AD712AH/+ [ADI]

IC IC,OP-AMP,DUAL,BIPOLAR/JFET,CAN,8PIN,METAL, Operational Amplifier;
AD712AH/+
型号: AD712AH/+
厂家: ADI    ADI
描述:

IC IC,OP-AMP,DUAL,BIPOLAR/JFET,CAN,8PIN,METAL, Operational Amplifier

运算放大器
文件: 总20页 (文件大小:435K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual Precision, Low Cost,  
High Speed BiFET Op Amp  
AD712  
FEATURES  
CONNECTION DIAGRAM  
AMPLIFIER NO. 1  
AMPLIFIER NO. 2  
Enhanced replacement for LF412 and TL082  
AC performance  
1
8
V+  
OUTPUT  
INVERTING  
INPUT  
Settles to 0.01% in 1.0 μs  
OUTPUT  
2
3
4
7
6
5
16 V/μs minimum slew rate (AD712J)  
3 MHz minimum unity-gain bandwidth (AD712J)  
DC performance  
INVERTING  
INPUT  
NONINVERTING  
INPUT  
NONINVERTING  
INPUT  
V–  
AD712  
200 V/mV minimum open-loop gain (AD712K)  
Figure 1. 8-Lead PDIP (N-Suffix),  
SOIC_N (R-Suffix), and CERDIP (Q-Suffix)  
Surface mount available in tape and reel in  
accordance with the EIA-481A standard  
MIL-STD-883B parts available  
Single version available: AD711  
Quad version: AD713  
Available in PDIP, SOIC_N, and CERDIP packages  
GENERAL DESCRIPTION  
military temperature range of −55°C to +125°C and is available  
processed to MIL-STD-883B, Rev. C.  
The AD712 is a high speed, precision, monolithic operational  
amplifier offering high performance at very modest prices. Its  
very low offset voltage and offset voltage drift are the results of  
advanced laser wafer trimming technology. These performance  
benefits allow the user to easily upgrade existing designs that  
use older precision BiFETs and, in many cases, bipolar op amps.  
Extended reliability PLUS screening is available, specified over  
the commercial and industrial temperature ranges. PLUS  
screening includes 168-hour burn-in, in addition to other  
environmental and physical tests.  
The superior ac and dc performance of this op amp makes it  
suitable for active filter applications. With a slew rate of 16 V/μs  
and a settling time of 1 μs to ±±.±1%, the AD712 is ideal as a  
buffer for 12-bit digital-to-analog and analog-to-digital  
converters and as a high speed integrator. The settling time is  
unmatched by any similar IC amplifier.  
The AD712 is available in 8-lead PDIP, SOIC_N, and CERDIP  
packages.  
PRODUCT HIGHLIGHTS  
1. The AD712 offers excellent overall performance at very  
competitive prices.  
The combination of excellent noise performance and low input  
current also make the AD712 useful for photo diode preamps.  
Common-mode rejection of 88 dB and open-loop gain of  
4±± V/mV ensure 12-bit performance even in high speed  
unity-gain buffer circuits.  
2. The Analog Devices, Inc. advanced processing technology  
and 1±±% testing guarantee a low input offset voltage (3 mV  
maximum, J grade). Input offset voltage is specified in the  
warmed-up condition.  
The AD712 is pinned out in a standard op amp configuration  
and is available in seven performance grades. The AD712J and  
AD712K are rated over the commercial temperature range of  
±°C to 7±°C. The AD712A is rated over the industrial tempera-  
ture range of −4±°C to +85°C. The AD712S is rated over the  
3. Together with precision dc performance, the AD712 offers  
excellent dynamic response. It settles to ±±.±1% in 1 μs and  
has a minimum slew rate of 16 V/μs. Thus, this device is ideal  
for applications such as DAC and ADC buffers that require a  
combination of superior ac and dc performance.  
Rev. G  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
AD712  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Guarding...................................................................................... 14  
Digital-to-Analog Converter Applications ............................. 14  
Noise Characteristics ................................................................. 15  
Connection Diagram ....................................................................... 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Typical Performance Characteristics ............................................. 6  
Settling Time ................................................................................... 11  
Optimizing Settling Time.......................................................... 11  
Op Amp Settling Time—A Mathematical Model.................. 12  
Applications Information .............................................................. 14  
Driving the Analog Input of an  
Analog-to-Digital Converter .................................................... 15  
Driving a Large Capacitive Load.............................................. 16  
Filters................................................................................................ 17  
Active Filter Applications.......................................................... 17  
Second-Order Low-Pass Filter.................................................. 17  
9-Pole Chebychev Filter............................................................. 18  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 2±  
REVISION HISTORY  
8/06—Rev. F to Rev. G  
7/02—Rev. D to Rev. E  
Edits to Figure 1................................................................................ 1  
Change to 9-Pole Chebychev Filter Section................................ 18  
Edits to Features.................................................................................1  
9/01—Rev. C to Rev. D  
Edits to Features.................................................................................1  
Edits to General Description ...........................................................1  
Edits to Connection Diagram..........................................................1  
Edits to Ordering Guide ...................................................................3  
Deleted Metalization Photograph ...................................................3  
Edits to Absolute Maximum Ratings .............................................3  
Edits to Figure 7.................................................................................9  
Edits to Outline Dimensions......................................................... 15  
6/06—Rev. E to Rev. F  
Updated Format..................................................................Universal  
Deleted B, C, and T Models...............................................Universal  
Changes to General Description .................................................... 1  
Changes to Product Highlights....................................................... 1  
Changes to Specifications Section.................................................. 3  
Changes to Figure 43...................................................................... 15  
Rev. G | Page 2 of 20  
 
