AD713_11 [ADI]

Precision, High Speed, BiFET Quad Op Amp; 精密,高速,的BiFET四通道运算放大器
AD713_11
型号: AD713_11
厂家: ADI    ADI
描述:

Precision, High Speed, BiFET Quad Op Amp
精密,高速,的BiFET四通道运算放大器

运算放大器
文件: 总20页 (文件大小:362K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision, High Speed, BiFET Quad Op Amp  
AD713  
FEATURES  
CONNECTION DIAGRAMS  
AC performance  
1 μs settling to 0.01% for 10 V step  
20 V/μs slew rate  
0.0003% total harmonic distortion (THD)  
4 MHz unity gain bandwidth  
DC performance  
1.5 mV maximum offset voltage  
8 μV/°C typical drift  
150 V/mV minimum open-loop gain  
2 μV p-p typical noise, 0.1 Hz to 10 Hz  
True 14-bit accuracy  
Single version: AD711, dual version: AD712  
Available in 16-lead SOIC, 14-lead PDIP and CERDIP  
OUTPUT  
–IN  
1
2
3
4
5
6
7
14 OUTPUT  
13 –IN  
1
4
+IN  
12 +IN  
AD713  
+V  
S
11 –V  
S
TOP VIEW  
(Not to Scale)  
+IN  
–IN  
10 +IN  
9
8
–IN  
2
3
OUTPUT  
OUTPUT  
Figure 1. 14-Lead PDIP (N) and CERDIP (Q) Packages  
OUTPUT  
–IN  
1
2
3
4
5
6
7
8
16 OUTPUT  
15 –IN  
1
4
+IN  
14 +IN  
+V  
S
13 –V  
S
AD713  
APPLICATIONS  
+IN  
–IN  
12 +IN  
Active filters  
11 –IN  
2
3
Quad output buffers for 12- and 14-bit DACs  
Input buffers for precision ADCs  
Photo diode preamplifier applications  
OUTPUT  
NC  
10 OUTPUT  
TOP VIEW  
(Not to Scale)  
9
NC  
NC = NO CONNECT. DO NOT  
CONNECT TO THIS PIN.  
Figure 2. 16-Lead SOIC_W (RW) Package  
GENERAL DESCRIPTION  
The AD713 is a quad operational amplifier, consisting of four  
AD711 BiFET op amps. These precision monolithic op amps  
offer excellent dc characteristics plus rapid settling times, high  
slew rates, and ample bandwidths. In addition, the AD713 provides  
the close matching ac and dc characteristics inherent to amplifiers  
sharing the same monolithic die. The single-pole response of  
the AD713 provides fast settling: l μs to 0.01%. This feature,  
combined with its high dc precision, makes the AD713 suitable  
for use as a buffer amplifier for 12- or 14-bit DACs and ADCs.  
It is also an excellent choice for use in active filters in 12-, 14-  
and 16-bit data acquisition systems. Furthermore, the AD713  
low total harmonic distortion (THD) level of 0.0003% and very  
close matching ac characteristics make it an ideal amplifier for  
many demanding audio applications. The AD713 is internally  
compensated for stable operation at unity gain. The AD713J is  
rated over the commercial temperature range of 0°C to 70°C.  
The AD713A is rated over the industrial temperature of −40°C  
to +85°C.  
PRODUCT HIGHLIGHTS  
1. The AD713 is a high speed BiFET op amp that offers  
excellent performance at competitive prices. It upgrades  
the performance of circuits using op amps such as the  
TL074, TL084, LT1058, LF347, and OPA404.  
2. Slew rate is 100% tested for a guaranteed minimum of  
16 V/μs (J and A grades).  
3. The combination of Analog Devices, Inc., advanced  
processing technology, laser wafer drift trimming, and  
well-matched ion-implanted JFETs provides outstanding  
dc precision. Input offset voltage, input bias current and  
input offset current are specified in the warmed-up  
condition and are 100% tested.  
4. Very close matching of ac characteristics between the four  
amplifiers makes the AD713 ideal for high quality active  
filter applications.  
The AD713 is offered in 16-lead SOIC, 14-lead PDIP, and  
14-lead CERDIP packages.  
Rev. F  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2002–2011 Analog Devices, Inc. All rights reserved.  
 
