AD704_02 [ADI]

Quad Picoampere Input Current Bipolar Op Amp; 四Picoampere输入电流双极运算放大器
AD704_02
型号: AD704_02
厂家: ADI    ADI
描述:

Quad Picoampere Input Current Bipolar Op Amp
四Picoampere输入电流双极运算放大器

运算放大器
文件: 总12页 (文件大小:225K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad Picoampere Input Current  
Bipolar Op Amp  
a
AD704  
FEATURES  
CONNECTION DIAGRAMS  
High DC Precision  
14-Lead Plastic DIP (N)  
14-Lead CerDIP (Q) Packages  
16-Lead SOIC  
(R) Package  
75 V Max Offset Voltage  
1 V/؇C Max Offset Voltage Drift  
150 pA Max Input Bias Current  
0.2 pA/؇C Typical IB Drift  
Low Noise  
1
2
3
4
5
6
7
14  
1
2
3
4
5
6
7
8
OUTPUT  
16  
15  
OUTPUT OUTPUT  
OUTPUT  
13  
12  
4
1
–IN  
+IN  
–IN  
+IN  
–V  
4
IN  
1
IN  
0.5 V p-p Typical Noise, 0.1 Hz to 10 Hz  
Low Power  
+IN  
14  
13  
12  
11  
10  
9
+IN  
AD704  
(TOPVIEW  
AD704  
(TOPVIEW)  
11  
10  
9
+V  
S
V  
+V  
S
S
S
600 A Max Supply Current per Amplifier  
MIL-STD-883B Processing Available  
Available in Tape and Reel in Accordance  
with EIA-481A Standard  
Dual Version: AD706  
)
+IN  
–IN  
+IN  
+IN  
IN  
+IN  
2
2
3
3
–IN  
IN  
8
OUTPUT  
OUTPUT  
OUTPUT  
OUTPUT  
NC  
NC  
APPLICATIONS  
NC = NO CONNECT  
Industrial/Process Controls  
Weigh Scales  
ECG/EKG Instrumentation  
Low Frequency Active Filters  
20-Terminal LCC  
(E) Package  
3
2
1
20 19  
PRODUCT DESCRIPTION  
+IN4  
NC  
18  
17  
16  
+IN1 4  
NC 5  
+V  
The AD704 is a quad, low power bipolar op amp that has the  
low input bias current of a BiFET amplifier but which offers a  
significantly lower IB drift over temperature. It utilizes super-beta  
bipolar input transistors to achieve picoampere input bias current  
levels (similar to FET input amplifiers at room temperature),  
while its IB typically only increases by 5× at 125°C (unlike a  
BiFET amp, for which IB doubles every 10°C resulting in a  
1000× increase at 125°C). Furthermore, the AD704 achieves  
75 µV offset voltage and low noise characteristics of a precision  
bipolar input op amp.  
AMP 1  
AMP 4  
V  
6
S
AD704  
S
AMP 2  
AMP 3  
NC 7  
15  
14  
NC  
+IN3  
+IN2 8  
9
10 11 12 13  
NC = NO CONNECT  
Since it has only 1/20 the input bias current of an AD OP07, the  
AD704 does not require the commonly used “balancing” resistor.  
Furthermore, the current noise is 1/5 that of the AD OP07 which  
makes the AD704 usable with much higher source impedances.  
At 1/6 the supply current (per amplifier) of the AD OP07, the  
AD704 is better suited for today’s higher density circuit boards  
and battery-powered applications.  
100  
10  
TYPICAL JFET AMP  
1
The AD704 is an excellent choice for use in low frequency active  
filters in 12- and 14-bit data acquisition systems, in precision  