AD712  
SPECIFICATIONS  
VS = ±15 V ꢀ TA = 25°C, unless otherwise noted. Specifications in boldface are tested on all production units at final electrical test.  
Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those  
shown in boldface are tested on all production units.  
Table 1.  
AD712J/A/S  
Typ  
AD712K  
Typ  
Parameter  
INPUT OFFSET VOLTAGE1  
Min  
Max  
Min  
Max  
Unit  
Initial Offset  
TMIN to TMAX  
vs. Temp  
vs. Supply  
0.3  
3/1/1  
4/2/2  
20/20/20  
0.2  
1.0  
2.0  
10  
mV  
mV  
μV/°C  
dB  
dB  
7
95  
7
100  
76  
76/76/76  
80  
80  
TMIN to TMAX  
Long-Term Offset Stability  
INPUT BIAS CURRENT2  
VCM = 0 V  
15  
15  
ꢀV/month  
25  
20  
0.5  
pA  
nA  
pA  
75  
1.7/4.8/77  
100  
75  
1.7  
100  
VCM = 0 V @ TMAX  
0.6/1.6/26  
VCM  
= 10 V  
INPUT OFFSET CURRENT  
VCM = 0 V  
VCM = 0 V @ TMAX  
10  
5
0.1  
pA  
nA  
25  
0.6/1.6/26  
25  
0.6  
0.3/0.7/11  
MATCHING CHARACTERISTICS  
Input Offset Voltage  
TMIN to TMAX  
Input Offset Voltage Drift  
Input Bias Current  
Crosstalk  
3/1/1  
4/2/2  
20/20/20  
25  
1.0  
2.0  
10  
mV  
mV  
ꢀV/°C  
pA  
25  
@ f = 1 kHz  
@ f = 100 kHz  
120  
90  
120  
90  
dB  
dB  
FREQUENCY RESPONSE  
Small Signal Bandwidth  
Full Power Response  
Slew Rate  
Settling Time to 0.01%  
Total Harmonic Distortion  
INPUT IMPEDANCE  
Differential  
3.0  
4.0  
200  
20  
1.0  
0.0003  
3.4  
4.0  
200  
20  
1.0  
0.0003  
MHz  
kHz  
V/ꢀs  
ꢀs  
16  
18  
1.2  
1.2  
%
3×1012||5.5  
3×1012||5.5  
3×1012||5.5  
3×1012||5.5  
Ω||pF  
Ω||pF  
Common Mode  
INPUT VOLTAGE RANGE  
Differential3  
20  
20  
V
V
V
Common-Mode Voltage4  
+14.5, −11.5  
+14.5, −11.5  
TMIN to TMAX  
−VS + 4  
+VS − 2  
−VS + 4  
+VS − 2  
Common-Mode Rejection  
Ratio  
VCM  
TMIN to TMAX  
VCM 11 V  
=
10 V  
88  
84  
84  
80  
2
45  
22  
18  
16  
88  
84  
84  
80  
2
45  
22  
18  
16  
dB  
dB  
dB  
dB  
76  
76/76/76  
70  
80  
80  
76  
74  
=
TMIN to TMAX  
70/70/70  
INPUT VOLTAGE NOISE  
ꢀV p-p  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
Rev. G | Page 3 of 20  
 
AD712  
AD712J/A/S  
Typ  
AD712K  
Typ  
Parameter  
Min  
Max  
Min  
Max  
Unit  
INPUT CURRENT NOISE  
OPEN-LOOP GAIN  
0.01  
0.01  
400  
pA/√Hz  
V/mV  
V/mV  
400  
150  
100/100/100  
200  
100  
OUTPUT CHARACTERISTICS  
Voltage  
+13.9, −13.3  
+13.8, −13.1  
+25  
V
V
mA  
+13, −12.5  
12/ 12/ 12  
+13, −12.5 +13.9, −13.3  
+13.8, −13.1  
+25  
12  
Current  
POWER SUPPLY  
Rated Performance  
Operating Range  
Quiescent Current  
15  
15  
V
V
mA  
4.5  
18  
+6.8  
4.5  
18  
+6.0  
+5.0  
+5.0  
1 Input offset voltage specifications are guaranteed after 5 minutes of operation at TA = 25°C.  
2 Bias current specifications are guaranteed maximum at either input after 5 minutes of operation at TA = 25°C. For higher temperatures, the current doubles every 10°C.  
3 Defined as voltage between inputs, such that neither exceeds 10 V from ground.  
4 Typically exceeding −14.1 V negative common-mode voltage on either input results in an output phase reversal.  
Rev. G | Page 4 of 20  
 
AD712  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Parameter  
Supply Voltage  
Internal Power Dissipation1  
Input Voltage2  
Output Short-Circuit Duration  
Differential Input Voltage  
Storage Temperature Range  
Q-Suffix  
N-Suffix and R-Suffix  
Operating Temperature Range  
AD712J/K  
Stresses above those listed under Absolute Maximum Ratings  
Rating  
18 V  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
18 V  
Indefinite  
+VS and −VS  
−65°C to +150°C  
−65°C to +125°C  
0°C to 70°C  
AD712A  
AD712S  
−40°C to +85°C  
−55°C to +125°C  
Lead Temperature Range (Soldering 60 sec) 300°C  
1 Thermal characteristics:  
8-lead PDIP package:  
8-lead CERDIP package:  
8-lead SOIC package:  
θJA = 165°C/W  
θJC = 22°C/W; θJA = 110°C/W  
θJA = 100°C/W  
2 For supply voltages less than 18 V, the absolute maximum voltage is equal  
to the supply voltage.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. G | Page 5 of 20  
 
