for  
Channel A, and the (Q) data uses the test patterns selected for  
Channel B. For more information, see the AN-877 Application  
Note, Interfacing to High Speed ADCs via SPI.  
Table 38. ADC Test Modes  
Output Test Mode  
Bit Sequence  
Default/  
Seed Value  
Pattern Name  
Off (default)  
Midscale short  
+Full-scale short  
−Full-scale short  
Checkerboard  
Expression  
Sample (N, N + 1, N + 2, …)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
Not applicable  
00 0000 0000 0000  
01 1111 1111 1111  
10 0000 0000 0000  
10 1010 1010 1010  
x23 + x18 + 1  
Not applicable Not applicable  
Not applicable Not applicable  
Not applicable Not applicable  
Not applicable Not applicable  
Not applicable 0x1555, 0x2AAA, 0x1555, 0x2AAA, 0x1555  
0x3AFF  
0x0092  
PN sequence long  
PN sequence short  
0x3FD7, 0x0002, 0x26E0, 0x0A3D, 0x1CA6  
0x125B, 0x3C9A, 0x2660, 0x0c65, 0x0697  
x9 + x5 + 1  
0111  
One word/zero word  
toggle  
11 1111 1111 1111  
Not applicable 0x0000, 0x3FFF, 0x0000, 0x3FFF, 0x0000  
1000  
1111  
User input  
Register 0x0551 to  
Register 0x0558  
Not applicable User Pattern 1[15:2], User Pattern 2[15:2],  
User Pattern 3[15:2], User Pattern 4[15:2],  
User Pattern 1[15:2] … for repeat mode  
User Pattern 1[15:2], User Pattern 2[15:2],  
User Pattern 3[15:2], User Pattern 4[15:2],  
0x0000 … for single mode  
Ramp output  
(x) % 214  
Not applicable (x) % 214, (x +1) % 214, (x +2) % 214, (x +3) % 214  
Rev. 0 | Page 69 of 107  
 
 
 
 
AD6684  
Data Sheet  
These tests indicated by the value of Register 0x0571, Bit 5. The  
test pattern is equivalent to the raw samples from the ADC.  
JESD204B BLOCK TEST MODES  
In addition to the ADC pipeline test modes, the AD6684 also  
has flexible test modes in the JESD204B block. These test modes  
are listed in Register 0x0573 and Register 0x0574. These test  
patterns can be injected at various points along the output data-  
path. These test injection points are shown in Figure 89. Table 39  
describes the various test modes available in the JESD204B  
block. For the AD6684, a transition from test modes  
(Register 0x0573 ≠ 0x00) to normal mode (Register 0x0573 =  
0x00) requires an SPI soft reset. This is done by writing 0x81 to  
Register 0x0000 (self cleared).  
Interface Test Modes  
The interface test modes are described in Register 0x0573, Bits[3:0].  
These test modes are also explained in Table 39. The interface tests  
can be injected at various points along the data. See Figure 89  
for more information on the test injection points. Register 0x0573,  
Bits[5:4] show where these tests are injected.  
Table 40, Table 41, and Table 42 show examples of some of the  
test modes when injected at the JESD204B sample input, PHY  
10-bit input, and scrambler 8-bit input. In Table 40, Table 41,  
and Table 42, UPx represent the user pattern control bits from  
the customer register map.  
Transport Layer Sample Test Mode  
The transport layer samples are implemented in the AD6684 as  
defined by Section 5.1.6.3 in the JEDEC JESD204B specification.  
Table 39. JESD204B Interface Test Modes  
Output Test Mode  
Bit Sequence  
Pattern Name  
Expression  
Default  
0000  
Off (default)  
Not applicable  
Not applicable  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
Alternating checkerboard  
1/0 word toggle  
0x5555, 0xAAAA, 0x5555, …  
0x0000, 0xFFFF, 0x0000, …  
x31 + x28 + 1  
Not applicable  
Not applicable  
0x0003AFFF  
0x003AFF  
0x03AF  
0x092  
0x07  
Ramp size depends on test injection point  
User Pattern 1 to User Pattern 4, then repeat  
User Pattern 1 to User Pattern 4, then zeros  
31-bit PN sequence  
23-bit PN sequence  
15-bit PN sequence  
9-bit PN sequence  
7-bit PN sequence  
Ramp output  
x23 + x18 + 1  
x15 + x14 + 1  
x9 + x5 + 1  
x7 + x6 + 1  
(x) % 216  
1110  
1111  
Continuous/repeat user test  
Single user test  
Register 0x0551 to Register 0x0558  
Register 0x0551 to Register 0x0558  
Table 40. JESD204B Sample Input for M = 2, S = 2, N' = 16 (Register 0x0573, Bits[5:4] = 'b00)  
Frame  
Number  
Converter  
Number  
Sample  
Number  
Alternating  
Checkerboard  
1/0 Word  
Toggle  
9-Bit  
PN  
23-Bit  
PN  
Ramp  
User Repeat  
UP1[15:0]  
UP1[15:0]  
UP1[15:0]  
UP1[15:0]  
UP2[15:0]  
UP2[15:0]  
UP2[15:0]  
UP2[15:0]  
UP3[15:0]  
UP3[15:0]  
UP3[15:0]  
UP3[15:0]  
User Single  
UP1[15:0]  
UP1[15:0]  
UP1[15:0]  
UP1[15:0]  
UP2[15:0]  
UP2[15:0]  
UP2[15:0]  
UP2[15:0]  
UP3[15:0]  
UP3[15:0]  
UP3[15:0]  
UP3[15:0]  
UP4[15:0]  
UP4[15:0]  
UP4[15:0]  
UP4[15:0]  
0x0000  
0
0
0
0
1
1
1
1
2
2
2
2
3
3
3
3
4
4
4
4
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0x5555  
0x5555  
0x5555  
0x5555  
0xAAAA  
0xAAAA  
0xAAAA  
0xAAAA  
0x5555  
0x5555  
0x5555  
0x5555  
0xAAAA  
0xAAAA  
0xAAAA  
0xAAAA  
0x5555  
0x5555  
0x5555  
0x5555  
0x0000  
0x0000  
0x0000  
0x0000  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0x0000  
0x0000  
0x0000  
0x0000  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0x0000  
0x0000  
0x0000  
0x0000  
(x) % 216  
0x496F  
0x496F  
0x496F  
0x496F  
0xC9A9 0x0029  
0xC9A9 0x0029  
0xC9A9 0x0029  
0xC9A9 0x0029  
0x980C  
0x980C  
0x980C  
0x980C  
0x651A  
0x651A  
0x651A  
0x651A  
0x5FD1  
0x5FD1  
0x5FD1  
0x5FD1  
0xFF5C  
0xFF5C  
0xFF5C  
0xFF5C  
(x) % 216  
(x) % 216  
(x) % 216  
(x +1) % 216  
(x +1) % 216  
(x +1) % 216  
(x +1) % 216  
(x +2) % 216  
(x +2) % 216  
(x +2) % 216  
(x +2) % 216  
(x +3) % 216  
(x +3) % 216  
(x +3) % 216  
(x +3) % 216  
(x +4) % 216  
(x +4) % 216  
(x +4) % 216  
(x +4) % 216  
0xB80A  
0xB80A  
0xB80A  
0xB80A  
0x3D72 UP4[15:0]  
0x3D72 UP4[15:0]  
0x3D72 UP4[15:0]  
0x3D72 UP4[15:0]  
0x9B26  
0x9B26  
0x9B26  
0x9B26  
UP1[15:0]  
UP1[15:0]  
UP1[15:0]  
UP1[15:0]  
0x0000  
0x0000  
0x0000  
Rev. 0 | Page 70 of 107  
 
 
 
Data Sheet  
AD6684  
Table 41. Physical Layer 10-Bit Input (Register 0x0573, Bits[5:4] = 'b01)  
10-Bit Symbol  
Number  
Alternating  
Checkerboard  
1/0 Word  
Toggle  
23-Bit  
9-Bit PN PN  
Ramp  
User Repeat  
UP1[15:6]  
UP2[15:6]  
UP3[15:6]  
UP4[15:6]  
UP1[15:6]  
UP2[15:6]  
UP3[15:6]  
UP4[15:6]  
UP1[15:6]  
UP2[15:6]  
UP3[15:6]  
UP4[15:6]  
User Single  
0
1
2
3
4
5
6
7
8
9
10  
11  
0x155  
0x2AA  
0x155  
0x2AA  
0x155  
0x2AA  
0x155  
0x2AA  
0x155  
0x2AA  
0x155  
0x2AA  
0x000  
0x3FF  
0x000  
0x3FF  
0x000  
0x3FF  
0x000  
0x3FF  
0x000  
0x3FF  
0x000  
0x3FF  
(x) % 210  
0x125  
0x2FC  
0x26A  
0x198  
0x031  
0x251  
0x297  
0x3D1  
0x18E  
0x2CB  
0x0F1  
0x3DD  
0x3FD  
0x1C0  
0x00A  
0x1B8  
0x028  
0x3D7  
0x0A6  
0x326  
0x10F  
0x3FD  
0x31E  
0x008  
UP1[15:6]  
UP2[15:6]  
UP3[15:6]  
UP4[15:6]  
0x000  
0x000  
0x000  
0x000  
0x000  
(x + 1) % 210  
(x + 2) % 210  
(x + 3) % 210  
(x + 4) % 210  
(x + 5) % 210  
(x + 6) % 210  
(x + 7) % 210  
(x + 8) % 210  
(x + 9) % 210  
(x + 10) % 210  
(x + 11) % 210  
0x000  
0x000  
0x000  
Table 42. Scrambler 8-Bit Input (Register 0x0573, Bits[5:4] = 'b10)  
8-Bit Octet  
Number  
Alternating  
Checkerboard  
1/0 Word  
Toggle  
9-Bit  
PN  
23-Bit  
PN  
Ramp  
User Repeat  
UP1[15:9]  
UP2[15:9]  
UP3[15:9]  
UP4[15:9]  
UP1[15:9]  
UP2[15:9]  
UP3[15:9]  
UP4[15:9]  
UP1[15:9]  
UP2[15:9]  
UP3[15:9]  
UP4[15:9]  
User Single  
UP1[15:9]  
UP2[15:9]  
UP3[15:9]  
UP4[15:9]  
0x00  
0x00  
0x00  
0x00  
0x00  
0
1
2
3
4
5
6
7
8
9
10  
11  
0x55  
0xAA  
0x55  
0xAA  
0x55  
0xAA  
0x55  
0xAA  
0x55  
0xAA  
0x55  
0xAA  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
(x) % 28  
0x49  
0x6F  
0xC9  
0xA9  
0x98  
0x0C  
0x65  
0x1A  
0x5F  
0xD1  
0x63  
0xAC  
0xFF  
0x5C  
0x00  
0x29  
0xB8  
0x0A  
0x3D  
0x72  
0x9B  
0x26  
0x43  
0xFF  
(x + 1) % 28  
(x + 2) % 28  
(x + 3) % 28  
(x + 4) % 28  
(x + 5) % 28  
(x + 6) % 28  
(x + 7) % 28  
(x + 8) % 28  
(x + 9) % 28  
(x + 10) % 28  
(x + 11) % 28  
0x00  
0x00  
0x00  
Data Link Layer Test Modes  
patterns inserted at this point are useful for verifying the  
functionality of the data link layer. When the data link layer test  
modes are enabled, disable SYNCINB AB/SYNCINB CD by  
writing 0xC0 to Register 0x0572.  
The data link layer test modes are implemented in the AD6684 as  
defined by Section 5.3.3.8.2 in the JEDEC JESD204B specification.  
These tests are shown in Register 0x0574, Bits[2:0]. Test  
Rev. 0 | Page 71 of 107  
 
 
AD6684  
Data Sheet  
SERIAL PORT INTERFACE  
The AD6684 SPI allows the user to configure the converter for  
specific functions or operations through a structured register  
space provided inside the ADC. The SPI gives the user added  
flexibility and customization, depending on the application.  
Addresses are accessed via the serial port and can be written to  
or read from the port. Memory is organized into bytes that can  
be further divided into fields. These fields are documented in  
the Memory Map section. For detailed operational information,  
see the Serial Control Interface Standard (Rev. 1.0).  
command is issued. This bit allows the SDIO pin to change  
direction from an input to an output.  
In addition to word length, the instruction phase determines  
whether the serial frame is a read or write operation, allowing  
the serial port to be used both to program the chip and to read  
the contents of the on-chip memory. If the instruction is a  
readback operation, performing a readback causes the SDIO pin  
to change direction from an input to an output at the appropriate  
point in the serial frame.  
CONFIGURATION USING THE SPI  
Data can be sent in MSB first mode or in LSB first mode. MSB  
first mode is the default on power-up and can be changed via  
the SPI port configuration register. For more information about  
this and other features, see the Serial Control Interface Standard  
(Rev. 1.0).  
Three pins define the SPI of this ADC: the SCLK pin, the SDIO  
pin, and the CSB pin (see Table 43). The SCLK (serial clock) pin  
is used to synchronize the read and write data presented from  
and to the ADC. The SDIO (serial data input/output) pin is a  
dual-purpose pin that allows data to be sent and read from the  
internal ADC memory map registers. The CSB (chip select bar)  
pin is an active low control that enables or disables the read and  
write cycles.  
HARDWARE INTERFACE  
The pins described in Table 43 comprise the physical interface  
between the user programming device and the serial port of the  
AD6684. The SCLK pin and the CSB pin function as inputs  
when using the SPI interface. The SDIO pin is bidirectional,  
functioning as an input during write phases and as an output  
during readback.  
Table 43. Serial Port Interface Pins  
Pin  
Function  
SCLK Serial clock. The serial shift clock input, which is used to  
synchronize serial interface reads and writes.  
SDIO Serial data input/output. A dual-purpose pin that  
typically serves as an input or an output, depending on  
the instruction being sent and the relative position in the  
timing frame.  
The SPI interface is flexible enough to be controlled by either  
FPGAs or microcontrollers. One method for SPI configuration  
is described in detail in the AN-812 Application Note,  
Microcontroller-Based Serial Port Interface (SPI) Boot Circuit.  
CSB  
Chip select bar. An active low control that gates the read  
and write cycles.  
Do not activate the SPI port during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK signal, the CSB signal, and the SDIO signal are typically  
asynchronous to the ADC clock, noise from these signals can  
degrade converter performance. If the on-board SPI bus is used  
for other devices, it may be necessary to provide buffers between  
this bus and the AD6684 to prevent these signals from  
transitioning at the converter inputs during critical sampling  
periods.  
The falling edge of CSB, in conjunction with the rising edge of  
SCLK, determines the start of the framing. An example of the  
serial timing and its definitions can be found in Figure 4 and  
Table 5.  
Other modes involving the CSB pin are available. The CSB pin  
can be held low indefinitely, which permanently enables the  
device; this is called streaming. The CSB can stall high between  
bytes to allow for additional external timing. When CSB is tied  
high, SPI functions are placed in a high impedance mode. This  
mode turns on the secondary functions of the SPI pin.  
SPI ACCESSIBLE FEATURES  
Table 44 provides a brief description of the general features that  
are accessible via the SPI. These features are described in detail  
in the Serial Control Interface Standard (Rev. 1.0). The AD6684  
device specific features are described in the Memory Map section.  
All data is composed of 8-bit words. The first bit of each  
individual byte of serial data indicates whether a read or write  
Table 44. Features Accessible Using the SPI  
Feature Name  
Description  
Mode  
Clock  
Allows the user to set either power-down mode or standby mode.  
Allows the user to access the clock divider via the SPI.  
DDC  
Allows the user to set up decimation filters for different applications.  
Allows the user to set test modes to have known data on output bits.  
Allows the user to set up outputs.  
Test Input/Output  
Output Mode  
SERDES Output Setup  
Allows the user to vary SERDES settings such as swing and emphasis.  
Rev. 0 | Page 72 of 107  
 
