AD708AH [ADI]

Ultralow Offset Voltage Dual Op Amp; 超低失调电压双通道运算放大器
AD708AH
型号: AD708AH
厂家: ADI    ADI
描述:

Ultralow Offset Voltage Dual Op Amp
超低失调电压双通道运算放大器

运算放大器 放大器电路
文件: 总8页 (文件大小:418K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultralow Offset Voltage  
Dual Op Amp  
a
AD708  
FEATURES  
Very High DC Precision  
30 V max Offset Voltage  
CONNECTION DIAGRAMS  
TO-99 (H) Package  
0.3 V/؇C max Offset Voltage Drift  
0.35 V p-p max Voltage Noise (0.1 Hz to 10 Hz)  
5 Million V/V min Open Loop Gain  
130 dB min CMRR  
120 dB min PSRR  
Matching Characteristics  
30 V max Offset Voltage Match  
0.3 V/؇C max Offset Voltage Drift Match  
130 dB min CMRR Match  
Single Version: AD707  
Available in 8-Pin Plastic Mini-DIP,  
Hermetic Cerdip and TO-99 Metal Can  
Packages, Chips and /883B Parts Available.  
Plastic (N ), and Cerdip (Q) Packages  
PRODUCT DESCRIPTION  
The AD708 is a very high precision, dual monolithic operational  
amplifier. Each amplifier individually offers excellent dc precision  
with the best available max offset voltage and offset voltage drift  
of any dual bipolar op amp. In addition, the matching specifica-  
tions are the best available in any dual op amp.  
The AD708 sets a new standards for dual precision op amps by  
providing 5 V/µV min open loop gain and guaranteed max input  
voltage noise of 350 nV p-p (0.1 Hz to 10 Hz). All dc specifica-  
tions show excellent stability over temperature, with offset  
voltage drift typically 0.1 µV/°C and input bias current drift of  
25 pA/°C max. Both CMRR (130 dB min) and PSRR (120 dB  
min) are an order of magnitude improved over any available  
single monolithic op amp except the AD707.  
APPLICATION HIGHLIGHTS  
1. The combination of outstanding matching and individual  
specifications make the AD708 ideal for constructing high  
gain, precision instrumentation amplifiers.  
2. The low offset voltage drift and low noise of the AD708  
allows the designer to amplify very small signals without  
sacrificing overall system performance.  
The AD708 is available in four performance grades. The  
AD708J is rated over the commercial temperature range of 0°C  
to +70°C and jis available in a plastic mini-DIP package. The  
AD708A and AD708B are rated over the industrial temperature  
range of –40°C to +85°C and are available in a cerdip and TO-  
99 package. The AD708S is rated over the military temperature  
range of –55°C to +125°C and is available in cerdip and TO-99  
packages. Military versions are available processed to MIL-  
STD-883B, Rev. C.  
3. The AD708’s 10 V/µV typical open loop gain and 140 dB  
common-mode rejection make it ideal for precision  
applications.  
4. Unmounted dice are available for hybrid circuit applications.  
5. The AD708 is an improved replacement for the LT1002.  
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 617/329-4700  
Fax: 617/326-8703  
(@ +25؇C and ؎15 V dc, unless otherwise noted)  
AD708–SPECIFICATIONS  
AD708J/A  
Min Typ Max  
AD708B  
Min Typ  
AD708S  
Model  
Conditions  
Max  
Min Typ  
Max  
Units  
INPUT OFFSET VOLTAGE1  
30  
50  
0.3  
0.3  
100  
150  
1.0  
5
50  
65  
0.4  
5
30  
50  
0.3  
µV  
µV  
µV/°C  
µV/Month  
TMIN to TMAX  
15  
0.1  
0.3  
15  
0.1  
0.3  
Drift  
Long Term Stability  
INPUT BIAS CURRENT  
1.0  
2.0  
15  
2.5  
4.0  
40  
0.5  
1.0  
10  
1.0  
2.0  
25  
0.5  
1.0  
10  
1
4
30  
nA  
nA  
pA/°C  
TMIN to TMAX  
Average Drift  
OFFSET CURRENT  
VCM = 0 V  
TMIN to TMAX  
0.5  
2.0  
2
2.0  
4.0  
60  
0.1  
0.2  
1
1.0  
1.5  
25  
0.1  
0.2  
1
1
1.5  
25  
nA  
nA  
pA/°C  
Average Drift  
MATCHING CHARACTERISTICS2  
Offset Voltage  
80  
50  
30  
µV  
TMIN to TMAX  
150  
1.0  
4.0  
5.0  
75  
50  
µV  
Offset Voltage Drift  
Input Bias Current  
0.4  
1.0  