 
 
AD712  
TYPICAL PERFORMANCE CHARACTERISTICS  
20  
6
5
4
3
2
15  
10  
R
= 2k  
L
25°C  
5
0
0
5
10  
SUPPLY VOLTAGE ± V  
15  
20  
0
5
10  
15  
20  
SUPPLY VOLTAGE ± V  
Figure 2. Input Voltage Swing vs. Supply Voltage  
Figure 5. Quiescent Current vs. Supply Voltage  
20  
15  
10  
6
10  
10  
7
8
9
+V  
OUT  
10  
10  
–V  
OUT  
R
= 2k  
L
25°C  
10  
11  
10  
10  
5
0
12  
10  
0
5
10  
SUPPLY VOLTAGE ± V  
15  
20  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (°C)  
Figure 6. Input Bias Current vs. Temperature  
Figure 3. Output Voltage Swing vs. Supply Voltage  
100  
10  
30  
25  
20  
15  
10  
5
±15V SUPPLIES  
1.0  
0.1  
0.01  
0
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
FREQUENCY (Hz)  
LOAD RESISTANCE ()  
Figure 7. Output Impedance vs. Frequency  
Figure 4. Output Voltage Swing vs. Load Resistance  
Rev. G | Page 6 of 20  
 
AD712  
100  
75  
100  
80  
100  
MAX J GRADE LIMIT  
80  
60  
60  
40  
V
= 15V  
S
25°C  
50  
25  
0
40  
20  
GAIN  
PHASE  
2k  
100pF  
LOAD  
20  
0
0
–20  
10M  
–20  
–10  
–5  
0
5
10  
10  
100  
1k  
10k  
100k  
1M  
COMMON MODE VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 8. Input Bias Current vs. Common-Mode Voltage  
Figure 11. Open-Loop Gain and Phase Margin vs. Frequency  
26  
24  
22  
125  
120  
115  
110  
+ OUTPUT CURRENT  
20  
18  
16  
14  
12  
10  
R
= 2k  
L
25°C  
– OUTPUT CURRENT  
105  
100  
95  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
0
5
10  
SUPPLY VOLTAGE ± V  
15  
20  
AMBIENT TEMPERATURE (°C)  
Figure 9. Short-Circuit Current Limit vs. Temperature  
Figure 12. Open-Loop Gain vs. Supply Voltage  
110  
100  
5.0  
4.5  
4.0  
3.5  
3.0  
+ SUPPLY  
– SUPPLY  
80  
60  
40  
20  
V
= ±15V SUPPLIES  
S
WITH 1V p-p SINEWAVE 25°C  
0
10  
100 1k  
10k  
100k  
1M  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (°C)  
SUPPLY MODULATION FREQUENCY (Hz)  
Figure 10. Unity-Gain Bandwidth vs. Temperature  
Figure 13. Power Supply Rejection vs. Frequency  
Rev. G | Page 7 of 20  
AD712  
100  
80  
60  
40  
20  
–70  
–80  
V
V
25°C  
= ±15V  
S
= 1V p-p  
CM  
3V rms  
R
C
= 2kΩ  
= 100pF  
L
L
–90  
–100  
–110  
–120  
–130  
0
10  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
FREQUENCY (Hz)  
Figure 17. Total Harmonic Distortion vs. Frequency  
Figure 14. Common-Mode Rejection vs. Frequency  
30  
25  
20  
15  
10  
5
1k  
R
= 2k  
L
25°C  
= ±15V  
V
S
100  
10  
0
100k  
1
1M  
10M  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 18. Input Noise Voltage Spectral Density  
Figure 15. Large Signal Frequency Response  
10  
8
25  
20  
15  
6
4
2
1% 0.1%  
ERROR 1% 0.1%  
0.01%  
0.01%  
0
–2  
10  
5
–4  
–6  
–8  
–10  
0.5  
0
0.6  
0.7  
0.8  
0.9  
1.0  
0
100  
200  
300  
400  
500  
600  
700  
800  
900  
SETTLING TIME (µs)  
INPUT ERROR SIGNAL (mV)  
(AT SUMMING JUNCTION)  
Figure 16. Output Swing and Error vs. Settling Time  
Figure 19. Slew Rate vs. Input Error Signal  
Rev. G | Page 8 of 20  
AD712  
25  
20  
15  
+V  
8
S
0.1µF  
0.1µF  
V
C
OUT  
1/2  
AD712  
R
2k  
L
+
L
V
IN  
4
100pF  
SQUARE  
WAVE  
INPUT  
–V  
S
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (°C)  
Figure 23. Unity-Gain Follower  
Figure 20. Slew Rate vs. Temperature  
+V  
S
0.1µF  
100  
90  
8
+
1/2  
OUTPUT  
100pF  
AD712  
INPUT  
2kΩ  
4
0.1µF  
–V  
S
10  
0%  
1µs  
5V  
Figure 21. THD Test Circuit  
Figure 24. Unity-Gain Follower Pulse Response (Large Signal)  
V
100  
90  
OUT  
20kΩ  
2.2kΩ  
+V  
S
2
3
8
6
5
1/2  
1/2  
1
7
20V p-p  
AD712  
AD712  
+
+
5kΩ  
5kΩ  
4
V
IN  
CROSSTALK = 20 log  
V
OUT  
10V  
10  
–V  
S
IN  
0%  
50mV  
100ns  
Figure 22. Crosstalk Test Circuit  
Figure 25. Unity-Gain Follower Pulse Response (Small Signal)  
Rev. G | Page 9 of 20  
AD712  
5kΩ  
+V  
8
S
0.1µF  
100  
90  
5kΩ  
V
IN  
V
C
OUT  
1/2  
AD712  
R
2kΩ  
L
+
L
SQUARE  
WAVE  
INPUT  
4
100pF  
0.1µF  
10  
–V  
S
0%  
50mV  
200ns  
Figure 26. Unity-Gain Inverter  
Figure 28. Unity-Gain Inverter Pulse Response (Small Signal)  
100  
90  
10  
0%  
1µs  
5V  
Figure 27. Unity-Gain Inverter Pulse Response (Large Signal)  
Rev. G | Page 10 of 20  
AD712  
SETTLING TIME  
OPTIMIZING SETTLING TIME  
In addition to a significant improvement in settling time, the  
low offset voltage, low offset voltage drift, and high open-loop  
gain of the AD71x family assure 12-bit accuracy over the full  
operating temperature range.  
Most bipolar high speed digital-to-analog converters (DACs)  
have current outputs; therefore, for most applications, an  
external op amp is required for a current-to-voltage conversion.  
The settling time of the converter/op amp combination depends  
on the settling time of the DAC and output amplifier. A good  
approximation is  
The excellent high speed performance of the AD712 is shown in  
the oscilloscope photos in Figure 3± and Figure 31. Measure-  
ments were taken using a low input capacitance amplifier  
connected directly to the summing junction of the AD712 and  
both figures show a worst-case situation: full-scale input  
transition. The 4 kΩ [1± kΩ||8 kΩ = 4.4 kΩ] output impedance  
of the DAC, together with a 1± kΩ feedback resistor, produce an  
op amp noise gain of 3.25. The current output from the DAC  
produces a 1± V step at the op amp output (± to −1± V shown in  
Figure 3±, and −1± V to ± V shown in Figure 31).  
2
tS Total =  
(
tS DAC 2  
)
+
(
tS AMP  
)
The settling time of an op amp DAC buffer varies with the noise  
gain of the circuit, the DAC output capacitance, and the amount  
of external compensation capacitance across the DAC output  
scaling resistor.  
Settling time for a bipolar DAC is typically 1±± ns to 5±± ns.  
Previously, conventional op amps have required much longer  
settling times than have typical state-of-the-art DACs; therefore,  
the amplifier settling time has been the major limitation to a  
high speed, voltage output, digital-to-analog function. The  
introduction of the AD71x family of op amps with their 1 ꢁs (to  
±±.±1% of final value) settling time permits the full high speed  
capabilities of most modern DACs to be realized.  
Therefore, with an ideal op amp, settling to ±1/2 LSB (±±.±1%)  
requires that 375 μV or less appears at the summing junction.  
This means that the error between the input and output (that  
voltage which appears at the AD712 summing junction) must  
be less than 375 μV. As shown in Figure 3±, the total settling  
time for the AD712/AD565A combination is 1.2 microseconds.  
0.1µF  
BIPOLAR  
OFFSET ADJUST  
R1  
100  
BIPOLAR  
OFF  
REF  
OUT  
V
CC  
R2  
100Ω  
20V  
SPAN  
GAIN  
ADJUST  
+
10V  
5kΩ  
AD565A  
10pF  
9.95kΩ  
+15V  
10V  
SPAN  
REF  
IN  
0.1µF  
0.1µF  
19.95kΩ  
0.5mA  
5kΩ  
8kΩ  
DAC  
OUT  
I
REF  
8
DAC  
1/2  
REF  
GND  
I
OUTPUT  
–10V TO +10V  
O
I
I
= 4 ×  
20kΩ  
OUT  
REF  
AD712  
× CODE  
+
4
POWER  
GND  
MSB  
LSB  
–V  
0.1µF  
–15V  
EE  
Figure 29. 10 V Voltage Output Bipolar DAC  
Rev. G | Page 11 of 20  
 
AD712  
Where  
1mV  
5V  
ωO  
2π  
= unity-gain frequency of the op amp.  
100  
90  
R
GN = noise gain of circuit  
.
SUMMING  
JUNCTION  
1+  
RO  
This equation can then be solved for Cf  
0V  
10  
2 GN  
RωO  
RCXωO  
+
(
1 GN  
)
OUTPUT  
(2)  
2
CX  
=
+
0%  
RωO  
–10V  
500ns  
In these equations, Capacitance CX is the total capacitance  
appearing at the inverting terminal of the op amp. When  
modeling a DAC buffer application, the Norton equivalent  
Figure 30. Settling Characteristics for AD712 with AD565A,  
Full-Scale Negative Transition  
circuit shown in Figure 32 can be used directly; Capacitance CX  
is the total capacitance of the output of the DAC plus the input  
capacitance of the op amp (because the two are in parallel).  
1mV  
5V  
100  
90  
SUMMING  
JUNCTION  
+
1/2  
V
OUT  
AD712  
R
C
L
L
C
F
0V  
R
OUTPUT  
10  
I
R
C
X
O
O
0%  
–10V  
500ns  
Figure 32. Simplified Model of the AD712 Used as a Current-Out DAC Buffer  
Figure 31. Settling Characteristics for AD712 with AD565A,  
Full-Scale Positive Transition  
When RO and IO are replaced with their Thevenin VIN and RIN  
equivalents, the general-purpose inverting amplifier shown in  
Figure 33 is created. Note that when using this general model,  
Capacitance CX is either the input capacitance of the op amp, if  
a simple inverting op amp is being simulated, or the combined  
capacitance of the DAC output and the op amp input if the  
DAC buffer is being modeled.  
OP AMP SETTLING TIME—A MATHEMATICAL  
MODEL  
The design of the AD712 gives careful attention to optimizing  
individual circuit components; in addition, a careful trade-off  
was made: the gain bandwidth product (4 MHz) and slew rate  
(2± V/μs) were chosen to be high enough to provide very fast  
settling time but not too high to cause a significant reduction  
in phase margin (and therefore, stability). Thus designed, the  
AD712 settles to ±±.±1%, with a 1± V output step, in under 1 μs,  
while retaining the ability to drive a 25± pF load capacitance  
when operating as a unity-gain follower.  
+
1/2  
V
OUT  
AD712  
R
C
L
L
C
F
R
R
IN  
V
C
IN  
X
If an op amp is modeled as an ideal integrator with a unity-gain  
crossover frequency of ωO/2π, then Equation 1 accurately  
describes the small signal behavior of the circuit of Figure 32,  
consisting of an op amp connected as an I-to-V converter at the  
output of a bipolar or CMOS DAC. This equation would com-  
pletely describe the output of the system if not for the finite slew  
rate and other nonlinear effects of the op amp.  
Figure 33. Simplified Model of the AD712 Used as an Inverter  
In either case, Capacitance CX causes the system to go from a  
one-pole to a two-pole response; this additional pole increases  
settling time by introducing peaking or ringing in the op amp  
output. Because the value of CX can be estimated with reasonable  
accuracy, Equation 2 can be used to choose a small capacitor  
(CF) to cancel the input pole and optimize amplifier response.  
Figure 34 is a graphical solution of Equation 2 for the AD712  
with R = 4 kΩ.  
VO  
IIN  
R  
GN  
ωO  
(1)  
=
R(CX )  
2
s +  
+ RCf s +1  
ωO  
Rev. G | Page 12 of 20  
 
 
 
 
 
 
 
AD712  
60  
50  
40  
30  
20  
10  
0
5V  
100  
90  
G
= 4.0  
N
G
= 3.0  
N
G
= 2.0  
= 1.5  
= 1.0  
N
10  
G
N
0%  
G
N
5mV  
500ns  
0
10  
20  
30  
40  
50  
60  
Figure 36. Settling Characteristics 0 V to −10 V Step  
Upper Trace: Output of AD712 Under Test (5 V/Div)  
Lower Trace: Amplified Error Voltage (0.01%/Div)  
C
F
Figure 34. Value of Capacitor CF vs. Value of CX  
The input of the settling time fixture is driven by a flat top pulse  
generator. The error signal output from the false summing node  
of A1 is clamped, amplified by A2, and then clamped again. The  
error signal is thus clamped twice: once to prevent overloading  
Amplifier A2 and then a second time to avoid overloading the  
oscilloscope preamp. The Tektronix oscilloscope preamp type  
7A26 was carefully chosen because it does not overload with  
these input levels. Amplifier A2 needs to be a very high speed  
FET-input op amp; it provides a gain of 1±, amplifying the error  
signal output of A1.  
The photos of Figure 35 and Figure 36 show the dynamic  
response of the AD712 in the settling test circuit of Figure 37.  
5V  
100  
90  
10  
0%  
5mV  
500ns  
Figure 35. Settling Characteristics 0 V to +10 V Step  
Upper Trace: Output of AD712 Under Test (5 V/Div)  
Lower Trace: Amplified Error Voltage (0.01%/Div)  
5pF  
TEKTRONIX 7A26  
OSCILLOSCOPE  
PREAMP  
INPUT SECTION  
V
× 5  
+
ERROR  
1/2  
205  
HP2835  
20pF  
1MΩ  
HP2835  
0.47µF  
0.47µF  
4.99kΩ  
4.99kΩ  
5 TO 18pF  
–15V +15V  
10kΩ  
200Ω  
DATA  
DYNAMICS  
5109  
10kΩ  
1.1kΩ  
V
IN  
0.2 TO 0.6pF  
10kΩ  
1/2  
V
AD712  
OUT  
+
10pF  
5kΩ  
(OR EQUIVALENT  
FLAT TOP PULSE  
GENERATION)  
0.1µF  
0.1µF  
+15V  
–15V  
Figure 37. Settling Time Test Circuit  
Rev. G | Page 13 of 20  
 
 
 