instrumentation, and as a high quality integrator. The AD704 is  
internally compensated for unity gain and is available in five  
performance grades. The AD704J and AD704K are rated over  
the commercial temperature range of 0°C to 70°C. The AD704A  
is rated over the industrial temperature of –40°C to +85°C. The  
AD704T is rated over the military temperature range of –55°C  
to +125°C and is available processed to MIL-STD-883B, Rev. C.  
0.1  
AD704T  
0.01  
55  
+25  
+125  
TEMPERATURE –  
C
Figure 1. Input Bias Current Over Temperature  
REV. C  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
(@ T = 25؇C, VCM = 0 V, and ؎15 V dc, unless otherwise noted.)  
AD704–SPECIFICATIONS  
A
AD704J/A  
AD704K  
AD704T  
Parameters  
Conditions  
Min Typ Max Min Typ Max Min Typ Max Unit  
INPUT OFFSET VOLTAGE  
Initial Offset  
Offset  
vs. Temp, Average TC  
vs. Supply (PSRR)  
TMIN–TMAX  
50  
150  
250  
1.5  
30  
50  
0.2  
132  
126  
0.3  
75  
150  
1.0  
30  
80  
100  
150  
1.0  
µV  
T
MIN–TMAX  
100  
0.2  
132  
126  
0.3  
µV  
µV/°C  
dB  
dB  
VS = 2 to 18 V  
VS = 2.5 to 18 V 100  
100  
112  
108  
112  
108  
132  
126  
0.3  
Long-Term Stability  
µV/month  
INPUT BIAS CURRENT1  
VCM = 0 V  
100  
0.3  
270  
300  
80  
150  
200  
80  
200  
250  
pA  
pA  
pA/°C  
pA  
pA  
VCM  
=
13.5 V  
vs. Temp, Average TC  
TMIN–TMAX  
0.2  
1.0  
VCM = 0 V  
VCM 13.5 V  
300  
400  
200  
300  
600  
700  
=
INPUT OFFSET CURRENT  
V
CM = 0 V  
80  
250  
300  
30  
100  
150  
50  
150  
200  
pA  
pA  
VCM 13.5 V  
=
vs. Temp, Average TC  
TMIN–TMAX  
0.6  
100  
100  
0.4  
80  
80  
0.4  
80  
100  
pA/°C  
pA  
pA  
VCM = 0 V  
VCM 13.5 V  
300  
400  
200  
300  
400  
500  
=
MATCHING CHARACTERISTICS  
Offset Voltage  
250  
400  
500  
600  
130  
200  
300  
400  
150  
250  
400  
600  
µV  
µV  
pA  
pA  
dB  
dB  
dB  
dB  
T
MIN–TMAX  
Input Bias Current2  
Common-Mode Rejection3  
Power Supply Rejection4  
Crosstalk5  
TMIN–TMAX  
TMIN–TMAX  
94  
94  
94  
94  
110  
104  
110  
106  
104  
104  
110  
106  
T
MIN–TMAX  
f = 10 Hz  
RLOAD = 2 kΩ  
150  
150  
150  
dB  
FREQUENCY RESPONSE  
UNITY GAIN  
Crossover Frequency  
Slew Rate, Unity Gain  
Slew Rate  
0.8  
0.15  
0.1  
0.8  
0.15  
0.1  
0.8  
0.15  
0.1  
MHz  
V/µs  
V/µs  
G = –1  
TMIN–TMAX  
INPUT IMPEDANCE  
Differential  
Common-Mode  
40ʈ2  
300ʈ2  
40ʈ2  
300ʈ2  
40ʈ2  
300ʈ2  
MʈpF  
GʈpF  
INPUT VOLTAGE RANGE  
Common-Mode Voltage  
13.5 14  
13.5 14  
13.5 14  
V
Common-Mode Rejection Ratio  
VCM  
TMIN–TMAX  
=
13.5 V  
100  
98  
132  
128  
114  
108  
132  
128  
110  
108  
132  
128  
dB  
dB  
INPUT CURRENT NOISE  
INPUT VOLTAGE NOISE  
0.1 to 10 Hz  
f = 10 Hz  
3
50  
3
50  
3
50  
pA p-p  
fA/Hz  
0.1 to 10 Hz  