AD713  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 11  
Measuring AD713 Settling Time ............................................. 11  
Power Supply Bypassing............................................................ 11  
A High Speed Instrumentation Amplifier Circuit................. 12  
A High Speed 4-Op-Amp Cascaded Amplifier Circuit........ 12  
High Speed Op Amp Applications and Techniques.............. 12  
CMOS DAC Applications ......................................................... 14  
Filter Applications...................................................................... 14  
GIC and FDNR Filter Applications ......................................... 15  
Outline Dimensions....................................................................... 17  
Ordering Guide .......................................................................... 18  
Applications....................................................................................... 1  
Connection Diagrams...................................................................... 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Typical Performance Characteristics ............................................. 6  
Test Circuits..................................................................................... 10  
REVISION HISTORY  
7/11—Rev. E to Rev. F  
Deleted Figure 9 and Figure 10; Renumbered Sequentially ........9  
Changes to Figure 23 Caption and Figure 24 Caption .............. 10  
Added Test Circuits Section.......................................................... 11  
Moved Figures 26, Figure 27, and Figure 28............................... 11  
Changes to Figure 29...................................................................... 12  
Changes to DAC Buffers (I-to-V Converters) Section.............. 13  
Changes to Figure 37 and Table 5................................................. 14  
Changed C1 to CL ........................................................................... 14  
Changes to Figure 43 and Figure 44............................................. 15  
Updated Outline Dimensions....................................................... 18  
Changes to Ordering Guide.......................................................... 19  
Changes to Figure 2.......................................................................... 1  
6/11—Rev. D to Rev. E  
Changed 8 μV/°C Maximum Drift to 8 μV/°C Typical Drift in  
Features Section ................................................................................ 1  
5/11—Rev. C to Rev. D  
Updated Format..................................................................Universal  
Changes to Features Section, General Description Section, and  
Product Highlights Section ............................................................. 1  
Deleted S, K, B, and T Grades Throughout................................... 1  
Changes to Table 1............................................................................ 3  
Changes to Table 2............................................................................ 5  
Added Typical Performance Characteristics Summary .............. 6  
Change to Figure 7 ........................................................................... 7  
Changes to Figure 15, Figure 17, and Figure 18 ........................... 8  
10/01—Rev. B to Rev. C  
Edits to Features.................................................................................1  
Edits to Product Description ...........................................................1  
Edits to Ordering Guide ...................................................................3  
Edits to Metallization Photograph ..................................................3  
Rev. F | Page 2 of 20  
 
AD713  
SPECIFICATIONS  
VS = 15 V at TA = 25°C, unless otherwise noted.  
Table 1.  
AD713J/AD713A  
Typ  
Parameter  
INPUT OFFSET VOLTAGE1  
Initial Offset  
Offset  
Test Conditions/Comments  
Min  
Max  
Unit  
0.3  
0.5  
5
1.5  
2
mV  
mV  
μV/°C  
dB  
dB  
μV/Month  
pA  
TMIN to TMAX  
vs. Temp  
vs. Supply  
78  
76  
95  
95  
15  
40  
TMIN to TMAX  
Long-Term Stability  
INPUT BIAS CURRENT2  
VCM = 0 V  
150  
VCM = 0 V at TMAX  
3.4/9.6  
200  
nA  
pA  
VCM  
=
10 V  
55  
10  
INPUT OFFSET CURRENT  
VCM = 0 V  
75  
pA  
VCM = 0 V at TMAX  
1.7/4.8  
pA  
MATCHING CHARACTERISTICS  
Input Offset Voltage  
0.5  
0.7  
8
1.8  
2.3  
mV  
mV  
μV/°C  
pA  
dB  
dB  
TMIN to TMAX  
Input Offset Voltage Drift  
Input Bias Current  
Crosstalk  
10  
100  
−130  
−95  
f = 1 kHz  
f = 100 kHz  
FREQUENCY RESPONSE  
Small Signal Bandwidth  
Full Power Response  
Slew Rate  
G = −1  
VO = 20 V p-p  
G = −1  
3.0  
16  
4.0  
200  
20  
1.0  
0.0003  
MHz  
kHz  
V/μs  
μs  
Settling Time to 0.01%  
Total Harmonic Distortion  
INPUT IMPEDANCE  
Differential3  
1.2  
f = 1 kHz; RL ≥ 2 kΩ; VO = 3 V rms  
%
3 × 1012||5.5  
3 × 1012||5.5  
Ω||pF  
Ω||pF  
Common Mode4  
INPUT VOLTAGE RANGE  
Differential  
20  
V
Common-Mode Voltage  
+14.5/−11.5  
V
TMIN to TMAX  
VCM 10 V  
TMIN to TMAX  
VCM 11 V  
TMIN to TMAX  
0.1 Hz to 10 Hz  
f = 10 Hz  
f = 100 Hz  
f = 1 kHz  
f = 10 kHz  
−11  
78  
76  
72  
70  
+13  
V
dB  
dB  
dB  
Common Mode  
Rejection Ratio  
=
88  
84  
84  
80  
2
45  
22  
18  
16  
0.01  
400  
=
dB  
INPUT VOLTAGE NOISE  
μV p-p  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
pA/√Hz  
V/mV  
V/mV  
INPUT CURRENT NOISE  
OPEN-LOOP GAIN  
f = 1 kHz  
VO = 10 V; RL ≥ 2 kΩ  
TMIN to TMAX  
150  
100  
Rev. F | Page 3 of 20  
 