 
AD712  
APPLICATIONS INFORMATION  
Figure 39 and Figure 4± show the AD712 and AD7545 (12-bit  
CMOS DAC) configured for unipolar binary (2-quadrant multi-  
plication) or bipolar (4-quadrant multiplication) operation.  
Capacitor C1 provides phase compensation to reduce overshoot  
and ringing.  
GUARDING  
The low input bias current (15 pA) and low noise characteristics  
of the AD712 BiFET op amp make it suitable for electrometer  
applications such as photo diode preamplifiers and picoampere  
current-to-voltage converters. The use of a guarding technique,  
such as that shown in Figure 38, in printed circuit board layout  
and construction is critical to minimize leakage currents. The  
guard ring is connected to a low impedance potential at the  
same level as the inputs. High impedance signal lines should  
not be extended for any unnecessary length on the printed  
circuit board.  
V
R2A*  
DD  
+15V  
C1A  
0.1µF  
33pF  
R
GAIN  
ADJUST  
V
FB  
DD  
OUT1  
1/2  
AD712  
V
AD7545  
IN  
V
V
OUTA  
REF  
+
R1A*  
AGND  
DGND  
ANALOG  
COMMON  
PDIP (N), CERDIP (Q),  
AND SOIC (R) PACKAGES.  
*REFER TO  
TABLE 3  
DB11 TO DB0  
4
5
6
7
8
R2B*  
V
V
DD  
3
2
C1B  
33pF  
GAIN  
ADJUST  
R
FB  
OUT1  
DD  
1
1/2  
V
AD7545  
IN  
V
V
OUTB  
REF  
AD712  
+
Figure 38. Board Layout for Guarding Inputs  
R1B*  
AGND  
DGND  
0.1µF  
DIGITAL-TO-ANALOG CONVERTER APPLICATIONS  
ANALOG  
COMMON  
*REFER TO  
TABLE 3  
–15V  
The AD712 is an excellent output amplifier for CMOS DACs. It  
can be used to perform both 2-quadrant and 4-quadrant  
operations. The output impedance of a DAC using an inverted  
R-2R ladder approaches R for codes containing many 1s, and 3R  
for codes containing a single 1. For codes containing all ±s, the  
output impedance is infinite.  
DB11 TO DB0  
Figure 39. Unipolar Binary Operation  
R1 and R2 calibrate the zero offset and gain error of the DAC.  
Specific values for these resistors depend upon the grade of  
AD7545 and are listed in Table 3.  
Table 3. Recommended Trim Resistor Values vs. Grades of  
the AD7545 for VDD = 5 V  
Trim  
For example, the output resistance of the AD7545 modulates  
between 11 kΩ and 33 kΩ. Therefore, with an 11 kΩ DAC  
internal feedback resistance, the noise gain varies from 2 to 4/3.  
This changing noise gain modulates the effect of the input offset  
voltage of the amplifier, resulting in nonlinear DAC amplifier  
performance.  
Resistor  
R1  
R2  
JN/AQ  
500 Ω  
150 Ω  
KN/BQ  
200 Ω  
68 Ω  
LN  
GLN  
20 Ω  
6.8 Ω  
100 Ω  
33 Ω  
The AD712K with guaranteed 7±± ꢁV offset voltage minimizes  
this effect to achieve 12-bit performance.  
R2*  
R4  
V
DD  
20k1%  
+15V  
C1  
33pF  
0.1µF  
R5  
20k1%  
GAIN  
ADJUST  
R
V
FB  
OUT1  
DD  
1/2  
AD7545  
V
V
REF  
IN  
AD712  
+
1/2  
AD712  
R3  
10k1%  
R1*  
AGND  
DGND  
V
OUT  
+
DB11 TO DB0  
12  
0.1µF  
DATA INPUT  
–15V  
*FOR VALUES OF  
R1 AND R2 SEE TABLE 3  
ANALOG  
COMMON  
Figure 40. Bipolar Operation  
Rev. G | Page 14 of 20  
 
 
 
 
 
AD712  
Figure 41 and Figure 42 show the settling time characteristics of  
the AD712 when used as a DAC output buffer for the AD7545.  
DRIVING THE ANALOG INPUT OF AN  
ANALOG-TO-DIGITAL CONVERTER  
An op amp driving the analog input of an ADC, such as that  
shown in Figure 43, must be capable of maintaining a constant  
output voltage under dynamically changing load conditions. In  
successive approximation converters, the input current is com-  
pared to a series of switched trial currents. The comparison  
point is diode clamped, but can deviate several hundred millivolts  
resulting in high frequency modulation of analog-to-digital  
input current. The output impedance of a feedback amplifier  
is made artificially low by the loop gain. At high frequencies,  
where the loop gain is low, the amplifier output impedance  
can approach its open-loop value. Most IC amplifiers exhibit a  
minimum open-loop output impedance of 25 Ω due to current-  
limiting resistors.  
1mV  
100  
90  
10  
0%  
5V  
500ns  
Figure 41. Positive Settling Characteristics for AD712 with AD7545  
12/8  
CS  
STS  
1mV  
HIGH  
BITS  
A
100  
90  
O
AD574A  
R/C  
CE  
GAIN  
ADJUST  
MIDDLE  
BITS  
REF IN  
R2  
100  
R1  
100Ω  
LOW  
BITS  
REF OUT  
BIP OFF  
+15V  
1/2  
0.1µF  
+5V  
+15V  
–15V  
DC  
10  
OFFSET  
ADJUST  
10V  
IN  
0%  
20V  
AC  
IN  
AD712  
5V  
500ns  
±10V  
ANALOG  
INPUT  
+
0.1µF  
Figure 42. Negative Settling Characteristics for AD712 with AD7545  
ANALOG COM  
–15V  
NOISE CHARACTERISTICS  
Figure 43. AD712 as An ADC Unity-Gain Buffer  
The random nature of noise, particularly in the flicker noise  
region, makes it difficult to specify in practical terms. At the  
same time, designers of precision instrumentation require  
certain guaranteed maximum noise levels to realize the full  
accuracy of their equipment. All grades of the AD712 are sample  
tested on an AQL basis to a limit of 6 μV p-p, ±.1 Hz to 1± Hz.  
A few hundred microamps reflected from the change in con-  
verter loading can introduce errors in instantaneous input  
voltage. If the analog-to-digital conversion speed is not excessive  
and the bandwidth of the amplifier is sufficient, the amplifier  
output returns to the nominal value before the converter makes  
its comparison. However, many amplifiers have relatively narrow  
bandwidth yielding slow recovery from output transients. The  
AD712 is ideally suited to drive high speed analog-to-digital  
converters because it offers both wide bandwidth and high  
open-loop gain.  
Rev. G | Page 15 of 20  
 