2.0  
0.3  
1.0  
2.0  
µV/°C  
nA  
nA  
dB  
dB  
dB  
TMIN to TMAX  
TMIN to TMAX  
TMIN to TMAX  
Common-Mode Rejection  
Power Supply Rejection  
120  
110  
110  
110  
135  
140  
130  
130  
120  
120  
140  
140  
130  
130  
120  
120  
140  
140  
dB  
dB  
Channel Separation  
INPUT VOLTAGE NOISE  
0.1 Hz to 10 Hz  
f = 10 Hz  
f = 100 Hz  
f = 1 kHz  
0.23 0.6  
10.3 18  
10.0 13.0  
0.23 0.6  
10.3 12  
10.0 11.0  
0.23 0.35  
10.3 12  
10.0 11  
µV p-p  
nV/Hz  
nV/Hz  
nV/Hz  
9.6  
11.0  
9.6  
11.0  
9.6  
11  
INPUT CURRENT NOISE  
0.1 Hz to 10 Hz  
f = 10 Hz  
f = 100 Hz  
f = 1 kHz  
14  
35  
14  
35  
14  
35  
pA p-p  
pA/Hz  
pA/Hz  
pA/Hz  
0.32 0.9  
0.14 0.27  
0.12 0.18  
0.32 0.8  
0.14 0.23  
0.12 0.17  
0.32 0.8  
0.14 0.23  
0.12 0.17  
COMMON-MODE  
REJECTION RATIO  
VCM = ±13 V  
TMIN to TMAX  
120  
120  
140  
140  
130  
130  
140  
140  
130  
130  
140  
140  
dB  
dB  
OPEN-LOOP GAIN  
VO = ±10 V  
RLOAD 2 kΩ  
TMIN to TMAX  
3
3
10  
10  
5
5
10  
10  
4
4
10  
7
V/µV  
V/µV  
POWER SUPPLY  
REJECTION RATIO  
VS = ±3 V to ±18 V 110  
130  
130  
120  
120  
130  
130  
120  
120  
130  
130  
dB  
dB  
TMIN to TMAX  
110  
FREQUENCY RESPONSE  
Closed Loop Bandwidth  
Slew Rate  
0.5  
0.15 0.3  
0.9  
0.5  
0.15 0.3  
0.9  
0.5  
0.15 0.3  
0.9  
MHz  
V/µs  
INPUT RESISTANCE  
Differential  
Common Mode  
60  
200  
200  
400  
200  
400  
MΩ  
GΩ  
OUTPUT VOLTAGE  
RLOAD 10 kΩ  
RLOAD 2 kΩ  
RLOAD 1 kΩ  
RLOAD 2 kΩ  
TMIN to TMAX  
13.5 14  
12.5 13.0  
12.0 12.5  
13.5 14.0  
12.5 13.0  
12.0 12.5  
13.5 14  
12.5 13  
12.0 12.5  
±V  
±V  
±V  
12.0 13.0  
60  
12.0 13.0  
60  
12.0 13  
±V  
OPEN-LOOP OUTPUT  
RESISTANCE  
60  
–2–  
REV. B  
AD708  
AD708J/A  
Min Typ  
AD708B  
Min Typ  
AD708S  
Min Typ  
Model  
Conditions  
Max  
Max  
Max  
Units  
POWER SUPPLY  
Quiescent Current  
Power Consumption  
4.5  
5.5  
4.5  
5.5  
4.5  
5.5  
mA  
VS = ±15 V  
No Load  
VS = ±3 V  
135  
12  
165  
18  
±18  
135  
12  
165  
18  
±18  
135  
12  
165  
18  
±18  
mW  
mW  
V
Operating Range  
NOTES  
±3  
±3  
±3  
1Input offset voltage specifications are guaranteed after 5 minutes of operation at TA = +25°C.  
2Matching is defined as the difference between parameters of the two amplifiers.  
All min and max specifications are guaranteed. Specifications in boldface are tested on all production units at final electrical test. Results from those tests are used to  
calculate outgoing quality levels.  
Specifications subject to change without notice.  
ABSOLUTE MAXIMUM RATINGS1  
METALIZATION PHOTOGRAPH  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±22 V  
Dimensions shown in inches and (mm).  
Internal Power Dissipation2  
Contact factory for latest dimensions.  
Input Voltage3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±VS  
Output Short Circuit Duration . . . . . . . . . . . . . . . . Indefinite  
Differential Input Voltage . . . . . . . . . . . . . . . . . . +VS and –VS  
Storage Temperature Range (Q, H) . . . . . . . –65°C to +150°C  
Storage Temperature Range (N) . . . . . . . . . –65°C to +125°C  
Lead Temperature Range (Soldering 60 sec) . . . . . . . . +300°C  
NOTES  
1Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in  
the operational section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2Thermal Characteristics  
8-Pin Plastic Package:  
8-Pin Cerdip package:  
8-Pin Metal Can Package:  
θJC = 33°C/Watt, θJA = 100°C/Watt  
θJC = 30°C/Watt, θJA = 110°C/Watt  
θJC = 65°C/Watt, θJA = 150°C/Watt.  
3For supply voltages less than ±22 V, the absolute maximum input voltage is  
equal to the supply voltage.  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Option*  
Model  
AD708JN  
AD708AQ  
AD708BQ  
AD708SQ  
AD708AH  
AD708BH  
AD708SH  