AD713  
AD713J/AD713A  
Typ  
Parameter  
Test Conditions/Comments  
Min  
Max  
Unit  
OUTPUT CHARACTERISTICS  
Voltage  
RL ≥ 2 kΩ  
TMIN to TMAX  
Short circuit  
+13/−12.5  
12  
+13.9/−13.3  
+13.8/−13.1  
25  
V
V
mA  
Current  
POWER SUPPLY  
Rated Performance  
Operating Range  
Quiescent Current  
TRANSISTOR COUNT  
15  
V
V
mA  
4.5  
18  
13.5  
10.0  
120  
Number of transistors  
1 Input offset voltage specifications are guaranteed after 5 minutes of operation at TA = 25°C.  
2 Bias current specifications are guaranteed maximum at either input after 5 minutes of operation at TA = 25°C. For higher temperatures, the current doubles every 10°C.  
3 Defined as the voltage between inputs, such that neither exceeds 10 V from ground.  
4 Typically exceeding −14.1 V negative common-mode voltage on either input results in an output phase reversal.  
Rev. F | Page 4 of 20  
AD713  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
18 V  
18 V  
Supply Voltage  
Input Voltage1  
Output Short-Circuit Duration  
(For One Amplifier)  
Differential Input Voltage  
Storage Temperature Range (Q)  
Storage Temperature Range (N, R)  
Operating Temperature Range  
AD713J  
Indefinite  
+VS and −VS  
−65°C to +150°C  
−65°C to +125°C  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
0°C to 70°C  
−40°C to +85°C  
300°C  
Table 3. Thermal Resistance  
AD713A  
Package Type  
θJA  
θJC  
30  
30  
30  
Unit  
°C/W  
°C/W  
°C/W  
Lead Temperature Range (Soldering, 60 sec)  
14-Lead PDIP (N-14)  
14-Lead CERDIP (Q-14)  
16-Lead SOIC_W (RW-16)  
100  
110  
100  
1 For supply voltages less than 18 V, the absolute maximum input voltage is  
equal to the supply voltage.  
ESD CAUTION  
Rev. F | Page 5 of 20  
 
AD713  
TYPICAL PERFORMANCE CHARACTERISTICS  
VS = 15 V at TA = 25°C, unless otherwise noted.  
20  
16  
12  
8
R
= 2k  
= 25°C  
L
T
A
15  
10  
5
4
0
0
0
5
10  
15  
20  
0
5
10  
15  
20  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (V)  
Figure 3. Input Voltage Swing vs. Supply Voltage  
Figure 6. Quiescent Current vs. Supply Voltage  
20  
15  
10  
5
–6  
10  
10  
R
= 2kΩ  
= 25°C  
L
T
A
–7  
–8  
–9  
+V  
10  
10  
OUT  
–V  
OUT  
–10  
10  
–11  
–12  
10  
10  
0
0
5
10  
SUPPLY VOLTAGE (±V)  
15  
20  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (°C)  
Figure 4. Output Voltage Swing vs. Supply Voltage  
Figure 7. Input Bias Current vs. Temperature  
30  
25  
20  
15  
10  
100  
10  
1
±15V SUPPLIES  
0.1  
5
0
0.01  
10  
100  
1k  
10k  
1k  
10k  
100k  
1M  
10M  
LOAD RESISTANCE ()  
FREQUENCY (Hz)  
Figure 5. Output Voltage Swing vs. Load Resistance  
Figure 8. Output Impedance vs. Frequency, G = 1  
Rev. F | Page 6 of 20  
 
AD713  
50  
40  
30  
100  
80  
60  
40  
20  
0
100  
80  
V
T
= ±15V  
= 25°C  
S
A
60  
40  
20  
10  
0
GAIN  
PHASE  
2k||100pF LOAD  
20  
0
–20  
10M  
–20  
10  
–10  
–5  
0
5
10  
100  
1k  
10k  
100k  
1M  
COMMON-MODE VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 9. Input Bias Current vs. Common Mode Voltage  
+OUTPUT CURRENT  
Figure 12. Open-Loop Gain and Phase Margin vs. Frequency  
125  
26  
24  
22  
20  
18  
16  
14  
12  
R
= 2k  
L
T
= 25°C  
A
120  
115  
110  
–OUTPUT CURRENT  
105  
100  
95  
10  
0
5
10  
15  
20  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
SUPPLY VOLTAGE (V)  
AMBIENT TEMPERATURE (°C)  
Figure 13. Open-Loop Gain vs. Supply Voltage  
Figure 10. Short-Circuit Current Limit vs. Temperature  
5.0  
110  
100  
+SUPPLY  
4.5  
4.0  
3.5  
3.0  
80  
60  
40  
20  
–SUPPLY  
V
= ±15V SUPPLIES WITH  
S
1V p-p SINE WAVE 25°C  
0
10  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
100 1k  
10k  
100k  
1M  
TEMPERATURE (°C)  
SUPPLY MODULATION FREQUENCY (Hz)  
Figure 14. Power Supply Rejection vs. Frequency  
Figure 11. Gain Bandwidth vs. Temperature  
Rev. F | Page 7 of 20  
AD713  
100  
70  
80  
V
V
= ±15V  
3V RMS  
S
R
C
= 2k  
= 100pF  
= 1V p-p  
L
L
CM  
T
= 25°C  
A
80  
60  
90  
100  
110  
120  
130  
40  
20  
0
10  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 18. Total Harmonic Distortion vs. Frequency  
Figure 15. Common-Mode Rejection vs. Frequency  
1k  
100  
10  
30  
25  
20  
R
= 2k  
= 25°C  
= ±15V  
L
T
A
V
S
15  
10  
5
1
0
100k  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
INPUT FREQUENCY (Hz)  
Figure 19. Input Noise Voltage Spectral Density  
Figure 16. Large Signal Frequency Response  
10  
25  
20  
15  
10  
5
8
6
4
2
1% 0.1%  
0.01%  
0
ERROR  
1% 0.1%  
0.01%  
–2  
–4  
–6  
–8  
0
–10  
0.5  
0
100  
200  
300  
400  
500  
600  
700  
800  
900  
0.6  
0.7  
0.8  
0.9  
1.0  
INPUT ERROR SIGNAL (mV)  
(AT SUMMING JUNCTION)  
SETTLING TIME (µs)  
Figure 17. Output Swing and Error vs. Settling Time  
Figure 20. Slew Rate vs. Input Error Signal  
Rev. F | Page 8 of 20  
AD713  
–70  
–80  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1
2
4
3
–90  
100  
90  
1 TO 4  
1 TO 2  
1 TO 3  
–100  
8
–110  
–120  
–130  
10  
0%  
–140  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
5V  
1µs  
Figure 24. Unity Gain Inverter Pulse Response—Small Signal (see Figure 28)  
Figure 21. Crosstalk vs. Frequency (see Figure 26 for Test Circuit)  
• • • •  
100  
90  
100  
90  
• • • •  
10  
10  
• • • •  
0%  
• • • •  
0%  
5V  
1µs  
50mV  
200ns  
Figure 22. Unity Gain Follower Pulse Response—Large Signal (see Figure 27  
for Test Circuit)  
Figure 25. Unity Gain Inverter Pulse Response—Small Signal (see Figure 28)  
100  
90  
• • • •  
10  
• • • •  
0%  
50mV  
100ns  
Figure 23. Unity Gain Follower Pulse Response—Small Signal (see Figure 27)  
Rev. F | Page 9 of 20  
 