f = 10 Hz  
f = 1 kHz  
0.5  
17  
15  
0.5  
17  
15  
2.0  
22  
0.5  
17  
15  
2.0  
22  
µV p-p  
nV/Hz  
nV/Hz  
22  
OPEN-LOOP GAIN  
VO  
RLOAD = 10 kΩ  
MIN–TMAX  
= 12 V  
200  
150  
2000  
1500  
400  
300  
2000  
1500  
400  
300  
2000  
1500  
V/mV  
V/mV  
T
VO = 10 V  
RLOAD = 2 kΩ  
TMIN–TMAX  
200  
150  
1000  
1000  
300  
200  
1000  
1000  
200  
100  
1000  
1000  
V/mV  
V/mV  
–2–  
REV. C  
AD704  
AD704J/A  
AD704K  
AD704T  
Parameters  
Conditions  
Min Typ Max Min Typ Max Min Typ Max Unit  
OUTPUT CHARACTERISTICS  
Voltage Swing  
RLOAD = 10 kΩ  
TMIN–TMAX  
Short Circuit  
13  
14  
15  
13  
14  
15  
13  
14  
15  
V
mA  
Current  
CAPACITIVE LOAD  
Drive Capability  
Gain = 1  
10,000  
15  
10,000  
15  
10,000  
15  
pF  
POWER SUPPLY  
Rated Performance  
Operating Range  
Quiescent Current  
V
V
mA  
mA  
2.0  
18  
2.4  
2.6  
2.0  
18  
2.4  
2.6  
2.0  
18  
2.4  
2.6  
1.5  
1.6  
1.5  
1.6  
1.5  
1.6  
TMIN–TMAX  
TRANSISTOR COUNT  
NOTES  
# of Transistors  
180  
180  
180  
1Bias current specifications are guaranteed maximum at either input.  
2Input bias current match is the maximum difference between corresponding inputs of all four amplifiers.  
3CMRR match is the difference of VOS/VCM between any two amplifiers, expressed in dB.  
4PSRR match is the difference between VOS/VSUPPLY for any two amplifiers, expressed in dB.  
5See Figure 2a for test circuit.  
All min and max specifications are guaranteed.  
Specifications subject to change without notice.  
–3–  
REV. C  
AD704  
ABSOLUTE MAXIMUM RATINGS1  
9k  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V  
Internal Power Dissipation (25°C) . . . . . . . . . . . . See Note 2  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VS  
Differential Input Voltage3 . . . . . . . . . . . . . . . . . . . . . . . 0.7 V  
Output Short-Circuit Duration (Single Input) . . . . . Indefinite  
Storage Temperature Range  
Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
N, R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +125°C  
Operating Temperature Range  
AD704J/K . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
AD704A . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
AD704T . . . . . . . . . . . . . . . . . . . . . . . . . –55°C to +125°C  
Lead Temperature Range (Soldering 10 seconds) . . . . . 300°C  
1k⍀  
AD704  
PIN 4  
+V  
S
1F  
1F  
OUTPUT  
0.1F  
0.1F  
1/4  
COM  
V  
AD704  
+
INPUT*  
SIGNAL  
2.5k⍀  
AD704  
PIN 11  
S
1k⍀  
ALL 4 AMPLIFIERS ARE CONNECTED AS SHOWN  
*THE SIGNAL INPUT (SUCH THAT THE AMPLIFIERS OUTPUT IS AT MAX  
AMPLITUDE WITHOUT CLIPPING OR SLEW LIMITING) IS APPLIED TO ONE  
AMPLIFIER AT A TIME.THE OUTPUTS OF THE OTHER THREE AMPLIFIERS  