AD708SH/883B  
AD708J Grade Chips  
AD708S Grade Chips  
0°C to +70°C  
8-Pin Plastic DIP  
8-Pin Cerdip  
8-Pin Cerdip  
8-Pin Cerdip  
8-Pin Header  
8-Pin Header  
8-Pin Header  
8-Pin Header  
Die  
N-8  
Q-8  
Q-8  
Q-8  
H-08A  
H-08A  
H-08A  
H-08A  
–40°C to +85°C  
–40°C to +85°C  
–55°C to +125°C  
–40°C to +85°C  
–40°C to +85°C  
–55°C to +125°C  
–55°C to +125°C  
0°C to +70°C  
–55°C to +125°C  
Die  
*N = Plastic DIP; Q = Cerdip; H = Hermetic Metal Can.  
–3–  
REV. B  
AD708–Typical Characteristics  
(VS = ؎15 V and TA = +25؇C unless otherwise noted)  
–4–  
REV. B  
AD708  
π
REV. B  
–5–  
AD708–Matching Characteristics  
Figure 18. Typical Distribution of Offset  
Voltage Match  
Figure 19. Typical Distribution of Offset  
Voltage Drift Match  
Figure 20. Typical Distribution of Input  
Bias Current Match  
Figure 21. Typical Distribution of Input  
Offset Current Match  
Figure 22. PSRR Match vs.  
Temperature  
Figure 23. CMRR Match vs.  
Temperature  
Crosstalk from Thermal Effects of Power Dissipation  
Figure 26. Crosstalk under Forced  
Source and Sink Conditions  
Figure 24. Crosstalk with No Load  
Figure 25. Crosstalk with 2 kLoad  
–6–  
REV. B  
AD708  
CROSSTALK PERFORMANCE OF THE AD708  
The AD708 exhibits very low crosstalk as shown in Figures 24,  
25 and 26. Figure 24 shows the offset voltage induced in side B  
of the AD708 when side A’s output is moving slowly (0.2 Hz)  
from –10 V to +10 V under no load. This is the least stressful  
situation to the part since the overall power in the chip does not  
change; only the location of the power in the output devices  
changes. Figure 25 shows side B’s input offset voltage change  
when side A is driving a 2 kload. Here the power is being  
changed in the chip with the maximum power change occurring  
at ±7.5 V. Figure 26 shows crosstalk under the most severe  
conditions. Side A is connected as a follower with 0 V input,  
and is now forced to sink and source ±5 mA of output current  
(Power = (30 V) (5 mA) = 150 mW). Even this large change in  
power causes only an 8 µV (linear) change in side B’s input  
offset voltage.  
OPERATION WITH A GAIN OF –100  
To show the outstanding dc precision of the AD708 in real  
application, Table I shows an error budget calculation for a gain  
of –100 configuration shown in Figure 27.  
Table I.  
Figure 28. Precision PGA  
Maximum Error Contribution  
AV = 100 (S Grade)  
(Full Scale: VOUT = 10 V, VIN = 100 mV)  
are controlled by the select lines, A0 and A1 of the AD7502  
multiplexer, and are 1, 10, 100 and 1000 in this design.  
Error Sources  
The input stage attains very high dc precision due to the 30 µV  
maximum offset voltage match of the AD708S and the 1 nA  
maximum input bias current match. The accuracy is maintained  
over temperature because of the ultralow drift performance of  
the AD708. The output stage uses an AD707J and well matched  
resistors configured as a precision subtracter.  
VOS  
IOS  
30 µV/100 mV  
= 300 ppm  
= 10 ppm  
(100 k)(1 nA)/10 V  
Gain (2 kload)  
Noise  
VOS Drift  
10 V/(5*106))/100 mV = 20 ppm  
0.35 µV/100 mV  
(0.3 µV/°C)/100 mV  
= 4 ppm  
= 3 ppm/°C  
= 334 ppm  
+3 ppm/°C  
To achieve 0.1% gain accuracy, along with high common-mode  
rejection, the circuit should be trimmed as follows:  
Total Unadjusted  
Error  
To maximize common-mode rejection:  
@ 25°C  
–55°C to +125°C  
= 334 ppm > 11 Bits  
= 634 ppm > 10 Bits  
1. Set the select lines for Gain = 1 and ground VINB  
.
With Offset  
Calibrated Out  
2. Apply a precision dc voltage to VINA and trim RA until  
VO = –VINA to the required precision.  
@ 25°C  
–55°C to +125°C  
= 34 ppm > 14 Bits  
= 334 ppm > 11 Bits  
3. Next connect VINB to VINA and apply an input voltage equal  
to the full-scale common-mode expected.  