 
 
 
AD713  
TEST CIRCUITS  
9k  
AD713  
PIN 4  
+V  
1kΩ  
S
+V  
4
S
+
+
0.1µF  
0.1µF  
1µF  
1µF  
1/4  
+
AD713  
COM  
1µF  
0.1µF  
OUTPUT  
1/4  
INPUT  
SIGNAL  
OR  
ALL 4 AMPLIFIERS  
ARE CONNECTED  
AS SHOWN.  
AD713  
PIN 11  
V
–V  
S
OUT  
AD713  
1kΩ  
R
C
L
L
11  
V
2k  
10pF  
IN  
GROUND*  
*THE SIGNAL INPUT (1kHz SINEWAVE, 2V p-p) IS APPLIED TO ONE  
AMPLIFIER AT A TIME. THE OUTPUTS OF THE OTHER THREE  
AMPLIFIERS ARE THEN MEASURED FOR CROSSTALK.  
SQUARE  
WAVE  
INPUT  
1µF  
0.1µF  
–V  
+
S
Figure 26. Crosstalk Test Circuit for Figure 21  
Figure 27. Unity Gain Follower Circuit for Figure 22 and Figure 23  
7.5pF  
2k  
+V  
4
S
+
2kΩ  
1µF  
0.1µF  
V
IN  
1/4  
V
OUT  
AD713  
R
2kΩ  
C
L
10pF  
L
SQUARE  
WAVE  
INPUT  
11  
1µF  
0.1µF  
+
–V  
S
Figure 28. Unity Gain Inverter Circuit for Figure 24 and Figure 25  
Rev. F | Page 10 of 20  
 
 
 
AD713  
THEORY OF OPERATION  
The error signal is thus clamped twice: once to prevent overload-  
ing amplifier A2 and then a second time to avoid overloading  
the oscilloscope preamp. A Tektronix oscilloscope preamp  
Type 7A26 was carefully chosen because it recovers from the  
approximately 0.4 V overload quickly enough to allow accurate  
measurement of the AD713 1 μs settling time. Amplifier A2 is a  
very high speed FET input op amp; it provides a voltage gain of  
10, amplifying the error signal output of the AD713 under test  
(providing an overall gain of 5).  
MEASURING AD713 SETTLING TIME  
Figure 30 and Figure 31 show the dynamic response of the AD713  
while operating in the settling time test circuit of Figure 29.  
The input of the settling time fixture is driven by a flat-top pulse  
generator. The error signal output from the false summing node  
of A1, the AD713 under test, is clamped, amplified by Op Amp  
A2, and then clamped again.  
TO TEKTRONIX 7A26  
OSCILLOSCOPE  
PREAMP INPUT  
SECTION (VIA LESS  
THAN 1FT 50  
1MΩ  
20pF  
5V  
COAXIAL CABLE)  
5pF  
100  
90  
• • • •  
+
V
ERROR × 5  
2 ×  
HP2835  
A2  
206Ω  
2 ×  
HP2835  
0.47µF  
0.47µF  
–V +V  
S
S
10kΩ  
10  
NOTES  
1. USE CIRCUIT BOARD  
WITH GROUND PLANE.  
• • • •  
0%  
1.1kΩ  
0.2pF TO 0.8pF  
4.99kΩ  
5mV  
500ns  
4.99kΩ  
10kΩ  
200Ω  
10kΩ  
Figure 31. Settling Characteristics to –10 V Step,  
Upper Trace: Output of AD713 Under Test (5 V/div),  
Lower Trace: Amplified Error Voltage (0.01%/div)  
FLAT-TOP  
PULSE  
5pF TO 18pF  
*USE VERY  
SHORT CABLE  
OR TERMINATION  
GENERATOR  
V
1/4  
AD713  
IN  
RESISTOR  
*
POWER SUPPLY BYPASSING  
A1  
DATA  
DYNAMICS  
5109  
The power supply connections to the AD713 must maintain a  
low impedance to ground over a bandwidth of 4 MHz or more.  
This is especially important when driving a significant resistive  
or capacitive load because all current delivered to the load  
comes from the power supplies. Multiple high quality bypass  
capacitors are recommended for each power supply line in any  
critical application. As shown in Figure 32, a 0.1 μF ceramic and  
a 1 μF electrolytic capacitor placed as close as possible to the  
amplifier (with short lead lengths to power supply common)  
assures adequate high frequency bypassing in most applications.  
A minimum bypass capacitance of 0.1 μF should be used for  
any application.  
4
5kΩ  
10pF  
+
11  
OR  
EQUIVALENT  
+
1µF  
0.1µF  
1µF  
0.1µF  
+
–V +V  
S
S
Figure 29. Settling Time Test Circuit  
5V  
100  
90  
• • • •  
+V  
S
+
1µF  
0.1µF  
4
1/4  
AD713  
11  
10  
• • • •  
0%  
1µF  
0.1µF  
+
–V  
5mV  
500ns  
S
Figure 32. Recommended Power Supply Bypassing  
Figure 30. Settling Characteristics 0 V to 10 V Step,  
Upper Trace: Output of AD713 Under Test (5 V/div),  
Lower Trace: Amplified Error Voltage (0.01%/div)  
Rev. F | Page 11 of 20  
 
 
 
 
 
AD713  
A HIGH SPEED INSTRUMENTATION AMPLIFIER  
CIRCUIT  
A HIGH SPEED 4-OP-AMP CASCADED AMPLIFIER  
CIRCUIT  
The instrumentation amplifier circuit shown in Figure 33 can  
provide a range of gains from unity up to 1000 and higher using  
only a single AD713. The circuit bandwidth is 1.2 MHz at a gain  
of 1 and 250 kHz at a gain of 10; settling time for the entire  
circuit is less than 5 μs to within 0.01% for a 10 V step, (G = 10).  
Other uses for Amplifier A4 include an active data guard and an  
active sense input.  
Figure 35 shows how the four amplifiers of the AD713 can be  
connected in cascade to form a high gain, high bandwidth  
amplifier. This gain of 100 amplifier has a −3 dB bandwidth  
greater than 600 kHz.  
+V  
S
0.1µF  
1µF  
INPUT  
3
2
4
1
5
6
20,000  
1/4  
CIRCUIT GAIN =  
+ 1  
7
10  
9
R
AD713  
G
1/4  
AD713  
1/4  
8
12  
13  
1/4  
AD713  
14  
11  
3
2
*1.5pF TO 20pF  
(TRIM FOR BEST SETTLING TIME)  
2.15k  
AD713  
–IN  
1/4  
AD713  
OUTPUT  
0.1µF  
2.15kΩ  
1
A1  
2.15kΩ  
1kΩ  
1kΩ  
2.15kΩ  
1kΩ  
10k**  
10kΩ  
1kΩ  
22MΩ  
1µF  
10k**  
+
SENSE  
–V  
9
S
–V  
+V  
S
7.5pF  
7.5pF  
S
4-OP-AMP CASCADED AMPLIFIER  
GAIN = 100  
BANDWIDTH (–3dB) = 632kHz  
100kΩ  
R
8
A3  
G
10k**  
OPTIONAL V  
OS  
ADJUSTMENT  
10  
1/4  
5pF  
AD713  
10k**  
Figure 35. High Speed 4-Op-Amp Cascaded Amplifier Circuit  
10kΩ  
6
5
TO SPECTRUM ANALYZER  
7
13  
A4  
A2  
ERROR SIGNAL  
OUTPUT  
TO BUFFERED  
VOLTAGE  
REFERENCE  
OR REMOTE  
GROUND SENSE  
14  
+IN  
1/4  
AD713  
(ERROR/11)  
NULL  
12  
1/4  
AD713  
1k  
ADJUST  
100kΩ  
10kΩ  
10kΩ  
AD713  
PIN 4  
+V  
S
+
+V  
S
0.1µF  
0.1µF  
1µF  
*
VOLTRONICS SP20 TRIMMER CAPACITOR  
OR EQUIVALENT  
RATIO MATCHED 1% METAL FILM  
RESISTORS  
COM  
+
1kΩ  
+
**  
1µF  
0.1µF  
1µF  
4
AD713  
PIN 11  
LOW DISTORTION  
SINEWAVE INPUT  
1/4  
–V  
S
AD713  
100pF  
11  
Figure 33. High Speed Instrumentation Amplifier Circuit  
Table 4 provides a performance summary for this circuit. Figure 34  
shows the pulse response of this circuit for a gain of 10.  
1µF  
0.1µF  
+
–V  
S
Figure 36. THD Test Circuit  
Table 4. Performance Summary for the High Speed  
Instrumentation Amplifier Circuit  
HIGH SPEED OP AMP APPLICATIONS AND  
TECHNIQUES  
DAC Buffers (I-to-V Converters)  
Gain  
RG  
Bandwidth  
Settling Time (0.01%)  
1
2
10  
NC1  
1.2 MHz  
1.0 MHz  
0.25 MHz  
2 μs  
2 μs  
2 μs  
20 kΩ  
4.04 kΩ  
The wide input dynamic range of JFET amplifiers makes them  
ideal for use in both waveform reconstruction and digital audio  
DAC applications. The AD713, in conjunction with a 16-bit  
DAC, can achieve 0.0016% THD without requiring the use of a  
deglitcher in digital audio applications.  
1 NC = no connect.  
5V  
100  
90  
• • • •  
Driving the Analog Input of an Analog-to-Digital  
Converter  
An op amp driving the analog input of an analog-to-digital  
converter (ADC), such as that shown in Figure 37, must be  
capable of maintaining a constant output voltage under dynami-  
cally changing load conditions. In successive approximation  
converters, the input current is compared to a series of switched  
trial currents. The comparison point is diode clamped but may  
vary by several hundred millivolts, resulting in high frequency  
modulation of the analog-to-digital input current. The output  
impedance of a feedback amplifier is made artificially low by its  
10  
• • • •  
0%  
2µs  
Figure 34. Pulse Response of High Speed Instrumentation Amplifier,  
Gain = 10  
Rev. F | Page 12 of 20  
 
 
 
 
 
AD713  
loop gain. At high frequencies, where the loop gain is low, the  
amplifier output impedance can approach its open-loop value.  
1mV  
AD713 BUFF  
100  
90  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V
STS  
LOGIC  
12/8 (MSB) DB11  
3
CS  
DB10  
DB9  
DB8  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
HIGH  
BITS  
4
A
O
AD574A  
TOP VIEW  
(Not to Scale)  
5
R/C  
CE  
6
V
7
CC  
MIDDLE  
BITS  
8
REF OUT  
AC  
GAIN ADJUST  
9
10  
10  
11  
12  
13  
14  
REF IN  
0%  
+15V  
0.1µF  
R2 100  
R1 100Ω  
V
EE  
LOW  
BITS  
BIP OFF  
10V  
500mV  
–5V ADC IN  
200ns  
IN  
IN  
(LSB) DB0  
DC  
4
OFFSET ADJUST  
20V  
±10V  
ANALOG  
INPUT  
Figure 39. Buffer Recovery Time Sink Current = 1 mA  
11  
0.1µF  
ANALOG COM  
Driving A Large Capacitive Load  
1/4  
AD713  
–15V  
The circuit of Figure 40 uses a 100 Ω isolation resistor that  
enables the amplifier to drive capacitive loads exceeding  
1500 pF; the resistor effectively isolates the high frequency  
feedback from the load and stabilizes the circuit. Low frequency  
feedback is returned to the amplifier summing junction via the  
low-pass filter formed by the 100 Ω series resistor and the load  
capacitance, CL. Figure 41 shows a typical transient response for  
this connection.  
Figure 37. AD713 as an ADC Buffer  
Most IC amplifiers exhibit a minimum open-loop output imped-  
ance of 25 Ω, due to current limiting resistors. A few hundred  
microamps reflected from the change in converter loading can  
introduce errors in instantaneous input voltage. If the analog-  
to-digital conversion speed is not excessive and the bandwidth  
of the amplifier is sufficient, the amplifier output returns to  
the nominal value before the converter makes its comparison.  
However, many amplifiers have relatively narrow bandwidths,  
yielding slow recovery from output transients. The AD713 is  
ideally suited as a driver for ADCs because it offers both a wide  
bandwidth and a high open-loop gain.  
4.99k  
30pF  
+V  
S
0.1µF  
4.99kΩ  
4
INPUT  
OUTPUT  
100Ω  
1/4  
TYPICAL CAPACITANCE  
LIMIT FOR VARIOUS  
LOAD RESISTORS  
AD713  
1mV  
AD713 BUFF  
C
R
L
L
11  
0.1µF  
100  
90  
• • • •  
R
C UP TO  
L
L
2k1500pF  
10k1500pF  
20k1000pF  
–V  
S
Figure 40. Circuit for Driving a Large Capacitance Load  
5V  
1µs  
• • • •  
100  
90  
10  
• • • •  
0%  
500mV  
10V ADC IN  
200ns  
Figure 38. Buffer Recovery Time Source Current = 2 mA  
10  
• • • •  
0%  
Figure 41. Transient Response, RL = 2 kΩ, CL = 500 pF  
Rev. F | Page 13 of 20  
 
 
 