ARE THEN MEASURED FOR CROSSTALK.  
Figure 2a. Crosstalk Test Circuit  
80  
NOTES  
AMP4  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in  
the operational section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2Specification is for device in free air:  
100  
AMP2  
AMP3  
120  
140  
160  
14-Lead Plastic Package: θJA = 150°C/W  
14-Lead Cerdip Package: θJA = 110°C/W  
16-Lead SOIC Package: θJA = 100°C/W  
20-Terminal LCC Package: θJA = 150°C/W  
3The input pins of this amplifier are protected by back-to-back diodes. If the  
differential voltage exceeds 0.7 volts, external series protection resistors should  
be added to limit the input current to less than 25 mA.  
10  
100  
1k  
10k  
100k  
FREQUENCY Hz  
Figure 2b. Crosstalk vs. Frequency  
ORDERING GUIDE  
Temperature Range Package Description  
Model  
Package Option  
AD704JN  
AD704JR  
AD704JR-/REEL  
AD704KN  
AD704AN  
AD704AR  
AD704AR-REEL  
AD704SE/883B  
AD704TQ/883B  
0°C to 70°C  
Plastic  
Small Outline (SOIC)  
N-14  
R-16  
Tape and Reel  
N-14  
N-14  
R-16  
Tape and Reel  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–55°C to +125°C  
–55°C to +125°C  
*
*
Plastic  
Plastic  
Small Outline (SOIC)  
Leadless Ceramic Chip Carrier E-20A  
Cerdip Q-14  
*
Chips are also available.  
*Not for new designs; obsolete April 2002.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD704 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. C  
Typical Performance CharacteristicsAD704  
(@ 25؇C, VS = ؎15 V dc, unless otherwise noted.)  
50  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
80  
40  
0
+40  
+80  
160  
80  
0
+80  
+160  
120  
60  
0
+60  
+120  
INPUT OFFSETVOLTAGE V  
INPUT BIAS CURRENT pA  
INPUT OFFSET CURRENT pA  
TPC 2. Typical Distribution of  
Input Bias Current  
TPC 1. Typical Distribution of  
Input Offset Voltage  
TPC 3. Typical Distribution of  
Input Offset Current  
35  
+V  
100  
S
30  
25  
SOURCE RESISTANCE  
MAY BE EITHER BALANCED  
OR UNBALANCED  
0.5  
1.0  
1.5  
10  
1.0  
0.1  
20  
15  
10  
5
+1.5  
+1.0  
+0.5  
0
1k  
10k  
100k  
1M  
V  
S
FREQUENCY Hz  
1k  
10k  
100k  
1M  
10M  
100M  
0
5
10  
15  
20  
SOURCE RESISTANCE  
SUPPLYVOLTAGE V  
TPC 5. Large Signal Frequency  
Response  
TPC 4. Input Common-Mode  
Voltage Range vs. Supply Voltage  
TPC 6. Offset Voltage Drift vs.  
Source Resistance  
4
3
50  
120  
100  
80  
40  
30  
20  
10  
0
POSITIVE I  
B
2
1
60  
40  
20  
NEGATIVE I  
B
0
0
1
2
3
4
5
0
0.8  
0.4  
0
+0.4  
+0.8  
15  
10  
5  
0
5
10  
15  
WARM-UP TIME Minutes  
INPUT OFFSETVOLTAGE DRIFT V/؇C  
COMMON-MODEVOLTAGE V  
TPC 8. Change in Input Offset  
Voltage vs. Warm-Up Time  
TPC 7. Typical Distribution of  
Offset Voltage Drift  
TPC 9. Input Bias Current vs.  
Common-Mode Voltage  
–5–  
REV. C  
AD704  
1000  
1000  
100  
10  
100  
10  
0.5V  
10010k⍀  
20M⍀  
V
OUT  
1
1
1
0
5
10  
1
10  
100  
1000  
1000  
10  
100  
FREQUENCY Hz  
TIME Seconds  
FREQUENCY Hz  
TPC 11. Input Noise Current  
Spectral Density  
TPC 10. Input Noise Voltage  
Spectral Density  
TPC 12. 0.1 Hz to 10 Hz Noise Voltage  
500  
160  
180  
V
T
=
15V  
S
A
140  
120  
100  
160  
140  
= 25 C  
450  
400  
V
= 15V  
S
120  
100  
80  
60  
40  
+125 C  
+25 C  
PSR  
80  
60  
40  
20  
+PSR  
350  
300  
20  
0
55 C  
0
5
10  
15  
20  
0.1  
1
10  
100  
1k  
10k 100k 1M  
0.1  
1
10  
100  
1k  
10k 100k 1M  
SUPPLYVOLTAGE ؎V  
FREQUENCY Hz  
FREQUENCY Hz  
TPC 13. Quiescent Supply Current  
vs. Supply Voltage (per Amplifier)  
TPC 14. Common-Mode  
Rejection vs. Frequency  
TPC 15. Power Supply Rejection  
vs. Frequency  
10M  
+V  
S
140  
0
R
= 10k  
L
30  
60  
120  
100  
0.5  
1.0  
55؇C  
+25؇C  
PHASE  
90  
80  
60  
40  
20  
0
1.5  
1M  
120  
150  
180  
+125؇C  
+1.5  
+1.0  
GAIN  
+0.5  
100k  
20  
0.01 0.1  
V  
S
1
10  
100  
1
10 100 1k 10k 100k 1M 10M  
FREQUENCY Hz  
0
5
10  
15  
20  
LOAD RESISTANCE k⍀  
SUPPLYVOLTAGE ؎V  
TPC 16. Open-Loop Gain vs. Load  
Resistance Over Temperature  
TPC 17. Open-Loop Gain and Phase  
vs. Frequency  
TPC 18. Output Voltage Swing vs.  
Supply Voltage  
–6–  
REV. C  
AD704  
1000  
100  
10  
R
F
+V  
100  
90  
S
0.1F  
A
= 1000  
V
1/4  
AD704  
V
OUT  
1
R
2k⍀  
L
+
V
C
IN  
L
A
= +1  
V
10  
0.1  
0.01  
0%  
0.1F  
SQUARE  
WAVE INPUT  
50s  
2V  
V  
S
I
= 1mA  
OUT  
0.001  
1
10  
100  
1k  
10k  
100k  
FREQUENCY Hz  
TPC 20a. Unity Gain Follower (For  
Large Signal Applications, Resistor  
RF Limits the Current through the  
Input Protection Diodes)  
TPC 20b. Unity Gain Follower Large  
Signal Pulse Response RF = 10 k,  
CL = 1,000 pF  
TPC 19. Closed-Loop Output  
Impedance vs. Frequency  
10k  
5s  
5s  
+V  
S
100  
90  
0.1F  
100  
90  
10k⍀  
V
IN  
1/4  
AD704  
V
OUT  
R
2.5k⍀  
L
+
C
L
SQUARE  
WAVE INPUT  
10  
10  
0.1F  
0%  
0%  
20mV  
V  
20mV  
S
TPC 21a. Unity Gain Inverter  
Connection  
TPC 20d. Unity Gain Follower Small  
Signal Pulse Response RF = 0 ,  
CL = 1,000 pF  
TPC 20c. Unity Gain Follower Small  
Signal Pulse Response RF = 0 ,  
CL = 100 pF  
5s  
5s  
2V  
50s  
100  
100  
90  
100  
90  
90  
10  
10  
10  
0%  
0%  
0%  
20mV  
20mV  
TPC 21d. Unity Gain Inverter Small  
Signal Pulse Response, CL = 1,000 pF  
TPC 21c. Unity Gain Inverter Small  
Signal Pulse Response, CL = 100 pF  
TPC 21b. Unity Gain Inverter Large  
Signal Pulse Response, CL = 1,000 pF  
REV. C  
–7–  
AD704  
GAIN TRIM  
(500kPOT)  
C1  
4C2  
Q
1
=
OPTIONAL  
AC CMRR TRIM  
C3  
4C4  
Q
=
1
2
R
G
ω =  