4. Trim RB until VO = 0 V.  
To minimize gain errors:  
1. Select Gain = 10 with the control lines and apply a differential  
input voltage.  
2. Adjust the 100 potentiometer such that VO = 10 VIN (adjust  
VIN magnitude as necessary).  
3. Repeat for Gain = 100 and Gain = 1000, adjusting 1 kand  
10 kpotentiometers, respectively.  
The design shown should allow for 0.1% gain accuracy and  
0.1 µV/V common-mode rejection when ±1% resistors and ±5%  
potentiometers are used.  
Figure 27. Gain of –100 Configuration  
This error budget assumes no error in the resistor ratio and no  
error from power supply variation (the 120 dB minimum PSRR  
of the AD708S makes this a good assumption). The external  
resistors can cause gain error from mismatch and drift over  
temperature.  
BRIDGE SIGNAL CONDITIONER  
The AD708 can be used in the circuit in Figure 29 to produce  
an accurate and inexpensive dynamic bridge conditioner. The  
low offset voltage match and low offset voltage drift match of  
the AD708 combine to achieve circuit performance better than  
all but the best instrumentation amplifiers. The AD708’s out-  
standing specs: open loop gain, input offset currents and low  
input bias currents, do not limit circuit accuracy.  
High Precision Programmable Gain Amplifier  
The three op amp programmable gain amplifier shown in Figure  
28 takes advantage of the outstanding matching characteristics of  
the AD708 to achieve high dc precision. The gains of the circuit  
REV. B  
–7–  
AD708  
As configured, the circuit only requires a gain resistor, RG, of  
suitable accuracy and a stable, accurate voltage reference. The  
transfer function is:  
VO = VREF [R/(R+R)][RG/R]  
and the only significant errors due to the AD708S are:  
VOSout = (VOSmatch)(2RG/R) = 30 mV  
V
OSout(T) = (VOSdrift)(2RG/R) = 0.3 mV/°C  
To achieve high accuracy, the resistor RG should be 0.1% or  
better and have a low drift coefficient.  
Figure 31. Absolute Value Circuit Performance  
(Input Signal = 0.05 Hz)  
SELECTION OF PASSIVE COMPONENTS  
To takc full advantagc of thc high precision and low drift  
characteristics of the AD708, high quality passive components  
must be used. Discrete resistors and resistor networks with  
temperature coefficients of less than 10 ppm/°C are available  
from Vishay, Caddock, PRP and others.  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
Figure 29. Bridge Signal Conditioning Circuit  
TO-99 (H) Package  
Figure 30. Precision Absolute Value Circuit  
Cerdip (Q) Package  
PRECISION ABSOLUTE VALUE CIRCUIT  
The AD708 is ideally suited to the precision absolute value  
circuit shown in Figure 30. The low offset voltage match of the  
AD708 enables this circuit to accurately resolve the input signal.  
In addition, the tight offset voltage drift match maintains the  
resolution of the circuit over the full military temperature range.  
The AD708’s high dc open loop gain and exceptional gain  
linearity allows the circuit to perform well at both large and  
small signal levels.  
In this circuit, the only significant dc errors are due to the offset  
voltage of the two ampliliers, the input offset current match of  
the amplifiers, and the mismatch of the resistors. Errors associ-  
ated with the AD708S contribute less than 0.001% error over  
–55°C to +125°C.  
Mini-DIP (N) Package  
Maximum error at 25°C  
30 µV + 10 k1nA  
(
)(  
)
= 40 µV/10V = 4 ppm Maximum  
10V  
error at +125°C or –55°C  
50 µV + 2 nA 10 kΩ  
(
)(  
)
= 7 ppm @ +125°C  
10V  
Figure 31 shows VOUT vs. VIN for this circuit with a ±3 mV  
input signal at 0.05 Hz. Note that the circuit exhibits very low  
offset at the zero crossing. This circuit can also produce VOUT  
–|VIN| by reversing the polarity of the two diodes.  
=
REV. B  
–8–  

相关型号:

AD708AQ

Ultralow Offset Voltage Dual Op Amp
ADI

AD708BH

Ultralow Offset Voltage Dual Op Amp
ADI

AD708BQ

Ultralow Offset Voltage Dual Op Amp
ADI

AD708J

IC DUAL OP-AMP, 100 uV OFFSET-MAX, 0.9 MHz BAND WIDTH, UUC8, DIE-8, Operational Amplifier
ADI

AD708JCHIPS

IC DUAL OP-AMP, 150 uV OFFSET-MAX, 0.9 MHz BAND WIDTH, UUC, DIE, Operational Amplifier
ADI

AD708JGRADECHIPS

Ultralow Offset Voltage Dual Op Amp
ADI

AD708JH

IC IC,OP-AMP,DUAL,BIPOLAR,CAN,8PIN,METAL, Operational Amplifier
ADI

AD708JN

Ultralow Offset Voltage Dual Op Amp
ADI

AD708JNZ

Ultralow Offset Voltage Dual Op Amp
ADI

AD708JQ

IC IC,OP-AMP,DUAL,BIPOLAR,DIP,8PIN,CERAMIC, Operational Amplifier
ADI

AD708KH

IC IC,OP-AMP,DUAL,BIPOLAR,CAN,8PIN,METAL, Operational Amplifier
ADI

AD708KN

IC IC,OP-AMP,DUAL,BIPOLAR,DIP,8PIN,PLASTIC, Operational Amplifier
ADI