AD7225BRS [ADI]

LC2MOS Quad 8-Bit DAC with Separate Reference Inputs; LC2MOS四通道8位DAC ,具有独立的基准输入
AD7225BRS
型号: AD7225BRS
厂家: ADI    ADI
描述:

LC2MOS Quad 8-Bit DAC with Separate Reference Inputs
LC2MOS四通道8位DAC ,具有独立的基准输入

转换器 光电二极管
文件: 总24页 (文件大小:400K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LC2MOS Quad 8-Bit DAC  
with Separate Reference Inputs  
AD7225  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
V
A V  
REF  
B V  
REF  
C V  
REF  
D
V
DD  
REF  
Four 8-bit DACs with output amplifiers  
Separate reference input for each DAC  
Microprocessor compatible with double-buffered inputs  
Simultaneous update of all 4 outputs  
Operates with single or dual supplies  
Extended temperature range operation  
No user trims required  
INPUT  
DAC  
DAC A  
DAC B  
DAC C  
DAC D  
A
V
V
V
V
A
B
C
D
OUT  
OUT  
OUT  
OUT  
LATCH A  
LATCH A  
INPUT  
LATCH B  
DAC  
LATCH B  
B
C
D
DB7  
DATA  
(8-BIT)  
INPUT  
LATCH C  
DAC  
LATCH C  
DB0  
Skinny 24-lead PDIP, CERDIP, SOIC, and SSOP packages  
28-lead PLCC package  
INPUT  
LATCH D  
DAC  
LATCH D  
WR  
A1  
A2  
AD7225  
CONTROL  
LOGIC  
LDAC  
V
AGND DGND  
SS  
Figure 1.  
GENERAL DESCRIPTION  
PRODUCT HIGHLIGHTS  
The AD7225 contains four 8-bit voltage output digital-to-  
analog converters, with output buffer amplifiers and interface  
logic on a single monolithic chip. Each DAC has a separate  
reference input terminal. No external trims are required to  
achieve full specified performance for the part.  
1. DACs and Amplifiers on CMOS Chip.  
The single-chip design of four 8-bit DACs and amplifiers  
allows a dramatic reduction in board space requirements  
and offers increased reliability in systems using multiple  
converters. Its pinout is aimed at optimizing board layout  
with all analog inputs and outputs at one end of the  
package and all digital inputs at the other.  
The double-buffered interface logic consists of two 8-bit  
registers per channel—an input register and a DAC register.  
Control Input A0 and Control Input A1 determine which input  
2. Single- or Dual-Supply Operation.  
WR  
The voltage-mode configuration of the AD7225 allows  
single-supply operation. The part can also be operated with  
dual supplies, giving enhanced performance for some  
parameters.  
register is loaded when  
goes low. Only the data held in the  
DAC registers determines the analog outputs of the converters.  
The double-buffering allows simultaneous update of all four  
LDAC  
outputs under control of  
. All logic inputs are TTL and  
CMOS (5 V) level compatible, and the control logic is speed  
compatible with most 8-bit microprocessors.  
3. Versatile Interface Logic.  
The AD7225 has a common 8-bit data bus with individual  
DAC latches, providing a versatile control architecture for  
simple interface to microprocessors. The double-buffered  
interface allows simultaneous update of the four outputs.  
Specified performance is guaranteed for input reference  
voltages from 2 V to 12.5 V when using dual supplies. The part  
is also specified for single-supply operation using a reference of  
10 V. Each output buffer amplifier is capable of developing 10 V  
across a 2 kΩ load.  
4. Separate Reference Input for Each DAC.  
The AD7225 offers great flexibility in dealing with input  
signals, with a separate reference input provided for each  
DAC and each reference having variable input voltage  
capability.  
The AD7225 is fabricated on an all ion-implanted, high speed,  
linear-compatible CMOS (LC2MOS) process, which is  
specifically developed to integrate high speed digital logic  
circuits and precision analog circuitry on the same chip.  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2010 Analog Devices, Inc. All rights reserved.  
 
 
 
 
AD7225  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Digital Inputs Section ...................................................................9  
Interface Logic Information.......................................................... 10  
Ground Management and Layout................................................ 11  
Specification Ranges ...................................................................... 12  
Unipolar Output Operation.......................................................... 13  
Bipolar Output Operation............................................................. 14  
AGND Bias...................................................................................... 15  
AC Reference Signal....................................................................... 16  
Applications Information.............................................................. 17  
Programmable Transversal Filter............................................. 17  
Digital Word Multiplication ..................................................... 18  
Microprocesser Interface............................................................... 19  
VSS Generation ................................................................................ 20  
Outline Dimensions....................................................................... 21  
Ordering Guide .......................................................................... 23  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Single Supply ................................................................................. 4  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
Typical Performance Characteristics ............................................. 7  
Terminology ...................................................................................... 8  
Circuit Information.......................................................................... 9  
Digital-to-Analog Section........................................................... 9  
Op Amp Section ........................................................................... 9  
REVISION HISTORY  
3/10—Rev. B to Rev. C  
Updated Format..................................................................Universal  
Deleted 28-Terminal Leadless Ceramic Chip Carrier  
Package.................................................................................Universal  
Added 24-Lead SSOP Package..........................................Universal  
Changes to Features Section............................................................ 1  
Changes to Table 1............................................................................ 3  
Changes to Table 2............................................................................ 4  
Changes to Table 3............................................................................ 5  
Changes to Pin Configurations and Function Descriptions  
Section................................................................................................ 6  
Added Table 4; Renumbered Sequentially .................................... 6  
Changes to Specification Ranges section .................................... 12  
Changes to Programmable Transversal Filter Section and  
Figure 21 .......................................................................................... 17  
Updated Outline Dimensions....................................................... 21  
Changes to Ordering Guide .......................................................... 23  
Rev. C | Page 2 of 24  
 
AD7225  
SPECIFICATIONS  
VDD = 11.4 V to 16.5 V, VSS = −5 V 10%; AGND = DGND = 0 V; VREFx = +2 V to (VDD − 4 V)1, unless otherwise noted. All specifications  
MIN to TMAX, unless otherwise noted.  
T
Table 1.  
K, B  
L, C  
Parameter  
Versions2  
Versions2  
Unit  
Conditions/Comments  
STATIC PERFORMANCE  
Resolution  
8
8
Bits  
Total Unadjusted Error  
Relative Accuracy  
Differential Nonlinearity  
Full-Scale Error  
Full-Scale Temperature Coefficient  
Zero Code Error  
±2  
±±  
±±  
±±  
±5  
±30  
±±  
±±/2  
±±  
±±/2  
±5  
±20  
±30  
LSB max  
LSB max  
LSB max  
LSB max  
ppm/°C typ  
mV max  
μV/°C typ  
VDD = ±5 V ± 5%, VREF = ±0 V  
Guaranteed monotonic  
VDD = ±4 V to ±6.5 V, VREF = ±0 V  
Zero Code Error Temperature Coefficient ±30  
REFERENCE INPUT  
Voltage Range  
Input Resistance  
Input Capacitance3  
Channel-to-Channel Isolation3  
AC Feedthrough3  
DIGITAL INPUTS  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Leakage Current  
Input Capacitance3  
Input Coding  
2 to (VDD − 4) 2 to (VDD − 4)  
V min to V max  
kΩ min  
pF max  
dB min  
dB max  
±±  
±±  
50  
50  
Occurs when each DAC is loaded with all ±s  
VREF = ±0 V p-p sine wave at ±0 kHz  
VREF = ±0 V p-p sine wave at ±0 kHz  
60  
60  
−70  
−70  
2.4  
0.8  
±±  
2.4  
0.8  
±±  
V min  
V max  
μA max  
pF max  
VIN = 0 V or VDD  
8
8
Binary  
Binary  
DYNAMIC PERFORMANCE  
Voltage Output Slew Rate3  
Voltage Output Settling Time3  
Digital Feedthrough3  
Digital Crosstalk3  
Minimum Load Resistance  
POWER SUPPLIES  
VDD Range  
2.5  
4
50  
50  
2
2.5  
4
50  
50  
2
V/μs min  
μs max  
nV sec typ  
nV sec typ  
kΩ min  
VREF = ±0 V; settling time to ±½ LSB  
Code transition all 0s to all ±s  
Code transition all 0s to all ±s  
VOUT = ±0 V  
±±.4/±6.5  
±±.4/±6.5  
V min to V max For specified performance  
IDD  
ISS  
±0  
9
±0  
9
mA max  
mA max  
Outputs unloaded; VIN = VINL or VINH  
Outputs unloaded; VIN = VINL or VINH  
SWITCHING CHARACTERISTICS3, 4  
t±  
t2  
t3  
t4  
t5  
t6  
50  
0
0
50  
0
50  
50  
0
0
50  
0
50  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
Write pulse width  
Address to write setup time  
Address to write hold time  
Data valid to write setup time  
Data valid to write hold time  
Load DAC pulse width  
± Maximum possible reference voltage.  
2 Temperature range is as follows for all versions: −40°C to +85°C.  
3 Sample tested at 25°C to ensure compliance.  
4 Switching characteristics apply for single-supply and dual-supply operation.  
Rev. C | Page 3 of 24  
 
 
AD7225  
SINGLE SUPPLY  
VDD = 15 V 5%; VSS = AGND = DGND = 0 V; VREFx = 10 V, unless otherwise noted. All specifications TMIN to TMAX  
,
unless otherwise noted.  
Table 2.  
Parameter  
K, B Versions1  
L, C Versions1  
Unit  
Conditions/Comments  
STATIC PERFORMANCE  
Resolution  
8
8
Bits  
Total Unadjusted Error2  
Differential Nonlinearity2  
REFERENCE INPUT  
Voltage Range  
Input Resistance  
Input Capacitance3  
±2  
±±  
±±  
±±  
LSB max  
LSB max  
Guaranteed monotonic  
2 to (VDD − 4)  
±±  
50  
2 to (VDD − 4)  
±±  
50  
60  
V min to V max  
kΩ min  
pF max  
dB min  
dB max  
Occurs when each DAC is loaded with all ±s  
VREF = ±0 V p-p sine wave at ±0 kHz  
VREF = ±0 V p-p sine wave at ±0 kHz  
Channel-to-Channel Isolation2, 3 60  
AC Feedthrough2, 3  
−70  
−70  
DIGITAL INPUTS  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Leakage Current  
Input Capacitance3  
2.4  
0.8  
±±  
2.4  
0.8  
±±  
V min  
V max  
μA max  
pF max  
VIN = 0 V or VDD  
8
8
Input Coding  
Binary  
Binary  
DYNAMIC PERFORMANCE  
Voltage Output Slew Rate3  
2
4
±0  
±0  
2
2
4
±0  
±0  
2
V/μs min  
μs max  
nV sec typ  
nV sec typ  
kΩ min  
Voltage Output Settling Time3  
Digital Feedthrough2, 3  
Digital Crosstalk2, 3  
Minimum Load Resistance  
Code transition all 0s to all ±s  
Code transition all 0s to all ±s  
VOUT = ±0 V  
POWER SUPPLIES  
VDD Range  
IDD  
±4.25/±5.75  
±0  
±4.25/±5.75  
±0  
V min to V max  
mA max  
For specified performance  
Outputs unloaded; VIN = VINL or VINH  
SWITCHING CHARACTERISTICS3  
t±  
t2  
t3  
t4  
t5  
t6  
50  
0
0
50  
0
50  
50  
0
0
50  
0
50  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
Write pulse width  
Address to write setup time  
Address to write hold time  
Data valid to write setup time  
Data valid to write hold time  
Load DAC pulse width  
± Temperature range is as follows for all versions: −40°C to +85°C.  
2 Sample tested at 25°C to ensure compliance.  
3 Switching characteristics apply for single-supply and dual-supply operation.  
Rev. C | Page 4 of 24  
 
 
 
 
AD7225  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
VDD to AGND  
VDD to DGND  
VDD to VSS  
AGND to DGND  
−0.3 V, +±7 V  
−0.3 V, +±7 V  
−0.3 V, +24 V  
−0.3 V, VDD  
Digital Input Voltage to DGND  
VREFx to AGND  
VOUTx to AGND±  
−0.3 V, VDD + 0.3 V  
−0.3 V, VDD + 0.3 V  
VSS, VDD  
ESD CAUTION  
Power Dissipation (Any Package) to 75°C  
Derates Above 75°C by  
Operating Temperature  
Commercial (K, L Versions)  
Industrial (B, C Versions)  
Storage Temperature  
Lead Temperature (Soldering, ±0 sec)  
500 mW  
2.0 mW/°C  
−40°C to +85°C  
−40°C to +85°C  
−65°C to +±50°C  
300°C  
± Outputs can be shorted to any voltage in the range VSS to VDD provided that  
the power dissipation of the package is not exceeded. Typical short-circuit  
current for a short to AGND or VSS is 50 mA.  
Rev. C | Page 5 of 24  
 
 
AD7225  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
4
3
2
1
28 27 26  
V
V
B
A
1
2
3
4
5
6
7
8
9
24  
23  
22  
21  
V
V
V
V
V
C
D
OUT  
OUT  
OUT  
DD  
OUT  
PIN 1  
INDENTFIER  
5
6
25  
24  
23  
22  
21  
20  
V
V
B
A
V
V
C
D
REF  
REF  
V
SS  
REF  
REF  
V
V
B
A
C
D
REF  
REF  
REF  
REF  
7
AGND  
NC  
A0  
AD7225 20  
TOP VIEW  
AD7225  
TOP VIEW  
8
NC  
A1  
AGND  
DGND  
LDAC  
DB7  
19 A0  
(Not to Scale)  
(Not to Scale)  
DGND  
LDAC  
9
18 A1  
10  
WR  
17 WR  
16 DB0  
15 DB1  
14 DB2  
13 DB3  
DB7 11  
19 DB0  
DB6 10  
DB5 11  
DB4 12  
12 13 14 15 16 17 18  
NC = NO CONNECT  
Figure 2. PDIP, SOIC, CERDIP, and SSOP  
Figure 3. PLCC  
Table 4. Pin Function Descriptions  
Pin No.  
PDIP, SOIC,  
CERDIP, SSOP  
PLCC  
Mnemonic  
Description  
±
2
3
2
3
4
VOUT  
VOUT  
VSS  
B
A
DAC Channel B Voltage Output.  
DAC Channel A Voltage Output.  
Negative Power Supply Connection.  
4
5
6
7
5
6
7
9
VREF  
VREF  
B
A
Reference Voltage Connection for DAC Channel B.  
Reference Voltage Connection for DAC Channel A.  
Analog Ground Reference Connection.  
Digital Ground Reference Connection.  
Active Low Load DAC Signal. DAC register data is latched on the rising edge of LDAC.  
AGND  
DGND  
LDAC  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB±  
DB0  
WR  
8
±0  
9
±±  
±2  
±3  
±4  
±6  
±7  
±8  
±9  
Data Bit 7 (Most Significant Data Bit).  
Data Bit 6.  
Data Bit 5.  
Data Bit 4.  
Data Bit 3.  
Data Bit 2.  
Data Bit ±.  
Data Bit 0 (Least Significant Data Bit).  
Active Low Data Write Signal. Input register data is latched on the rising edge of WR.  
DAC Address Select Pin.  
±0  
±±  
±2  
±3  
±4  
±5  
±6  
±7  
±8  
±9  
20  
2±  
22  
23  
24  
N/A  
20  
2±  
23  
24  
25  
26  
27  
28  
A±  
A0  
DAC Address Select Pin.  
VREF  
VREF  
VDD  
VOUT  
VOUT  
NC  
D
C
Reference Voltage Connection for DAC Channel D.  
Reference Voltage Connection for DAC Channel C.  
Positive Power Supply Connection.  
DAC Channel D Voltage Output.  
DAC Channel C Voltage Output.  
No Internal Connection.  
D
C
±, 8, ±5, 22  
Rev. C | Page 6 of 24  
 
AD7225  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VDD = 15 V, VSS = −5 V, unless otherwise noted.  
1.0  
8
7
V
x = 10V  
REF  
6
I
DD  
5
0.5  
0
4
3
2
1
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
I
–0.5  
–1.0  
SS  
0
32  
64  
96  
128  
160  
192  
224  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
INPUT CODE  
TEMPERATURE (°C)  
Figure 4. Channel-to-Channel Matching  
Figure 7. Power Supply Current vs. Temperature  
5
4
1.0  
0.5  
0
V
A
OUT  
3
2
1
0
–1  
–2  
–3  
–4  
–5  
V
D
OUT  
V
C
OUT  
–0.5  
V
B
OUT  
V
1
= 5V  
V
= 12V  
V = 15V  
DD  
DD  
DD  
–1.0  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (°C)  
0
2
3
4
5
6
7
8
9
10 11 12 13  
V
(V)  
REF  
Figure 5. Relative Accuracy vs. VREF  
Figure 8. Zero Code Error vs. Temperature  
0.50  
0.25  
0
100  
90  
300µV  
–0.25  
–0.50  
V
= 5V  
V
= 12V  
V
= 15V  
DD  
DD  
DD  
10  
0%  
0
1
2
3
4
5
6
7
8
9
10 11 12 13  
1ms/DIV  
V
(V)  
REF  
Figure 6. Differential Nonlinearity vs. VREF  
Figure 9. Broadband Noise  
Rev. C | Page 7 of 24  
 
AD7225  
TERMINOLOGY  
Digital Feedthrough  
Total Unadjusted Error  
Digital feedthrough is the glitch impulse transferred to the  
output of the DAC due to a change in its digital input code. It is  
specified in nV sec and is measured at VREF = 0 V.  
Total unadjusted error is a comprehensive specification that  
includes full-scale error, relative accuracy, and zero code error.  
Maximum output voltage is VREF − 1 LSB (ideal), where 1 LSB  
(ideal) is VREF/256. The LSB size varies over the VREF range.  
Therefore, the zero code error, relative to the LSB size, increases  
as VREF decreases. Accordingly, the total unadjusted error, which  
includes the zero code error, also varies in terms of LSB over the  
Digital Crosstalk  
Digital crosstalk is the glitch impulse transferred to the output  
of one converter (not addressed) due to a change in the digital  
input code to another addressed converter. It is specified in nV  
sec and is measured at VREF = 0 V.  
VREF range. As a result, total unadjusted error is specified for a  
fixed reference voltage of 10 V.  
AC Feedthrough  
Relative Accuracy  
AC feedthrough is the proportion of reference input signal that  
appears at the output of a converter when that DAC is loaded  
with all 0s.  
Relative accuracy or endpoint nonlinearity is a measure of the  
maximum deviation from a straight line passing through the  
endpoints of the DAC transfer function. It is measured after  
allowing for zero code error and full-scale error and is normally  
expressed in LSB or as a percentage of full-scale reading.  
Channel-to-Channel Isolation  
Channel-to-channel isolation is the proportion of input signal  
from the reference of one DAC (loaded with all 1s) that appears  
at the output of one of the other three DACs (loaded with all 0s)  
The figure given is the worst case for the three other outputs  
and is expressed as a ratio in dB.  
Differential Nonlinearity  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LSB change between any two adjacent  
codes. A specified differential nonlinearity of 1 LSB maximum  
over the operating temperature range ensures monotonicity.  
Full-Scale Error  
Full-scale error is defined as  
FSE = Measured Value Zero Code Error Ideal Value  
Rev. C | Page 8 of 24  
 
AD7225  
CIRCUIT INFORMATION  
parameters that cannot be achieved with single-supply opera-  
tion. In single-supply operation (VSS = 0 V = AGND), the sink  
capability of the amplifier, which is normally 400 μA, is reduced  
as the output voltage nears AGND. The full sink capability of  
400 μA is maintained over the full output voltage range by tying  
VSS to −5 V. This is shown in Figure 11.  
DIGITAL-TO-ANALOG SECTION  
The AD7225 contains four identical, 8-bit voltage mode digital-  
to-analog converters. Each DAC has a separate reference input.  
The output voltages from the converters have the same polarity  
as the reference voltages, allowing single-supply operation. A novel  
DAC switch pair arrangement on the AD7225 allows a refer-  
ence voltage range from 2 V to 12.5 V on each reference input.  
Settling time for negative-going output signals approaching  
AGND is similarly affected by VSS. Negative-going settling time  
for single-supply operation is longer than for dual-supply opera-  
tion. Positive-going settling time is not affected by VSS.  
500  
Each DAC consists of a highly stable, thin-film, R-2R ladder and  
eight high speed NMOS, single-pole, double-throw switches. The  
simplified circuit diagram for Channel A is shown in Figure 10.  
Note that AGND is common to all four DACs.  
V
T
= +15V  
DD  
= 25°C  
V
= –5V  
SS  
A
400  
300  
200  
100  
0
V A  
OUT  
R
R
R
2R 2R  
DB0  
2R  
2R  
2R  
V
= 0V  
SS  
DB5  
DB6  
DB7  
V
A
REF  
AGND  
SHOWN FOR ALL 1s ON DAC  
Figure 10. Digital-to-Analog Simplified Circuit Diagram  
The input impedance at any of the reference inputs is code  
dependent and can vary from 11 kΩ minimum to infinity. The  
lowest input impedance at any reference input occurs when that  
DAC is loaded with Digital Code 01010101. Therefore, it is  
important that the reference presents a low output impedance  
under changing load conditions. The nodal capacitance at the  
reference terminals is also code dependent and typically varies  
from 15 pF to 35 pF.  
0
2
4
6
8
10  
V
(V)  
OUT  
Figure 11. Variation of ISINK with VOUT  
Additionally, the negative VSS gives more headroom to the  
output amplifiers, which results in better zero code perfor-  
mance and improved slew rate at the output than can be  
obtained in the single-supply mode.  
Each VOUTx pin can be considered a digitally programmable  
voltage source with an output voltage of  
DIGITAL INPUTS SECTION  
V
OUTX = DX × VREFX  
The AD7225 digital inputs are compatible with either TTL or  
5 V CMOS levels. All logic inputs are static protected MOS  
gates with typical input currents of less than 1 nA. Internal  
input protection is achieved by an on-chip distributed diode  
between DGND and each MOS gate. To minimize power supply  
currents, it is recommended that the digital input voltages be  
driven as close to the supply rails (VDD and DGND) as practi-  
cally possible.  
where DX is a fractional representation of the digital input code  
and can vary from 0 to 255/256.  
The output impedance is that of the output buffer amplifier.  
OP AMP SECTION  
Each voltage mode DAC output is buffered by a unity gain  
noninverting CMOS amplifier. This buffer amplifier is capable  
of developing 10 V across a 2 kΩ load and can drive capacitive  
loads of 3300 pF.  
The AD7225 can be operated single or dual supply; operating  
with dual supplies results in enhanced performance in some  
Rev. C | Page 9 of 24  
 
 
 
 
 
 
AD7225  
INTERFACE LOGIC INFORMATION  
TO ALL  
LDAC  
A0  
DAC LATCHES  
The AD7225 contains two registers per DAC, an input register  
and a DAC register. The A0 and A1 address lines select which  
TO INPUT  
LATCH A  
WR  
input register accepts data from the input port. When the  
TO INPUT  
LATCH B  
signal is low, the input latches of the selected DAC are transpa-  
rent. The data is latched into the addressed input register on the  
A1  
TO INPUT  
LATCH C  
WR  
rising edge of  
. Table 5 shows the addressing for the input  
registers on the AD7225.  
TO INPUT  
LATCH D  
WR  
Table 5. AD7225 Addressing  
Figure 12. Input Control Logic  
A1  
A0  
Selected Input Register  
Low  
Low  
High  
High  
Low  
High  
Low  
High  
DAC A  
DAC B  
DAC C  
DAC D  
5V  
0V  
V
V
INH  
INL  
ADDRESS  
t2  
t3  
t1  
5V  
5V  
Only the data held in the DAC register determines the analog  
LDAC  
WR  
output of the converter. The  
signal is common to all four  
t6  
DACs and controls the transfer of information from the input  
registers to the DAC registers. Data is latched into all four DAC  
t5  
LDAC  
t4  
5V  
0V  
LDAC  
LDAC  
registers simultaneously on the rising edge of  
signal is level triggered and therefore the DAC registers can be  
LDAC  
. The  
DATA  
VALID  
DATA IN  
NOTES  
made transparent by tying  
of the converters respond to the data held in their respective  
LDAC  
low (in this case, the outputs  
1. ALL INPUT SIGNAL RISE AND FALL TIMES MEASURED FROM  
10% TO 90% OF 5V.  
tR  
= tF = 20ns OVER V RANGE.  
DD  
2. TIMING MEASUREMENT REFERENCE LEVEL IS  
input latches).  
is an asynchronous signal and is indepen-  
. This is useful in many applications. However, in  
LDAC  
V
+ V  
2
INH  
INL  
WR  
dent of  
systems where the asynchronous  
write cycle (or vice versa), care must be taken to ensure that  
LDAC  
3. IF LDAC IS ACTIVATED PRIOR TO THE RISING EDGE OF WR,  
THEN IT MUST STAY LOW FORt6 OR LONGER AFTER WR  
GOES HIGH.  
can occur during a  
incorrect data is not latched through to the output. If  
is  
occurs during  
WR  
Figure 13. Write Cycle Timing Diagram  
WR WR  
(or  
must stay low for t6 or longer after  
activated prior to the rising edge of  
LDAC LDAC  
),  
goes high  
to ensure correct data is latched through to the output. Table 6  
shows the truth table for AD7225 operation. Figure 12 shows  
the input control logic for the part; the write cycle timing  
diagram is given in Figure 13.  
Table 6. Truth Table  
WR  
LDAC Function  
High High  
Low High  
High  
No operation. Device not selected.  
Input register of selected DAC transparent.  
Input register of selected DAC latched.  
High Low  
All four DAC registers Transparent (that is,  
outputs respond to data held in respective  
input registers). Input registers are latched.  
High  
All four DAC registers latched.  
Low Low  
DAC registers and selected input register  
transparent output follows input data for  
selected channel.  
Rev. C | Page ±0 of 24  
 
 
 
 
 
AD7225  
GROUND MANAGEMENT AND LAYOUT  
Because the AD7225 contains four reference inputs that can be  
driven from ac sources (see the AC Reference Signal section),  
careful layout and grounding is important to minimize analog  
crosstalk between the four channels. The dynamic performance  
of the four DACs depends on the optimum choice of board  
layout. Figure 14 shows the relationship between input fre-  
quency and channel-to-channel isolation. Figure 15 shows a  
printed circuit board layout that minimizes crosstalk and  
feedthrough. The four input signals are screened by AGND.  
SYSTEM  
GND  
PIN 1  
V
V
B
A
V
V
V
V
V
C
D
OUT  
OUT  
OUT  
DD  
OUT  
V
SS  
V
V
B
A
C
D
REF  
REF  
REF  
REF  
AGND  
DGND  
V
REF was limited to between 2 V and 3.24 V to avoid slew rate  
limiting effects from the output amplifier during measurements.  
MSB  
LSB  
V
V
= +15V  
= –5V  
= 25°C  
DD  
SS  
–80  
–70  
–60  
–50  
–40  
–30  
T
A
Figure 15. Suggested PCB Layout for AD7225, Component Side (Top View)  
V
= 1.24V p-p  
REF  
20k  
50k  
100k  
200k  
500k  
1M  
INPUT FREQUENCY (Hz)  
Figure 14. Channel-to-Channel Isolation  
Rev. C | Page ±± of 24  
 
 
 
AD7225  
SPECIFICATION RANGES  
code error, improved output sink capability with outputs near  
AGND, and improved negative-going settling time.  
For the AD7225 to operate to rated specifications, its input  
reference voltage must be at least 4 V below the VDD power  
supply voltage. This voltage differential is the overhead voltage  
required by the output amplifiers.  
Performance is specified over a wide range of reference voltages  
from 2 V to (VDD − 4 V) with dual supplies. This allows a range  
of standard reference generators to be used, such as the AD780,  
a 2.5 V band gap reference, and the AD584, a precision 10 V  
reference. Note that an output voltage range of 0 V to 10 V  
requires a nominal 15 V 5% power supply voltage.  
The AD7225 is specified to operate over a VDD range from 12 V  
5% to 15 V 10% (that is, from 11.4 V to 16.5 V) with a VSS  
of −5 V 10%. Operation is also specified for a single 15 V  
5% VDD supply. Applying a VSS of −5 V results in improved zero-  
Rev. C | Page ±2 of 24  
 
AD7225  
UNIPOLAR OUTPUT OPERATION  
V
A V  
B V  
C V  
D
V
DD  
REF  
REF  
REF  
REF  
This is the basic mode of operation for each channel of the  
AD7225, with the output voltage having the same positive  
polarity as VREFx. The AD7225 can be operated single supply  
(VSS = AGND) or with positive/negative supplies (see the Op  
Amp Section, which outlines the advantages of having negative  
VSS). Connections for the unipolar output operation are shown  
in Figure 16. The voltage at any of the reference inputs must  
never be negative with respect to DGND. Failure to observe this  
precaution may cause parasitic transistor action and possible  
device destruction. The code table for unipolar output  
operation is shown in Table 7.  
DAC A  
DAC B  
DAC C  
DAC D  
DB7  
V
V
V
V
A
OUT  
(MSB)  
DB0  
(LSB)  
B
C
D
OUT  
OUT  
OUT  
WR  
A1  
A2  
LDAC  
AD7225  
Note,  
V
AGND  
DGND  
SS  
1
256  
REF   
1 LSB =  
(
VREF  
)
(
28  
= V  
)
Figure 16. Unipolar Output Circuit  
Table 7. Unipolar Code Table  
DAC Latch Contents  
MSB  
LSB  
Analog Output  
255  
±±±±  
±±±±  
+VREF  
+VREF  
(
(
)
)
256  
129  
256  
±000  
±000  
000±  
0000  
VREF  
2
128  
256  
+VREF  
(
)
= +  
127  
256  
0±±±  
0000  
0000  
±±±±  
000±  
0000  
+VREF  
(
(
)
)
1
+VREF  
256  
0 V  
Rev. C | Page ±3 of 24  
 
 
 
AD7225  
BIPOLAR OUTPUT OPERATION  
V
REF  
Each of the DACs of the AD7225 can be individually confi-  
gured to provide bipolar output operation. This is possible  
using one external amplifier and two resistors per channel.  
Figure 17 shows a circuit used to implement offset binary  
coding (bipolar operation) with DAC A (DAC Channel A)  
of the AD7225. In this case,  
R1  
R2  
V
A
V
DD  
REF  
+15V  
AD7225*  
V
A
V
OUT  
OUT  
DAC A  
–15V  
R1, R2 = 10kΩ ± 0.1%.  
*DIGITAL INPUTS OMITTED  
FOR CLARITY.  
R2  
R1  
R2  
R1  
VOUT = 1+  
×
(
DAVREF  
)
×
(
VREF  
)
V
AGND  
DGND  
SS  
With R1 = R2  
VOUT 2DA 1  
Figure 17. Bipolar Output Circuit  
=
(
)
×
(
VREF  
)
where DA is a fractional representation of the digital word in  
Latch A (0 ≤ DA ≤ 255/256).  
Table 8. Bipolar (Offset Binary) Code Table  
DAC Latch Contents  
Mismatch between R1 and R2 causes gain and offset errors and,  
therefore, these resistors must match and track over tempera-  
ture. The AD7225 can be operated in single supply or from  
positive/negative supplies. Table 8 shows the digital code vs.  
output voltage relationship for the circuit of Figure 17 with  
R1 = R2.  
MSB  
LSB  
Analog Output  
127  
±±±±  
±±±±  
+VREF  
(
(
)
)
128  
1
±000  
000±  
+VREF  
0 V  
128  
±000  
0±±±  
0000  
±±±±  
1
VREF  
(
(
(
)
)
)
128  
127  
128  
0000  
0000  
000±  
0000  
VREF  
VREF  
128  
= 1 VREF  
128  
Rev. C | Page ±4 of 24  
 
 
 
AD7225  
AGND BIAS  
V
A
V
DD  
REF  
The AD7225 AGND pin can be biased above system ground  
(AD7225 DGND) to provide an offset zero analog output  
voltage level. Figure 18 shows a circuit configuration to achieve  
this for DAC Channel A of the AD7225. The output voltage,  
AD7225*  
V
A
OUT  
V
IN  
DAC A  
VOUTA, can be expressed as:  
AGND  
VOUTA = VBIAS + DA(VIN)  
V
V
DGND  
BIAS  
SS  
where DA is a fractional representation of the digital word in  
DAC Latch A (0 ≤ DA ≤ 255/256).  
*DIGITAL INPUTS OMITTED FOR CLARITY.  
Figure 18. AGND Bias Circuit  
For a given VIN, increasing AGND above system ground reduces  
the effective VDD − VREF, which must be at least 4 V to ensure  
specified operation. Note that, because the AGND pin is  
common to all four DACs, this method biases up the output  
voltages of all the DACs in the AD7225. Note that VDD and VSS  
of the AD7225 should be referenced to DGND.  
Rev. C | Page ±5 of 24  
 
 
AD7225  
AC REFERENCE SIGNAL  
+15V  
15kΩ  
10kΩ  
In some applications, it may be desirable to have ac reference  
signals. The AD7225 has multiplying capability within the  
upper (VDD − 4 V) and lower (2 V) limits of reference voltage  
when operated with dual supplies. Therefore, ac signals need to  
be ac-coupled and biased up before being applied to the  
reference inputs. Figure 19 shows a sine wave signal applied to  
+4V  
REFERENCE  
INPUT  
+15V  
–4V  
V
A
V
DD  
REF  
AD7225*  
V
A
OUT  
VREFA. For input signal frequencies up to 50 kHz, the output  
DAC A  
distortion typically remains less than 0.1%. The typical 3 dB  
bandwidth figure for small signal inputs is 800 kHz.  
V
AGND  
DGND  
SS  
*DIGITAL INPUTS OMITTED FOR CLARITY.  
Figure 19. Applying an AC Signal to the AD7225  
Rev. C | Page ±6 of 24  
 
 
AD7225  
APPLICATIONS INFORMATION  
ACCUMULATOR  
OUTPUT  
V
V
V
V
A
B
C
D
OUT  
OUT  
OUT  
OUT  
DELAYED  
INPUT  
FILTER  
OUTPUT  
INPUT  
AD7820  
ADC  
AM29520  
TLC  
AD7225  
AD585  
SHA  
+
QUAD DAC  
SAMPLES  
SAMPLES  
V
V
A
V
V
A
V
V
A
V
A
REF  
REF  
REF  
REF  
h
h
h
h
4
1
2
3
X
1
X
X
X
n
n – 1  
n – 2  
n – 3  
FILTER  
INPUT  
A
A
A
V
A
OUT  
OUT  
OUT  
OUT  
T
T
T
2
3
4
V
h
h
h
h
4
10V  
OUT  
1
2
3
AD584  
REF  
AM7224  
DAC  
AD7225  
QUAD DAC  
V
V
REF  
REF  
+
FILTER  
OUTPUT  
y(n)  
GAIN SET  
TAP WEIGHT  
Figure 20. Programmable Transversal Filter  
0
h
h
h
h
= 0.117  
= 0.417  
= 0.417  
= 0.417  
1
2
3
4
PROGRAMMABLE TRANSVERSAL FILTER  
–10  
A discrete time filter can be described by either multiplication  
in the frequency domain or by convolution in the time domain:  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
N
Y ω = H ω X ω or y = h X  
( ) ( ) ( )  
n
k nk +1  
k=1  
The convolution sum can be implemented using the special struc-  
ture known as the transversal filter (see Figure 21). It consists  
of an N-stage delay line with N taps weighted by N coefficients,  
the resulting products being accumulated to form the output.  
The tap weights or coefficients hk are the nonzero elements of  
the impulse response and therefore determine the filter transfer  
function. A particular filter frequency response is realized by  
setting the coefficients to the appropriate values. This property  
leads to the implementation of transversal filters whose fre-  
quency response is programmable.  
0
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50  
NORMALIZED FREQUENCY (f/f )  
S
Figure 22. Predicted (Theoretical) Response  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
X
X
X
X
X
n
n – 1  
n – 2  
n – N  
n – N + 1  
FILTER  
INPUT  
T
T
T
1
2
3
N –1  
N
h
h
h
h
h
N
1
2
3
N – 1  
h
h
h
h
(DAC A) = 00011110  
(DAC B) = 01101011  
(DAC C) = 01101011  
(DAC D) = 00011110  
1
2
3
4
+
FILTER  
OUTPUT  
N
h
X
n – k + 1  
y
=
k
n
k = 1  
Figure 21. Transversal Filter  
A four-tap programmable transversal filter can be implemented  
using the AD7225 (see Figure 20). The input signal is first sampled  
and converted to allow the tapped delay line function to be  
provided by the AM29520. The multiplication of delayed input  
samples by fixed, programmable up weights is accomplished by  
the AD7225, the four coefficients or reference inputs being set  
by the digital codes stored in the AD7226. The resultant products  
are accumulated to yield the convolution sum output sample,  
which is held by the AD585.  
0
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50  
FREQUENCY (f/f )  
S
Figure 23. Actual Response  
Low-pass, band-pass, and high-pass filters can be synthesized  
using this arrangement. The particular up weights needed for  
any desired transfer function can be obtained using the standard  
Remez exchange algorithm. Figure 22 shows the theoretical  
low-pass frequency response produced by a four-tap transversal  
filter with the coefficients indicated. Although the theoretical  
prediction does not take into account the quantization of the  
input samples and the truncation of the coefficients, neverthe-  
Rev. C | Page ±7 of 24  
 
 
 
 
 
 
AD7225  
less, there exists a good correlation with the actual performance  
of the transversal filter (see Figure 23).  
15V  
25kΩ  
50kΩ  
33kΩ  
50kΩ  
100kΩ  
V
DD  
100kΩ  
DIGITAL WORD MULTIPLICATION  
AD7225*  
V
V
V
V
V
A
V
V
V
V
A
B
C
D
IN  
REF  
REF  
REF  
REF  
OUT  
OUT  
OUT  
OUT  
Because each DAC of the AD7225 has a separate reference input,  
the output of one DAC can be used as the reference input for  
another. This means that multiplication of digital words can be  
performed (with the result given in analog form). For example,  
if the output from DAC A is applied to VREFB, then the output  
from DAC B, VOUTB, can be expressed as:  
Y
B
C
D
AGND DGND  
V
SS  
VOUTB = DA × DB × VREF  
A
where DA and DB are the fractional representations of the digital  
words in DAC Latch A and DAC Latch B, respectively.  
*DIGITAL INPUTS OMITTED FOR CLARITY.  
Figure 24. Complex Waveform Generation  
If DA = DB = D, the result is D2 × VREFA.  
In this manner, the four DACs can be used on their own or in  
conjunction with an external summing amplifier to generate  
complex waveforms. Figure 24 shows one such application.  
In this case, the output waveform, Y, is represented by  
Y = −(x4 + 2x3 + 3x2 + 2x + 4) × VIN  
where x is the digital code that is applied to all four DAC  
latches.  
Rev. C | Page ±8 of 24  
 
 
AD7225  
MICROPROCESSER INTERFACE  
A15  
A15  
A8  
ADDRESS BUS  
ADDRESS BUS  
A8  
A0  
A1  
A0  
A1  
LDAC  
Z-80  
8085A/  
8088  
ADDRESS  
DECODE  
LDAC  
ADDRESS  
DECODE  
AD7225*  
WR  
AD7225*  
EN  
MREQ  
WR  
WR  
WR  
LATCH  
EN  
DB7  
DB0  
DB7  
DB0  
ALE  
D7  
D0  
AD7  
AD0  
DATA BUS  
*LINEAR CIRCUITRY OMITTED FOR CLARITY.  
ADDRESS DATA BUS  
*LINEAR CIRCUITRY OMITTED FOR CLARITY.  
Figure 25. AD7225-to-8085A/8088 Interface, Double-Buffered Mode  
Figure 26. AD7225-to-Z-80 Interface, Double-Buffered Mode  
A23  
A15  
ADDRESS BUS  
ADDRESS BUS  
A0  
A1  
A0  
A1  
A0  
A1  
ADDRESS  
DECODE  
6809/  
68008  
AS  
ADDRESS  
6502  
AD7225*  
DECODE  
LDAC  
EN  
AD7225*  
WR  
WR  
EN  
R/W  
DTACK  
R/W  
LDAC  
E OR Φ2  
DB7  
DB0  
DB7  
DB0  
D7  
D0  
D7  
D0  
DATA BUS  
*LINEAR CIRCUITRY OMITTED FOR CLARITY.  
DATA BUS  
*LINEAR CIRCUITRY OMITTED FOR CLARITY.  
Figure 27. AD7225-to-6809/6502 Interface, Single-Buffered Mode  
Figure 28. AD7225-to-68008 Interface, Single-Buffered Mode  
Rev. C | Page ±9 of 24  
 
AD7225  
VSS GENERATION  
1/6  
CD4049AE  
Operating the AD7225 from dual supplies results in enhanced  
performance over single-supply operation on a number of  
parameters as previously outlined. Some applications may  
require this enhanced performance, but may only have a single  
power supply rail available. The circuit of Figure 29 shows a  
method of generating a negative voltage using one CD4049,  
operated from a VDD of 15 V. Two inverters of the hex inverter  
chip are used as an oscillator. The other four inverters are in  
parallel and used as buffers for higher output current. The  
square wave output is level translated to a negative-going signal,  
then rectified and filtered. The circuit configuration shown  
provides an output voltage of −5.1 V for current loadings in the  
range of 0.5 mA to 9 mA. This satisfies the AD7225 ISS require-  
ment over the commercial operating temperature range.  
1/6  
1/6  
1/6  
CD4049AE  
CD4049AE  
CD4049AE  
1/6  
CD4049AE  
510kΩ  
5.1kΩ  
1/6  
CD4049AE  
+
0.02µF  
47µF  
510Ω  
–V  
OUT  
1N4001  
1N4001  
+
47µF  
5V1  
Figure 29. VSS Generation Circuit  
Rev. C | Page 20 of 24  
 
 
AD7225  
OUTLINE DIMENSIONS  
1.280 (32.51)  
1.250 (31.75)  
1.230 (31.24)  
24  
1
13  
12  
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 30. 24-Lead Plastic Dual In-Line Package [PDIP]  
Narrow Body  
(N-24-1)  
Dimensions shown in inches and (millimeters)  
0.098 (2.49)  
MAX  
0.005 (0.13)  
MIN  
0.310 (7.87)  
0.220 (5.59)  
24  
13  
12  
1
PIN 1  
0.060 (1.52)  
0.015 (0.38)  
0.320 (8.13)  
0.200 (5.08)  
1.280 (32.51) MAX  
MAX  
0.290 (7.37)  
0.150 (3.81)  
MIN  
0.015 (0.38)  
0.008 (0.20)  
15°  
0°  
0.200 (5.08)  
0.125 (3.18)  
SEATING  
PLANE  
0.100  
(2.54)  
BSC  
0.070 (1.78)  
0.030 (0.76)  
0.023 (0.58)  
0.014 (0.36)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 31. 24-Lead Ceramic Dual In-Line Package [CERDIP]  
Narrow Body  
(Q-24-1)  
Dimensions shown in inches and (millimeters)  
Rev. C | Page 21 of 24  
 
AD7225  
0.180 (4.57)  
0.165 (4.19)  
0.048 (1.22)  
0.042 (1.07)  
0.056 (1.42)  
0.042 (1.07)  
0.020 (0.51)  
MIN  
4
5
26  
25  
0.048 (1.22)  
0.042 (1.07)  
0.021 (0.53)  
0.013 (0.33)  
PIN 1  
IDENTIFIER  
BOTTOM  
VIEW  
(PINS UP)  
0.050  
(1.27)  
BSC  
0.430 (10.92)  
0.390 (9.91)  
TOP VIEW  
(PINS DOWN)  
0.032 (0.81)  
0.026 (0.66)  
11  
12  
19  
18  
0.045 (1.14)  
0.025 (0.64)  
R
0.456 (11.582)  
0.450 (11.430)  
SQ  
0.120 (3.04)  
0.090 (2.29)  
0.495 (12.57)  
SQ  
0.485 (12.32)  
COMPLIANT TO JEDEC STANDARDS MO-047-AB  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 32. 28-Lead Plastic Leaded Chip Carrier [PLCC]  
(P-28)  
Dimensions shown in inches and (millimeters)  
15.60 (0.6142)  
15.20 (0.5984)  
24  
1
13  
12  
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
0.25 (0.0098)  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)ꢀ  
BSC  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AD  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 33. 24-Lead Standard Small Outline Package [SOIC_W]  
Wide Body  
(RW-24)  
Dimensions shown in millimeters and (inches)  
Rev. C | Page 22 of 24  
AD7225  
8.50  
8.20  
7.90  
13  
12  
24  
5.60  
5.30  
5.00  
8.20  
7.80  
7.40  
1
0.25  
0.09  
1.85  
1.75  
1.65  
2.00 MAX  
8°  
4°  
0°  
0.95  
0.75  
0.55  
0.38  
0.22  
0.05 MIN  
SEATING  
PLANE  
COPLANARITY  
0.10  
0.65 BSC  
COMPLIANT TO JEDEC STANDARDS MO-150-AG  
Figure 34. 24-Lead Shrink Small Outline Package [SSOP]  
(RS-24)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1, 2  
AD7225BQ  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Total Unadjusted Error  
±2 LSB  
±2 LSB  
±2 LSB  
±2 LSB  
±± LSB  
±± LSB  
±± LSB  
±± LSB  
±2 LSB  
±2 LSB  
±2 LSB  
±2 LSB  
±2 LSB  
±2 LSB  
±2 LSB  
±2 LSB  
±2 LSB  
±± LSB  
±± LSB  
±± LSB  
±± LSB  
±± LSB  
±± LSB  
±± LSB  
±± LSB  
±± LSB  
±± LSB  
Package Description  
24-Lead CERDIP  
24-Lead SSOP  
24-Lead SSOP  
24-Lead SSOP  
24-Lead SSOP  
24-Lead SSOP  
24-Lead SSOP  
24-Lead SSOP  
24-Lead PDIP  
Package Option  
Q-24-±  
RS-24  
RS-24  
RS-24  
RS-24  
RS-24  
RS-24  
RS-24  
N-24-±  
N-24-±  
P-28  
AD7225BRS  
AD7225BRS-REEL  
AD7225BRSZ  
AD7225CRS  
AD7225CRS-REEL  
AD7225CRSZ  
AD7225CRSZ-RL  
AD7225KN  
AD7225KNZ  
AD7225KP  
AD7225KP-REEL  
AD7225KPZ  
AD7225KR  
AD7225KR-REEL  
AD7225KRZ  
AD7225KRZ-REEL  
AD7225LN  
AD7225LNZ  
AD7225LP  
AD7225LP-REEL  
AD7225LPZ  
AD7225LPZ-REEL  
AD7225LR  
AD7225LR-REEL  
AD7225LRZ  
AD7225LRZ-REEL  
24-Lead PDIP  
28-Lead PLCC  
28-Lead PLCC  
28-Lead PLCC  
24-Lead SOIC_W  
24-Lead SOIC_W  
24-Lead SOIC_W  
24-Lead SOIC_W  
24-Lead PDIP  
P-28  
P-28  
RW-24  
RW-24  
RW-24  
RW-24  
N-24-±  
N-24-±  
P-28  
P-28  
P-28  
P-28  
24-Lead PDIP  
28-Lead PLCC  
28-Lead PLCC  
28-Lead PLCC  
28-Lead PLCC  
24-Lead SOIC_W  
24-Lead SOIC_W  
24-Lead SOIC_W  
24-Lead SOIC_W  
RW-24  
RW-24  
RW-24  
RW-24  
± To order MIL-STD-883 processed parts, add /883B to part number. Contact your local sales office for military data sheet.  
2 Z = RoHS Compliant Part.  
Rev. C | Page 23 of 24  
 
AD7225  
NOTES  
©2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00986-0-3/10(C)  
Rev. C | Page 24 of 24  

相关型号:

AD7225BRS-REEL

LC2MOS Quad 8-Bit DAC with Separate Reference Inputs
ADI

AD7225BRSZ

LC2MOS Quad 8-Bit DAC with Separate Reference Inputs
ADI

AD7225CQ

LC2MOS Quad 8-Bit DAC with Separate Reference Inputs
ADI

AD7225CQ

D/A Converter, 4 Func, CDIP24
MAXIM

AD7225CRS

LC2MOS Quad 8-Bit DAC with Separate Reference Inputs
ADI

AD7225CRS-REEL

LC2MOS Quad 8-Bit DAC with Separate Reference Inputs
ADI

AD7225CRSZ

LC2MOS Quad 8-Bit DAC with Separate Reference Inputs
ADI

AD7225CRSZ-RL

LC2MOS Quad 8-Bit DAC with Separate Reference Inputs
ADI

AD7225KC/D

D/A Converter, 4 Func
MAXIM

AD7225KCWG

D/A Converter, 4 Func, PDSO24
MAXIM

AD7225KN

LC2MOS Quad 8-Bit DAC with Separate Reference Inputs
ADI

AD7225KN

D/A Converter, 4 Func, PDIP24,
MAXIM