AD713  
R2*  
V
DD  
CMOS DAC APPLICATIONS  
+15V  
0.1µF  
C1  
The AD713 is an excellent output amplifier for CMOS DACs. It  
can be used to perform both two- and four-quadrant operation.  
The output impedance of a DAC using an inverted R-2R ladder  
approaches R for codes containing many 1s, 3R for codes  
containing a single 1, and infinity for codes containing all 0s.  
33pF  
GAIN  
ADJUST  
18  
20  
V
R
FB  
DD  
1
4
OUT1  
V
19  
V
IN  
REF  
1/4  
R1*  
AD7545  
V
OUT  
AD713  
2
AGND  
11  
0.1µF  
DGND  
3
ANALOG  
COMMON  
For example, the output resistance of the AD7545 modulates  
between 11 kΩ and 33 kΩ. Therefore, with the DACs internal  
feedback resistance of 11 kΩ, the noise gain varies from 2 to  
4/3. This changing noise gain modulates the effect of the input  
offset voltage of the amplifier, resulting in nonlinear DAC  
amplifier performance. The AD713, with its guaranteed 1.5 mV  
input offset voltage, minimizes this effect, achieving 12-bit  
performance.  
–15V  
DB11 TO DB0  
*REFER TO TABLE 5.  
Figure 42. Unipolar Binary Operation  
FILTER APPLICATIONS  
A Programmable State Variable Filter  
For the state variable or universal filter configuration of Figure 44  
to function properly, DAC A1 and DAC B1 must control the  
gain and Q of the filter characteristic, and DAC A2 and DAC B2  
must accurately track for the simple expression of fC to be true.  
This is readily accomplished using two AD7528 DACs and one  
AD713 quad op amp. Capacitor C3 compensates for the effects  
of op amp gain bandwidth limitations.  
Figure 42 and Figure 43 show the AD713 and a 12-bit CMOS  
DAC, the AD7545, configured for either a unipolar binary (two-  
quadrant multiplication) or bipolar (four-quadrant multiplication)  
operation. Capacitor C1 provides phase compensation, which  
reduces overshoot and ringing.  
Table 5. Recommended Trim Resistor Values vs. Grades for  
AD7545 for VD = 5 V  
This filter provides low-pass, high-pass, and band-pass outputs  
and is ideally suited for applications where microprocessor  
control of filter parameters is required. The programmable  
range for component values shown is fC = 0 kHz to 15 kHz and  
Q = 0.3 to 4.5.  
Trim Resistor JN/AQ  
KN/BQ  
200 Ω  
68 Ω  
LN/CQ  
100 Ω  
33 Ω  
GLN/GCQ  
R1  
R2  
500 Ω  
150 Ω  
20 Ω  
6.8 Ω  
R2*  
V
DD  
R4  
R5  
20k  
1%  
+15V  
0.1µF  
20kΩ  
C1  
33pF  
1%  
GAIN  
ADJUST  
18  
20  
R3  
10kΩ  
1%  
V
R
FB  
DD  
1
OUT1  
AGND  
4
V
19  
V
IN  
REF  
1/4  
R1*  
AD7545  
AD713  
1/4  
2
V
OUT  
AD713  
DGND  
3
11  
0.1µF  
12  
DATA INPUT  
DB11 TO DB0  
ANALOG  
COMMON  
–15V  
*REFER TO TABLE 5.  
Figure 43. Bipolar Operation  
Rev. F | Page 14 of 20  
 
 
 
AD713  
R5  
30k  
+V  
4
S
1µF  
C1  
1000pF  
C2  
1000pF  
R4  
CIRCUIT EQUATIONS  
C3  
33pF  
30kΩ  
+
R3  
10kΩ  
2
3
C
= C , R = R , R = R  
2 1 2 4 5  
1
1
6
5
9
13  
12  
A1  
HIGH  
LOW PASS  
OUTPUT  
7
8
14  
A2  
PASS  
A3  
A4  
1/4  
AD713  
OUTPUT  
1
10  
1/4  
AD713  
f
=
C
11  
2π R  
C
1
1/4  
AD713  
1/4  
1
AD713  
+
1µF  
R
R
R
F
3
Q =  
×
V
V
DD  
DD  
R
4
FBB1  
2
20  
19  
18  
4
2
18  
20  
–V  
S
17  
4
17  
BAND PASS  
OUTPUT  
AD7528  
DAC A1  
R
F
A = –  
O
1
5
1
5
R
V
S
IN  
DAC B1  
DAC A2  
R1  
DAC B2  
R2  
AD7528  
R
R
S
F
15  
16  
6
15  
16  
6
14  
7
14  
7
DAC EQUIVALENT RESISTANCE EQUALS  
256 × (DAC LADDER RESISTANCE)  
DAC DIGITAL CODE  
DB0 TO  
DB0 TO  
DB7  
DB7  
CS  
WR DAC A/  
DACB  
CS  
WR DAC A/  
DAC B  
DATA 1  
DATA 2  
Figure 44. A Programmable State Variable Filter Circuit  
0
GIC AND FDNR FILTER APPLICATIONS  
0
–1  
–2  
–3  
–4  
The closely matched and uniform ac characteristics of the AD713  
make it ideal for use in generalized impedance converter (GIC)/  
gyrator and frequency dependent negative resistor (FDNR)  
filter applications. Figure 47 and Figure 48 show the AD713  
used in two typical active filters. The first shows a single AD713  
simulating two coupled inductors configured as a one-third  
octave band-pass filter. A single section of this filter meets  
ANSI Class II specifications and handles a 7.07 V rms signal  
with <0.002% THD (20 Hz to 20 kHz).  
–10  
–20  
–30  
–5  
16 18 20 22 24  
–40  
–50  
–60  
FREQUENCY (MHz)  
Figure 48 shows a seven-pole antialiasing filter for a 2× over-  
sampling (88.2 kHz) digital audio application. This filter has  
<0.05 dB pass-band ripple and 19.8 ꢀs 0.3 ꢀs delay, at dc to  
20 kHz, and handles a 5 V rms signal (VS = 15 V) with no  
overload at any internal nodes.  
–70  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
FREQUENCY (MHz)  
Figure 45. Output Amplitude vs. Frequency of 1/3 Octave Filter  
3
OUTPUT AMPLITUDE  
2
The filter of Figure 47 can be scaled for any center frequency by  
using the following formula:  
0
–10  
–20  
–30  
–40  
–50  
1
0
–1  
1.11  
2πRC  
200 500 1k 2k  
5k 10k 20k  
fC  
=
18  
19  
20  
21  
22  
GROUP DELAY  
where all resistors and capacitors scale equally. Resistors R3 to  
R8 should not be greater than 2 kꢁ in value to prevent parasitic  
oscillations caused by the amplifiers input capacitance.  
–60  
–70  
–80  
200 500 1k 2k  
5k 10k 20k  
If this is not practical, add small lead capacitances (10 pF to  
20 pF) across R5 and R6. Figure 45 and Figure 46 show the  
output amplitude vs. frequency of these filters.  
–90  
–100  
–110  
–120  
10k  
100k  
1M  
FREQUENCY (MHz)  
Figure 46. Relative Output Amplitude vs. Frequency of Antialiasing Filter  
Rev. F | Page 15 of 20  
 
 
 
 
AD713  
R1  
6.19k  
INPUT  
OUTPUT  
C2  
C2  
6800pF  
R2  
6800pF  
6.19kΩ  
R3  
1300Ω  
R4  
1300Ω  
5
6
12  
13  
1/4  
AD713  
1/4  
AD713  
R5  
R6  
7
14  
1300Ω  
1300Ω  
2
1/4  
9
1/4  
R7  
1300Ω  
R8  
1300Ω  
1
8
AD713  
AD713  
1.11  
2πRC  
3
10  
f
=
C3  
6800pF  
C4  
6800pF  
C
C
R
R
R
= C = C = C = C  
2 3 4  
R9  
1300Ω  
R10  
1300Ω  
1
R11  
5.62kΩ  
= R = 4.76Ω  
1
2
AD713  
PIN 4  
+V  
S
+
= 4.32Ω  
11  
0.1µF  
0.1µF  
1µF  
1µF  
COM  
= R = R = R = R = R = R = R = R  
3
4
5
6
7
8
9
10  
+
AD713  
PIN 11  
–V  
S
Figure 47. A 1/3 Octave Filter Circuit  
95.3k  
1/4  
AD713  
1/4  
2
3
AD713  
412Ω  
1.74kΩ  
1.74kΩ  
330Ω  
1
12  
13  
A1  
14  
INPUT  
4700pF  
B4  
1kΩ  
OUTPUT  
100kΩ  
130Ω  
4700pF  
10kΩ  
36Ω  
120Ω  
1kΩ  
4700pF  
4700pF  
4700pF  
10  
9
3
10  
9
1kΩ  
1kΩ  
1kΩ  
1kΩ  
8
1
8
A3  
1/4  
B1  
1/4  
B3  
1/4  
2
6
13  
12  
6
7
14  
7
A2  
A4  
B2  
1kΩ  
1kΩ  
AD713  
AD713  
AD713  
5
5
1/4  
AD713  
1/4  
AD713  
1/4  
AD713  
1.2kΩ  
1.87kΩ  
1.1kΩ  
AD713  
PIN 4  
+V  
S
+
0.1µF  
1µF  
1µF  
4700pF  
4700pF  
4700pF  
COM  
+
0.1µF  
AD713  
PIN 11  
–V  
S
Figure 48. An Antialiasing Filter  
Rev. F | Page 16 of 20  
 
 
AD713  
OUTLINE DIMENSIONS  
0.775 (19.69)  
0.750 (19.05)  
0.735 (18.67)  
14  
1
8
7
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.110 (2.79)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.050 (1.27)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 49. 14-Lead Plastic Dual In-Line Package [PDIP]  
Narrow Body  
(N-14)  
Dimensions shown in inches and (millimeters)  
0.098 (2.49) MAX  
8
0.005 (0.13) MIN  
14  
0.310 (7.87)  
0.220 (5.59)  
1
7
PIN 1  
0.100 (2.54) BSC  
0.785 (19.94) MAX  
0.320 (8.13)  
0.290 (7.37)  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
MAX  
0.150  
(3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
PLANE  
15°  
0°  
0.070 (1.78)  
0.030 (0.76)  
0.023 (0.58)  
0.014 (0.36)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 50. 14-Lead Ceramic Dual In-Line Package [CERDIP]  
(Q-14)  
Dimensions shown in inches and (millimeters)  
Rev. F | Page 17 of 20  
 
AD713  
10.50 (0.4134)  
10.10 (0.3976)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
0.25 (0.0098)  
1.27 (0.0500)  
BSC  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 51. 16-Lead Standard Small Outline Package [SOIC_W]  
Wide Body  
(RW-16)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model1  
AD713AQ  
AD713JNZ  
AD713JR-16  
AD713JR-16-REEL  
AD713JR-16-REEL7  
AD713JRZ-16  
AD713JRZ-16-REEL  
AD713JRZ-16-REEL7  
Temperature Range  
Package Description  
14-Lead CERDIP  
14-Lead PDIP  
16-Lead SOIC_W  
16-Lead SOIC_W  
16-Lead SOIC_W  
16-Lead SOIC_W  
16-Lead SOIC_W  
16-Lead SOIC_W  
Package Option  
Q-14  
N-14  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
−40°C to +85°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
1 Z = RoHS Compliant Part.  
Rev. F | Page 18 of 20  
 
AD713  
NOTES  
Rev. F | Page 19 of 20  
AD713  
NOTES  
©2002–2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00824-0-7/11(F)  
Rev. F | Page 20 of 20  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY