AD7228LP [ADI]

LC2MOS Octal 8-Bit DAC; LC2MOS八路8位DAC
AD7228LP
型号: AD7228LP
厂家: ADI    ADI
描述:

LC2MOS Octal 8-Bit DAC
LC2MOS八路8位DAC

转换器 数模转换器 信息通信管理
文件: 总8页 (文件大小:169K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2
LC MOS  
Octal 8-Bit DAC  
a
AD7228A  
FEATURES  
FUNCTIO NAL BLO CK D IAGRAM  
Eight 8-Bit DACs w ith Output Am plifiers  
Operates w ith Single +5 V, +12 V or +15 V  
or Dual Supplies  
P Com patible (95 ns WR Pulse)  
No User Trim s Required  
Skinny 24-Pin DlPs, SOIC, and 28-Term inal Surface  
Mount Packages  
GENERAL D ESCRIP TIO N  
T he AD7228A contains eight 8-bit voltage-mode digital-to-  
analog converters, with output buffer amplifiers and interface  
logic on a single monolithic chip. No external trims are required  
to achieve full specified performance for the part.  
P RO D UCT H IGH LIGH TS  
1. Eight DACs and Amplifiers in Small Package  
T he single-chip design of eight 8-bit DACs and amplifiers al-  
lows a dramatic reduction in board space requirements and  
offers increased reliability in systems using multiple convert-  
ers. Its pinout is aimed at optimizing board layout with all  
analog inputs and outputs at one side of the package and all  
digital inputs at the other.  
Separate on-chip latches are provided for each of the eight D/A  
converters. Data is transferred into the data latches through a  
common 8-bit T T L/CMOS (5 V) compatible input port. Ad-  
dress inputs A0, A1 and A2 determine which latch is loaded  
when WR goes low. T he control logic is speed compatible with  
most 8-bit microprocessors.  
2. Single or Dual Supply Operation  
Specified performance is guaranteed for input reference voltages  
from +2 to +10 V when using dual supplies. T he part is also  
specified for single supply +15 V operation using a reference of  
+10 V and single supply +5 V operation using a reference of  
+1.23 V. Each output buffer amplifier is capable of developing  
+10 V across a 2 kload.  
T he voltage-mode configuration of the DACs allows single  
supply operation of the AD7228A. T he part can also be oper-  
ated with dual supplies giving enhanced performance for  
some parameters.  
3. Microprocessor Compatibility  
T he AD7228A has a common 8-bit data bus with individual  
DAC latches, providing a versatile control architecture for  
simple interface to microprocessors. All latch enable signals  
are level triggered and speed compatible with most high per-  
formance 8-bit microprocessors.  
T he AD7228A is fabricated on an all ion-implanted, high-  
speed, Linear Compatible CMOS (LC2MOS) process which has  
been specifically developed to integrate high-speed digital logic  
circuits and precision analog circuits on the same chip.  
REV. A  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700  
Fax: 617/ 326-8703  
AD7228ASPECIFICATIONS  
1
(V = 10.8 V to 16.5 V; V = 5 V ؎ 10%; GND = 0 V; V = +2 V to +10 V ; R = 2 k, C = 100 pF unless otherwise  
DD  
SS  
REF  
L
L
noted.) All specifications TMIN to TMAX unless otherwise noted.  
DUAL SUPPLY  
B
C
T
U
P aram eter  
Version2  
Version  
Version  
Version  
Units  
Conditions/Com m ents  
ST AT IC PERFORMANCE  
Resolution  
8
8
±1  
±1/2  
±1  
8
8
±1  
±1/2  
±1  
Bits  
T otal Unadjusted Error3  
Relative Accuracy  
Differential Nonlinearity  
Full-Scale Error4  
±2  
±1  
±1  
±1  
±2  
±1  
±1  
±1  
LSB max  
LSB max  
LSB max  
LSB max  
VDD = +15 V ± 10%, VREF = +10 V  
Guaranteed Monotonic  
T ypical tempco is 5 ppm/°C with VREF = +10 V  
±1/2  
±1/2  
Zero Code Error  
@ 25°C  
T MIN to T MAX  
Minimum Load Resistance  
±25  
±30  
2
±15  
±20  
2
±25  
±30  
2
±15  
±20  
2
mV max  
mV max  
kmin  
T ypical tempco is 30 µV/°C  
VOUT = +10 V  
REFERENCE INPUT  
Voltage Range1  
Input Resistance  
Input Capacitance5  
AC Feedthrough  
2 to 10  
2
500  
–70  
2 to 10  
2
500  
–70  
2 to 10  
2
500  
–70  
2 to 10  
2
500  
–7 0  
V min/V max  
kmin  
pF max  
Occurs when each DAC is loaded with all 1s.  
VREF = 8 V p-p Sine Wave @ 10 kHz  
dB typ  
DIGIT AL INPUT S  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Leakage Current  
Input Capacitance5  
Input Coding  
2.4  
0.8  
±1  
2.4  
0.8  
±1  
2.4  
0.8  
±1  
2.4  
0.8  
±1  
V min  
V max  
µA max  
pF max  
VIN = 0 V or VDD  
8
8
8
8
Binary  
Binary  
Binary  
Binary  
DYNAMIC PERFORMANCE5  
Voltage Output Slew Rate  
Voltage Output Settling T ime  
Positive Full-Scale Change  
Negative Full-Scale Change  
Digital Feedthrough  
2
2
2
2
V/µs min  
5
5
50  
50  
5
5
50  
50  
5
5
50  
50  
5
5
50  
50  
µs max  
µs max  
nV secs typ  
nV secs typ  
VREF = +10 V; Settling T ime to ±1/2 LSB  
VREF = +10 V; Settling T ime to ±1/2 LSB  
Code transition all 0s to all 1s. VREF = 0 V; WR = VDD  
Code transition all 0s to all 1s. VREF = +10 V; WR = 0 V  
Digital Crosstalk6  
POWER SUPPLIES  
VDD Range  
VSS Range  
IDD  
10.8/16.5  
–4.5/–5.5  
10.8/16.5 10.8/16.5 10.8/16.5  
–4.5/–5.5 –4.5/–5.5 –4.5/–5.5  
V min/V max  
V min/V max  
For Specified Performance  
For Specified Performance  
Outputs Unloaded; VIN = VINL or VINH  
@ 25°C  
T MIN to T MAX  
16  
20  
16  
20  
16  
22  
16  
22  
mA max  
mA max  
ISS  
Outputs Unloaded; VIN = VINL or VINH  
@ 25°C  
T MIN to T MAX  
14  
18  
14  
18  
14  
20  
14  
20  
mA max  
mA max  
(V = +15 V ؎ 10%, V ; = GND = 0 V; V = +10 V, R = 2 k, C = 100 pF unless otherwise noted.)  
DD  
SS  
REF  
L
L
SINGLE SUPPLY  
AII specifications TMIN to TMAX unless otherwise noted.  
ST AT IC PERFORMANCE  
Resolution  
8
8
8
8
Bits  
T otal Unadjusted Error3  
Differential Nonlinearity  
Minimum Load Resistance  
±2  
±1  
2
±1  
±1  
2
±2  
±1  
2
±1  
±1  
2
LSB max  
LSB max  
kmin  
Guaranteed Monotonic  
VOUT = +10 V  
REFERENCE INPUT  
Input Resistance  
2
500  
2
500  
2
500  
2
500  
kmin  
pF max  
Input Capacitance5  
Occurs when each DAC is loaded with all 1s.  
DIGIT AL INPUT S  
As per Dual Supply Specifications  
DYNAMIC PERFORMANCE5  
Voltage Output Slew Rate  
Voltage Output Settling T ime  
Positive Full-Scale Change  
Negative Full-Scale Change  
Digital Feedthrough  
2
2
2
2
V/µs min  
5
7
50  
50  
5
7
50  
50  
5
7
50  
50  
5
7
50  
50  
µs max  
µs max  
nV secs typ  
nV secs typ  
Settling T ime to ±1/2 LSB  
Settling T ime to ±1/2 LSB  
Code transition all 0s to all 1s. VREF = 0 V; WR = VDD  
Code transition all 0s to all 1s. VREF = +10 V, WR = 0 V  
Digital Crosstalk6  
POWER SUPPLIES  
VDD Range  
IDD  
13.5/16.5  
13.5/16.5 13.5/16.5 13.5/16.5  
V min/V max  
For Specified Performance  
Outputs Unloaded; VIN = VINL or VINH  
@ 25°C  
T MIN to T MAX  
16  
20  
16  
20  
16  
22  
16  
22  
mA max  
mA max  
NOT ES  
1VOUT must be less than VDD by 3.5 V to ensure correct operation.  
5Sample tested at 25°C to ensure compliance.  
2T emperature ranges are as follows:  
6T he glitch impulse transferred to the output of one converter (not addressed) due to a  
change in the digital input code to another addressed converter.  
B, C Versions; –40°C to +85°C  
T , U Versions; –55°C to +125°C  
3T otal Unadjusted Error includes zero code error, relative accuracy and full-scale error.  
4Calculated after zero code error has been adjusted out.  
Specifications subject to change without notice.  
–2–  
REV. A  
AD7228A  
(V = +5 V ؎ 5%, V ; = 0 to –5 V ؎ 10%, GND = 0 V, V = +1.25 V, R = 2 k, C = 100 pF  
DD  
SS  
REF  
L
L
+5 V SUPPLY OPERATION  
unless otherwise noted.) AII specifications TMIN to TMAX unless otherwise noted.  
B
C
T
U
P aram eter  
Version  
Version  
Version  
Version  
Units  
Conditions/Com m ents  
ST AT IC PERFORMANCE  
Resolution  
8
8
8
8
Bits  
Relative Accuracy  
Differential Nonlinearity  
Full-Scale Error  
Zero Code Error  
@ 25°C  
±2  
±1  
±4  
±2  
±1  
±2  
±2  
±1  
±4  
±2  
±1  
±2  
LSB max  
LSB max  
LSB max  
Guaranteed Monotonic  
±30  
±40  
±20  
±30  
±30  
±40  
±20  
±30  
mV max  
mV max  
T MIN to T MAX  
REFERENCE INPUT  
Reference Input Range  
1.2  
1.3  
2
1.2  
1.3  
2
1.2  
1.3  
2
1.2  
1.3  
2
V min  
V max  
kmin  
pF max  
Reference Input Resistance  
Reference Input Capacitance  
500  
500  
500  
500  
POWER REQUIREMENT S  
Positive Supply Range  
Positive Supply Current  
@ 25°C  
4.75/5.25  
4.75/5.25  
4.75/5.25  
4.75/5.25  
V min/V max  
For Specified Performance  
16  
20  
16  
20  
16  
22  
16  
22  
µA max  
µA max  
T MIN to T MAX  
Negative Supply Current  
@ 25°C  
T MIN to T MAX  
14  
18  
14  
18  
14  
20  
14  
20  
µA max  
µA max  
NOT ES  
All of the specifications as per Dual Supply Specifications except for negative full-scale settling-time when VSS = 0 V.  
Specifications subject to change without notice.  
1, 2  
SWITCHING CHARACTERISTICS  
(See Figures 1, 2; V = +5 V ؎ 5% or +10.8 V to +16.5 V; V = 0 V or –5 V ؎ 10%)  
DD  
SS  
Lim it at 25°C  
Lim it at TMIN, TMAX  
(B, C Versions)  
Lim it at TMIN, TMAX  
(T, U Versions)  
P aram eters  
All Grades  
Units  
Conditions/Com m ents  
t1  
t2  
t3  
t4  
t5  
0
0
70  
10  
95  
0
0
90  
10  
120  
0
0
100  
10  
ns min  
ns min  
ns min  
ns min  
ns min  
Address to WR Setup T ime  
Address to WR Hold T ime  
Data Valid to WR Setup T ime  
Data Valid to WR Hold T ime  
Write Pulse Width  
150  
NOT ES  
1Sample tested at 25°C to ensure compliance. All input rise and fall times measured from 10% to 90% of +5 V, tR = tF = 5 ns.  
VINH +VINL  
2T iming measurement reference level is  
2
INTERFACE LO GIC INFO RMATIO N  
Address lines A0, A1 and A2 select which DAC accepts data  
from the input port. T able I shows the selection table for the  
eight DACs with Figure 1 showing the input control logic.  
When the WR signal is low, the input latch of the selected DAC  
is transparent, and its output responds to activity on the data  
bus. T he data is latched into the addressed DAC latch on the  
rising edge of WR. While WR is high, the analog outputs remain  
at the value corresponding to the data held in their respective  
latches.  
Table I. AD 7228A Truth Table  
AD 7228A Control Inputs  
AD 7228A  
O peration  
Figure 1. Input Control Logic  
WR  
A2  
A1  
A0  
H
X
X
X
No Operation  
Device Not Selected  
DAC 1 T ransparent  
DAC 1 Latched  
DAC 2 T ransparent  
DAC 3 T ransparent  
DAC 4 T ransparent  
DAC 5 T ransparent  
DAC 6 T ransparent  
DAC 7 T ransparent  
DAC 8 T ransparent  
L
g
L
L
L
L
L
L
L
L
L
L
L
L
H
H
H
H
L
L
L
H
H
L
L
H
H
L
L
H
L
H
L
H
L
H
H = High State L = Low State X = Don’t Care  
Figure 2. Write Cycle Tim ing Diagram  
–3–  
REV. A  
AD7228A  
ABSO LUTE MAXIMUM RATINGS1  
Extended . . . . . . . . . . . . . . . . . . . . . . . . . –55°C to +125°C  
Storage T emperature . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Lead T emperature (Soldering, 10 secs) . . . . . . . . . . . +300°C  
VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V, +17 V  
VDD to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V, +24 V  
Digital Input Voltage to GND . . . . . . . . . . . . . . . –0.3 V, VDD  
VREF to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3V, VDD  
VOUT to GND2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VSS, VDD  
Power Dissipation (Any Package) to +75°C . . . . . . . 1000 mW  
Derates above 75°C by . . . . . . . . . . . . . . . . . . . . 2.0 mW/°C  
Operating T emperature  
NOT ES  
1Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. T his is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in the  
operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2Outputs may be shorted to any voltage in the range VSS to VDD provided that the  
power dissipation of the package is not exceeded. T ypical short circuit current for  
a short to GND or VSS is 50 mA.  
Commercial . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
Industrial . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD7228A features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. T herefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
P IN CO NFIGURATIO NS  
D IP AND SO IC P LCC  
CIRCUIT INFO RMATIO N  
D /A SECTIO N  
T he AD7228A contains eight identical, 8-bit, voltage-mode  
digital-to-analog converters. T he output voltages from the con-  
verters have the same polarity as the reference voltage, allowing  
single supply operation. A novel DAC switch pair arrangement  
on the AD7228A allows a reference voltage range from +2 V to  
+10 V when operated from a VDD of +15 V. Each DAC consists  
of a highly stable, thin-film, R-2R ladder and eight high-speed  
NMOS switches. T he simplified circuit diagram for one channel  
is shown in Figure 3. Note that VREF and GND are common to  
all eight DACs.  
O RD ERING GUID E  
Total  
Unadjusted  
Error (LSB) O ption2  
Tem perature  
Range  
P ackage  
Model1  
Figure 3. D/A Sim plified Circuit Diagram  
AD7228ABN  
AD7228ACN  
AD7228ABP  
AD7228ACP  
AD7228ABR  
AD7228ACR  
AD7228ABQ  
AD7228ACQ  
AD7228AT Q3  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–55°C to +125°C  
±2 max  
±1 max  
±2 max  
±1 max  
±2 max  
±1 max  
±2 max  
±1 max  
±2 max  
±1 max  
N-24  
N-24  
P-28A  
P-28A  
R-24  
R-24  
Q-24  
Q-24  
Q-24  
Q-24  
T he input impedance at the VREF pin of the AD7228A is the  
parallel combination of the eight individual DAC reference in-  
put impedances. It is code dependent and can vary from 2 kto  
infinity. T he lowest input impedance occurs when all eight  
DACs are loaded with digital code 01010101. T herefore, it is  
important that the external reference source presents a low out-  
put impedance to the VREF terminal of the AD7228A under  
changing load conditions. Due to transient currents at the refer-  
ence input during digital code changes a 0.1 µF (or greater)  
decoupling capacitor is recommended on the VREF input for dc  
applications. T he nodal capacitance at the reference terminal is  
also code dependent and typically varies from 120 pF to  
350 pF.  
AD7228AUQ3 –55°C to +125°C  
NOT ES  
1T o order MIL-ST D-883, Class B processed parts, add /883B to part number.  
Contact your local sales office for military data sheet and availability.  
2N = Plastic DIP; P = Plastic Leaded Chip Carrier (PLCC); Q = Cerdip;  
R = Small Outline IC (SOIC).  
Each VOUT pin can be considered as a digitally programmable  
voltage source with an output voltage:  
3T hese grades will be available to /883B processing only.  
VOUTN = DN • VREF  
where DN is a fractional representation of the digital input  
code and can vary from 0 to 255/256.  
T he output impedance is that of the output buffer amplifier as  
described in the following section.  
–4–  
REV. A  
AD7228A  
O P AMP SECTIO N  
SUP P LY CURRENT  
Each voltage-mode D/A converter output is buffered by a unity  
gain noninverting CMOS amplifier. T his buffer amplifier is  
tested with a 2 kand 100 pF load but will typically drive a  
2 kand 500 pF load.  
T he AD7228A has a maximum IDD specification of 22 mA and  
a maximum ISS of 20 mA over the –55°C to +125°C tempera-  
ture range. T his maximum current specification is actually de-  
termined by the current at –55°C. Figure 6 shows a typical plot  
of power supply current versus temperature.  
T he AD7228A can be operated single or dual supply. Operating  
the part from single or dual supplies has no effect on the positive-  
going settling time. However, the negative-going settling time to  
voltages near 0 V in single supply will be slightly longer than the  
settling time for dual supply operation. Additionally, to ensure  
that the output voltage can go to 0 V in single supply, a transis-  
tor on the output acts as a passive pull-down as the output volt-  
age nears 0 V. As a result, the sink capability of the amplifier is  
reduced as the output voltage nears 0 V in single supply. In dual  
supply operation, the full sink capability of 400 µA at 25°C is  
maintained over the entire output voltage range. T he single sup-  
ply output sink capability is shown in Figure 4. T he negative  
VSS also gives improved output amplifier performance allowing  
an extended input reference voltage range and giving improved  
slew rate at the output.  
Figure 6. Power Supply Current vs. Tem perature  
AP P LYING TH IS AD 7228A  
UNIP O LAR O UTP UT O P ERATIO N  
T his is the basic mode of operation for each channel of the  
AD7228A, with the output voltage having the same positive po-  
larity as VREF. Connections for unipolar output operation are  
shown in Figure 7. T he AD7228A can be operated from single  
or dual supplies as outlined earlier. T he voltage at the reference  
input must never be negative with respect to GND. Failure to  
observe this precaution may cause parasitic transistor action and  
possible device destruction. T he code table for unipolar output  
operation is shown in T able II.  
Figure 4. Single Supply Sink Current  
T he output broadband noise from the amplifier is 300 µV  
peak-to-peak. Figure 5 shows a plot of noise spectral density  
versus frequency.  
Figure 5. Noise Spectral Density vs. Frequency  
D IGITAL INP UTS  
T he AD7228A digital inputs are compatible with either T T L or  
5 V CMOS levels. All logic inputs are static-protected MOS  
gates with typical input currents of less than 1 nA. Internal in-  
put protection is achieved by on-chip distributed diodes.  
Figure 7. Unipolar Output Circuit  
–5–  
REV. A  
AD7228A  
Table II. Unipolar Code Table  
Mismatch between R1 and R2 causes gain and offset errors, and  
therefore, these resistors must match and track over temperature.  
D AC Latch Contents  
Once again, the AD7228A can be operated from single supply  
or from dual supplies. T able III shows the digital code versus  
output voltage relationship for the circuit of Figure 8 with  
R1 = R2.  
MSB  
LSB  
Analog O utput  
255  
+VREF  
1 1 1 1  
1 0 0 0  
1 0 0 0  
0 1 1 1  
0 0 0 0  
0 0 0 0  
1 1 1 1  
0 0 0 1  
0 0 0 0  
1 1 1 1  
0 0 0 1  
0 0 0 0  
256  
129  
256  
+VREF  
AC REFERENCE SIGNAL  
VREF  
2
128  
In some applications it may be desirable to have an ac signal ap-  
plied as the reference input to the AD7228A. T he AD7228A  
has multiplying capability within the upper (+10 V) and lower  
(+2 V) limits of reference voltage when operated with dual sup-  
plies. T herefore, ac signals need to be ac coupled and biased up  
before being applied to the reference input. Figure 9 shows a  
sine-wave signal applied to the reference input of the AD7228A.  
For input frequencies up to 50 kHz, the output distortion typi-  
cally remains less than 0.1%. T he typical 3 dB bandwidth for  
small signal inputs is 800 kHz.  
+VREF  
+VREF  
+VREF  
= +  
256  
127  
256  
1
256  
0 V  
1
Note: 1 LSB = (VREF)(2–8) = VREF  
256  
BIP O LAR O UTP UT O P ERATIO N  
Each of the DACs on the AD7228A can be individually config-  
ured for bipolar output operation. T his is possible using one ex-  
ternal amplifier and two resistors per channel. Figure 8 shows a  
circuit used to implement offset binary coding (bipolar opera-  
tion) with DAC1 of the AD7228A. In this case  
R2  
R1  
R2  
R1  
VOUT = 1 +  
D V  
V  
(
REF  
(
)
)
1
REF  
With R1 = R2  
VOUT = (2D1 – 1) • (VREF  
)
where D1 is a fractional representation of the digital word in  
latch 1 of the AD7228A. (0 D1 255/256)  
Figure 9. Applying a AC Signal to the AD7228A  
TIMING D ESKEW  
A common problem in AT E applications is the slowing or  
“rounding-off” of signal edges by the time they reach the  
pin-driver circuitry. T his problem can easily be overcome by  
“squaring-up” the edge at the pin-driver. However, since each  
edge will not have been “rounded-off” by the same extent, this  
“squaring-up” could lead to incorrect timing relationship be-  
tween signals. T his effect is shown in Figure 10a.  
Figure 8. Bipolar Output Circuit  
Table III. Bipolar Code Table  
D AC Latch Contents  
MSB  
LSB  
Analog O utput  
Figure 10a. Tim e Skewing Due to Slowing of Edges  
127  
+VREF  
1 1 1 1  
1 0 0 0  
1 0 0 0  
0 1 1 1  
0 0 0 0  
0 0 0 0  
1 1 1 1  
0 0 0 1  
0 0 0 0  
1 1 1 1  
0 0 0 1  
0 0 0 0  
T he circuit of Figure 10b shows how two DACs of the  
128  
AD7228A can help in overcoming this problem. T he same two  
signals are applied to this circuit as were applied in Figure 10b.  
T he output of each DAC is applied to one input of a high-speed  
comparator, and the signals are applied to the other inputs.  
Varying the output voltage of the DAC effectively varies the  
trigger point at which the comparator flips. T hus the timing re-  
lationship between the two signals can be programmably cor-  
rected (or deskewed) by varying the code to the DAC of the  
AD7228A. In a typical application, the code is loaded to the  
1
128  
+VREF  
0 V  
1
VREF  
128  
127  
128  
128  
128  
VREF  
VREF  
= VREF  
–6–  
REV. A  
AD7228A  
DACs for correct timing relationships during the calibration  
cycle of the instrument.  
Figure 12. Self-Program m able Reference  
Figure 10b. AD7228A Tim ing Deskew Circuit  
CO ARSE/FINE AD JUST  
T he DACs on the AD7228A can be paired together to form a  
coarse/fine adjust function as indicated in Figure 11. T he func-  
tion is achieved using one external op amp and a few resistors  
per pair of DACs.  
DAC1 is the most significant or coarse DAC. Data is first  
loaded to this DAC to coarsely set the output voltage. DAC2 is  
then used to fine tune this output voltage. Varying the ratio of  
R1 to R2 varies the relative effect of the coarse and fine DACs  
on the output voltage. For the resistor values shown, DAC2 has  
a resolution of 150 µV in a 10 V output range. Since each DAC  
on the AD7228A is guaranteed monotonic, the coarse adjust-  
ment and fine adjustment are each monotonic. One application  
for this is as a set-point controller (see “Circuit Applications of  
the AD7226 Quad CMOS DAC” available from Analog Devices,  
Publication Number E873–15–11/84).  
Figure 13. Variation of VREF with Feedback Configuration  
MICRO P RO CESSO R INTERFACING  
Figure 14. AD7228A to 8085A/Z80 Interface  
Figure 11. Coarse/Fine Adjust Circuit  
SELF-P RO GRAMMABLE REFERENCE  
T he circuit of Figure 12 shows how one DAC of the AD7228,  
in this case DAC1, may be used in a feedback configuration to  
provide a programmable reference for itself and the other seven  
converters. T he relationship of VREF to VIN is expressed by  
1 + G  
(
)
VREF  
=
VIN  
where G = R2/R1  
1 + G D  
(
)
1
Figure 13 shows typical plots of VREF versus digital code, D1, for  
three different values of G. With VIN = 2.5 V and G = 3 the  
voltage at the output varies between 2.5 V and 10 V giving an  
effective 10-bit dynamic range to the other seven converters. For  
correct operation of the circuit, VSS should be –5 V and R1  
greater than 6.8 k.  
Figure 15. AD7228A to 6809/6502 Interface  
–7–  
REV. A  
AD7228A  
Figure 17. AD7228A to MCS-51 Interface  
Figure 16. AD7228A to 68008 Interface  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
P lastic D IP (N-24)  
Cer dip (Q -24)  
P LCC (P -28A)  
SO IC (R-24)  
–8–  
REV. A  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY