AD706_02 [ADI]

Dual Picoampere Input Current Bipolar Op Amp; 双Picoampere输入电流双极运算放大器
AD706_02
型号: AD706_02
厂家: ADI    ADI
描述:

Dual Picoampere Input Current Bipolar Op Amp
双Picoampere输入电流双极运算放大器

运算放大器
文件: 总12页 (文件大小:351K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual Picoampere Input  
Current Bipolar Op Amp  
a
AD706  
FEATURE  
CO NNECTIO N D IAGRAM  
HIGH DC PRECISION  
P lastic Mini-D IP (N) and  
P lastic SO IC (R) P ackages  
50 V max Offset Voltage  
0.6 V/C max Offset Drift  
110 pA max Input Bias Current  
AMPLIFIER 1  
AMPLIFIER 2  
LOW NOISE  
0.5 V p-p Voltage Noise, 0.1 Hz to 10 Hz  
AD706  
OUTPUT  
–IN  
1
2
3
4
8
7
6
5
V  
LOW POWER  
750 A Supply Current  
Available in 8-Lead Plastic Mini-DlP, Hermetic Cerdip  
and Surface Mount (SOIC) Packages  
Available in Tape and Reel in Accordance with  
EIA-481A Standard  
OUTPUT  
–IN  
IN  
V–  
IN  
TOP VIEW  
Quad Version: AD704  
APPLICATIONS  
Low Frequency Active Filters  
Precision Instrumentation  
Precision Integrators  
P RO D UCT D ESCRIP TIO N  
P RO D UCT H IGH LIGH TS  
T he AD706 is a dual, low power, bipolar op amp that has the  
low input bias current of a BiFET amplifier, but which offers a  
significantly lower IB drift over temperature. It utilizes superbeta  
bipolar input transistors to achieve picoampere input bias cur-  
rent levels (similar to FET input amplifiers at room tempera-  
ture), while its IB typically only increases by 5¥ at 125C (unlike  
a BiFET amp, for which IB doubles every 10C for a 1000¥  
increase at 125C). T he AD706 also achieves the microvolt  
offset voltage and low noise characteristics of a precision bipolar  
input amplifier.  
1. T he AD706 is a dual low drift op amp that offers BiFET  
level input bias currents, yet has the low IB drift of a bipolar  
amplifier. It may be used in circuits using dual op amps such  
as the LT 1024.  
2. T he AD706 provides both low drift and high dc precision.  
3. T he AD706 can be used in applications where a chopper  
amplifier would normally be required but without the  
chopper’s inherent noise.  
100  
Since it has only 1/20 the input bias current of an OP07, the  
AD706 does not require the commonly used “balancing” resis-  
tor. Furthermore, the current noise is 1/5 that of the OP07,  
which makes this amplifier usable with much higher source  
impedances. At 1/6 the supply current (per amplifier) of the  
OP07, the AD706 is better suited for today’s higher density  
boards.  
10  
TYPICAL JFET AMP  
1
T he AD706 is an excellent choice for use in low frequency  
active filters in 12- and 14-bit data acquisition systems, in preci-  
sion instrumentation and as a high quality integrator. T he  
AD706 is internally compensated for unity gain and is available  
in five performance grades. T he AD706J and AD706K are rated  
over the commercial temperature range of 0C to +70C.  
0.1  
AD706  
0.01  
–55  
+25  
+110  
+125  
T he AD706 is offered in two varieties of an 8-lead package:  
plastic mini-DIP and surface mount (SOIC). “J” grade chips are  
also available.  
TEMPERATURE – C  
Figure 1. Input Bias Current vs. Temperature  
REV. D  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
(@ TA = +25C, VCM = 0 V and 15 V dc, unless otherwise noted)  
AD706–SPECIFICATIONS  
AD706J  
Typ  
AD706K  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Units  
INPUT OFFSET VOLTAGE  
Initial Offset  
Offset  
vs. Temp, Average TC  
vs. Supply (PSRR)  
TMIN to TMAX  
30  
40  
0.2  
132  
126  
0.3  
100  
150  
1.5  
10  
25  
0.2  
132  
126  
0.3  
50  
100  
0.6  
mV  
mV  
mV/C  
dB  
dB  
TMIN to TMAX  
V
S = ±2 V to ±18 V  
110  
106  
112  
108  
VS = ±2.5 V to ±18 V  
Long Term Stability  
mV/Month  
INPUT BIAS CURRENT1  
VCM = 0 V  
VCM = ±13.5 V  
50  
200  
250  
30  
110  
160  
pA  
pA  
vs. Temp, Average TC  
TMIN to TMAX  
TMIN to TMAX  
0.3  
0.2  
pA/C  
pA  
pA  
VCM = 0 V  
VCM = ±13.5 V  
300  
400  
200  
300  
INPUT OFFSET CURRENT  
VCM = 0 V  
VCM = ±13.5 V  
30  
150  
250  
30  
100  
200  
pA  
pA  
vs. Temp, Average TC  
TMIN to TMAX  
TMIN to TMAX  
0.6  
80  
80  
0.4  
80  
80  
pA/C  
pA  
pA  
VCM = 0 V  
VCM = ±13.5 V  
250  
350  
200  
300  
MATCHING CHARACTERISTICS  
Offset Voltage  
150  
250  
300  
500  
75  
mV  
mV  
pA  
pA  
dB  
dB  
dB  
dB  
T
T
MIN to TMAX  
MIN to TMAX  
150  
150  
250  
Input Bias Current2  
Common-Mode Rejection  
Power Supply Rejection  
106  
106  
106  
104  
110  
108  
110  
106  
TMIN to TMAX  
MIN to TMAX  
T
Crosstalk  
@ f = 10 Hz  
(Figure 19a)  
RL = 2 kW  
150  
150  
dB  
FREQUENCY RESPONSE  
Unity Gain Crossover  
Frequency  
0.8  
0.15  
0.15  
0.8  
0.15  
0.15  
MHz  
V/ms  
V/ms  
Slew Rate  
G = –1  
TMIN to TMAX  
INPUT IMPEDANCE  
Differential  
Common Mode  
40ʈ2  
300ʈ2  
40ʈ2  
300ʈ2  
MWʈpF  
GWʈpF  
INPUT VOLTAGE RANGE  
Common-Mode Voltage  
Common-Mode Rejection  
Ratio  
±13.5  
±14  
±13.5  
±14  
V
V
CM = ±13.5 V  
110  
108  
132  
128  
114  
108  
132  
128  
dB  
dB  
TMIN to TMAX  
INPUT CURRENT NOISE  
INPUT VOLTAGE NOISE  
0.1 Hz to 10 Hz  
f = 10 Hz  
3
50  
3
50  
pA p-p  
fA/÷Hz  
0.1 Hz to 10 Hz  
f = 10 Hz  
f = 1 kHz  
0.5  
17  
15  
0.5  
17  
15  
1.0  
22  
mV p-p  
nV/÷Hz  
nV/÷Hz  
22  
OPEN-LOOP GAIN  
VO = ±12 V  
RLOAD = 10 kW  
TMIN to TMAX  
VO = ±10 V  
RLOAD = 2 kW  
TMIN to TMAX  
200  
150  
2000  
1500  
400  
300  
2000  
1500  
V/mV  
V/mV  
200  
150  
1000  
1000  
300  
200  
1000  
1000  
V/mV  
V/mV  
OUTPUT CHARACTERISTICS  
Voltage Swing  
RLOAD = 10 kW  
TMIN to TMAX  
Short Circuit  
±13  
±13  
±14  
±14  
±15  
±13  
±13  
±14  
±14  
±15  
V
V
mA  
Current  
Capacitive Load  
Drive Capability  
Gain = +1  
10,000  
10,000  
pF  
REV. D  
–2–  
AD706  
AD706J  
Typ  
AD706K  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Units  
POWER SUPPLY  
Rated Performance  
Operating Range  
±15  
±15  
V
V
mA  
mA  
±2.0  
±18  
1.2  
1.4  
±2.0  
±18  
1.2  
1.4  
Quiescent Current, Total  
0.75  
0.8  
0.75  
0.8  
TMIN to TMAX  
TRANSISTOR COUNT  
NOTES  
# of Transistors  
90  
90  
lBias current specifications are guaranteed maximum at either input.  
2Input bias current match is the difference between corresponding inputs (IB of –IN of Amplifier #1 minus IB of –IN of Amplifier #2).  
DVOS #1  
DVOS #2  
CMRR match is the difference between  
for amplifier #1 and  
for amplifier #l and  
for amplifier #2 expressed in dB.  
for amplifier #2 expressed in dB.  
DV  
DV  
CM  
CM  
DVOS #1  
DVSUPPLY  
DVOS #2  
DVSUPPLY  
PSRR match is the difference between  
All min and max specifications are guaranteed.  
Specifications subject to change without notice.  
ABSOLUTE MAXIMUM RATINGSl  
ORDERING GUIDE  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
Temperature  
Range  
Package  
Description Option*  
Internal Power Dissipation  
(Total: Both Amplifiers)2 . . . . . . . . . . . . . . . . . . . . 650 mW  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±VS  
Differential Input Voltage3 . . . . . . . . . . . . . . . . . . . . +0.7 Volts  
Output Short Circuit Duration . . . . . . . . . . . . . . . . Indefinite  
Storage Temperature Range (N, R) . . . . . . . –65C to +125C  
Operating Temperature Range  
Model  
AD706JN  
AD706KN  
AD706JR  
0C to +70C  
0C to +70C  
0C to +70C  
Plastic DIP  
Plastic DIP  
SOIC  
N-8  
N-8  
RN-8  
AD706JR-REEL 0C to +70C  
40C to +85C SOIC  
AD706AR-REEL –40C to +85C Tape and Reel  
Tape and Reel  
AD706AR  
RN-8  
AD706J/K . . . . . . . . . . . . . . . . . . . . . . . . . . . 0C to +70C  
Lead Temperature (Soldering 10 secs) . . . . . . . . . . . . +300C  
*N = Plastic DIP; RN = SOIC Package.  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2Specification is for device in free air:  
METALIZATION PHOTOGRAPH  
Dimensions shown in inches and (mm).  
Contact factory for latest dimensions.  
8-Lead Plastic Package: qJA = 100C/Watt  
8-Lead Small Outline Package: qJA = 155C/Watt  
3The input pins of this amplifier are protected by back-to-back diodes. If the  
differential voltage exceeds ±0.7 volts, external series protection resistors should  
be added to limit the input current to less than 25 mA.  
1
OUTPUT A  
+V  
8
S
2
–INPUT A  
+INPUT A  
OUTPUT B  
7
3
6
5
–INPUT B  
+INPUT B  
–V  
S
4
0.074 (1.88)  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD706 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. D  
–3–  
AD706–Typical Performace Characteristics(@ +25C, V = 15 V, unless otherwise noted)  
S
1000  
800  
600  
400  
200  
0
1000  
800  
600  
400  
200  
0
1000  
800  
600  
400  
200  
0
SAMPLE  
SAMPLE SIZE: 2400  
SAMPLE  
SIZE: 3000  
SIZE: 5100  
–80  
–40  
0
40  
80  
–160  
–80  
0
80  
160  
–120  
–60  
0
60  
120  
INPUT OFFSET VOLTAGE – V  
INPUT BIAS CURRENT – pA  
INPUT OFFSET CURRENT – pA  
Figure 2. Typical Distribution of Input  
Offset Voltage  
Figure 3. Typical Distribution of  
Input Bias Current  
Figure 4. Typical Distribution of  
Input Offset Current  
V  
35  
30  
25  
20  
15  
10  
5
100  
S
–0.5  
–1.0  
–1.5  
SOURCE RESISTANCE  
MAY BE EITHER BALANCED  
OR UNBALANCED  
10  
FOR INDUSTRIAL  
TEMPERATURE  
RANGE  
1.5  
1.0  
0.5  
1.0  
–V  
S
0
0.1  
1k  
10k  
100k  
1M  
0
5
10  
15  
20  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY – Hz  
SOURCE RESISTANCE – ꢄ  
SUPPLY VOLTAGE – Volts  
Figure 5. Input Common-Mode  
Voltage Range vs. Supply Voltage  
Figure 6. Large Signal Frequency  
Response  
Figure 7. Offset Voltage Drift vs.  
Source Resistance  
4
3
60  
200  
SAMPLE SIZE: 375  
–55C TO 125C  
40  
160  
120  
80  
40  
0
POSITIVE I  
20  
B
0
2
1
0
–20  
NEGATIVE I  
B
–40  
–60  
0
1
2
3
4
5
–15 –10  
–5  
0
5
10  
15  
–0.8  
–0.4  
0
0.4  
0.8  
OFFSET VOLTAGE DRIFT – V/C  
WARM-UP TIME – Minutes  
COMMON-MODE VOLTAGE – Volts  
Figure 8. Typical Distribution of  
Offset Voltage Drift  
Figure 9. Change in Input Offset  
Voltage vs. Warm-Up Time  
Figure 10. Input Bias Current vs.  
Common-Mode Voltage  
REV. D  
–4–  
AD706  
1000  
100  
10  
1000  
100  
10  
0.5V  
100ꢄ  
10kꢄ  
20Mꢄ  
VOUT  
1
1
5
0
10  
1
10  
100  
1000  
1
10  
100  
1000  
TIME – Seconds  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 11. Input Noise Voltage  
Spectral Density  
Figure 12. Input Noise Current  
Spectral Density  
Figure 13. 0.1 Hz to 10 Hz Noise  
Voltage  
1000  
900  
+160  
+140  
+120  
+100  
+80  
+60  
+40  
+20  
0
180  
160  
140  
120  
100  
800  
+125C  
– PSRR  
80  
+25C  
+ PSRR  
60  
40  
20  
700  
–55C  
600  
0
5
10  
15  
20  
0.1  
1
10  
100 1k  
10k 100k 1M  
0.1  
1
10  
100 1k  
10k 100k 1M  
SUPPLY VOLTAGE – Volts  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 14. Quiescent Supply Current  
vs. Supply Voltage  
Figure 15. Common-Mode Rejection  
Ratio vs. Frequency  
Figure 16. Power Supply Rejection  
Ratio vs. Frequency  
0
140  
120  
100  
80  
10M  
+V  
S
30  
–0.5  
–1.0  
–1.5  
–55C  
60  
+25C  
PHASE  
90  
+125C  
60  
120  
150  
180  
210  
240  
1M  
40  
+1.5  
+1.0  
+0.5  
GAIN  
20  
0
–V  
S
–20  
100k  
1
2
4
6
8 10  
100  
0.01 0.1  
1
10 100 1k 10k 100k 1M 10M  
FREQUENCY – Hz  
0
5
10  
15  
20  
LOAD RESISTANCE – kꢄ  
SUPPLY VOLTAGE – Volts  
Figure 18. Open-Loop Gain and  
Phase Shift vs. Frequency  
Figure 17. Open-Loop Gain vs. Load  
Resistance vs. Load Resistance  
Figure 19. Output Voltage Swing vs.  
Supply Voltage  
REV. D  
–5–  
AD706  
–80  
1000  
100  
10  
–100  
–120  
–140  
–160  
AV = –1000  
1
AV = + 1  
0.1  
0.01  
I
= +1mA  
100  
OUT  
0.001  
10  
100  
1k  
10k  
100k  
1
10  
1k  
10k  
100k  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 20a. Crosstalk vs. Frequency  
Figure 21. Magnitude of Closed-Loop Output Impedance  
vs. Frequency  
+V 0.1F  
S
R
F
+V  
S
2
3
V
#1  
OUT  
1/2  
1
0.1F  
AD706  
20V p-p  
4
8
0.1F  
V
OUT  
R
1/2  
L
2kꢄ  
SINE WAVE  
AD706  
4
GENERATOR  
V
IN  
R
–V  
L
S
C
L
2kꢄ  
0.1F  
20kꢄ  
SQUARE  
WAVE  
–V  
S
INPUT  
+V  
S
Figure 22a. Unity Gain Follower (For Large Signal  
Applications, Resistor RF Limits the Current  
Through the Input Protection Diodes)  
1F  
0.1F  
2.21kꢄ  
8
6
5
V
#2  
OUT  
1/2  
AD706  
7
V
V
#2  
#1  
OUT  
OUT  
CROSSTALK = 20 LOG  
10  
–20dB  
Figure 20b. Crosstalk Test Circuit  
Figure 22b. Unity Gain Follower  
Large Signal Pulse Response, RF =  
10 kW, CL = 1,000 pF  
Figure 22d. Unity Gain Follower  
Small Signal Pulse Response, RF =  
0 W, CL = 1000 pF  
Figure 22c. Unity Gain Follower  
Small Signal Pulse Response, RF =  
0 W, CL = 100 pF  
–6–  
REV. D  
AD706  
10kꢄ  
+V  
S
+
0.1F  
10kꢄ  
V
IN  
8
V
OUT  
1/2  
AD706  
R
4
L
+
C
L
2.5kꢄ  
SQUARE  
WAVE  
0.1µF  
INPUT  
–V  
S
Figure 23a. Unity Gain Inverter Connection  
Figure 23b. Unity Gain Inverter Large  
Signal Pulse Response, CL = 1,000 pF  
Figure 23c. Unity Gain Inverter Small  
Signal Pulse Response, CL = 100 pF  
Figure 23d. Unity Gain Inverter Small  
Signal Pulse Response, CL = 1000 pF  
Figure 24 shows an in-amp circuit that has the obvious advan-  
tage of requiring only one AD706, rather than three op amps,  
with subsequent savings in cost and power consumption. The  
transfer function of this circuit (without RG) is:  
increases with gain, once initial trimming is accomplished—but  
CMR is still dependent upon the ratio matching of Resistors R1  
through R4. Resistor values for this circuit, using the optional  
gain resistor, RG, can be calculated using:  
Ê
ˆ
R
4
R1= R4 = 49.9kW  
VOUT = (VIN#1 - VIN#2 ) 1+  
Á
˜
R3  
49.9kW  
0.9G -1  
Ë
¯
R2 = R3 =  
for R1 = R4 and R2 = R3  
99.8kW  
0.06 G  
Input resistance is high, thus permitting the signal source to  
have an unbalanced output impedance.  
RG =  
where G = Desired Circuit Gain  
R
(OPTIONAL)  
R3  
G
Table I provides practical 1% resistance values. (Note that  
without resistor RG, R2 and R3 = 49.9 kW/G–1.)  
R1  
R2  
R4  
49.9kꢄ  
49.9kꢄ  
+V  
S
Table I. Operating Gains of Amplifiers A1 and A2 and  
Practical 1% Resistor Values for the Circuit of Figure 24  
0.1F  
1/2  
8
2
3
+
AD706  
1
5
6
A1  
1/2  
R *  
Circuit Gain Gain of A1 Gain of A2 R2, R3  
R1, R4  
P
A2  
7
V
IN#1 1kꢄ  
OUTPUT  
0.1F  
1.10  
1.33  
1.50  
2.00  
10.1  
101.0  
1001  
11.00  
4.01  
3.00  
2.00  
1.11  
1.01  
1.001  
1.10  
1.33  
1.50  
499 kW  
150 kW  
100 kW  
49.9 kW  
49.9 kW  
49.9 kW  
+
4
AD706  
R *  
P
–V  
V
1kꢄ  
S
IN#2  
R4  
R3  
2R4  
)
2.00  
49.9 kW 49.9 kW  
5.49 kW 49.9 kW  
V
= (V  
– V  
IN#1  
) (1+  
IN#2  
) + (  
OUT  
FOR R1 = R4, R2 = R3  
R
G
10.10  
101.0  
1001  
499 W  
49.9 W  
49.9 kW  
49.9 kW  
*OPTIONAL INPUT PROTECTION RESISTOR FOR GAINS GREATER  
THAN 100 OR INPUT VOLTAGES EXCEEDING THE SUPPLY VOLTAGE.  
Figure 24. A Two Op-Amp Instrumentation Amplifier  
For a much more comprehensive discussion of in-amp applica-  
tions, refer to the Instrumentation Amplifier Applications Guide—  
available free from Analog Devices, Inc.  
Furthermore, the circuit gain may be fine trimmed using an  
optional trim resistor, RG. Like the three op-amp circuit, CMR  
REV. D  
–7–  
AD706  
C1  
+
+V  
S
C3  
R1  
R2  
0.1F  
1Mꢄ  
1Mꢄ  
R3  
R4  
3
2
INPUT  
1Mꢄ  
1Mꢄ  
1/2  
8
1/2  
AD706  
C2  
1
5
6
AD706  
7
4
C4  
OUTPUT  
*WITHOUT THE NETWORK,  
PINS 1 & 2, AND 6 & 7 OF THE  
AD706 ARE TIED TOGETHER.  
0.1F  
–V  
S
CAPACITORS C1 & C2  
R6  
2Mꢄ  
C6  
R5  
ARE SOUTHERN ELECTRONICS  
C5  
0.01F  
2Mꢄ  
0.01F  
MPCC, POLYCARB 5%, 50 VOLT  
OPTIONAL BALANCE  
RESISTOR NETWORKS*  
Figure 25. A 1 Hz, 4-Pole Active Filter  
180  
A 1 Hz, 4-Pole, Active Filter  
Figure 25 shows the AD706 in an active filter application. An  
important characteristic of the AD706 is that both the input bias  
current, input offset current and their drift remain low over  
most of the op amp’s rated temperature range. Therefore, for  
most applications, there is no need to use the normal balancing  
resistor. Adding the balancing resistor enhances performance at  
high temperatures, as shown by Figure 26.  
WITHOUT OPTIONAL  
120  
60  
0
BALANCE RESISTOR, R3  
WITH OPTIONAL BALANCE  
RESISTOR, R3  
–60  
–120  
–180  
–40  
0
+40  
TEMPERATURE – C  
+80  
+120  
Figure 26. VOS vs. Temperature Performance  
of the 1 Hz Filter  
Table II. 1 Hz, 4-Pole, Low Pass Filter Recommended Component Values  
Section 1  
Frequency  
(Hz)  
Section 2  
Frequency  
(Hz)  
Desired Low  
Pass Response  
C1  
(F)  
C2  
(F)  
C3  
(F)  
C4  
(F)  
Q
Q
Bessel  
Butterworth  
0.1 dB Chebychev  
0.2 dB Chebychev  
0.5 dB Chebychev  
1.0 dB Chebychev  
1.43  
1.00  
0.648  
0.603  
0.540  
0.492  
0.522  
0.541  
0.619  
0.646  
0.705  
0.785  
1.60  
1.00  
0.948  
0.941  
0.932  
0.925  
0.806  
1.31  
2.18  
2.44  
2.94  
3.56  
0.116 0.107 0.160  
0.172 0.147 0.416  
0.304 0.198 0.733  
0.341 0.204 0.823  
0.416 0.209 1.00  
0.508 0.206 1.23  
0.0616  
0.0609  
0.0385  
0.0347  
0.0290  
0.0242  
NOTE  
Specified Values are for a –3 dB point of 1.0 Hz. For other frequencies simply scale capacitors C1 through C4 directly, i.e.: for 3 Hz  
Bessel response, C1 = 0.0387 mF, C2 = 0.0357 mF, C3 = 0.0533 mF, C4 = 0.0205 mF.  
–8–  
REV. D  
AD706  
OUTLINE DIMENSIONS  
8-Lead Standard Small Outline Package [SOIC]  
8-Lead Plastic Dual-in-Line Package [PDIP]  
Narrow Body  
(RN-8)  
(N-8)  
Dimensions shown in inches and (millimeters).  
Dimensions shown in millimeters and (inches)  
5.00 (0.1968)  
4.80 (0.1890)  
0.375 (9.53)  
0.365 (9.27)  
0.355 (9.02)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
8
1
5
0.295 (7.49)  
0.285 (7.24)  
0.275 (6.98)  
4
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45ꢀ  
0.100 (2.54)  
BSC  
1.75 (0.0688)  
1.35 (0.0532)  
0.150 (3.81)  
0.135 (3.43)  
0.120 (3.05)  
0.25 (0.0098)  
0.015  
(0.38)  
MIN  
0.10 (0.0040)  
0.180  
(4.57)  
MAX  
8ꢀ  
0.51 (0.0201)  
0.33 (0.0130)  
01.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.19 (0.0075)  
SEATING  
PLANE  
0.015 (0.38)  
0.010 (0.25)  
0.008 (0.20)  
0.41 (0.0160)  
0.150 (3.81)  
0.130 (3.30)  
0.110 (2.79)  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
SEATING  
PLANE  
0.060 (1.52)  
0.050 (1.27)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
COMPLIANT TO JEDEC STANDARDS MO-095AA  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS  
(IN PARENTHESES)  
REV. D  
–9–  
AD706  
Revision History  
Location  
Page  
10/02–Data Sheet changed from REV. C to REV. D  
Deleted 8-Lead CerDIP (Q-8) Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Universal  
Edits to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Edits to PRODUCT DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Edits to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Edits to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
–10–  
REV. D  
–11–  
–12–  

相关型号:

AD706_03

Dual Picoampere Input Current Bipolar Op Amp
ADI

AD707

Ultralow Drift Op Amp
ADI

AD707AH

Ultralow Drift Op Amp
ADI

AD707AQ

Ultralow Drift Op Amp
ADI

AD707AR

Ultralow Drift Op Amp
ADI

AD707AR-REEL

Ultralow Drift Op Amp
ADI

AD707AR-REEL7

Ultralow Drift Op Amp
ADI

AD707BH

IC OP-AMP, 45 uV OFFSET-MAX, 0.9 MHz BAND WIDTH, MBCY8, METAL CAN, TO-99, 8 PIN, Operational Amplifier
ADI

AD707BQ

Ultralow Drift Op Amp
ADI

AD707BQ/+

Operational Amplifier
ETC

AD707CH

Ultralow Drift Op Amp
ADI

AD707J-CHIPS

IC OP-AMP, 90 uV OFFSET-MAX, 0.9 MHz BAND WIDTH, UUC5, DIE-5, Operational Amplifier
ADI