 
 
 
AD712  
DRIVING A LARGE CAPACITIVE LOAD  
1mV  
PD711 BUFF  
The circuit in Figure 46 uses a 1±± Ω isolation resistor that  
enables the amplifier to drive capacitive loads exceeding  
15±± pF; the resistor effectively isolates the high frequency  
feedback from the load and stabilizes the circuit. Low frequency  
feedback is returned to the amplifier summing junction via the  
low-pass filter formed by the 1±± Ω series resistor and the Load  
Capacitance CL. Figure 47 shows a typical transient response for  
this connection.  
100  
90  
10  
0%  
4.99k  
200ns  
500mV  
–10V ADC IN  
30pF  
+V  
IN  
Figure 44. ADC Input Unity Gain Buffer Recovery Times, −10 V ADC IN  
0.1µF  
+
4.99kΩ  
1mV  
PD711 BUFF  
100Ω  
1/2  
AD712  
INPUT  
OUTPUT  
100  
90  
+
TYPICAL CAPACITANCE  
LIMIT FOR VARIOUS  
LOAD RESISTORS  
C1  
R1  
0.1µF  
+
R
C UP TO  
1
1
–V  
2kΩ  
10kΩ  
20Ω  
1500pF  
1500pF  
1000pF  
IN  
Figure 46. Circuit for Driving a Large Capacitive Load  
10  
0%  
1µs  
5V  
200ns  
500mV  
–5V ADC IN  
100  
90  
Figure 45. ADC Input Unity Gain Buffer Recovery Times, −5 V ADC IN  
10  
0%  
Figure 47. Transient Response RL = 2 kΩ, CL = 500 pF  
Rev. G | Page 16 of 20  
 
 
 
AD712  
FILTERS  
ACTIVE FILTER APPLICATIONS  
C1  
560pF  
In active filter applications using op amps, the dc accuracy of  
the amplifier is critical to optimal filter performance. The  
amplifier offset voltage and bias current contribute to output  
error. Offset voltage is passed by the filter and can be amplified  
to produce excessive output offset. For low frequency  
+15V  
1/2  
0.1µF  
R1  
R2  
20k20kΩ  
+
C2  
280pF  
V
OUT  
AD712  
V
IN  
0.1µF  
applications requiring large value input resistors, bias currents  
flowing through these resistors also generate an offset voltage.  
–15V  
In addition, at higher frequencies, the op amp dynamics must  
be carefully considered. Here, slew rate, bandwidth, and open-  
loop gain play a major role in op amp selection. The slew rate  
must be fast as well as symmetrical to minimize distortion. The  
amplifier bandwidth in conjunction with the filter gain dictates  
the frequency response of the filter.  
Figure 48. Second-Order Low-Pass Filter  
An important property of filters is their out-of-band rejection.  
The simple 2± kHz low-pass filter shown in Figure 48, can be  
used to condition a signal contaminated with clock pulses or  
sampling glitches that have considerable energy content at high  
frequencies.  
The use of a high performance amplifier such as the AD712  
minimizes both dc and ac errors in all active filter applications.  
The low output impedance and high bandwidth of the AD712  
minimize high frequency feedthrough as shown in Figure 49.  
The upper trace is that of another low cost BiFET op amp  
showing 17 dB more feedthrough at 5 MHz.  
SECOND-ORDER LOW-PASS FILTER  
Figure 48 depicts the AD712 configured as a second-order,  
Butterworth low-pass filter. With the values as shown, the  
corner frequency is 2± kHz; however, the wide bandwidth of the  
AD712 permits a corner frequency as high as several hundred  
kilohertz. Equations for component selection are as follows:  
REF 20.0 dBm  
10dB/DIV  
OFFSET .0 Hz  
0dB  
RANGE 15.0dBm  
R1 = R2 = A user selected value (1± kΩ to 1±± kΩ, typical)  
TYPICAL BIFET  
1.414  
C1 (in farads) =  
(
2π  
)
(
fcutoff  
)
(
R1)  
AD712  
±.7±7  
C2 =  
(
2π  
)(  
fcutoff  
)
(
R1  
)
CENTER 5 000 000.0Hz  
RBW 30kHz  
SPAN 10 000 000.0Hz  
ST .8 SEC  
VBW 30kHz  
Figure 49. High Frequency Feedthrough  
Rev. G | Page 17 of 20  
 
 
 
AD712  
+15V  
0.1µF  
+15V  
0.1µF  
V
IN  
+
0.001µF  
2800Ω  
6190Ω  
6490Ω  
6190Ω  
2800Ω  
A1  
+
AD711  
A2  
V
–15  
–15  
–15  
–15  
D
OUT  
4.9395E  
5.9276E  
5.9276E  
4.9395E  
AD711  
0.1µF  
A
B
C
+
+
+
+
0.1µF  
4.99kΩ  
4.99kΩ  
–15V  
*
*
*
*
–15V  
100kΩ  
0.001µF  
124kΩ  
SEE TEXT  
*
Figure 50. 9-Pole Chebychev Filter  
9-POLE CHEBYCHEV FILTER  
+15V  
+
0.1µF  
Figure 5± and Figure 51 show the AD712 and its dual  
counterpart, the AD711, as a 9-pole Chebychev filter using  
active frequency dependent negative resistors (FDNRs). With a  
cutoff frequency of 5± kHz and better than 9± dB rejection, it  
can be used as an antialiasing filter for a 12-bit data acquisition  
system with 1±± kHz throughput.  
0.001µF  
+
1/2  
AD712  
R
0.1µF  
1/2  
0.001µF  
AD712  
+
–15V  
As shown in Figure 5±, the filter is comprised of four FDNRs  
(A, B, C, D) having values of 4.9395 × 1±−15 and 5.9276 × 1±–15  
farad-seconds. Each FDNR active network provides a two-pole  
response for a total of eight poles. The ninth pole consists of a  
±.±±1 ꢁF capacitor and a 124 kΩ resistor at Pin 3 of Amplifier A2.  
Figure 51 depicts the circuits for each FDNR with the proper  
selection of R. To achieve optimal performance, the ±.±±1 μF  
capacitors must be selected for 1% or better matching and all  
resistors should have 1% or better tolerance.  
1.0kΩ  
4.99kΩ  
–15  
R: 24.9kFOR 4.9395E  
29.4kFOR 5.9276E  
–15  
Figure 51. FDNR for 9-Pole Chebychev Filter  
REF 5.0dBm  
10dB/DIV  
MARKER 96 800.0Hz  
RANGE –5.0dBm –90dBm  
START.0Hz  
RBW 300Hz  
STOP 200 000.0Hz  
ST 69.6 SEC  
VBW 30Hz  
Figure 52. High Frequency Response for 9-Pole Chebychev Filter  
Rev. G | Page 18 of 20  
 
 
 
 
AD712  
OUTLINE DIMENSIONS  
0.400 (10.16)  
0.365 (9.27)  
0.355 (9.02)  
0.005 (0.13)  
MIN  
0.055 (1.40)  
MAX  
8
5
8
1
5
4
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.310 (7.87)  
0.220 (5.59)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
1
4
PIN 1  
0.100 (2.54)  
0.100 (2.54) BSC  
0.405 (10.29) MAX  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210  
(5.33)  
MAX  
0.320 (8.13)  
0.290 (7.37)  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
MAX  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.150 (3.81)  
MIN  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.200 (5.08)  
0.125 (3.18)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
PLANE  
0.023 (0.58)  
0.014 (0.36)  
15°  
0°  
0.070 (1.78)  
0.030 (0.76)  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
COMPLIANT TO JEDEC STANDARDS MS-001-BA  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 54. 8-Lead Ceramic Dual In-Line Package [CERDIP]  
(Q-8)  
Figure 53. 8-Lead Plastic Dual In-Line Package [PDIP]  
(N-8)  
Dimensions shown in inches and (millimeters)  
Dimensions shown in inches and (millimeters)  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0099)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 55. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
Rev. G | Page 19 of 20  
 
AD712  
ORDERING GUIDE  
Model  
AD712AQ  
AD712JN  
AD712JNZ1  
Temperature Range  
−40°C to +85°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
−55°C to +125°C  
Package Description  
8-Lead CERDIP  
8-Lead PDIP  
Package Option  
Q-8  
N-8  
N-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
N-8  
N-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
Q-8  
8-Lead PDIP  
AD712JR  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead PDIP  
AD712JR-REEL  
AD712JR-REEL7  
AD712JRZ1  
AD712JRZ-REEL1  
AD712JRZ-REEL71  
AD712KN  
AD712KNZ1  
AD712KR  
8-Lead PDIP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead CERDIP  
AD712KR-REEL  
AD712KR-REEL7  
AD712KRZ1  
AD712KRZ-REEL1  
AD712KRZ-REEL71  
AD712SQ/883B  
1 Z = Pb-free part.  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C00823-0-8/06(G)  
Rev. G | Page 20 of 20  
 
 
 
 
 

相关型号:

AD712AQ

Dual Precision, Low Cost, High Speed, BiFET Op Amp
ADI

AD712AQ/+

IC,OP-AMP,DUAL,BIPOLAR/JFET,DIP,8PIN,CERAMIC
ADI

AD712BH

Dual Precision, Low Cost, High Speed, BiFET Op Amp
ADI

AD712BH

DUAL OP-AMP, 1500uV OFFSET-MAX, 4MHz BAND WIDTH, MBCY8, METAL CAN, TO-99, 8 PIN
ROCHESTER

AD712BH/+

IC IC,OP-AMP,DUAL,BIPOLAR/JFET,CAN,8PIN,METAL, Operational Amplifier
ADI

AD712BQ

Dual Precision, Low Cost, High Speed, BiFET Op Amp
ADI

AD712BQ/+

IC IC,OP-AMP,DUAL,BIPOLAR/JFET,DIP,8PIN,CERAMIC, Operational Amplifier
ADI

AD712CH

Dual Precision, Low Cost, High Speed, BiFET Op Amp
ADI

AD712CH/+

IC IC,OP-AMP,DUAL,BIPOLAR/JFET,CAN,8PIN,METAL, Operational Amplifier
ADI

AD712CN

Dual Precision, Low Cost, High Speed, BiFET Op Amp
ADI

AD712CQ

Voltage-Feedback Operational Amplifier
ETC

AD712CQ/+

IC IC,OP-AMP,DUAL,BIPOLAR/JFET,DIP,8PIN,CERAMIC, Operational Amplifier
ADI