 
 
 
 
 
Data Sheet  
AD6684  
MEMORY MAP  
Channel-Specific Registers  
READING THE MEMORY MAP REGISTER TABLE  
Some channel setup functions, such as the fast detect control  
(Register 0x0247), can be programmed to a different value for  
each channel. In these cases, channel address locations are  
internally duplicated for each channel. These registers and bits  
are designated in Table 45 as local. These local registers and bits can  
be accessed by setting the appropriate Channel A/Channel C or  
Channel B/Channel D bits in Register 0x0008. The particular  
channel that is addressed is dependent upon the pair selection  
written to Register 0x0009. If both bits are set, the subsequent  
write affects the registers of both channels. In a read cycle, set  
only Channel A/Channel C or Channel B/Channel D to read  
one of the two registers. If both bits are set during an SPI read  
cycle, the device returns the value for Channel A. If both pairs  
and both channels have been selected via Register 0x0009 and  
Register 0x0008, then the device returns the value for Channel A.  
Each row in the memory map register table has eight bit locations.  
The memory map is divided into four sections: the Analog  
Devices SPI registers (Register 0x0000 to Register 0x000D and  
Register 0x18A6 to Register 0x1A4D), the ADC function registers  
(Register 0x003F to Register 0x027A), the DDC, NSR, and VDR  
function registers (Register 0x0300 to Register 0x0434), and  
the digital outputs and test modes registers (Register 0x0550 to  
Register 0x05C6).  
Table 45 documents the default hexadecimal value for each  
hexadecimal address shown. The column with the heading Bit 7  
(MSB) is the start of the default hexadecimal value given. For  
example, Address 0x0561, the output mode register, has a  
hexadecimal default value of 0x01. This means that Bit 0 = 1,  
and the remaining bits are 0s. This setting is the default output  
format value, which is twos complement. For more information  
on this function and others, see Table 45 and Table 46.  
The names of the registers listed in Table 45 and Table 46 are  
prefixed with either global map, channel map, JESD204B map,  
or pair map. Registers in the pair map and JESD204B map apply  
to a pair of channels, either Pair A/B or Pair C/D. To write registers  
in the pair map and the JESD204B map, the pair index register  
(Register 0x0009) must be written to address the appropriate  
pair. The SPI Configuration A (Register 0x0000), SPI Config-  
uration B (Register 0x0001), and pair index (Register 0x0009)  
registers are the only registers that reside in the global map.  
Registers in the channel map are local to each channel, either  
Channel A, Channel B, Channel C, or Channel D. To write registers  
in the channel map, the pair index register (Register 0x0009) must  
be written first to address the desired pair (Pair A/B or Pair C/D),  
followed by writing the channel index register (Register 0x0008)  
to select the desired channel (Channel A/Channel C or Channel B/  
Channel D). For example, to write Channel A to a test mode (set by  
Register 0x0550), first write a value of 0x01 to Register 0x0009 to  
select Pair A/B, followed by writing 0x01 to Register 0x0008 to  
select Channel A. Then, write Register 0x0550 to the value for  
the desired test mode. To write all channels to a test mode (set  
by Register 0x0550), first write Register 0x0009 to a value of  
0x03 to select both Pair A/B and Pair C/D, followed by writing  
Register 0x0008 to a value of 0x03 to select Channel A, Channel B,  
Channel C, and Channel D. Next, write Register 0x0550 to the  
value for the desired test mode.  
Open and Reserved Locations  
All address and bit locations that are not included in Table 45  
are not currently supported for this device. Write unused bits of  
a valid address location with 0s unless the default value is set  
otherwise. Writing to these locations is required only when part  
of an address location is unassigned (for example, Address 0x0561).  
If the entire address location is open (for example,  
Address 0x0013), do not write to this address location.  
Default Values  
After the AD6684 is reset, critical registers are loaded with  
default values. The default values for the registers are given in  
the memory map register table, Table 45.  
Logic Levels  
An explanation of logic level terminology follows:  
“Bit is set” is synonymous with “bit is set to Logic 1” or  
“writing Logic 1 for the bit.”  
“Clear a bit” is synonymous with “bit is set to Logic 0” or  
“writing Logic 0 for the bit.”  
X denotes a don’t care bit.  
ADC Pair Addressing  
The AD6684 functionally operates as two pairs of dual IF  
receiver channels. There are two ADCs, two NSR processing  
blocks, two VDR processing blocks, and two DDCs in each pair,  
resulting in a total of four of each for the AD6684. To access the  
SPI registers for each pair, the pair index must be written in  
Register 0x0009. The pair index regist must be written prior to  
any other SPI write to the AD6684.  
SPI Soft Reset  
After issuing a soft reset by programming 0x81 to  
Register 0x0000, the AD6684 requires 5 ms to recover. When  
programming the AD6684 for application setup, ensure that an  
adequate delay is programmed into the firmware after asserting  
the soft reset and before starting the device setup.  
Rev. 0 | Page 73 of 107  
 
 
AD6684  
Data Sheet  
MEMORY MAP  
MEMORY MAP SUMMARY  
All address locations that are not included in Table 45 are not currently supported for this device and must not be written.  
Table 45. Memory Map Summary  
Reg.  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
R/W  
0x0000 Global Map  
SPI  
Soft reset  
(self  
LSB first Address  
Reserved  
Address  
ascension  
LSB first  
Soft  
reset  
(self  
0x00  
R/W  
mirror  
ascension  
mirror  
Configuratio clearing)  
n A  
clearing)  
0x0001 Global Map  
Single  
instruction  
Reserved  
Datapath  
soft reset  
(self  
Reserved 0x00  
R/W  
R/W  
SPI Config-  
uration B  
clearing)  
0x0002 Channel map  
chip config-  
Reserved  
Channel power modes 0x00  
uration  
0x0003 Pair map  
chip type  
CHIP_TYPE  
0x03  
0xDC  
0x00  
R
0x0004 Pair map  
chip ID LSB  
CHIP_ID[7:0]  
R
0x0006 Pair map  
chip grade  
CHIP_SPEED_GRADE  
Reserved  
R
0x0008 Pair map  
device index  
Reserved  
Reserved  
Channel B/ Channel 0x03  
Channel D A/Chan-  
nel C  
R/W  
0x0009 Global map  
pair index  
Pair C/D  
Pair A/B 0x03  
R/W  
R/W  
R
0x000A Pair map  
scratch pad  
Scratch pad  
0x07  
0x000B Pair map SPI  
revision  
SPI_REVISION  
0x01  
0x000C Pair map  
vendor ID  
LSB  
CHIP_VENDOR_ID[7:0]  
CHIP_VENDOR_ID[15:8]  
Reserved  
0x56  
R
0x000D Pair map  
vendor ID  
0x04  
0x00  
R
MSB  
0x003F Channel map PDWN/  
chip power- STBY  
R/W  
R/W  
R/W  
R/W  
R/W  
down pin  
disable  
0x0040 Pair Map  
Chip Pin  
PDWN/STBY function  
Fast Detect B/Fast Detect D (FD_B/FD_D)  
Reserved  
Fast Detect A/Fast Detect C (FD_A/FD_C) 0x3F  
Control 1  
0x0108 Pair map  
clock divider  
control  
Clock divider  
0x01  
0x00  
0x0109 Channel map  
clock divider  
Reserved  
Clock divider phase offset  
phase  
0x010A Pair map  
Clock  
Reserved  
Reserved  
Clock divider negative skew  
window  
Clock divider positive 0x00  
skew window  
clock divider divider auto  
SYSREF  
control  
phase  
adjust  
0x0110 Pair map  
clock delay  
Clock delay mode select  
0x00  
0x00  
0xC0  
R/W  
R/W  
R/W  
control  
0x0111 Channel map  
clock super  
Clock super fine delay adjust  
fine delay  
0x0112 Channel map  
clock fine  
Clock fine delay adjust  
Rev. 0 | Page 74 of 107  
delay  
 
 
 
Data Sheet  
AD6684  
Reg.  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reserved  
Reset  
R/W  
0x011A Clock  
Reserved  
Clock detection threshold  
Clock detection  
enable  
0x00  
R/W  
detection  
control  
0x011B Pair map  
clock status  
Reserved  
Input  
clock  
detect  
0x00  
0x00  
R
0x011C Clock DCS  
control  
Reserved  
Clock DCS  
enable  
Clock  
DCS  
R/W  
power-  
up  
0x0120 Pair Map  
SYSREF  
Reserved  
Reserved  
SYSREF Reserved  
flag  
reset  
SYSREF transition  
select  
CLK  
edge  
select  
SYSREF mode select  
Reserved 0x00  
R/W  
R/W  
R/W  
R
Control 1  
0x0121 Pair Map  
SYSREF  
Reserved  
SYSREF N shot ignore counter select 0x00  
Control 2  
0x0123 Pair Map  
SYSREF  
SYSREF time stamp delay[6:0]  
0x40  
Control 4  
0x0128 Pair Map  
SYSREF  
SYSREF hold status[7:4]  
Reserved  
SYSREF setup status[3:0]  
0x00  
Status 1  
0x0129 Pair Map  
SYSREF  
Clock divider phase when SYSREF is captured  
0x00  
0x00  
R
Status 2  
0x012A Pair Map  
SYSREF  
SYSREF counter [7:0] (increments when a SYSREF input is captured)  
R
Status 3  
0x01FF Pair map  
chip sync  
Reserved  
Synchro- 0x00  
nization  
mode  
R/W  
0x0200 Pair map  
chip mode  
Reserved  
Chip Q  
ignore  
Reserved  
Reserved  
Chip application mode  
Chip decimation ratio select  
0x07  
R/W  
R/W  
0x0201 Pair map  
chip decim-  
0x00  
0x00  
0x00  
ation ratio  
0x0228 Channel map  
custom  
Offset adjust in LSBs from +127 to −128  
Force  
R/W  
R/W  
offset  
0x0245 Channel map  
fast detect  
Reserved  
Force value of  
FD_A/FD_B/  
Reserved  
Enable  
fast  
FD_A/  
FD_B/  
FD_C/  
control  
FD_C/FD_D pins;  
if force pins is  
detect  
output  
FD_D pins true, this value is  
output on the  
FD_x pins  
0x0247 Channel map  
fast detect  
upper  
Fast detect upper threshold[7:0]  
0x00  
0x00  
0x00  
0x00  
R/W  
R/W  
R/W  
R/W  
threshold  
LSB  
0x0248 Channel map  
fast detect  
upper  
Reserved  
Fast detect upper threshold[12:8]  
threshold  
MSB  
0x0249 Channel map  
fast detect  
lower  
Fast detect lower threshold[7:0]  
threshold  
LSB  
0x024A Channel map  
fast detect  
lower  
Reserved  
Fast detect lower threshold[12:8]  
threshold  
MSB  
Rev. 0 | Page 75 of 107  
AD6684  
Data Sheet  
Reg.  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
R/W  
0x024B Channel map  
fast detect  
Fast detect dwell time[7:0]  
0x00  
R/W  
dwell time  
LSB  
0x024C Channel map  
fast detect  
Fast detect dwell time[15:8]  
Reserved  
0x00  
0x00  
R/W  
R/W  
dwell time  
MSB  
0x026F Pair map  
signal  
Signal  
monitor  
synchro-  
nization  
mode  
monitor sync  
control  
0x0270 Channel map  
signal  
Reserved  
Peak  
detector  
Reserved 0x00  
R/W  
R/W  
R/W  
R/W  
R/W  
monitor  
control  
0x0271 Channel Map  
Signal  
Signal monitor period[7:0]  
Signal monitor period[15:8]  
Signal monitor period[23:16]  
0x80  
Monitor  
Period 0  
0x0272 Channel Map  
Signal  
0x00  
Monitor  
Period 1  
0x0273 Channel Map  
Signal  
0x00  
Monitor  
Period 2  
0x0274 Channel map  
Reserved  
Result update  
Reserved  
Result selection  
0x01  
signal  
monitor  
status  
control  
0x0275 Channel Map  
Signal  
Signal monitor result[7:0]  
Signal monitor result[15:8]  
0x00  
0x00  
0x00  
0x00  
R
R
R
R
Monitor  
Status 0  
0x0276 Channel Map  
Signal  
Monitor  
Status 1  
0x0277 Channel Map  
Signal  
Reserved  
Signal monitor result[19:16]  
Monitor  
Status 2  
0x0278 Channel map  
signal  
Period count result, Bits[7:0]  
Reserved  
monitor  
status frame  
counter  
0x0279 Channel map  
signal  
Signal  
0x00  
0x02  
0x00  
R/W  
R/W  
R/W  
monitor  
SPORT  
over JES-  
D204B  
enable  
monitor  
serial framer  
control  
0x027A Channel map  
signal  
Reserved  
Signal monitor SPORT over JESD204B peak detector enable  
monitor  
serial framer  
input  
selection  
0x0300 Pair map  
DDC sync  
Reserved  
DDC NCO soft reset  
Reserved  
DDC next  
sync  
DDC  
synchro-  
nization  
mode  
control  
Rev. 0 | Page 76 of 107  
Data Sheet  
AD6684  
Reg.  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
R/W  
0x0310 Pair map  
DDC 0  
DDC 0  
mixer select gain  
select  
DDC 0  
DDC 0 IF mode  
DDC 0  
complex  
to real  
Reserved  
DDC 0 decimation rate 0x00  
select  
R/W  
control  
enable  
0x0311 Pair Map  
Reserved  
DDC 0 Q input  
select  
Reserved  
DDC 0  
I input  
select  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
DDC 0 input  
select  
0x0314 Pair Map  
DDC 0 NCO frequency value, twos complement[7:0]  
DDC 0 NCO frequency value, twos complement[15:8]  
DDC 0 NCO frequency value, twos complement[23:16]  
DDC 0 NCO frequency value, twos complement[31:24]  
DDC 0 NCO frequency value, twos complement[39:32]  
DDC 0 NCO frequency value, twos complement[47:40]  
DDC 0 NCO phase value, twos complement[7:0]  
DDC 0 NCO phase value, twos complement[15:8]  
DDC 0 NCO phase value, twos complement[23:16]  
DDC 0 NCO phase value, twos complement[31:24]  
DDC 0 NCO phase value, twos complement[39:32]  
DDC 0 NCO phase value, twos complement[47:40]  
DDC 0 Phase  
Increment 0  
0x0315 Pair Map  
DDC 0 Phase  
Increment 1  
0x0316 Pair Map  
DDC 0 Phase  
Increment 2  
0x0317 Pair Map  
DDC 0 Phase  
Increment 3  
0x0318 Pair Map  
DDC 0 Phase  
Increment 4  
0x031A Pair Map  
DDC 0 Phase  
Increment 5  
0x031D Pair Map  
DDC 0 Phase  
Offset 0  
0x031E Pair Map  
DDC 0 Phase  
Offset 1  
0x031F Pair Map  
DDC 0 Phase  
Offset 2  
0x0320 Pair Map  
DDC 0 Phase  
Offset 3  
0x0321 Pair Map  
DDC 0 Phase  
Offset 4  
0x0322 Pair Map  
DDC 0 Phase  
Offset 5  
0x0327 Pair map  
Reserved  
DDC 0 Q output  
test mode enable  
Reserved  
DDC 0 I  
output  
test  
DDC 0 test  
enable  
mode  
enable  
0x0330 Pair map  
DDC 1  
DDC 1  
mixer select gain  
select  
DDC 1  
DDC 1 IF mode  
DDC 1  
complex  
to real  
Reserved  
DDC 1 decimation rate 0x00  
select  
R/W  
control  
enable  
0x0331 Pair map  
DDC 1 input  
select  
Reserved  
DDC 1 Q input  
select  
Reserved  
DDC 1 I  
input  
select  
0x05  
0x00  
0x00  
0x00  
R/W  
R/W  
R/W  
R/W  
0x0334 Pair Map  
DDC 1 Phase  
DDC 1 NCO frequency value, twos complement[7:0]  
DDC 1 NCO frequency value, twos complement[15:8]  
DDC 1 NCO frequency value, twos complement[23:16]  
Increment 0  
0x0335 Pair Map  
DDC 1 Phase  
Increment 1  
0x0336 Pair Map  
DDC 1 Phase  
Increment 2  
Rev. 0 | Page 77 of 107  
AD6684  
Data Sheet  
Reg.  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
R/W  
0x0337 Pair Map  
DDC 1 NCO frequency value, twos complement[31:24]  
DDC 1 NCO frequency value, twos complement[39:32]  
DDC 1 NCO frequency value, twos complement[47:40]  
DDC 1 NCO phase value, twos complement[7:0]  
DDC 1 NCO phase value, twos complement[15:8]  
DDC 1 NCO phase value, twos complement[23:16]  
DDC 1 NCO phase value, twos complement[31:24]  
DDC 1 NCO phase value, twos complement[39:32]  
DDC 1 NCO phase value, twos complement[47:40]  
0x00  
R/W  
DDC 1 Phase  
Increment 3  
0x0338 Pair Map  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
DDC 1 Phase  
Increment 4  
0x033A Pair Map  
DDC 1 Phase  
Increment 5  
0x033D Pair Map  
DDC 1 Phase  
Offset 0  
0x033E Pair Map  
DDC 1 Phase  
Offset 1  
0x033F Pair Map  
DDC 1 Phase  
Offset 2  
0x0340 Pair Map  
DDC 1 Phase  
Offset 3  
0x0341 Pair Map  
DDC 1 Phase  
Offset 4  
0x0342 Pair Map  
DDC 1 Phase  
Offset 5  
0x0347 Pair map  
Reserved  
DDC 1 Q output  
test mode enable  
Reserved  
DDC 1  
I output  
test  
DDC 1 test  
enable  
mode  
enable  
0x041E Channel map High-pass/  
Reserved  
NSR dec- 0x00  
imate by  
2 enable  
R/W  
NSR dec-  
imate by 2  
control  
low-pass  
mode  
0x0420 NSR mode  
Reserved  
NSR mode  
Reserved 0x00  
0x00  
R/W  
R/W  
0x0422 Channel map  
NSR tuning  
Reserved  
NSR tuning word  
0x0430 Pair map  
VDR control  
Reserved  
VDR  
VDR  
0x01  
R/W  
bandwidth complex  
mode  
enable  
0x0434 Channel map  
VDR tuning  
Reserved  
VDR center frequency  
0x00  
0x00  
0x00  
0x00  
R/W  
R/W  
R/W  
R/W  
frequency  
0x0550 Channel map User  
Reser-  
ved  
Reset PN  
sequence  
Reset PN short  
generation  
Test mode selection  
test mode  
control  
pattern  
selection  
0x0551 Pair Map  
User  
User Pattern 1[7:0]  
User Pattern 1[15:8]  
Pattern 1 LSB  
0x0552 Pair Map  
User  
Pattern 1  
MSB  
0x0553 Pair Map  
User  
User Pattern 2[7:0]  
User Pattern 2[15:8]  
0x00  
0x00  
R/W  
R/W  
Pattern 2 LSB  
0x0554 Pair Map  
User  
Pattern 2  
MSB  
Rev. 0 | Page 78 of 107  
Data Sheet  
AD6684  
Reg.  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
User Pattern 3[7:0]  
Bit 2  
Bit 1  
Bit 0  
Reset  
R/W  
0x0555 Pair Map  
User  
0x00  
R/W  
Pattern 3 LSB  
0x0556 Pair Map  
User Pattern  
User Pattern 3[15:8]  
User Pattern 4[7:0]  
User Pattern 4[15:8]  
0x00  
0x00  
0x00  
R/W  
R/W  
R/W  
3 MSB  
0x0557 Pair Map  
User  
Pattern 4 LSB  
0x0558 Pair Map  
User  
Pattern 4  
MSB  
0x0559 Pair Map  
Output  
Reserved  
Converter control Bit 1 selection  
Reserved  
Converter control Bit 0 selection  
Converter control Bit 2 selection  
0x00  
0x01  
0x01  
0x00  
R/W  
R/W  
R/W  
R/W  
Control  
Mode 0  
0x055A Pair Map  
Output  
Reserved  
Reserved  
Reserved  
Control  
Mode 1  
0x0561 Pair map  
output  
Sample invert  
Data format select  
sample  
mode  
0x0564 Pair map  
output  
Reserved  
Con-  
verter  
channel  
swap  
channel  
select  
control  
0x056E JESD204B  
map PLL  
JESD204B lane rate control  
Reserved  
0x00  
0x00  
0x49  
R/W  
R
control  
0x056F JESD204B  
map PLL  
PLL lock  
status  
Reserved  
status  
0x0570 JESD204B  
map JTX  
Quick Configuration L  
Quick Configuration M  
Lane synchronization  
Quick Configuration F  
R/W  
quick  
configuration  
0x0571 JESD204B  
map JTX Link mode  
Standby  
Tail bit  
(t) PN  
Long  
transport  
layer test  
ILAS sequence mode  
FACI  
Link  
control  
0x14  
R/W  
R/W  
Control 1  
0x0572 JESD204B  
map JTX Link  
Control 2  
SYNCINB AB/  
SYNC-  
SYNCINB AB/  
Reserved 8-bit/10-bit  
bypass  
8-bit/10-bit Reserved 0x00  
invert  
SYNCINB CD pin  
control  
INB AB/  
SYNCINB CD  
pin invert  
SYNCINB CD pin type  
0x0573 JESD204B  
map JTX Link  
Control 3  
Checksum mode  
Test injection point  
JESD204B test mode patterns  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x0574 JESD204B  
map JTX Link  
Control 4  
ILAS delay  
Reserved  
Link layer test mode  
0x0578 JESD204B  
map JTX  
Reserved  
LMFC phase offset value  
LMFC offset  
0x0580 JESD204B  
map JTX DID  
JESD204B Tx serial device identification (DID) value  
configuration  
0x0581 JESD204B  
map JTX BID  
Reserved  
JESD204B Tx serial bank identification (BID) value  
configuration  
0x0583 JESD204B  
map JTX  
Reserved  
Lane 0 serial lane identification (LID) value  
LID 0  
configuration  
Rev. 0 | Page 79 of 107  
AD6684  
Data Sheet  
Reg.  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
R/W  
0x0585 JESD204B  
map JTX  
Reserved  
Lane 1 LID value  
0x02  
R/W  
LID 1  
configuration  
0x058B JESD204B  
map JTX  
JESD204B  
scrambling  
(SCR)  
Reserved  
JESD204B lanes (L)  
0x81  
R/W  
SCR L  
configuration  
0x058C JESD204B  
map JTX F  
Number of octets per frame (F)  
0x01  
0x1F  
0x01  
0x0F  
R
configuration  
0x058D JESD204B  
map JTX K  
Reserved  
Number of frames per multiframe (K)  
R/W  
R
configuration  
0x058E JESD204B  
map JTX M  
Number of converters per link  
configuration  
0x058F JESD204B  
map JTX  
Number of control bits Reserved  
(CS) per sample  
ADC converter resolution (N)  
R/W  
CS N  
configuration  
0x0590 JESD204B  
map JTX  
Subclass support  
Reserved  
ADC number of bits per sample (N')  
0x2F  
R/W  
Subclass  
Version NP  
configuration  
0x0591 JESD204B  
map JTX JV S  
Samples per converter frame cycle (S)  
0x20  
0x00  
R
R
configuration  
0x0592 JESD204B  
map JTX  
HD value  
Reserved  
Control words per frame clock cycle per link (CF)  
HD CF  
configuration  
0x05A0 JESD204B  
map JTX  
Checksum 0 checksum value for SERDOUTAB0 /SERDOUTCD0  
Checksum 1 checksum value for SERDOUTAB1 /SERDOUTCD1  
0xC3  
0xC4  
0xFA  
R
Checksum 0  
configuration  
0x05A1 JESD204B  
map JTX  
R
Checksum 1  
configuration  
0x05B0 JESD204B  
map JTX lane  
Reserved  
JESD204B lane 1 Reserved  
power-down  
JESD-  
204B  
R/W  
power-down  
Lane 0  
power-  
down  
0x05B2 JESD204B  
map JTX  
Reserved  
Reserved  
SERDOUTAB0 /SERDOUTCD0 lane  
assignment  
0x00  
0x11  
0x11  
R/W  
R/W  
R/W  
Lane Assign-  
ment 1  
0x05B3 JESD204B  
map JTX  
SERDOUTAB1 /SERDOUTCD1 lane  
assignment  
Lane Assign-  
ment 2  
0x05C0 JESD204B  
map  
Reserved  
Swing voltage for SERDOUTAB1 /  
SERDOUTCD1  
Reserved  
Swing voltage for SERDOUTAB0 /  
SERDOUTCD0  
JESD204B  
serializer  
drive adjust  
0x05C4 JESD204B  
serializer  
preemph-  
asis  
Post tab  
polarity  
Sets post tab level  
Pretab  
polarty  
Sets pretab level  
0x0  
R/W  
selection  
register for  
Logical  
Lane 0  
Rev. 0 | Page 80 of 107  
Data Sheet  
AD6684  
Reg.  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
R/W  
0x05C6 JESD204B  
serializer  
Post tab  
polarity  
Sets post tab level  
Pre tab  
polarty  
Sets pre tab level  
0x0  
R/W  
preempha-  
sis selection  
register for  
Logical  
Lane 0  
0x0922 Large dither  
control  
Large dither control  
PLL calibration  
0x70  
0x0  
R/W  
R/W  
R/W  
0x1222 PLL  
calibration  
0x1228 JESD204B  
start-up  
JESD204B start-up circuit reset  
0xF  
circuit reset  
0x1262 PLL loss of  
lock control  
PLL loss of lock control  
Reserved  
0x0  
R/W  
R/W  
R/W  
0x18A6 Pair map  
VREF control  
VREF  
control  
0x00  
0x00  
0x18E0 External VCM  
Buffer  
External VCM Buffer Control 1  
Control 1  
0x18E1 External VCM  
Buffer  
External VCM Buffer Control 1  
External VCM Buffer Control 1  
0x00  
0x00  
0x00  
0x00  
R/W  
R/W  
R/W  
R/W  
Control 2  
0x18E2 External VCM  
Buffer  
Control 3  
0x18E3 External  
VCM buffer  
control  
Reserved External  
External VCM buffer current setting  
VCM  
buffer  
0x18E6 Temp-  
erature  
Reserved  
Temp-  
erature  
diode  
diode  
export  
export  
0x1908 Channel map  
analog input  
Reserved  
Analog input dc  
coupling  
selection  
Reserved  
0x00  
0x0D  
0x0C  
0x0C  
R/W  
R/W  
R/W  
R/W  
control  
0x1910 Channel map  
input full-  
Reserved  
Input full-scale control  
scale range  
0x1A4C Channel Map  
Buffer  
Reserved  
Reserved  
Buffer Control 1  
Control 1  
0x1A4D Channel Map  
Buffer  
Buffer Control 2  
Control 2  
Rev. 0 | Page 81 of 107  
AD6684  
Data Sheet  
MEMORY MAP DETAILS  
All address locations that are not included in Table 46 are not currently supported for this device and must not be written.  
Table 46. Memory Map Details  
Address Name  
Bits Bit Name  
Settings  
Description  
Reset Access  
0x0000  
Global Map  
SPI Config-  
uration A  
7
Soft reset (self clearing)  
When a soft reset is issued, the user must  
wait 5 ms before writing to any other  
register. This wait provides sufficient time  
for the boot loader to complete.  
0x0  
R/W  
0
1
Do nothing.  
Reset the SPI and registers (self clearing).  
6
5
LSB first mirror  
0x0  
0x0  
R/W  
R/W  
1
0
LSB shifted first for all SPI operations.  
MSB shifted first for all SPI operations.  
Address ascension mirror  
0
1
Multibyte SPI operations cause addresses  
to auto-increment.  
Multibyte SPI operations cause addresses  
to auto-increment.  
[4:3] Reserved  
Reserved.  
0x0  
0x0  
R
2
Address ascension  
R/W  
0
1
Multibyte SPI operations cause addresses  
to autoincrement.  
Multibyte SPI operations cause addresses  
to auto increment.  
1
0
LSB first  
0x0  
0x0  
R/W  
R/W  
1
0
LSB shifted first for all SPI operations.  
MSB shifted first for all SPI operations.  
Soft reset (self clearing)  
When a soft reset is issued, the user must  
wait 5 ms before writing to any other  
register. This wait provides sufficient time  
for the boot loader to complete.  
0
1
Do nothing.  
Reset the SPI and registers (self clearing).  
0x0001  
Global Map  
SPI Config-  
uration B  
7
Single instruction  
0x0  
R/W  
0
1
SPI streaming enabled.  
Streaming (multibyte read/write) is  
disabled. Only one read or write operation  
is performed, regardless of the state of the  
CSB line.  
[6:2] Reserved  
Reserved.  
0x0  
0x0  
R
1
Datapath soft reset (self  
R/W  
clearing)  
0
1
Normal operation.  
Datapath soft reset (self-clearing).  
Reserved.  
0
Reserved  
0x0  
0x0  
0x0  
R
0x0002  
Channel map [7:2] Reserved  
Reserved.  
R
chip config-  
uration  
[1:0] Channel power modes  
Channel power modes.  
Normal mode (power up).  
Standby mode. The digital datapath clocks  
are disabled, the JESD204B interface is  
enabled, and the outputs are enabled.  
R/W  
00  
10  
11  
Power-down mode. The digital datapath  
clocks are disabled, the digital datapath is  
held in reset, the JESD204B interface is  
disabled, and the outputs are disabled.  
Rev. 0 | Page 82 of 107  
 
 
Data Sheet  
AD6684  
Address Name  
Bits Bit Name  
Settings  
Description  
Chip type.  
Reset Access  
0x0003  
Pair map  
[7:0] CHIP_TYPE  
0x3  
R
chip type  
0x3  
High speed ADC.  
Chip ID.  
0x0004  
0x0006  
Pair map  
[7:0] CHIP_ID  
0xDC  
0x0  
R
R
chip ID LSB  
Pair map  
chip grade  
[7:4] CHIP_SPEED_GRADE  
Chip speed grade.  
500 MHz.  
0101  
[3:0] Reserved  
[7:2] Reserved  
Reserved.  
0x0  
0x0  
0x1  
R
0x0008  
0x0009  
0x000A  
Pair map  
device index  
Reserved.  
R
1
Channel B/Channel D  
R/W  
0
1
ADC Core B/ADC Core D does not receive  
the next SPI command.  
ADC Core B/ADC Core D receives the next  
SPI command.  
0
Channel A/Channel C  
0x1  
R/W  
0
1
ADC Core A/ADC Core C does not receive  
the next SPI command.  
ADC Core A/ADC Core C receives the next  
SPI command.  
Global map  
pair index  
[7:2] Reserved  
Reserved.  
0x0  
0x1  
R
1
Pair C/D  
R/W  
0
1
ADC Pair C/D does not receive the next read/  
write command from the SPI interface.  
ADC Pair C/D does not receive the next read/  
write command from the SPI interface.  
0
Pair A/B  
0x1  
R/W  
0
1
ADC Pair A/B does not receive the next read/  
write command from the SPI interface.  
ADC Pair A/B receives the next read/write  
command from the SPI interface.  
Pair map  
scratch pad  
[7:0] Scratch pad  
Chip scratch pad register. This register  
provides a consistent memory location for  
software debug.  
0x07  
R/W  
0x000B  
0x000C  
Pair map SPI [7:0] SPI_REVISION  
revision  
SPI revision register (0x01 = Revision 1.0).  
00000001 Revision 1.0.  
Vendor ID.  
0x1  
R
R
Pair map  
vendor ID  
LSB  
[7:0] CHIP_VENDOR_ID[7:0]  
0x56  
0x000D  
0x003F  
Pair map  
vendor ID  
MSB  
[7:0] CHIP_VENDOR_ID[15:8]  
Vendor ID.  
0x4  
0x0  
R
Channel  
map chip  
power-  
7
PDWN/STBY disable  
This bit is used in conjunction with  
Register 0x0040.  
R/W  
0
1
Power-down pin (PDWN/STBY) enabled;  
global pin control selection enabled  
(default).  
Power-down pin (PDWN/STBY) disabled/  
ignored; global pin control selection  
ignored.  
down pin  
[6:0] Reserved  
Reserved.  
0x0  
R
Rev. 0 | Page 83 of 107  
AD6684  
Data Sheet  
Address Name  
Bits Bit Name  
Settings  
Description  
Reset Access  
0x0040  
Pair Map  
[7:6] PDWN/STBY function  
0x0  
R/W  
Chip Pin  
Control 1  
00  
Power-down pin—assertion of the external  
power-down pin (PDWN/STBY) causes the  
chip to enter full power-down mode.  
01  
10  
Standby pin—assertion of the external  
power-down pin (PDWN/STBY) causes the  
chip to enter standby mode.  
Pin disabled—assertion of the external  
power-down pin (PDWN/STBY) is ignored.  
[5:3] Fast Detect B/Fast Detect D  
(FD_B/FD_D)  
0x7  
R/W  
000  
001  
010  
Fast Detect B/Fast Detect D output.  
JESD204B LMFC output.  
JESD204B internal SYNC signal in the ADC  
output.  
111  
Disabled (configured as an input with a  
weak pull down).  
[2:0] Fast Detect A/Fast Detect C  
(FD_A/FD_C)  
0x7  
R/W  
000  
001  
010  
Fast Detect A/Fast Detect C output.  
JESD204B LMFC output.  
JESD204B internal SYNC signal in the ADC  
output.  
111  
Disabled (configured as an input with a  
weak pull down).  
0x0108  
0x0109  
Pair map  
clock divider  
control  
[7:3] Reserved  
Reserved.  
0x0  
0x1  
R
[2:0] Clock divider  
R/W  
000  
001  
011  
111  
Divide by 1.  
Divide by 2.  
Divide by 4.  
Divide by 8.  
Reserved.  
Channel  
map clock  
divider  
[7:4] Reserved  
0x0  
0x0  
R
[3:0] Clock divider phase offset  
R/W  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0 input clock cycles delayed.  
1/2 input clock cycles delayed (invert clock).  
1 input clock cycles delayed.  
1 1/2 input clock cycles delayed.  
2 input clock cycles delayed.  
2 1/2 input clock cycles delayed.  
3 input clock cycles delayed.  
3 1/2 input clock cycles delayed.  
4 input clock cycles delayed.  
4 1/2 input clock cycles delayed.  
5 input clock cycles delayed.  
5 1/2 input clock cycles delayed.  
6 input clock cycles delayed.  
6 1/2 input clock cycles delayed.  
7 input clock cycles delayed.  
7 1/2 input clock cycles delayed.  
phase  
Rev. 0 | Page 84 of 107  
Data Sheet  
AD6684  
Address Name  
Bits Bit Name  
Clock divider auto phase  
adjust  
Settings  
Description  
Reset Access  
0x010A  
Pair map  
7
0x0  
R/W  
clock divider  
SYSREF  
control  
0
1
Clock divider phase is not changed by  
SYSREF (disabled).  
Clock divider phase is automatically  
adjusted by SYSREF (enabled).  
[6:4] Reserved  
Reserved.  
0x0  
0x0  
R
[3:2] Clock divider negative  
skew window  
R/W  
00  
No negative skew; SYSREF must be captured  
accurately.  
01  
10  
11  
1/2 device clock of negative skew.  
1 device clocks of negative skew.  
1 1/2 device clocks of negative skew.  
[1:0] Clock divider positive skew  
window  
0x0  
0x0  
R/W  
00  
No positive skew; SYSREF must be captured  
accurately.  
1/2 device clock of positive skew.  
1 device clocks of positive skew.  
1 1/2 device clocks of positive skew.  
Reserved.  
01  
10  
11  
0x0110  
Pair map  
clock delay  
control  
[7:3] Reserved  
R
[2:0] Clock delay mode select  
Clock delay mode select; used in conjunction 0x0  
with Register 0x0111 and Register 0x0112.  
R/W  
000  
001  
010  
No clock delay.  
Reserved.  
Fine delay; only Delay Step 0 to Delay  
Step 16 are valid.  
011  
Fine delay (lowest jitter); only Delay Step 0 to  
Delay Step 16 are valid.  
100  
101  
110  
Fine delay; all 192 delay steps are valid.  
Reserved (same as 001).  
Fine delay enabled; all 192 delay steps are  
valid. Super fine delay enabled (all 128  
delay steps are valid).  
0x0111  
Channel map [7:0] Clock super fine delay  
This is an unsigned control to adjust the  
super fine sample clock delay in 0.25 ps  
steps.  
0x0  
R/W  
clock super  
adjust  
fine delay  
0x00  
0x08  
0x80  
0 delay steps.  
8 delay steps.  
128 delay steps.  
These bits are only used when  
Register 0x0110, Bits[2:0] = 0x2 or 0x6.  
0x0112  
Channel  
map clock  
fine delay  
[7:0] Clock fine delay adjust  
Clock fine delay adjust. This is an unsigned 0xC0  
control to adjust the fine sample clock  
skew in 1.725 ps steps.  
R/W  
0x00  
0x08  
0xC0  
0 delay steps.  
8 delay steps.  
192 delay steps.  
These bits are only used when  
Register 0x0110, Bits[2:0] = 0x2, 0x3, 0x4,  
or 0x6.  
Rev. 0 | Page 85 of 107  
AD6684  
Data Sheet  
Address Name  
Bits Bit Name  
Settings  
Description  
Reset Access  
0x011A  
Clock  
detection  
control  
[7:5] Reserved  
Reserved.  
0x0  
0x1  
R/W  
R/W  
[4:3] Clock detection threshold  
Clock detection threshold.  
200 MHz.  
150 MHz.  
01  
11  
2
Clock detection enable  
Clock detection enable  
Enable.  
Disable.  
0x1  
R/W  
1
0
[1:0] Reserved.  
[7:1] Reserved  
Reserved.  
0x2  
0x0  
0x0  
R/W  
R
0x011B  
0x011C  
Pair map  
clock status  
Reserved.  
0
Input clock detect  
Clock detection status.  
Input clock not detected.  
Input clock detected/locked.  
Reserved.  
R
0
1
Clock DCS  
control  
[7:3] Reserved  
0x1  
0x0  
R/W  
R/W  
1
Clock DCS enable  
Clock DCS enable.  
DCS bypassed.  
DCS enabled.  
0
1
0
Clock DCS power-up  
Clock DCS power-up.  
DCS powered down.  
DCS powered up. The DCS must be  
powered up before being enabled.  
0x0  
R/W  
0
1
0x0120  
Pair map  
SYSREF  
Control 1  
7
6
Reserved  
Reserved.  
0x0  
0x0  
R
SYSREF flag reset  
0
1
Normal flag operation.  
SYSREF flags held in reset (setup/hold  
error flags cleared).  
R/W  
5
4
Reserved  
Reserved.  
0x0  
R
SYSREF transition select  
0
1
SYSREF is valid on low to high transitions 0x0  
using the selected CLK input edge. When  
changing this setting, the SYSREF mode  
select must be set to disabled.  
SYSREF is valid on high to low transitions  
using the selected CLK input edge. When  
changing this setting, the SYSREF mode  
select must be set to disabled.  
R/W  
3
CLK edge select  
0
1
Captured on rising edge of CLK input.  
Captured on falling edge of CLK input.  
0x0  
0x0  
R/W  
R/W  
[2:1] SYSREF mode select  
00  
01  
10  
Disabled.  
Continuous.  
N shot.  
0
Reserved  
Reserved.  
0x0  
R
Rev. 0 | Page 86 of 107  
Data Sheet  
AD6684  
Address Name  
Bits Bit Name  
Settings  
Description  
Reset Access  
0x0121  
Pair map  
SYSREF  
Control 2  
[7:4] Reserved  
Reserved.  
0x0  
0x0  
R
[3:0] SYSREF N shot ignore  
counter select  
0000  
Next SYSREF only (do not ignore).  
R/W  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Ignore the first SYSREF transition.  
Ignore the first two SYSREF transitions.  
Ignore the first three SYSREF transitions.  
Ignore the first four SYSREF transitions.  
ignore the first five SYSREF transitions.  
ignore the first six SYSREF transitions.  
ignore the first seven SYSREF transitions.  
ignore the first eight SYSREF transitions.  
ignore the first nine SYSREF transitions.  
ignore the first 10 SYSREF transitions.  
ignore the first 11 SYSREF transitions.  
ignore the first 12 SYSREF transitions.  
ignore the first 13 SYSREF transitions.  
ignore the first 14 SYSREF transitions.  
ignore the first 15 SYSREF transitions.  
Reserved.  
0x0123  
Pair map  
SYSREF  
Control 4  
7
Reserved  
0x0  
R
[6:0] SYSREF time stamp  
delay[6:0]  
SYSREF timestamp delay (in converter  
sample clock cycles)  
0x40  
R/W  
0
1
0 sample clock cycle delay  
1 sample clock cycle delay  
127  
127 sample clock cycle delay  
0x0128  
0x0129  
Pair map  
SYSREF  
Status 1  
[7:4] SYSREF hold status[7:4]  
[3:0] SYSREF setup status[3:0]  
[7:4] Reserved  
SYSREF hold status. See Table 37 for  
more information.  
0x0  
0x0  
R
R
SYSREF setup status. See Table 37 for  
more information.  
Pair map  
SYSREF  
Status 2  
Reserved.  
0x0  
0x0  
R
R
[3:0] Clock divider phase when  
SYSREF is captured  
SYSREF divider phase. These bits  
represent the phase of the divider when  
SYSREF is captured.  
0000  
0001  
0010  
0011  
0100  
0101  
In phase.  
SYSREF is ½ cycle delayed from clock.  
SYSREF is 1 cycle delayed from clock.  
1½ input clock cycles delayed.  
2 input clock cycles delayed.  
2½ input clock cycles delayed.  
1111  
7½ input clock cycles delayed.  
0x012A  
Pair map  
SYSREF  
Status 3  
[7:0] SYSREF counter [7:0]  
(increments when a  
SYSREF count. These bits are a running  
counter that increments whenever a  
SYSREF event is captured. Thes bits are  
reset by Register 0x0120, Bit 6, and wrap  
around at 255. Read these bits only while  
Register 0x120, Bits[2:1] are disabled.  
0x0  
R
SYSREF is captured)  
Rev. 0 | Page 87 of 107  
AD6684  
Data Sheet  
Address Name  
Bits Bit Name  
Settings  
Description  
Reset Access  
0x01FF  
Pair map  
chip sync  
[7:1] Reserved  
Reserved.  
0x0  
0x0  
R
0
Synchronization mode  
R/W  
0x0  
Sample synchronization mode. The  
SYSREF signal resets all internal sample  
dividers. Use this mode when synchronizing  
multiple chips as specified in the JESD204B  
standard. If the phase of any of the dividers  
must change, the JESD204B link is  
interrupted.  
0x1  
Partial synchronization/timestamp mode.  
The SYSREF signal does not reset sample  
internal dividers. In this mode, the JESD204B  
link, the signal monitor, and the parallel  
interface clocks are not affected by the  
SYSREF signal. The SYSREF signal simply  
time stamps a sample as it passes through  
the ADC.  
0x0200  
Pair map  
chip mode  
[7:6] Reserved  
Reserved.  
0x0  
0x0  
R/W  
R/W  
5
Chip Q ignore  
Chip real (I) only selection.  
Both real (I) and complex (Q) selected.  
Only real (I) selected. Complex (Q) is ignored.  
Reserved.  
0
1
4
Reserved  
0x0  
0x7  
R
[3:0] Chip application mode  
R/W  
0000  
0001  
0010  
0111  
1000  
Full bandwidth mode.  
One DDC mode (DDC 0 only).  
Two DDC mode (DDC 0 and DDC 1 only).  
Noise shaped requantizer (NSR) mode.  
Variable dynamic range (VDR) mode.  
Reserved.  
0x0201  
Pair map  
chip dec-  
imation ratio  
[7:3] Reserved  
0x0  
0x0  
R
[2:0] Chip decimation ratio  
select  
Chip decimation ratio.  
R/W  
000  
001  
010  
011  
100  
Decimate by 1 (full sample rate).  
Decimate by 2.  
Decimate by 4.  
Decimate by 8.  
Decimate by 16.  
0x0228  
0x0245  
Channel map [7:0] Offset adjust in LSBs from  
Digital datapath offset. Twos complement  
offset adjustment aligned with least  
significant converter resolution bit.  
0x0  
R/W  
custom  
+127 to −128  
offset  
Channel  
map fast  
detect  
[7:4] Reserved  
Reserved.  
0x0  
0x0  
R
3
2
Force FD_A/FD_B/FD_C/  
FD_D pins  
R/W  
control  
0
1
Normal operation of the fast detect pin.  
Force a value on the fast detect pin (see  
Bit 2 of this register).  
Force value of FD_A/FD_B/  
FD_C/FD_D pins; if force  
pins is true, this value is  
output on the fast detect  
pins  
The fast detect output pin for this channel  
is set to this value when the output is  
forced.  
0x0  
R/W  
1
0
Reserved  
Reserved.  
0x0  
0x0  
R
Enable fast detect output  
R/W  
0
1
Fine fast detect disabled.  
Fine fast detect enabled.  
Rev. 0 | Page 88 of 107  
Data Sheet  
AD6684  
Address Name  
Bits Bit Name  
Settings  
Description  
Reset Access  
0x0247  
Channel map [7:0] Fast detect upper  
LSBs of fast detect upper threshold. Eight  
LSBS of the programmable 13-bit upper  
threshold that is compared to the fine  
ADC magnitude.  
0x0  
R/W  
fast detect  
upper thres-  
hold LSB  
threshold [7:0]  
0x0248  
Channel map [7:5] Reserved  
Reserved.  
0x0  
0x0  
R
fast detect  
upper thres-  
hold MSB  
[4:0] Fast detect upper  
threshold[12:8]  
LSBs of fast detect upper threshold. Eight  
LSBS of the programmable 13-bit upper  
threshold that is compared to the fine  
ADC magnitude.  
R/W  
0x0249  
0x024A  
Channel map [7:0] Fast detect lower  
LSBs of fast detect lower threshold. Eight  
LSBS of the programmable 13-bit lower  
threshold that is compared to the fine  
ADC magnitude  
0x0  
R/W  
fast detect  
lower thres-  
hold LSB  
threshold[7:0]  
Channel  
map fast  
detect lower  
threshold  
MSB  
[7:5] Reserved  
Reserved.  
0x0  
0x0  
R
[4:0] Fast detect lower  
threshold[12:8]  
LSBs of fast detect lower threshold. Eight  
LSBS of the programmable 13-bit lower  
threshold that is compared to the fine  
ADC magnitude  
R/W  
0x024B  
0x024C  
0x026F  
Channel  
[7:0] Fast detect dwell time[7:0]  
LSBs of fast detect dwell time counter target. 0x0  
This target is a load value for a 16-bit counter  
that determines how long the ADC data  
must remain below the lower threshold  
before the FD_x pins are reset to 0  
R/W  
R/W  
map fast  
detect dwell  
time LSB  
Channel  
map fast  
detect dwell  
time MSB  
[7:0] Fast detect dwell  
time[15:8]  
LSBs of fast detect dwell time counter  
target. This target is a load value for a 16-bit  
counter that determines how long the ADC  
data must remain below the lower threshold  
before the FDD_x pins are reset to 0.  
0x0  
Pair map  
signal  
monitor  
sync control  
[7:2] Reserved  
Reserved.  
Reserved.  
0x0  
0x0  
0x0  
R
1
0
Reserved  
R/W  
R/W  
Signal monitor  
synchronization mode  
0
1
Synchronization disabled.  
Only the next valid edge of the SYSREF pin  
is used to synchronize the signal monitor  
block. Subsequent edges of the SYSREF pin  
are ignored. After the next SYSREF is  
received, this bit is cleared. Note that the  
SYSREF input pin must be enabled to  
synchronize the signal monitor blocks.  
0x0270  
Channel  
map signal  
monitor  
control  
[7:2] Reserved  
Reserved.  
0x0  
0x0  
R
1
Peak detector  
R/W  
0
1
Peak detector disabled.  
Peak detector enabled.  
Reserved.  
0
Reserved  
0x0  
R
0x0271  
0x0272  
0x0273  
Channel  
map Signal  
Monitor  
[7:0] Signal monitor period[7:0]  
This 24-bit value sets the number of  
output clock cycles over which the signal  
monitor performs its operation. Bit 0 is  
ignored.  
0x80  
R/W  
Period 0  
Channel  
map Signal  
Monitor  
[7:0] Signal monitor period[15:8]  
This 24-bit value sets the number of  
output clock cycles over which the signal  
monitor performs its operation. Bit 0 is  
ignored.  
0x0  
0x0  
R/W  
R/W  
Period 1  
Channel  
map Signal  
Monitor  
[7:0] Signal monitor  
period[23:16]  
This 24-bit value sets the number of  
output clock cycles over which the signal  
monitor performs its operation. Bit 0 is  
ignored.  
Period 2  
Rev. 0 | Page 89 of 107  
AD6684  
Data Sheet  
Address Name  
Bits Bit Name  
Settings  
Description  
Reset Access  
0x0274  
Channel  
map signal  
monitor  
status  
[7:5] Reserved  
Reserved.  
0x0  
0x0  
R
4
Result update  
R/W  
1
Status update based on Bits[2:0] (self  
clearing).  
control  
3
Reserved  
Reserved.  
0x0  
0x1  
R
[2:0] Result selection  
R/W  
001  
Peak detector placed on status readback  
signals.  
0x0275  
0x0276  
0x0277  
Channel  
map Signal  
Monitor  
[7:0] Signal monitor result[7:0]  
Signal monitor status result. This 20-bit  
value contains the status result calculated  
by the signal monitor block. The content is  
dependent on the Register 0x0274,  
Bits[2:0] bit settings.  
0x0  
0x0  
R
R
Status 0  
Channel  
map Signal  
Monitor  
[7:0] Signal monitor result[15:8]  
[7:4] Reserved  
Signal monitor status result. This 20-bit  
value contains the status result calculated  
by the signal monitor block. The content is  
dependent on the Register 0x0274,  
Bits[2:0] bit settings.  
Status 1  
Channel  
map Signal  
Monitor  
Reserved.  
0x0  
0x0  
R
R
[3:0] Signal monitor  
result[19:16]  
Signal monitor status result. This 20-bit  
value contains the status result calculated  
by the signal monitor block. The content is  
dependent on the Register 0x0274,  
Bits[2:0] bit settings.  
Status 2  
0x0278  
0x0279  
Channel map [7:0] Period count result[7:0]  
signal  
monitor  
status frame  
counter  
Signal monitor frame counter status bits.  
The frame counter increments whenever  
the period counter expires.  
0x0  
R
Channel map [7:2] Reserved  
Reserved.  
Reserved.  
0x0  
0x0  
0x0  
R
signal  
1
0
Reserved  
R/W  
R/W  
monitor  
serial framer  
control  
Signal monitor SPORT over  
JESD204B enable  
0
1
Disabled.  
Enabled.  
Reserved.  
0x027A  
Channel  
map signal  
monitor  
serial framer  
input  
[7:6] Reserved  
0x0  
0x2  
R
[5:0] Signal monitor SPORT over  
JESD204B peak detector  
enable  
R/W  
1
Peak detector enabled.  
selection  
Rev. 0 | Page 90 of 107  
Data Sheet  
AD6684  
Address Name  
Bits Bit Name  
Settings  
Description  
Reserved.  
Reserved.  
Reset Access  
0x0300  
Pair map  
[7:6] Reserved  
0x0  
0x0  
0x0  
R/W  
R
DDC sync  
control  
5
4
Reserved  
DDC NCO soft reset  
This bit can be used to synchronize all the  
NCOs inside the DDC blocks.  
R/W  
0
1
Normal operation.  
DDC held in reset.  
Reserved.  
[3:2] Reserved  
1 DDC next sync  
0x0  
0x0  
R
The SYSREF pin must be an integer mul-  
tiple of the NCO frequency for this function  
to operate correctly in continuous mode.  
R/W  
0
1
Continuous mode.  
Only the next valid edge of the SYSREF pin  
is used to synchronize the NCO in the DDC  
block. Subsequent edges of the SYSREF  
pin are ignored. Aftwr the next SYSREF is  
found, the DDC synchronization enable bit  
is cleared.  
0
DDC synchronization  
mode  
The SYSREF input pin must be enabled to 0x0  
synchronize the DDCs.  
R/W  
0
1
Synchronization disabled.  
If the DDC next syncbit = 1, only the next  
valid edge of the SYSREF pin is used to  
synchronize the NCO in the DDC block.  
Subsequent edges of the SYSREF pin are  
ignored. After the next SYSREF is  
received, this bit is cleared.  
0x0310  
Pair map  
DDC 0  
control  
7
6
DDC 0 mixer select  
DDC 0 gain select  
0x0  
R/W  
R/W  
0
1
Real mixer (I and Q inputs must be from  
the same real channel).  
Complex mixer (I and Q must be from  
separate real and imaginary quadrature ADC  
receive channels—analog demodulator).  
Gain can be used to compensate for the  
6 dB loss associated with mixing an input  
signal down to baseband and filtering out  
its negative component.  
0x0  
0
1
0 dB gain.  
6 dB gain (multiply by 2).  
[5:4] DDC 0 IF mode  
0x0  
0x0  
R/W  
R/W  
00  
01  
10  
11  
Variable IF mode.  
0 Hz IF mode.  
fS/4 Hz IF mode.  
Test mode.  
3
2
DDC 0 complex to real  
enable  
0
1
Complex (I and Q) outputs contain valid  
data.  
Real (I) output only. Complex to real enabled.  
Uses extra fS/4 mixing to convert to real.  
Reserved  
Reserved.  
0x0  
R
Rev. 0 | Page 91 of 107  
AD6684  
Data Sheet  
Address Name  
Bits Bit Name  
Settings  
Description  
Reset Access  
[1:0] DDC 0 decimation rate  
select  
Decimation filter selection. Complex  
outputs (complex to real disabled):  
0x0  
R/W  
11  
00  
01  
HB1 filter selection (decimate by 2).  
HB2 + HB1 filter selection (decimate by 4).  
HB3 + HB2 + HB1 filter selection (decimate  
by 8).  
10  
HB4 + HB3 + HB2 + HB1 filter selection  
(decimate by 16).  
Real outputs (complex to real enabled):  
HB1 filter selection (decimate by 1).  
HB2 + HB1 filter selection (decimate by 2).  
HB3 + HB2 + HB1 filter selection (decimate  
by 4).  
11  
00  
01  
10  
HB4 + HB3 + HB2 + HB1 filter selection  
(decimate by 8).  
11  
00  
HB1 filter selection: decimate by 1 or 2.  
HB2 + HB1 filter selection (decimate by 2  
or 4).  
01  
10  
HB3 + HB2 + HB1 filter selection (decimate  
by 4 or 8)  
HB4 + HB3 + HB2 + HB1 filter selection  
(decimate by 8 or 16)  
0x0311  
Pair Map  
DDC 0 input  
select  
[7:3] Reserved  
Reserved.  
0x0  
0x0  
R
2
DDC 0 Q input select  
R/W  
0
1
Channel A.  
Channel B.  
Reserved.  
1
0
Reserved  
0x0  
0x0  
R
DDC 0 I input select  
R/W  
0
1
Channel A.  
Channel B.  
0x0314  
0x0315  
0x0316  
0x0317  
0x0318  
0x031A  
0x031D  
Pair map  
DDC 0 Phase  
Increment 0  
[7:0] DDC 0 NCO frequency value,  
twos complement[7:0]  
NCO phase increment value; twos  
complement phase increment value for  
the NCO. Complex mixing frequency =  
(DDC phase increment × fS)/248.  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Pair map  
DDC 0 Phase  
Increment 1  
[7:0] DDC 0 NCO frequency value,  
twos complement[15:8]  
NCO phase increment value; twos  
complement phase increment value for  
the NCO. Complex mixing frequency =  
(DDC_PHASE_INC × fS)/248.  
Pair map  
DDC 0 Phase  
Increment 2  
[7:0] DDC 0 NCO frequency value,  
twos complement[23:16]  
NCO phase increment value; twos  
complement phase increment value for  
the NCO. Complex mixing frequency =  
(DDC_PHASE_INC × fS)/248.  
Pair map  
DDC 0 Phase  
Increment 3  
[7:0] DDC 0 NCO frequency value,  
twos complement[31:24]  
NCO phase increment value; twos  
complement phase increment value for  
the NCO. Complex mixing frequency =  
(DDC_PHASE_INC × fS)/248.  
Pair map  
DDC 0 Phase  
Increment 4  
[7:0] DDC 0 NCO frequency value,  
twos complement[39:32]  
NCO phase increment value; twos  
complement phase increment value for  
the NCO. Complex mixing frequency =  
(DDC_PHASE_INC × fS)/248.  
Pair map  
DDC 0 Phase  
Increment 5  
[7:0] DDC 0 NCO frequency value,  
twos complement[47:40]  
NCO phase increment value; twos  
complement phase increment value for  
the NCO. Complex mixing frequency =  
(DDC_PHASE_INC × fS)/248.  
Pair map  
DDC 0 Phase  
Offset 0  
[7:0] DDC 0 NCO phase value,  
twos complement[7:0]  
Twos complement phase offset value for  
the NCO.  
Rev. 0 | Page 92 of 107  
Data Sheet  
AD6684  
Address Name  
Bits Bit Name  
Settings  
Description  
Reset Access  
0x031E  
0x031F  
0x0320  
0x0321  
0x0322  
0x0327  
Pair map  
DDC 0 Phase  
Offset 1  
[7:0] DDC 0 NCO phase value,  
twos complement[15:8]  
Twos complement phase offset value for  
the NCO.  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
Pair map  
DDC 0 Phase  
Offset 2  
[7:0] DDC 0 NCO phase value,  
twos complement[23:16]  
Twos complement phase offset value for  
the NCO.  
Pair map  
DDC 0 Phase  
Offset 3  
[7:0] DDC 0 NCO phase value,  
twos complement[31:24]  
Twos complement phase offset value for  
the NCO.  
Pair Map  
DDC 0 Phase  
Offset 4  
[7:0] DDC 0 NCO phase value,  
twos complement[39:32]  
Twos complement phase offset value for  
the NCO.  
Pair map  
DDC 0 Phase  
Offset 5  
[7:0] DDC 0 NCO phase value,  
twos complement[47:40]  
Twos complement phase offset value for  
the NCO.  
Pair map  
DDC 0 test  
enable  
[7:3] Reserved  
Reserved.  
0x0  
0x0  
R
2
DDC 0 Q output test mode  
enable  
Q samples always use the Test Mode B/  
Test Mode D block.  
R/W  
0
1
Test mode disabled.  
Test mode enabled.  
Reserved.  
1
0
Reserved  
0x0  
0x0  
R
DDC 0 I output test mode  
enable  
I Samples always use Test Mode A/ Test  
Mode C block.  
R/W  
0
1
Test mode disabled.  
Test mode enabled.  
0x0330  
Pair map  
DDC 1  
control  
7
6
DDC 1 mixer select  
DDC 1 gain select  
0x0  
0x0  
R/W  
R/W  
0
1
Real mixer (I and Q inputs must be from  
the same real channel).  
Complex mixer (I and Q must be from  
separate, real and imaginary quadrature ADC  
receive channels—analog demodulator).  
Gain can be used to compensate for the  
6 dB loss associated with mixing an input  
signal down to baseband and filtering out  
its negative component.  
0
1
0 dB gain.  
6 dB gain (multiply by 2).  
[5:4] DDC 1 IF mode  
0x0  
0x0  
R/W  
R/W  
00  
01  
10  
11  
Variable IF mode.  
0 Hz IF mode.  
fS/4 Hz IF mode.  
Test mode.  
3
2
DDC 1 complex to real  
enable  
0
1
Complex (I and Q) outputs contain valid  
data.  
Real (I) output only. Complex to real enabled.  
Uses extra fS/4 mixing to convert to real.  
Reserved  
Reserved.  
0x0  
R
Rev. 0 | Page 93 of 107  
AD6684  
Data Sheet  
Address Name  
Bits Bit Name  
Settings  
Description  
Reset Access  
[1:0] DDC 1 decimation rate  
select  
Decimation filter selection. Complex  
outputs (complex to real disabled):  
0x0  
R/W  
11  
00  
01  
HB1 filter selection (decimate by 2).  
HB2 + HB1 filter selection (decimate by 4).  
HB3 + HB2 + HB1 filter selection (decimate  
by 8).  
10  
HB4 + HB3 + HB2 + HB1 filter selection  
(decimate by 16).  
Real outputs (complex to real enabled):  
HB1 filter selection (decimate by 1).  
HB2 + HB1 filter selection (decimate by 2).  
HB3 + HB2 + HB1 filter selection (decimate  
by 4).  
11  
00  
01  
10  
HB4 + HB3 + HB2 + HB1 filter selection  
(decimate by 8).  
11  
00  
HB1 filter selection: decimate by 1 or 2.  
HB2 + HB1 filter selection (decimate by 2  
or 4).  
01  
10  
HB3 + HB2 + HB1 filter selection (decimate  
by 4 or 8)  
HB4 + HB3 + HB2 + HB1 filter selection  
(decimate by 8 or 16)  
0x0331  
Pair map  
DDC 1 input  
select  
[7:3] Reserved  
Reserved.  
0x0  
0x1  
R
2
DDC 1 Q input select  
R/W  
0
1
Channel A.  
Channel B.  
Reserved.  
1
0
Reserved  
0x0  
0x1  
R
DDC 1 I input select  
R/W  
0
1
Channel A.  
Channel B.  
0x0334  
0x0335  
0x0336  
0x0337  
0x0338  
0x033A  
0x033D  
Pair map  
DDC 1 Phase  
Increment 0  
[7:0] DDC 1 NCO frequency  
value, twos  
NCO phase increment value. Twos  
complement phase increment value for  
the NCO. Complex mixing frequency =  
(DDC phase increment × fS)/248.  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
complement[7:0]  
Pair map  
DDC 1 Phase  
Increment 1  
[7:0] DDC 1 NCO frequency  
value, twos  
NCO phase increment value. Twos  
complement phase increment value for  
the NCO. Complex mixing frequency =  
(DDC phase increment × fS)/248.  
complement[15:8]  
Pair map  
DDC 1 Phase  
Increment 2  
[7:0] DDC 1 NCO frequency  
value, twos  
NCO phase increment value. Twos  
complement phase increment value for  
the NCO. Complex mixing frequency =  
(DDC phase increment × fS)/248.  
complement[23:16]  
Pair map  
DDC 1 Phase  
Increment 3  
[7:0] DDC 1 NCO frequency  
value, twos  
NCO phase increment value. Twos  
complement phase increment value for  
the NCO. Complex mixing frequency =  
(DDC phase increment × fS)/248.  
complement[31:24]  
Pair map  
DDC 1 Phase  
Increment 4  
[7:0] DDC 1 NCO frequency  
value, twos  
NCO phase increment value. Twos  
complement phase increment value for  
the NCO. Complex mixing frequency =  
(DDC phase increment × fS)/248.  
complement[39:32]  
Pair map  
DDC 1 Phase  
Increment 5  
[7:0] DDC 1 NCO frequency  
value, twos  
NCO phase increment value. Twos  
complement phase increment value for  
the NCO. Complex mixing frequency =  
(DDC phase increment × fS)/248.  
complement[47:40]  
Pair map  
DDC 1 Phase  
Offset 0  
[7:0] DDC 1 NCO phase value,  
twos complement[7:0]  
Twos complement phase offset value for  
the NCO.  
Rev. 0 | Page 94 of 107  
Data Sheet  
AD6684  
Address Name  
Bits Bit Name  
Settings  
Description  
Reset Access  
0x033E  
0x033F  
0x0340  
0x0341  
0x0342  
0x0347  
Pair map  
DDC 1 Phase  
Offset 1  
[7:0] DDC 1 NCO phase value,  
twos complement[15:8]  
Twos complement phase offset value for  
the NCO.  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
Pair map  
DDC 1 Phase  
Offset 2  
[7:0] DDC 1 NCO phase value,  
twos complement[23:16]  
Twos complement phase offset value for  
the NCO.  
Pair map  
DDC 1 Phase  
Offset 3  
[7:0] DDC 1 NCO phase value,  
twos complement[31:24]  
Twos complement phase offset value for  
the NCO.  
Pair map  
DDC 1 Phase  
Offset 4  
[7:0] DDC 1 NCO phase value,  
twos complement[39:32]  
Twos complement phase offset value for  
the NCO.  
Pair map  
DDC 1 Phase  
Offset 5  
[7:0] DDC 1 NCO phase value,  
twos complement[47:40]  
Twos complement phase offset value for  
the NCO.  
Pair map  
DDC 1 test  
enable  
[7:3] Reserved  
Reserved.  
0x0  
0x0  
R
2
DDC 1 Q output test mode  
enable  
Q samples always use the Test Mode B/  
Test Mode D block.  
R/W  
0
1
Test mode disabled.  
Test mode enabled.  
Reserved.  
1
0
Reserved  
0x0  
0x0  
R
DDC 1 I output test mode  
enable  
I samples always use the Test Mode A/  
Test Mode C block.  
R/W  
0
1
Test mode disabled.  
Test mode enabled.  
Decimate by 2 high-pass/low-pass mode.  
Enable LPF.  
0x041E  
Channel  
7
6
High-pass/low-pass mode  
0x0  
R/W  
map NSR  
decimate by  
2 control  
0
1
Enable HPF.  
Reserved  
Reserved.  
0x0  
0x0  
0x0  
0x0  
R
[5:4] Reserved  
[3:1] Reserved  
Reserved.  
R/W  
R
Reserved.  
0
NSR decimate by 2 enable  
R/W  
0
1
Decimate by 2 disabled.  
Decimate by 2 enabled.  
Reserved.  
0x0420  
0x0422  
NSR mode  
7
Reserved  
0x0  
0x0  
0x0  
R/W  
R
[6:4] Reserved  
[3:1] NSR mode  
Reserved.  
R/W  
000  
001  
21% BW mode.  
28% BW mode.  
Reserved.  
0
Reserved  
0x0  
0x0  
0x0  
R
Channel  
map NSR  
tuning  
[7:6] Reserved  
Reserved.  
R
[5:0] NSR tuning word  
Noise shaped requantizer tuning  
frequency (see the Noise Shaping  
Requantizer (NSR) section for details).  
R/W  
Rev. 0 | Page 95 of 107  
AD6684  
Data Sheet  
Address Name  
Bits Bit Name  
Reserved  
[6:5] Reserved  
Reserved  
[3:2] Reserved  
Settings  
Description  
Reserved.  
Reserved.  
Reserved.  
Reserved.  
Reset Access  
0x0430  
Pair map  
7
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R
VDR control  
4
R/W  
R
1
VDR bandwidth  
R/W  
0
1
25% BW mode.  
43% BW mode. Only available in complex  
mode.  
0
VDR complex mode enable  
0x1  
R/W  
0
1
Dual real mode. Ignore Bit 1.  
Dual complex mode. Complex input,  
Channel A/Channel C are I and Channel  
B/Channel D are Q.  
0x0434  
0x0550  
Channel  
map VDR  
tuning  
[7:4] Reserved  
Reserved.  
0x0  
0x0  
R
[3:0] VDR center frequency  
See the Variable Dynamic Range (VDR)  
section for details.  
R/W  
frequency  
Channel  
map test  
mode  
7
User pattern selection  
0x0  
R/W  
0
1
Continuous repeat.  
Single pattern.  
Reserved.  
control  
6
5
Reserved  
0x0  
0x0  
R
Reset PN long generation  
R/W  
0
1
Long PN enabled.  
Long PN held in reset.  
4
Reset PN short generation  
0x0  
0x0  
R/W  
R/W  
0
1
Short PN enabled.  
Short PN held in reset.  
[3:0] Test mode selection  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
Off—normal operation.  
Midscale short.  
Positive full scale.  
Negative full scale.  
Alternating checker board.  
PN sequence—long.  
PN sequence—short.  
1/0 word toggle.  
User pattern test mode (used with the test  
mode patern selection and the User  
Pattern 1 through User Pattern 4 registers)  
1111  
Ramp output.  
0x0551  
0x0552  
0x0553  
0x0554  
0x0555  
Pair map  
User Pattern  
1 LSB  
[7:0] User Pattern 1[7:0]  
[7:0] User Pattern 1[15:8]  
[7:0] User Pattern 2[7:0]  
[7:0] User Pattern 2[15:8]  
[7:0] User Pattern 3[7:0]  
User Test Pattern 1 least significant byte  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
Pair map  
User Pattern  
1 MSB  
User Test Pattern 1 most significant byte  
User Test Pattern 2 least significant byte  
User Test Pattern 2 most significant byte  
User Test Pattern 3 least significant byte  
Pair map  
User Pattern  
2 LSB  
Pair map  
User Pattern  
2 MSB  
Pair map  
User Pattern  
3 LSB  
Rev. 0 | Page 96 of 107  
Data Sheet  
AD6684  
Address Name  
Bits Bit Name  
Settings  
Description  
Reset Access  
0x0556  
0x0557  
0x0558  
0x0559  
Pair map  
User Pattern  
3 MSB  
[7:0] User Pattern 3[15:8]  
User Test Pattern 3 most significant byte  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
Pair map  
User Pattern  
4 LSB  
[7:0] User Pattern 4[7:0]  
[7:0] User Pattern 4[15:8]  
User Test Pattern 4 least significant byte  
User Test Pattern 4 most significant byte  
Reserved.  
Pair map  
User Pattern  
4 MSB  
Pair map  
Output  
Control  
Mode 0  
7
Reserved  
0x0  
0x0  
R
[6:4] Converter Control Bit 1  
selection  
R/W  
000  
001  
010  
011  
100  
101  
110  
111  
Tie low (1'b0).  
Overrange bit.  
Signal monitor bit or VDR punish Bit 0.  
Fast detect (FD) bit or VDR punish Bit 1.  
VDR high/low resolution bit.  
SYSREF.  
Reserved.  
Reserved.  
3
Reserved  
Reserved.  
0x0  
0x0  
R
[2:0] Converter Control Bit 0  
selection  
R/W  
000  
001  
010  
011  
100  
101  
Tie low (1'b0)  
Overrange bit.  
Signal monitor or VDR punish Bit 0.  
Fast detect (FD) bit or VDR punish Bit 1.  
VDR high/low resolution bit.  
SYSREF.  
0x055A  
Pair Map  
Output  
Control  
Mode 1  
[7:3] Reserved  
Reserved.  
0x0  
0x1  
R
[2:0] Converter control Bit 2  
selection  
R/W  
000  
001  
010  
011  
100  
101  
110  
111  
Tie low (1'b0).  
Overrange bit.  
Signal monitor bit or VDR punish Bit 0.  
Fast detect (FD) bit or VDR punish Bit 1.  
VDR high/low resolution bit.  
SYSREF.  
Reserved.  
Reserved.  
0x0561  
0x0564  
Pair map  
output  
sample  
mode  
[7:3] Reserved  
Reserved.  
0x0  
0x0  
R
2
Sample invert  
R/W  
0
1
ADC sample data is not inverted.  
ADC sample data is inverted.  
[1:0] Data format select  
[7:2] Reserved  
0x1  
R/W  
00  
01  
Offset binary.  
Twos complement (default).  
Reserved.  
Pair map  
output  
channel  
select  
0x0  
0x0  
0x0  
R
1
0
Reserved  
Reserved.  
R/W  
R/W  
Converter channel swap  
control  
0
1
Normal channel ordering.  
Channel swap enabled.  
Rev. 0 | Page 97 of 107  
AD6684  
Data Sheet  
Address Name  
Bits Bit Name  
Settings  
Description  
Reset Access  
0x056E  
0x056F  
0x0570  
JESD204B  
map PLL  
control  
[7:4] JESD204B lane rate control  
0x0  
R/W  
0000  
0001  
0011  
0101  
Lane rate = 6.75 to 13.5 Gbps.  
Lane rate = 3.375 Gbps to 6.75 Gbps.  
Lane rate = 13.5 to 15 Gbps.  
Lane rate = 1.6875 Gbps to 3.375 Gbps.  
Reserved.  
[3:0] Reserved  
0x0  
0x0  
R
R
JESD204B  
map PLL  
status  
7
PLL lock status  
0
1
Not locked.  
Locked.  
[6:4] Reserved  
Reserved  
Reserved.  
0x0  
0x0  
0x0  
0x1  
R
3
Reserved.  
R
[2:0] Reserved  
Reserved.  
Number of lanes (L) = 2Register0x0570, Bits[7:6]  
L = 1.  
L = 2.  
R
JESD204B  
map JTX  
quick  
config-  
uration  
[7:6] Quick Configuration L  
R/W  
0
1
[5:3] Quick Configuration M  
[2:0] Quick Configuration F  
Number of converters (M) = 2Register 0x0570, Bits[5:3]  
0x1  
0x1  
R/W  
R/W  
0
1
10  
M = 1.  
M = 2.  
M = 4.  
Number of octets/frame (F) =  
2Register 0x0570, Bits[2:0]  
0
1
10  
11  
F = 1.  
F = 2.  
F = 4.  
F = 8.  
0x0571  
JESD204B  
map JTX  
Link  
7
Standby mode  
0x0  
R/W  
0
1
Standby mode forces zeros for all  
converter samples.  
Standby mode forces code group  
synchronization (K28.5 characters).  
Control 1  
6
5
Tail bit (t) PN  
0x0  
0x0  
R/W  
R/W  
0
1
Disable.  
Enable.  
Long transport layer test  
0
1
JESD204B test samples disabled.  
JESD204B test samples enabled. The long  
transport layer test sample sequence (as  
specified in JESD204B Section 5.1.6.3) sent  
on all link lanes.  
4
Lane synchronization  
0x1  
0x1  
R/W  
R/W  
0
1
Disable FACI uses /K28.7/.  
Enable FACI uses /K28.3/ and /K28.7/.  
[3:2] ILAS sequence mode  
00  
01  
11  
Initial lane alignment sequence disabled  
(see JESD204B Section 5.3.3.5).  
Initial lane alignment sequence enabled  
(see JESD204B Section 5.3.3.5).  
Initial lane alignment sequence always on  
test mode. JESD204B data link layer test  
mode where repeated lane alignment  
sequence (as specified in JESD204B,  
Section 5.3.3.8.2) sent on all lanes.  
Rev. 0 | Page 98 of 107  
Data Sheet  
AD6684  
Address Name  
Bits Bit Name  
Settings  
Description  
Reset Access  
1
FACI  
0x0  
R/W  
0
1
Frame alignment character insertion  
enabled (JESD204B, Section 5.3.3.4).  
Frame alignment character insertion  
disabled; for debug only (JESD204B,  
Section 5.3.3.4)  
0
Link control  
0x0  
R/W  
0
1
JESD204B serial transmit link enabled.  
Transmission of the /K28.5/ characters for  
code group synchronization is controlled  
by the SYNCINB x signal pin.  
JESD204B serial transmit link powered  
down (held in reset and clock gated).  
0x0572  
JESD204B  
map JTX  
Link  
[7:6] SYNCINB AB/  
SYNCINB CD pin control  
0x0  
R/W  
00  
10  
Normal mode.  
Ignore SYNCINB AB/SYNCINB CD (force  
CGS).  
Control 2  
11  
Ignore SYNCINB AB/SYNCINB CD (force  
ILAS/user data).  
5
4
SYNCINB AB/  
SYNCINB CD pin invert  
0x0  
0x0  
R/W  
R/W  
0
1
SYNCINB AB/SYNCINB CD pin not inverted.  
SYNCINB AB/SYNCINB CD pin inverted.  
SYNCINB AB/  
SYNCINB CD pin type  
0
1
LVDS differential pair SYNC signal input.  
CMOS single-ended SYNC signal input.  
Reserved.  
3
2
Reserved  
0x0  
0x0  
R
8-bit/10-bit bypass  
R/W  
0
1
8-bit/10-bit enabled.  
8-bit/10-bit bypassed (the most significant  
two bits are 0).  
1
0
8-bit/10-bit bit invert  
Reserved  
0x0  
R/W  
0
1
Normal.  
Invert a b c d e f g h i j symbols.  
Reserved.  
0x0  
0x0  
R/W  
R/W  
0x0573  
JESD204B  
map JTX  
Link  
[7:6] Checksum mode  
00  
01  
10  
11  
Checksum is the sum of all the 8-bit  
registers in the link configuration table.  
Checksum is the sum of all individual link  
configuration fields (LSB aligned).  
Checksum is disabled (set to 0). For test  
purposes only.  
Control 3  
Unused.  
[5:4] Test injection point  
0x0  
R/W  
0
1
N' sample input.  
10-bit data at 8-bit/10-bit output (for PHY  
testing).  
10  
8-bit data at scrambler input.  
Rev. 0 | Page 99 of 107  
AD6684  
Data Sheet  
Address Name  
Bits Bit Name  
Settings  
Description  
Reset Access  
[3:0] JESD204B test mode  
patterns  
0x0  
R/W  
0
1
10  
Normal operation(test mode disabled).  
Alternating checkerboard.  
1/0 word toggle.  
11  
31-bit PN sequence: x31 + x28 + 1.  
23-bit PN sequence: x23 + x18 + 1.  
15-bit PN sequence: x15 + x14 + 1.  
9-bit PN sequence: x9 + x5 + 1.  
7-bit PN sequence: x7 + x6 + 1.  
Ramp output.  
100  
101  
110  
111  
1000  
1110  
1111  
Continuous/repeat user test.  
Single user test.  
0x0574  
JESD204B  
[7:4] ILAS delay  
0x0  
R/W  
map JTX  
Link  
Control 4  
0
Transmit ILAS on first LMFC after SYNCINB x  
is deasserted.  
Transmit ILAS on second LMFC after  
SYNCINB is deasserted.  
1
10  
Transmit ILAS on third LMFC after  
SYNCINB x is deasserted.  
11  
Transmit ILAS on fourth LMFC after  
SYNCINB is deasserted.  
100  
101  
110  
111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Transmit ILAS on fifth LMFC after SYNCINB x  
is deasserted.  
Transmit ILAS on sixth LMFC after  
SYNCINB x is deasserted.  
Transmit ILAS on seventh LMFC after  
SYNCINB x is deasserted.  
Transmit ILAS on eightth LMFC after  
SYNCINB x is deasserted.  
Transmit ILAS on nineth LMFC after  
SYNCINB x is deasserted.  
Transmit ILAS on 10th LMFC after  
SYNCINB x is deasserted.  
Transmit ILAS on 11th LMFC after  
SYNCINB x is deasserted.  
Transmit ILAS on 12th LMFC after  
SYNCINB x is deasserted.  
Transmit ILAS on 13th LMFC after  
SYNCINB x is deasserted.  
Transmit ILAS on 14th LMFC after  
SYNCINB x is deasserted.  
Transmit ILAS on 15th LMFC after  
SYNCINB x is deasserted.  
Transmit ILAS on 16th LMFC after  
SYNCINB x is deasserted.  
3
Reserved  
Reserved.  
0x0  
0x0  
R
[2:0] Link layer test mode  
R/W  
000  
Normal operation (link layer test mode  
disabled).  
001  
010  
011  
100  
101  
110  
111  
Continuous sequence of /D21.5/ characters.  
Reserved.  
Reserved.  
Modified RPAT test sequence.  
JSPAT test sequence.  
JTSPAT test sequence.  
Reserved.  
Rev. 0 | Page 100 of 107  
Data Sheet  
AD6684  
Address Name  
Bits Bit Name  
Settings  
Description  
Reset Access  
0x0578  
JESD204B  
map JTX  
LMFC offset  
[7:5] Reserved  
Reserved.  
0x0  
0x0  
R
[4:0] LMFC phase offset value  
LMFC phase offset value; reset value for  
LMFC phase counter when SYSREF is  
asserted. Used for deterministic delay  
applications.  
R/W  
0x0580  
0x0581  
0x0583  
0x0585  
0x058B  
JESD204B  
map JTX DID  
config-  
[7:0] JESD204B Tx DID value  
JESD204B serial device identification (DID) 0x0  
number.  
R/W  
uration  
JESD204B  
map JTX BID  
config-  
[7:4] Reserved  
Reserved.  
0x0  
0x0  
R
[3:0] JESD204B Tx BID value  
JESD204B serial bank identification (BID)  
number (extension to DID).  
R/W  
uration  
JESD204B  
map JTX  
LID0 config-  
uration  
[7:5] Reserved  
Reserved.  
0x0  
0x0  
R
[4:0] Lane 0 LID value  
JESD204B serial lane identification (LID)  
number for Lane 0.  
R/W  
JESD204B  
map JTX  
LID1 config-  
uration  
[7:5] Reserved  
Reserved.  
0x0  
0x2  
R
[4:0] Lane 1 LID Value  
JESD204B serial lane identification (LID)  
number for Lane 1.  
R/W  
JESD204B  
map JTX  
SCR L  
config-  
uration  
7
JESD204B scrambling (SCR)  
0x1  
R/W  
0
1
JESD204B scrambler disabled. SCR = 0.  
JESD204B scrambler enabled. SCR = 1.  
Reserved.  
[6:5] Reserved  
0x0  
0x1  
R
R
[4:0] JESD204B lanes (L)  
0x0  
0x1  
One lane per link (L = 1).  
Two lanes per link (L = 2).  
0x058C  
0x058D  
JESD204B  
map JTX F  
config-  
[7:0] Number of octets per  
frame (F)  
Number of octets per frame.  
F = Register 0x058C, Bits[7:0] + 1.  
0x1  
R
uration  
JESD204B  
map JTX K  
config-  
[7:5] Reserved  
Reserved.  
0x0  
R
[4:0] Number of frames per  
multiframe (K)  
JESD204B number of frames per multi-  
frame (K = Register 0x058D, Bits[4:0] + 1).  
Only values where F × K are divisible by 4  
can be used.  
0x1F  
R/W  
uration  
00011  
00111  
01100  
01111  
10011  
10111  
11011  
11111  
K = 4.  
K = 8.  
K = 12.  
K = 16.  
K = 20.  
K = 24.  
K = 28.  
K = 32.  
0x058E  
JESD204B  
Map JTX M  
config-  
[7:0] Number of converters per  
link  
0x1  
R
00000000 Link connected to one virtual converter  
(M = 1).  
00000001 Link connected to two virtual converters  
(M = 2).  
uration  
00000011 Link connected to four virtual converters  
(M = 4).  
Rev. 0 | Page 101 of 107  
AD6684  
Data Sheet  
Address Name  
Bits Bit Name  
Settings  
Description  
Reset Access  
0x058F  
JESD204B  
[7:6] Number of control bits (CS)  
per sample  
0x0  
R/W  
map JTX CS  
N config-  
uration  
0
1
No control bits (CS = 0).  
One control bit (CS = 1), Control Bit 2 only.  
10  
Two control bits (CS = 2), Control Bit 2 and  
Control Bit 1 only.  
11  
Three control bits (CS = 3), all control bits  
(Bits[2:0]).  
5
Reserved  
Reserved.  
0x0  
0xF  
R
[4:0] ADC converter resolution (N)  
R/W  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
N = 7-bit resolution.  
N = 8-bit resolution.  
N = 9-bit resolution.  
N = 10-bit resolution.  
N = 11-bit resolution.  
N = 12-bit resolution.  
N = 13-bit resolution.  
N = 14-bit resolution.  
N = 15-bit resolution.  
N = 16-bit resolution.  
0x0590  
JESD204B  
map JTX  
SCV NP  
config-  
[7:5] Subclass support  
0x1  
0xF  
R/W  
R/W  
000  
001  
Subclass 0.  
Subclass 1.  
[4:0] ADC number of bits per  
sample (N')  
uration  
00111  
01111  
N' = 8.  
N' = 16.  
Reserved.  
0x0591  
0x0592  
JESD204B  
map JTX JV  
S config-  
uration  
[7:5] Reserved  
0x1  
0x0  
R
R
[4:0] Samples per converter  
frame cycle (S)  
Samples per converter frame cycle  
(S = Register 0x0591, Bits[4:0] + 1).  
JESD204B  
map JTX HD  
CF config-  
uration  
7
HD value  
0x0  
R
0
1
High density format disabled.  
High density format enabled.  
Reserved.  
[6:5] Reserved  
0x0  
0x0  
R
R
[4:0] Control words per frame  
clock cycle per link (CF)  
Number of control words per frame clock  
cycle per link (CF = Register 0x0592, Bits[4:0]).  
0x05A0  
0x05A1  
0x05B0  
JESD204B  
map JTX  
Checksum 0  
config-  
[7:0] Checksum 0 checksum  
value for SERDOUTAB0 /  
SERDOUTCD0  
Serial checksum value for Lane 0, auto-  
matically calculated for each lane. Sum (all  
link configuration parameters for Lane 0)  
mod 256.  
0xC3  
R
uration  
JESD204B  
map JTX  
Checksum 1  
config-  
[7:0] Checksum 1 checksum  
value for SERDOUTAB1 /  
SERDOUTCD1  
Serial checksum value for Lane 1, auto-  
matically calculated for each lane. Sum (all  
link configuration parameters for Lane 1)  
mod 256.  
0xC4  
R
uration  
JESD204B  
Map JTX  
Lane power-  
down  
[7:3] Reserved  
Reserved.  
0x1F  
0x0  
R/W  
R/W  
2
JESD204B Lane 1 power-  
down  
Physical Lane 1 force power-down.  
1
0
Reserved  
Reserved.  
0x1  
0x0  
R/W  
R/W  
JESD204B lane 0 power-  
down  
Physical Lane 0 force power-down.  
Rev. 0 | Page 102 of 107  
Data Sheet  
AD6684  
Address Name  
Bits Bit Name  
Reserved  
[6:4] Reserved  
Reserved  
Settings  
Description  
Reserved.  
Reserved.  
Reserved.  
Reset Access  
0x05B2  
0x05B3  
0x05C0  
JESD204B  
7
0x0  
0x0  
0x0  
0x0  
R
map JTX  
Lane Assign-  
ment 1  
R/W  
R
3
[2:0] SERDOUTAB0 /  
SERDOUTCD0 lane  
assignment  
R/W  
0
1
Logical Lane 0 (default).  
Logical Lane 1.  
Reserved.  
JESD204B  
map JTX  
Lane Assign-  
ment 2  
7
Reserved  
[6:4] Reserved  
Reserved  
0x0  
0x1  
0x0  
0x1  
R
Reserved.  
R/W  
R
3
Reserved.  
[2:0] SERDOUTAB1 /  
SERDOUTCD1 lane  
assignment  
R/W  
0
1
Logical Lane 0.  
Logical Lane 1 (default).  
Reserved.  
JESD204B  
map  
7
Reserved  
0x0  
0x1  
R
[6:4] Swing voltage for  
SERDOUTAB1 /  
R/W  
JESD204B  
serializer  
drive adjust  
0
1
1.0 × DRVDD1 (differential).  
0.850 × DRVDD1 (differential).  
SERDOUTCD1  
3
Reserved  
Reserved.  
0x0  
0x1  
R
[2:0] Swing voltage for  
SERDOUTAB0 /  
R/W  
0
1.0 × DRVDD1 (differential).  
SERDOUTCD0  
0x05C4  
JESD204B  
serializer  
preemphasis  
selection  
register for  
Logical  
7
Post tab polarity  
Post tab polarity.  
Normal.  
Inverted.  
0x0  
0x0  
R/W  
R/W  
0
1
[6:4] Sets post tab level  
These bits set the post tab level.  
0 dB.  
0
Lane 0  
1
3 dB.  
10  
6 dB.  
11  
9 dB.  
100  
101  
110  
111  
12 dB.  
Not valid.  
Not valid.  
Not valid.  
Pretab polarity.  
Normal.  
Inverted.  
These bits set the pretab level.  
0 dB.  
3
Pretab polarity  
0x0  
0x0  
R/W  
R/W  
0
1
[2:0] Sets pretab level  
0
1
3 dB.  
10  
6 dB.  
11  
9 dB.  
100  
101  
110  
111  
12 dB.  
Not valid.  
Not valid.  
Not valid.  
Rev. 0 | Page 103 of 107  
AD6684  
Data Sheet  
Address Name  
Bits Bit Name  
Settings  
Description  
Reset Access  
0x05C6  
JESD204B  
7
Post tab polarity  
Post tab polarity.  
0x0  
R/W  
serializer  
preemphasis  
selection  
register for  
Logical  
0
1
Normal.  
Inverted.  
[6:4] Sets post tab level  
These bits set the post tab level.  
0 dB.  
0x0  
R/W  
0
Lane 1  
1
3 dB.  
10  
6 dB.  
11  
9 dB.  
100  
101  
110  
111  
12 dB.  
Not valid.  
Not valid.  
Not valid.  
3
Pretab polarity  
This bit sets the pretab polarity.  
Normal.  
Inverted.  
0x0  
0x0  
R/W  
R/W  
0
1
[2:0] Sets pretab level  
These bits set the pretab level.  
0
0 dB.  
1
3 dB.  
10  
6 dB.  
11  
9 dB.  
100  
101  
110  
111  
12 dB.  
Not valid.  
Not valid.  
Not valid.  
0x0922  
0x1222  
0x1228  
Large dither [7:0] Large dither control  
control  
Enables/disables the large dither control.  
Enable.  
Disable.  
0x70  
0x0  
R/W  
R/W  
R/W  
1110000  
1110001  
PLL  
[7:0] PLL calibration  
PLL calibration.  
Normal operation.  
PLL calibration  
calibration  
0x00  
0x04  
JESD204B  
start-up  
[7:0] JESD204B start-up circuit  
reset  
JESD204B start-up circuit reset.  
0xF  
circuit reset  
0x0F  
0x4F  
Normal operation.  
Start-up circuit reset.  
PLL loss of lock control.  
Normal operation.  
Clear loss of lock.  
Reserved.  
0x1262  
0x18A6  
PLL loss of  
lock control  
PLL loss of lock control  
[7:5] Reserved  
0x0  
R/W  
0x00  
0x08  
Pair map  
0x0  
0x0  
0x0  
0x0  
R
VREF control  
4
Reserved  
Reserved.  
R/W  
R
[3:1] Reserved  
Reserved.  
0
VREF control  
R/W  
0
1
Internal reference.  
External reference.  
Reserved.  
0x1908  
Channel  
map analog  
input  
[7:6] Reserved  
[5:4] Reserved  
0x0  
0x0  
0x0  
0x0  
R
Reserved.  
R/W  
R
3
2
Reserved  
Reserved.  
control  
Analog input dc coupling  
control  
Analog input dc coupling control.  
R/W  
0
1
AC coupling.  
DC coupling.  
Reserved.  
1
0
Reserved  
Reserved  
0x0  
0x0  
R
Reserved.  
R/W  
Rev. 0 | Page 104 of 107  
Data Sheet  
AD6684  
Address Name  
Bits Bit Name  
Settings  
Description  
Reserved.  
Input full-scale control  
2.16 V p-p.  
1.44 V p-p.  
1.56 V p-p.  
1.68 V p-p.  
1.80 V p-p.  
1.92 V p-p.  
2.04 V p-p.  
Reserved.  
Buffer Control 1.  
120 μA.  
160 μA.  
200 μA.  
240 μA.  
280 μA.  
320 μA.  
360 μA.  
400 μA.  
440 μA.  
Reset Access  
0x1910  
Channel  
map input  
full-scale  
range  
[7:4] Reserved  
0x0  
R
[3:0] Input full-scale control  
0xD  
R/W  
0000  
1010  
1011  
1100  
1101  
1110  
1111  
0x1A4C  
Channel  
[7:6] Reserved  
0x0  
0xC  
R
map Buffer  
Control 1  
[5:0] Buffer Control 1  
R/W  
00110  
01000  
01010  
01100  
01110  
10000  
10010  
10100  
10110  
0x1A4D  
Channel  
map Buffer  
Control 2  
[7:6] Reserved  
Reserved.  
Buffer Control 2.  
120 μA.  
160 μA.  
200 μA.  
240 μA.  
280 μA.  
320 μA.  
360 μA.  
0x0  
0xC  
R
[5:0] Buffer Control 2  
R/W  
00110  
01000  
01010  
01100  
01110  
10000  
10010  
10100  
10110  
400 μA.  
440 μA.  
0x18E0  
0x18E1  
0x18E2  
0x18E3  
External  
VCM Buffer  
Control 1  
[7:0] External VCM Buffer  
Control 1  
See the Input Common Mode section for  
details.  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
External  
VCM Buffer  
Control 2  
[7:0] External VCM Buffer  
Control 2  
See the Input Common Mode section for  
details.  
External  
VCM Buffer  
Control 3  
[7:0] External VCM Buffer  
Control 3  
See the Input Common Mode section for  
details.  
External  
VCM buffer  
control  
7
6
Reserved  
Reserved.  
0x0  
0x0  
R/W  
R/W  
External VCM buffer  
External VCM buffer.  
Enable.  
Disable.  
1
0
[5:0] External VCM buffer  
current setting  
See the Input Common Mode section for  
details.  
0x0  
R/W  
0x18E6  
Temperature [7:1] Reserved  
Reserved.  
0x0  
0x0  
R/W  
R/W  
diode  
0
Temperature diode export  
Temperature diode export.  
Enable.  
Disable.  
export  
1
0
Rev. 0 | Page 105 of 107  
AD6684  
Data Sheet  
APPLICATIONS INFORMATION  
POWER SUPPLY RECOMMENDATIONS  
EXPOSED PAD THERMAL HEAT SLUG  
RECOMMENDATIONS  
The AD6684 must be powered by the following seven supplies:  
AVDD1 = AVDD1_SR = 0.975 V, AVDD2 = 1.8 V, AVDD3 = 2.5 V,  
DVDD = 0.975 V, DRVDD1 = 0.975 V, and SPIVDD = 1.8 V. For  
applications requiring an optimal high power efficiency and low  
noise performance, it is recommended that the ADP5054 quad  
switching regulator be used to convert the 6.0 V or 12 V input rails  
to intermediate rails (1.3 V, 2.4 V, and 3.0 V). These intermediate  
rails are then postregulated by very low noise, low dropout (LDO)  
regulators (ADP1762, ADP7159, ADP151, and ADP7118).  
Figure 104 shows the recommended power supply scheme for  
the AD6684.  
It is required that the exposed pad on the underside of the ADC  
be connected to AGND to achieve the best electrical and  
thermal performance of the AD6684. Connect an exposed  
continuous copper plane on the PCB to the AD6684 exposed  
pad, Pin 0. The copper plane must have several vias to achieve  
the lowest possible resistive thermal path for heat dissipation to  
flow through the bottom of the PCB. These vias must be solder  
filled or plugged. The number of vias and the fill determine the  
resultant θJA measured on the board (see Table 7).  
See Figure 105 for a PCB layout example. For detailed  
information on packaging and the PCB layout of chip scale  
packages, see the AN-772 Application Note, A Design and  
Manufacturing Guide for the Lead Frame Chip Scale Package  
(LFCSP).  
6V/12V  
INPUT  
AVDD1: 0.95V  
1.3V  
ADP1762  
(LDO)  
FILTER  
AVDD1_SR: 0.95V  
DVDD: 0.95V  
1.3V  
ADP1762  
(LDO)  
ADP5054  
(SWITCHING  
REGULATOR)  
FILTER  
2.4V  
3.0V  
FILTER  
FILTER  
FILTER  
DRVDD1: 0.95V  
AVDD2: 1.8V  
ADP7159  
(LDO)  
AVDD3: 2.5V  
ADP7159  
(LDO)  
DRVDD2: 1.8V  
SPIVDD: 1.8V  
ADP151  
(LDO)  
FILTER  
FILTER  
ADP7118  
(LDO)  
Figure 104. High Efficiency, Low Noise Power Solution for the AD6684  
It is not necessary to split all of these power domains in all cases.  
The recommended solution shown in Figure 104 provides the  
lowest noise, highest efficiency power delivery system for the  
AD6684. If only one 0.975 V supply is available, route to AVDD1  
first and then tap it off and isolate it with a ferrite bead or a  
filter choke, preceded by decoupling capacitors for AVDD1_SR,  
DVDD, and DRVDD, in that order. The user can employ several  
different decoupling capacitors to cover both high and low  
frequencies. These capacitors must be located close to the point  
of entry at the PCB level and close to the devices, with minimal  
trace lengths.  
Figure 105. Recommended PCB Layout of Exposed Pad for the AD6684  
AVDD1_SR (PIN 64) AND AGND_SR (PIN 63 AND  
PIN 67)  
AVDD1_SR (Pin 64) and AGND_SR (Pin 63 and Pin 67) can be  
used to provide a separate power supply node to the SYSREF  
circuits of the AD6684. If running in Subclass 1, the AD6684  
can support periodic one-shot or gapped signals. To minimize  
the coupling of this supply into the AVDD1 supply node,  
adequate supply bypassing is needed.  
Rev. 0 | Page 106 of 107  
 
 
 
 
 
 
Data Sheet  
AD6684  
OUTLINE DIMENSIONS  
10.10  
10.00 SQ  
9.90  
0.60  
0.42  
0.24  
0.30  
0.23  
0.18  
0.60  
0.42  
0.24  
PIN 1  
INDICATOR  
55  
54  
72  
1
PIN 1  
INDICATOR  
9.85  
0.50  
BSC  
9.75 SQ  
9.65  
7.45  
7.30 SQ  
7.15  
EXPOSED  
PAD  
0.50  
0.40  
0.30  
18  
19  
37  
36  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
8.50 REF  
0.80 MAX  
0.65 NOM  
12° MAX  
1.00  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
SEATING  
PLANE  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
0.20 NOM  
COMPLIANT TO JEDEC STANDARDS MO-220-VNND-4  
Figure 106. 72-Lead Lead Frame Chip Scale Package [LFCSP]  
10 mm × 10 mm Body and 0.85 mm Package Height  
(CP-72-10)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Junction Temperature Range  
Package Description  
Package Option  
CP-72-10  
CP-72-10  
AD6684BCPZ-500  
AD6684BCPZRL7-500  
AD6684-500EBZ  
−40°C to +105°C  
−40°C to +105°C  
72-Lead Lead Frame Chip Scale Package [LFCSP]  
72-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Board for AD6684  
1 Z = RoHS Compliant Part.  
©2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D14994-0-10/16(0)  
Rev. 0 | Page 107 of 107  
 
 

相关型号:

AD6684-500EBZ

135 MHz Quad IF Receiver
ADI

AD6684BCPZ-500

135 MHz Quad IF Receiver
ADI

AD6684BCPZRL7-500

135 MHz Quad IF Receiver
ADI

AD6688

RF Diversity and 1.2 GHz Bandwidth Observation Receiver
ADI

AD6688-3000EBZ

RF Diversity and 1.2 GHz Bandwidth Observation Receiver
ADI

AD6688BBPZ-3000

RF Diversity and 1.2 GHz Bandwidth Observation Receiver
ADI

AD6688BBPZRL-3000

RF Diversity and 1.2 GHz Bandwidth Observation Receiver
ADI

AD668A

12-Bit Ultrahigh Speed Multiplying D/A Converter
ADI

AD668AQ

12-Bit Ultrahigh Speed Multiplying D/A Converter
ADI

AD668J

12-Bit Ultrahigh Speed Multiplying D/A Converter
ADI

AD668JQ

12-Bit Ultrahigh Speed Multiplying D/A Converter
ADI

AD668K

12-Bit Ultrahigh Speed Multiplying D/A Converter
ADI