R6 C1C2  
R1  
R5  
R4  
R3  
R2  
1
ω =  
6.34k⍀  
2.4k47.5k⍀  
6.34k⍀  
49.9k⍀  
R6 = R7  
C1  
R8 C3C4  
R8 = R9  
C
DC  
CMRR  
TRIM  
t
+V  
S
C3  
0.1F  
R7  
1M⍀  
R6  
1M⍀  
1/4  
AD704  
+
(5kPOT)  
+
R9  
1M⍀  
R8  
1M⍀  
1/4  
1/4  
AD704  
+
C2  
AD704  
+
0.1F  
1/4  
C4  
V  
OUTPUT  
IN  
AD704  
V  
S
+V  
IN  
R10, 2M⍀  
C5, 0.01F  
R11, 2M⍀  
2R2  
RG  
R2  
R1  
INSTRUMENTATION AMPLIFIER GAIN = 1 +  
+
(FOR R1 = R3, R2 = R4 + R5)  
C6, 0.01F  
ALL RESISTORS METAL FILM, 1%  
OPTIONAL BALANCE RESISTOR  
NETWORKS CAN BE REPLACED  
WITH A SHORT  
CAPACITORS C2 AND C4 ARE  
SOUTHERN ELECTRONICS MPCC,  
POLYCARBONATE, 5%, 50 VOLT  
Figure 3. Gain of 10 Instrumentation Amplifier with Post Filtering  
The instrumentation amplifier with post filtering (Figure 3)  
Table I. Resistance Values for Various Gains  
combines two applications which benefit greatly from the  
AD704. This circuit achieves low power and dc precision over  
temperature with a minimum of components.  
Circuit Gain  
(G)  
RG (Max Value  
R1 and R3 of Trim Potentiometer) (–3 dB), Hz  
Bandwidth  
The instrumentation amplifier circuit offers many performance  
benefits including BiFET level input bias currents, low input  
offset voltage drift and only 1.2 mA quiescent current. It will  
operate for gains G 2, and at lower gains it will benefit from  
the fact that there is no output amplifier offset and noise contri-  
bution as encountered in a 3 op amp design. Good low frequency  
CMRR is achieved even without the optional ac CMRR trim  
(Figure 4). Table I provides resistance values for 3 common  
circuit gains. For other gains, use the following equations:  
10  
100  
1,000  
6.34 kΩ  
526 Ω  
166 kΩ  
16.6 kΩ  
1.66 kΩ  
50k  
5k  
0.5k  
56.2 Ω  
160  
140  
120  
100  
80  
GAIN = 10, 0.2V p-p COMMON-MODE INPUT  
CIRCUITTRIMMED  
USING CAPACITOR C  
t
R2 = R4 + R5 = 49.9 kΩ  
49.9 kΩ  
0.9 G 1  
R1 = R3 =  
TYPICAL MONOLITHIC IN AMP  
60  
40  
99.8 kΩ  
MaxValue of RG  
=
WITHOUT CAPACITOR C  
t
0.06 G  
20  
0
1
1
10  
100  
1k  
10k  
Ct ≈  
2 π (R3) 5 × 105  
FREQUENCY Hz  
Figure 4. Common-Mode Rejection vs. Frequency with  
and without Capacitor Ct  
–8–  
REV. C  
AD704  
180  
120  
The 1 Hz, 4-pole active filter offers dc precision with a minimum  
of components and cost. The low current noise, IOS, and IB  
allow the use of 1 Mresistors without sacrificing the 1 µV/°C  
drift of the AD704. This means lower capacitor values may be  
used, reducing cost and space. Furthermore, since the AD704s  
IB is as low as its IOS, over most of the MIL temperature range,  
most applications do not require the use of the normal balancing  
resistor (with its stability capacitor). Adding the optional balancing  
resistor enhances performance at high temperatures, as shown in  
Figure 5. Table II gives capacitor values for several common low  
pass responses.  
WITHOUT OPTIONAL  
BALANCE RESISTOR, R3  
60  
0
WITH OPTIONAL  
BALANCE RESISTOR, R3  
60  
120  
180  
40  
0
+40  
+80  
+120  
TEMPERATURE ؇C  
Figure 5. VOS vs. Temperature Performance of the 1 Hz  
Filter Circuit  
Table II. 1 Hz, 4-Pole Low-Pass Filter Recommended Component Values  
Section 1  
Frequency  
(Hz)  
Section 2  
Frequency  
(Hz)  
Desired Low  
Pass Response  
C1  
(F)  
C2  
(F)  
C3  
(F)  
C4  
(F)  
Q
Q
Bessel  
Butterworth  
0.1 dB Chebychev  
0.2 dB Chebychev  
0.5 dB Chebychev  
1.0 dB Chebychev  
1.43  
1.00  
0.648  
0.603  
0.540  
0.492  
0.522  
0.541  
0.619  
0.646  
0.705  
0.785  
1.60  
1.00  
0.948  
0.941  
0.932  
0.925  
0.806  
1.31  
2.18  
2.44  
2.94  
3.56  
0.116  
0.172  
0.304  
0.341  
0.416  
0.508  
0.107  
0.147  
0.198  
0.204  
0.209  
0.206  
0.160  
0.416  
0.733  
0.823  
1.00  
0.0616  
0.0609  
0.0385  
0.0347  
0.0290  
0.0242  
1.23  
Specified values are for a 3 dB point of 1.0 Hz. For other frequencies, simply scale capacitors C1 through C4 directly; i.e., for 3 Hz Bessel response, C1 = 0.0387 µF,  
C2 = 0.0357 µF, C3 = 0.0533 µF, C4 = 0.0205 µF.  
REV. C  
–9–  
AD704  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
14-Lead Cerdip (Q) Package  
14-Lead Plastic DIP (N) Package  
20-Terminal LCC (E) Package  
16-Lead Plastic SO (R) Package  
0.100 (2.54)  
0.064 (1.63)  
0.358 (9.09)  
0.342 (8.69)  
0.040 (1.02)  
x 45 REF  
3 PLCS  
0.028 (0.71)  
0.022 (0.56)  
NO. 1 PIN  
INDEX  
0.050  
(1.27)  
BSC  
0.020 (0.51)  
x 45 REF  
Revision History  
Location  
Page  
11/01 Data Sheet changed from REV. B to REV. C.  
Edits to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Edits to PRODUCT DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Deleted METALIZATION PHOTOGRAPH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Edits to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
–10–  
REV. C  
–11–  
–12–  

相关型号:

AD705

Picoampere Input Current Bipolar Op Amp
ADI

AD705AQ

Picoampere Input Current Bipolar Op Amp
ADI

AD705BQ

Picoampere Input Current Bipolar Op Amp
ADI

AD705JCHIPS

Picoampere Input Current Bipolar Op Amp
ADI

AD705JN

Picoampere Input Current Bipolar Op Amp
ADI

AD705JR

Picoampere Input Current Bipolar Op Amp
ADI

AD705JR-REEL

Picoampere Input Current Bipolar Op Amp
ADI

AD705JR-REEL7

Picoampere Input Current Bipolar Op Amp
ADI

AD705JR/+

IC,OP-AMP,SINGLE,BIPOLAR,SOP,8PIN,PLASTIC
ADI

AD705KN

Picoampere Input Current Bipolar Op Amp
ADI

AD705T/883B

IC OP-AMP, 25 uV OFFSET-MAX, CDIP8, CERDIP-8, Operational Amplifier
ADI

AD705TQ

Picoampere Input Current Bipolar Op Amp
ADI