AD7376AN1M [ADI]

+-15 V Operation Digital Potentiometer; ±15 V操作数字电位计
AD7376AN1M
型号: AD7376AN1M
厂家: ADI    ADI
描述:

+-15 V Operation Digital Potentiometer
±15 V操作数字电位计

转换器 数字电位计 光电二极管
文件: 总12页 (文件大小:338K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
؎15 V Operation  
Digital Potentiometer  
a
AD7376*  
FUNCTIO NAL BLO CK D IAGRAM  
FEATURES  
128 Position  
Potentiom eter Replacem ent  
10 k, 50 k, 100 k, 1 M⍀  
Pow er Shutdow n: Less than 1 A  
3-Wire SPI Com patible Serial Data Input  
+5 V to +30 V Single Supply Operation  
؎5 V to ؎15 V Dual Supply Operation  
Midscale Preset  
AD7376  
V
DD  
SDO  
SDI  
Q
A
W
B
7-BIT  
SERIAL  
REGISTER  
7
7
7-BIT  
LATCH  
D
CK  
R
SHDN  
V
SS  
CLK  
CS  
APPLICATIONS  
Mechanical Potentiom eter Replacem ent  
Instrum entation: Gain, Offset Adjustm ent  
Program m able Voltage-to-Current Conversion  
Program m able Filters, Delays, Tim e Constants  
Line Im pedance Matching  
GND  
SHDN  
RS  
to an end-to-end open circuit condition on the A terminal and  
shorts the wiper to the B terminal, achieving a microwatt power  
shutdown state. When shutdown is returned to logic high, the  
previous latch settings put the wiper in the same resistance  
setting prior to shutdown as long as power to VDD is not re-  
moved. T he digital interface is still active in shutdown so that  
code changes can be made that will produce a new wiper posi-  
tion when the device is taken out of shutdown.  
Pow er Supply Adjustm ent  
GENERAL D ESCRIP TIO N  
T he AD7376 provides a single channel, 128-position digitally-  
controlled variable resistor (VR) device. T his device performs the  
same electronic adjustment function as a potentiometer or vari-  
able resistor. T hese products were optimized for instrument and  
test equipment applications where a combination of high voltage  
with a choice between bandwidth or power dissipation are avail-  
able as a result of the wide selection of end-to-end terminal resis-  
tance values. T he AD7376 contains a fixed resistor with a wiper  
contact that taps the fixed resistor value at a point determined by  
a digital code loaded into the SPI-compatible serial-input regis-  
ter. T he resistance between the wiper and either endpoint of the  
fixed resistor varies linearly with respect to the digital code trans-  
ferred into the VR latch. T he variable resistor offers a completely  
programmable value of resistance between the A terminal and the  
wiper or the B terminal and the wiper. T he fixed A to B terminal  
resistance of 10 k, 50 k, 100 kor 1 Mhas a nominal tem-  
perature coefficient of –300 ppm/°C.  
T he AD7376 is available in both surface mount (SOL-16) and  
the 14-lead plastic DIP package. For ultracompact solutions  
selected models are available in the thin T SSOP package. All  
parts are guaranteed to operate over the extended industrial  
temperature range of –40°C to +85°C. For operation at lower  
supply voltages (+3 V to +5 V), see the AD8400/AD8402/  
AD8403 products.  
1
SDI  
(DATA IN)  
D
D
X
X
0
tDS  
tDH  
1
0
SDO  
(DATA OUT)  
D'  
D'  
X
X
tPD_MAX  
tCH  
1
0
tCS1  
CLK  
T he VR has its own VR latch which holds its programmed resis-  
tance value. T he VR latch is updated from an internal serial-to-  
parallel shift register which is loaded from a standard 3-wire  
serial-input digital interface. Seven data bits make up the data  
word clocked into the serial data input register (SDI). Only the  
last seven bits of the data word loaded are transferred into the  
7-bit VR latch when the CS strobe is returned to logic high. A  
serial data output pin (SDO) at the opposite end of the serial  
register allows simple daisy-chaining in multiple VR applications  
without additional external decoding logic.  
tCSH0  
tCL  
tCSH  
tCSS  
1
tCSW  
tS  
CS  
0
V
DD  
0V  
V
OUT  
؎1 LSB ERROR BAND  
؎1 LSB  
Figure 1. Detail Tim ing Diagram  
T he reset (RS) pin forces the wiper to the midscale position by  
loading 40H into the VR latch. T he SHDN pin forces the resistor  
T he last seven data bits clocked into the serial input register will  
be transferred to the VR 7-bit latch when CS returns to logic  
high. Extra data bits are ignored.  
*Patent Number: 5495245  
REV. 0  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 781/ 329-4700  
Fax: 781/ 326-8703  
World Wide Web Site: http:/ / w w w .analog.com  
© Analog Devices, Inc., 1997  
AD7376–SPECIFICATIONS  
(V /V = ؎15 V ؎ 10% or ؎ 5 V ؎ 10%, V = +V , V = V /0 V, 40؇C < T < +85؇C  
unless otherwise noted.)  
DD SS  
A
DD  
B
SS  
A
ELECTRICAL CHARACTERISTICS  
P aram eter  
Sym bol  
Conditions  
Min  
Typ1  
Max  
Units  
DC CHARACTERISTICS RHEOSTAT MODE (Specifications Apply to All VRs)  
Resistor Differential NL2  
Resistor Nonlinearity2  
Nominal Resistor T olerance  
Resistance Temperature Coefficient  
Wiper Resistance  
R-DNL  
R-INL  
R  
RWB, VA = NC  
RWB, VA = NC  
–1  
–1  
–30  
±0.25 +1  
LSB  
LSB  
%
ppm/°C  
±0.5  
+1  
30  
T
A = +25°C  
R
AB/T  
VAB = VDD, Wiper = No Connect  
IW = ±15 V/RNOMINAL  
IW = ±5 V/RNOMINAL  
–300  
120  
RW  
RW  
200  
Wiper Resistance  
200  
DC CHARACTERISTICS POTENTIOMETER DIVIDER MODE (Specifications Apply to All VRs)  
Resolution  
N
INL  
DNL  
VW/T  
VWFSE  
VWZSE  
7
–1  
–1  
Bits  
LSB  
LSB  
ppm/°C  
LSB  
Integral Nonlinearity3  
Differential Nonlinearity3  
Voltage Divider Temperature Coefficient  
Full-Scale Error  
±0.5  
±0.1  
5
–0.5  
+0.5  
+1  
+1  
Code = 40H  
Code = 7FH  
Code = 00H  
–2  
0
+0  
+1  
Zero-Scale Error  
LSB  
RESIST OR T ERMINALS  
Voltage Range4  
VA, B, W  
CA, B  
CW  
IA_SD  
RW_SD  
ICM  
VSS  
VDD  
V
Capacitance5 A, B  
f = 1 MHz, Measured to GND, Code = 40H  
f = 1 MHz, Measured to GND, Code = 40H  
VA = VDD, VB = 0 V, SHDN = 0  
VA = VDD, VB = 0 V, SHDN = 0, VDD = +15 V  
VA = VB = VW  
45  
60  
0.01  
170  
1
pF  
pF  
µA  
Capacitance5 W  
Shutdown Supply Current6  
Shutdown Wiper Resistance  
Common-Mode Leakage  
1
400  
nA  
DIGIT AL INPUT S AND OUT PUT S  
Input Logic High  
Input Logic Low  
VIH  
VIL  
VOH  
VOL  
IIL  
VDD = +5 V or +15 V  
VDD = +5 V or +15 V  
RL = 2.2 kto +5 V  
IOL = 1.6 mA, VLOGIC = +5 V, VDD = +15 V  
VIN = 0 V or +15 V  
2.4  
4.9  
V
V
V
V
µA  
pF  
0.8  
Output Logic High  
Output Logic Low7  
Input Current  
0.4  
±1  
Input Capacitance5  
CIL  
5
POWER SUPPLIES  
Power Supply Range  
Power Supply Range  
Supply Current  
VDD/VSS  
VDD  
IDD  
IDD  
ISS  
PDISS  
PSS  
PSS  
Dual Supply Range  
Single Supply Range, VSS = 0  
±4.5  
4.5  
±16.5  
28  
0.0001 0.01  
V
V
VIH = +5 V or VIL = 0 V, VDD = +5 V  
VIH = +5 V or VIL = 0 V, VDD = +15 V  
VIH = +5 V or VIL = 0 V, VSS = –5 V or –15 V  
VIH = +5 V or VIL = 0 V, VDD = +15 V, VSS = –15 V  
VDD = +5 V ± 10%, or VSS = –5 V ± 10%  
VDD = +15 V ± 10% or VSS = –15 V ± 10%  
mA  
mA  
mA  
mW  
%/%  
%/%  
Supply Current  
0.75  
0.02  
11  
0.05  
0.01  
2
0.1  
30  
0.15  
0.02  
Supply Current  
Power Dissipation8  
Power Supply Sensitivity  
DYNAMIC CHARACTERISTICS5, 9, 10  
Bandwidth –3 dB  
Bandwidth –3 dB  
Bandwidth –3 dB  
T otal Harmonic Distortion  
VW Settling T ime  
BW_10K  
BW_50K  
RAB = 10 k, Code = 40H  
RAB = 50 k, Code = 40H  
520  
125  
60  
0.005  
4
kHz  
kHz  
kHz  
%
µs  
nVHz  
BW_100K RAB = 100 k, Code = 40H  
T HDW  
tS  
VA = 1 V rms, VB = 0 V, f = 1 kHz  
VA = 10 V, VB = 0 V, ±1 LSB Error Band  
RWB = 25 k, f = 1 kHz, RS = 0  
Resistor Noise Voltage  
eN_WB  
14  
INT ERFACE T IMING CHARACT ERIST ICS (Applies to All Parts [Notes 5, 11])  
Input Clock Pulsewidth  
Data Setup T ime  
t
CH, tCL  
Clock Level High or Low  
120  
30  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDS  
tDH  
tPD  
tCSS  
tCSW  
tRS  
tCSH  
tCS1  
Data Hold T ime  
CLK to SDO Propagation Delay12  
CS Setup T ime  
RL = 2.2 k, CL < 20 pF  
10  
100  
120  
150  
120  
120  
120  
CS High Pulsewidth  
Reset Pulsewidth  
CLK Rise to CS Rise Hold T ime  
CS Rise to Clock Rise Setup  
–2–  
REV. 0  
AD7376  
NOT ES  
11T ypicals represent average readings at +25°C, VDD = +15 V, and VSS = –15 V.  
12Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper posi-  
tions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic. See Figure 27. T est Circuit.  
13INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output D/A converter. VA = VDD and VB = 0 V. DNL  
specification limits of ±1 LSB maximum are Guaranteed Monotonic operating conditions. See Figure 26. T est Circuit.  
14Resistor terminals A, B, W have no limitations on polarity with respect to each other.  
15Guaranteed by design and not subject to production test.  
16Measured at the A terminal. A terminal is open circuit in shutdown mode.  
17  
I
P
= 200 µA for the 50 kversion operating at VDD = +5 V.  
OL  
18  
is calculated from (IDD × VDD ). CMOS logic level inputs result in minimum power dissipation.  
DISS  
19Bandwidth, noise and settling time are dependent on the terminal resistance value chosen. T he lowest R value results in the fastest settling time and highest band-  
width. T he highest R value results in the minimum overall power consumption.  
10All dynamic characteristics use VDD = +15 V and VSS = –15 V.  
11See timing diagram for location of measured values. All input control voltages are specified with t R = tF = 1 ns (10% to 90% of VDD) and timed from a voltage level  
of 1.6 V. Switching characteristics are measured using both VDD = +5 V or +15 V.  
12Propagation delay depends on value of VDD , RL and CL see Applications section.  
Specifications subject to change without notice.  
P IN CO NFIGURATIO NS  
ABSO LUTE MAXIMUM RATINGS  
(T A = +25°C, unless otherwise noted)  
P D IP & TSSO P -14  
SO L-16  
VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V, +30 V  
VSS to GND . . . . . . . . . . . . . . . . . . . . . . . . . . +0.3 V, –16.5 V  
VDD to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V, +44 V  
VA, VB, VW to GND . . . . . . . . . . . . . . . . . . . . . . . . . . VSS, VDD  
AX – BX, AX – WX, BX – WX . . . . . . . . . . . . . . . . . . . ±20 mA  
Digital Input Voltages to GND . . . . . . . . . . 0 V, VDD + 0.3 V  
Digital Output Voltage to GND . . . . . . . . . . . . . . 0 V, +30 V  
Operating T emperature Range . . . . . . . . . . . –40°C to +85°C  
Maximum Junction T emperature (TJ MAX) . . . . . . . +150°C  
Storage T emperature . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Lead T emperature (Soldering, 10 sec) . . . . . . . . . . . . +300°C  
Package Power Dissipation . . . . . . . . . . . . (TJ MAX – T A)/θJA  
T hermal Resistance θJA  
1
2
3
4
5
6
7
8
A
B
16  
W
A
B
1
2
3
4
5
6
7
14  
13 NC  
12  
W
15 NC  
V
V
DD  
14  
13  
12  
11  
10  
9
V
V
SS  
SS  
DD  
AD7376  
TOP VIEW  
(Not to Scale)  
AD7376  
TOP VIEW  
(Not to Scale)  
GND  
SDO  
GND  
11 SDO  
10  
CS  
SHDN  
CS  
SHDN  
SDI  
SDI  
NC  
9
8
RS  
RS  
CLK  
NC  
NC  
CLK  
NC  
NC = NO CONNECT  
NC = NO CONNECT  
P-DIP (N-14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92°C/W  
SOIC (SOL-16) . . . . . . . . . . . . . . . . . . . . . . . . . . 120°C/W  
T SSOP-14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240°C/W  
O RD ERING GUID E  
Tem perature  
Range  
P ackage  
D escription  
P ackage  
O ptions  
Model  
k⍀  
AD7376AN10  
AD7376AR10  
AD7376ARU10  
AD7376AN50  
AD7376AR50  
AD7376ARU50  
AD7376AN100  
AD7376AR100  
AD7376ARU100  
AD7376AN1M  
AD7376AR1M  
AD7376ARU1M  
10  
10  
10  
50  
50  
50  
100  
100  
100  
1,000  
1,000  
1,000  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
PDIP-14  
SOL-16  
T SSOP-14  
PDIP-14  
SOL-16  
T SSOP-14  
PDIP-14  
SOL-16  
T SSOP-14  
PDIP-14  
SOL-16  
N-14  
R-16  
RU-14  
N-14  
R-16  
RU-14  
N-14  
R-16  
RU-14  
N-14  
R-16  
T SSOP-14  
RU-14  
Die Size: 101.6 mil × 127.6 mil, 2.58 mm × 3.24 mm  
Number T ransistors: 840  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD7376 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. T herefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. 0  
–3–  
Typical Performance Characteristics  
AD7376  
0.5  
100  
0.25  
0.4  
0.20  
0.15  
0.10  
0.05  
T
= –55؇C  
A
0.3  
T
A
= +25؇C  
75  
T
= –55؇C  
A
T
= +25؇C  
0.2  
A
0.1  
T
= +85؇C  
A
50  
0
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
V
V
V
V
= +15V  
DD  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
= –15V  
SS  
T
= +85؇C  
A
= 2.5V  
= 0V  
A
B
25  
0
V
= +15V  
= –15V  
= 50k⍀  
DD  
SS  
R
= 50k⍀  
V
AB  
R
R
R
WB  
WA  
AB  
0
32  
64  
96  
128  
0
16  
32  
48  
64 80  
96 112 128  
0
16  
32  
48  
64 80  
96 112 128  
CODE – Decimal  
CODE – Decimal  
CODE – Decimal  
Figure 3. Resistance Step Position  
Nonlinearity Error vs. Code  
Figure 4. Relative Resistance Step  
Change from Ideal vs. Code  
Figure 2. Wiper To End Term inal  
Percent Resistance vs. Code  
1.5  
50  
14  
I
= 100A, T = +25؇C  
A
w
01  
H
DATA = 40  
H
10  
V
V
= +15V  
H
DD  
1.2  
0.9  
0.6  
12  
49  
48  
47  
46  
45  
= –15V  
20  
H
SS  
R
= 50kNOMINAL  
AB  
10  
40  
H
8
T
= +25؇C  
A
6
4
V
V
= +15V  
DD  
= –15V  
SS  
R
= 50k⍀  
AB  
CODE = 70  
0.3  
0
H
2
0
7F  
H
0
0.25 0.5 0.75  
1
1.25 1.5 1.75  
2
5
10  
15  
20  
25  
30  
–55 –35 –15  
5
25 45 65 85 105 125  
I
– mA  
SUPPLY VOLTAGE (V - V ) – Volts  
WA  
DD  
SS  
TEMPERATURE – ؇C  
Figure 6. Resistance Linearity vs.  
Conduction Current  
Figure 7. Resistance Nonlinearity  
Error vs. Supply Voltage  
Figure 5. Nom inal Resistance vs.  
Tem perature  
1000  
900  
20  
15  
1.0  
V
V
= 2.5V  
= 0V  
R
= 50k⍀  
A
AB  
800  
700  
600  
500  
400  
300  
200  
100  
0
B
10  
5
0.8  
0.6  
0.4  
CODE = 40  
H
R
= 50k⍀  
AB  
V
V
= +5V  
= 0V  
DD  
SS  
0
–5  
V
V
V
V
= +15V  
= –15V  
DD  
SS  
–10  
–15  
V
V
= +5V  
= +2.5V  
DD  
A
B
= –5V  
= 0V  
SS  
–20  
–25  
–30  
–55؇C < T < +85؇C  
0.2  
0
A
V
V
= +15V  
= –15V  
R
= 50k⍀  
DD  
SS  
AB  
–55 –35 –15  
5
25 45 65 85 105 125  
0
16  
32 48 64  
80  
96 112 128  
5
10  
15  
20  
DD  
25  
30  
CODE – Decimal  
TEMPERATURE – ؇C  
SUPPLY VOLTAGE (V - V ) – Volts  
SS  
Figure 10. Wiper Contact  
Resistance vs. Tem perature  
Figure 9. VWB/T Potentiom eter  
Mode Tem pco  
Figure 8. Potentiom eter Divider  
Nonlinearity Error vs. Supply  
Voltage  
–4–  
REV. 0  
AD7376  
0.25  
0.20  
0.15  
0.10  
0.05  
0
40  
35  
30  
25  
20  
15  
10  
0.25  
0.20  
0.15  
0.10  
0.05  
0
V
= +15V  
= –15V  
= 50k⍀  
DD  
SS  
V
T
= +25؇C  
R
A
AB  
T
= –55؇C  
A
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
V
V
V
V
= +15V  
DD  
SS  
V
V
V
V
= +15V  
= –15V  
DD  
SS  
= –15V  
5
0
= +2.5V  
A
= +2.5V  
T
= +85؇C  
A
B
A
= 0V  
B
= 0V  
R
= 50k⍀  
AB  
–5  
R
= 50k⍀  
AB  
–10  
0
16  
32 48  
64  
80  
96 112 128  
0
16  
32  
48  
64 80  
96 112 128  
0
16  
32  
48  
64 80  
96 112 128  
CODE – Decimal  
CODE – Decimal  
CODE – Decimal  
Figure 11. Potentiom eter Divider  
Nonlinearity Error vs. Code  
Figure 13. RWB/T Rheostat Mode  
Tem pco  
Figure 12. Potentiom eter Divider  
Differential Nonlinearity Error  
vs. Code  
R
= 10k⍀  
CODE = 7F  
CODE = 40  
CODE = 7F  
R
= 1M⍀  
H
AB  
H
AB  
s  
0
–6  
0
–6  
259.8  
CODE = 40  
H
H
H
V
V
= +15V  
= —15V  
CODE = 20  
CODE = 10  
DD  
SS  
CODE = 20  
CODE = 10  
H
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–12  
–18  
H
H
H
CODE = 08  
CODE = 04  
H
CODE = 08  
CODE = 04  
CODE = 02  
–24  
–30  
CODE = 3F  
40  
3F  
H
H
H
H
H
H
V
A
V
B
= 2.5V  
= 0V  
CODE = 02  
CODE = 01  
H
H
–36  
–42  
–48  
f = 100 kHz  
CODE = 01  
H
B
CODE = 00  
s  
H
50m  
H 5  
O
w
L
V
V
V
= +15V  
= –15V  
= 50mVrms  
DD  
SS  
AMPL  
A
B
V
V
V
= +15V  
= –15V  
A
B
DD  
SS  
W
W
5S/DIV  
OP275  
= 50mVrms  
OP275  
1k  
AMPL  
R
= 1M⍀  
AB  
1k  
10k  
100k  
FREQUENCY – Hz  
1M  
100  
10k  
100k  
FREQUENCY – Hz  
Figure 14. 10 kGain vs. Frequency  
Figure 16. Midscale Transition Glitch  
Figure 15. 1 MGain vs. Frequency  
vs. Code  
vs. Code  
1.0  
R
= 50k⍀  
CODE = 7F  
CODE = 40  
AB  
H
s  
0
–6  
A2  
1.6 V  
DLY  
27.08  
V
V
V
= +15V  
= –15V  
DD  
128kHz  
H
H
12  
0
SS  
20  
V
V
= +15V  
= ؎10V p–p  
A
DD  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
CODE = 3F  
V
V
H
0.1  
= –15V  
10  
08  
CODE = 40  
H
SS  
H
= 12V  
= 0V  
A
NON-INVERTING  
MODE TEST  
CKT FIG 36  
R
= 50k⍀  
AB  
B
H
AMP = 50mV  
f = 1 MHz  
04  
H
V
V
= +15V  
= –15V  
= 1M⍀  
DD  
02  
SS  
0.010  
H
5
0
R
L
01  
H
B
5V  
5V  
s  
H 2  
A
w
L
O
NON-INVERTING  
MODE TEST  
CKT FIG 35  
OP275  
B
0.001  
2S/DIV  
1k  
10k  
100k  
1M  
0.0005  
FREQUENCY – Hz  
10  
100  
1k  
10k  
200k  
FREQUENCY – Hz  
Figure 18. Large Signal Settling Tim e  
Figure 17. 50 kGain vs. Frequency  
vs. Code  
Figure 19. Total Harm onic Distortion  
Plus Noise vs. Frequency  
REV. 0  
–5–  
AD7376  
CODE = 7F  
H
s
A2  
2.9 V  
DLY  
0
–6  
235.2  
0
–6  
40H  
V
V
= +15V  
= –15V  
DD  
SS  
20H  
10H  
08H  
04H  
02H  
01H  
–12  
–18  
–12  
–18  
–24  
–30  
–36  
–42  
10k⍀  
V
V
V
= +15V  
= –15V  
–24  
–30  
DD  
SS  
50k⍀  
100k⍀  
= 1M⍀  
= 50mVrms  
AMPL  
–36  
–42  
–48  
CODE = 40  
H
R
B
AB  
20m  
s
O2  
H
w
L
V
V
V
= +15V  
= –15V  
AMPL  
DD  
SS  
A
A
B
W
W
–48  
–54  
= 50mVrms  
B
OP275  
10k  
OP275  
R
= 100k⍀  
AB  
1k  
10k  
100k  
1M  
100k  
FREQUENCY – Hz  
1k  
1M  
FREQUENCY – Hz  
Figure 20. 100 kGain vs. Frequency  
vs. Code  
Figure 22. Clock Feedthrough  
Figure 21. –3 dB Bandwidth vs.  
Nom inal Resistance  
0.1  
90  
+PSRR  
T = +25؇C  
A
R
= 10k⍀  
50k⍀  
400  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
AB  
V
V
= +15V؎10%  
= –15V  
DD  
SS  
80  
70  
V
V
= +5V  
= –5V  
DD  
SS  
350  
300  
250  
–PSRR  
1M⍀  
V
= +15V  
DD  
SS  
100k⍀  
60  
50  
V
= –15V؎10%  
V
V
= +15V  
= –15V  
DD  
SS  
–PSRR  
V
V
V
= +15V  
DD  
SS  
V
= +5V  
DD  
SS  
200  
150  
= –15V  
= 50mVrms  
V
= –5V؎10%  
40  
30  
AMPL  
CODE = 40  
H
+PSRR  
100  
50  
0
V
V
= +5V؎10%  
= –5V  
DD  
SS  
A
20  
10  
W
–0.8  
–0.9  
SEE FIGURE 38 TEST CIRCUIT  
B
OP275  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
1M  
–15  
–10  
–5  
0
5
10  
15  
FREQUENCY – Hz  
FREQUENCY – Hz  
V
– Volts  
B
Figure 23. Gain Flatness vs Fre-  
quency vs. Nom inal Resistance RAB  
Figure 24. Power Supply Rejection  
vs. Frequency  
Figure 25. Increm ental Wiper  
Contact Resistance vs.  
Com m on-Mode Voltage  
10  
4.0  
1.0  
I
@V = +15V, V  
= +5V  
DD  
DD  
LOGIC  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
V
V
= +15V  
= –15V  
I
@V = +15V, V  
= 0V  
DD  
SS  
V
= +15V,  
= –15V  
= +2.5V  
= 0  
DD  
DD  
LOGIC  
DD  
SS  
V
V
1.0  
0.1  
A
0.1  
0.010  
0.001  
I
I
@V = –15V, V  
= +15V  
SS  
SS  
LOGIC  
V
B
T
= +25؇C  
DATA = 55  
A
H
@V = +5V, V  
= +0.8V  
DD  
DD  
LOGIC  
DATA = 3F  
H
0.010  
0.001  
I
@V = +5V, V  
= +5V  
DD  
DD  
LOGIC  
R
= 50k⍀  
AB  
0.0  
1k  
–55 –35 –15  
5
25 45 65 85 105 125  
10k  
100k  
1M  
10M  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE – ؇C  
CLOCK FREQUENCY – Hz  
TEMPERATURE – ؇C  
Figure 26. Supply Current (IDD, ISS  
vs. Tem perature  
)
Figure 28. IDD Supply Current vs.  
Input Clock Frequency  
Figure 27. IA_SD Shutdown Current vs.  
Tem perature  
–6–  
REV. 0  
AD7376  
3.5  
3.0  
I
MS  
I
= 1V/R  
NOMINAL  
W
A
B
V
DUT  
W
2.5  
2.0  
W
V+  
V+  
V
DD  
V
MS  
V
=
W
- (V + I [RAW||  
R
])  
V
V
V
= +5V  
= 0V  
= 0V  
W2  
W1  
W
BW  
A
B
R
I
W
1.5  
1.0  
WHERE V = V WHEN I = 0  
W1  
MS  
W
SS  
AND V = V WHEN I = 1/R  
W2  
MS  
W
Figure 33. Wiper Resistance Test Circuit  
0.5  
0
5
10  
15  
20  
25  
30  
SUPPLY VOLTAGE (V ) – Volts  
DD  
V
A
Figure 29. Input Logic Threshold Voltage vs.  
VDD Supply Voltage  
V+ = V ؎10% OR V ؎10%  
DD  
SS  
V
A
DD  
V
MS  
W
PSRR (dB) = 20LOG  
(
%
MS  
(
V+  
V+  
V
B
V
MS  
PSS (%/%) =  
V+%  
1600  
1200  
800  
Figure 34. Power Supply Sensitivity Test Circuit  
(PSS, PSRR)  
V
V
= +15V  
= –15V  
A
B
DD  
SS  
DUT  
+18V  
OP275  
–18V  
W
400  
0
V
IN  
V
OUT  
V
V
= +5V  
DD  
SS  
= 0V OR –5V  
0
5
10  
15  
V
LOGIC  
Figure 35. Inverting Program m able Gain Test Circuit  
Figure 30. Supply Current (IDD) vs. Logic Voltage  
+18V  
P ARAMETRIC TEST CIRCUITS  
V
OUT  
OP275  
V+ = V  
DD  
A
1LSB = V+/128  
DUT  
V
IN  
W
W
V+  
–18V  
B
B
V
MS  
DUT  
A
Figure 36. Noninverting Program m able Gain Test Circuit  
Figure 31. Potentiom eter Divider Nonlinearity Error Test  
Circuit (INL, DNL)  
NO CONNECT  
+18V  
A
W
I
W
A
B
V
IN  
DUT  
DUT  
W
V
B
OP275  
–18V  
OUT  
V
MS  
Figure 32. Resistor Position Nonlinearity Error (Rheostat  
Operation; R-INL, R-DNL)  
Figure 37. Gain vs. Frequency Test Circuit  
REV. 0  
–7–  
AD7376  
0.1V  
P RO GRAMMING TH E VARIABLE RESISTO R  
Rheostat O per ation  
R
=
SW  
I
SW  
CODE = OO  
H
DUT  
T he nominal resistance of the RDAC between terminals A and  
B are available with values of 10 k, 50 k, 100 kand 1 M.  
T he final three characters of the part number determine the  
nominal resistance value, e.g., 10 k= 10; 50 k= 50; 100 kΩ  
= 100; 1 M= 1M. T he nominal resistance (RAB) of the VR  
has 128 contact points accessed by the wiper terminal, plus the  
B terminal contact. T he 7-bit data word in the RDAC latch is  
decoded to select one of the 128 possible settings. The wiper’s first  
connection starts at the B terminal for data 00H. T his B–termi-  
nal connection has a wiper contact resistance of 120 . T he  
second connection (10 kpart) is the first tap point located  
at 198 (= RBA [nominal resistance]/128 + RW = 78 + 120 )  
for data 01H. T he third connection is the next tap point repre-  
senting 156 + 120 = 276 for data 02H. Each LSB data value  
increase moves the wiper up the resistor ladder until the last tap  
point is reached at 10041 . T he wiper does not directly con-  
nect to the B terminal. See Figure 40 for a simplified diagram of  
the equivalent RDAC circuit.  
W
I
SW  
B
0.1V  
V
TO V  
DD  
SS  
Figure 38. Increm ental ON Resistance Test Circuit  
NC  
A
B
V
I
DD  
DUT  
CM  
W
V
GND  
SS  
V
CM  
NC  
Figure 39. Com m on-Mode Leakage Current Test Circuit  
T he general transfer equation that determines the digitally pro-  
grammed output resistance between W and B is:  
R
WB(D) = (D)/128 × RBA + RW  
(1)  
O P ERATIO N  
where D is the data contained in the 7-bit VR latch, and RBA is  
T he AD7376 provides a 128-position digitally-controlled vari-  
able resistor (VR) device. Changing the programmed VR set-  
tings is accomplished by clocking in a 7-bit serial data word into  
the SDI (Serial Data Input) pin, while CS is active low. When  
CS returns high the last seven bits are transferred into the RDAC  
latch setting the new wiper position. T he exact timing require-  
ments are shown in Figure 1.  
the nominal end-to-end resistance.  
For example, when VB = 0 V and A–terminal is open circuit, the  
following output resistance values will be set for the following  
VR latch codes (applies to the 10 kpotentiometer).  
Table I.  
D
RWB  
()  
T he AD7376 resets to a midscale by asserting the RS pin, sim-  
plifying initial conditions at power-up. Both parts have a power  
shutdown SHDN pin which places the RDAC in a zero power  
consumption state where terminal A is open circuited and the  
wiper W is connected to B, resulting in only leakage currents  
being consumed in the VR structure. In shutdown mode the  
VR latch settings are maintained so that, returning to opera-  
tional mode from power shutdown, the VR settings return to  
their previous resistance values.  
(D EC)  
O utput State  
127  
64  
1
10041  
5120  
276  
Full-Scale  
Midscale (RS = 0 Condition)  
1 LSB  
0
198  
Zero-Scale (Wiper Contact Resistance)  
Note that in the zero-scale condition a finite wiper resistance of  
120 is present. Care should be taken to limit the current flow  
between W and B in this state to a maximum value of 5 mA to  
avoid degradation or possible destruction of the internal switch  
contact.  
A
SHDN  
R
S
Like the mechanical potentiometer the RDAC replaces, it is  
totally symmetrical. T he resistance between the wiper W and  
terminal A also produces a digitally controlled resistance RWA  
When these terminals are used the B–terminal should be tied to  
the wiper. Setting the resistance value for RWA starts at a maxi-  
mum value of resistance and decreases as the data loaded in the  
latch is increased in value. T he general transfer equation for this  
operation is:  
D 6  
.
R
R
D 5  
D 4  
D 3  
D 2  
D 1  
D 0  
S
S
W
RDAC  
R
WA(D) = (128-D)/128 × RBA + RW  
(2)  
LATCH  
&
DECODER  
where D is the data contained in the 7-bit RDAC latch, and RBA  
is the nominal end-to-end resistance. For example, when VA = 0 V  
and B–terminal is tied to the wiper W the following output  
resistance values will be set for the following RDAC latch codes.  
R
S
B
R
= R  
/128  
NOMINAL  
S
Figure 40. AD7376 Equivalent RDAC Circuit  
–8–  
REV. 0  
AD7376  
clean transitions to avoid clocking incorrect data into the serial  
input register. Standard logic families work well. If mechanical  
switches are used for product evaluation they should be de-  
bounced by a flip-flop or other suitable means. When CS is  
taken active low the clock loads data into the serial register on  
each positive clock edge, see T able III. T he last seven bits  
clocked into the serial register will be transferred to the 7-bit  
RDAC latch, see Figure 41. Extra data bits are ignored. T he  
serial-data-output (SDO) pin contains an open drain n-channel  
FET . T his output requires a pull-up resistor in order to transfer  
data to the next package’s SDI pin. T his allows for daisy chain-  
ing several RDACs from a single processor serial data line.  
Clock period needs to be increased when using a pull-up resistor  
to the SDI pin of the following device in the series. Capacitive  
loading at the daisy chain node SDO-SDI between devices must  
be accounted for to successfully transfer data. When daisy  
chaining is used, the CS should be kept low until all the bits of  
every package are clocked into their respective serial registers  
insuring that the data bits are in the proper decoding location.  
T his would require 14 bits of data when two AD7376 RDACs  
are daisy chained. During shutdown (SHDN) the SDO output  
pin is forced to the off (logic high state) to disable power dissi-  
pation in the pull up resistor. See Figure 42 for equivalent SDO  
output circuit schematic.  
Table II.  
D
RWA  
()  
(D EC)  
O utput State  
127  
64  
1
74  
Full-Scale  
Midscale (RS = 0 Condition)  
1 LSB  
5035  
9996  
10035  
0
Zero-Scale  
T he typical distribution of RBA from device to device matching  
is process lot dependent having a ±30% variation. The change  
in RBA with temperature has a –300 ppm/°C temperature  
coefficient.  
P RO GRAMMING TH E P O TENTIO METER D IVID ER  
Voltage O utput O per ation  
T he digital potentiometer easily generates an output voltage  
proportional to the input voltage applied to a given terminal.  
For example connecting A–terminal to +5 V and B–terminal to  
ground produces an output voltage at the wiper which can be  
any value starting at zero volts up to 1 LSB less than +5 V. Each  
LSB of voltage is equal to the voltage applied across terminal  
AB divided by the 128-position resolution of the potentiometer  
divider. T he general equation defining the output voltage with  
respect to ground for any given input voltage applied to termi-  
nals AB is:  
Table III. Input Logic Control Truth Table  
VW (D) = D/128 × VAB + VB  
CLK CS RS SHDN Register Activity  
Operation of the digital potentiometer in the divider mode  
results in more accurate operation over temperature. Here the  
output voltage is dependent on the ratio of the internal resis-  
tors, not the absolute value; therefore, the drift improves to  
5 ppm/°C.  
L
P
L
L
H
H
H
H
Enables SR, enables SDO pin.  
Shifts one bit in from the SDI  
pin. T he seventh previously  
entered bit is shifted out of the  
SDO pin.  
X
P
H
H
Loads SR data into 7-bit RDAC  
latch.  
AD7376  
V
DD  
SDO  
SDI  
Q
7-BIT  
RDAC  
LATCH  
A
7-BIT  
SERIAL  
REGISTER  
7
7
X
X
H
X
H
L
H
H
No Operation.  
W
B
Sets 7-bit RDAC latch to mid-  
scale, wiper centered, and SDO  
latch cleared.  
D
CK  
R
SHDN  
SHDN  
V
SS  
CLK  
CS  
X
X
H
H
P
H
L
Latches 7-bit RDAC latch to  
40H.  
GND  
RS  
H
Opens circuits resistor A–terminal,  
connects W to B, turns off SDO  
output transistor.  
Figure 41. Block Diagram  
D IGITAL INTERFACING  
T he AD7376 contains a standard three-wire serial input control  
interface. T he three inputs are clock (CLK), CS and serial data  
input (SDI). T he positive-edge sensitive CLK input requires  
NOT E  
P = positive edge, X = don’t care, SR = shift register.  
REV. 0  
–9–  
AD7376  
V
T he data setup and data hold times in the specification table  
determine the data valid time requirements. T he last seven bits  
of the data word entered into the serial register are held when  
CS returns high. At the same time CS goes high it transfers the  
7-bit data to the VR latch.  
DD  
100⍀  
LOGIC  
Figure 43. Equivalent ESD Protection Circuit  
SHDN  
CS  
SDO  
V
DD  
SERIAL  
REGISTER  
SDI  
Q
D
A,B,W  
CK RS  
V
SS  
CLK  
RS  
Figure 44. Equivalent ESD Protection Analog Pins  
Figure 42. Detail SDO Output Schem atic of the AD7376  
All digital inputs are protected with a series input resistor and  
parallel Zener ESD structure shown in Figure 43. Applies to  
digital input pins CS, SDI, SDO, RS, SHDN, CLK  
–10–  
REV. 0  
AD7376  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
14-Lead P lastic D IP  
(N-14)  
14-Lead TSSO P  
(RU-14)  
0.795 (20.19)  
0.725 (18.42)  
0.201 (5.10)  
0.193 (4.90)  
14  
1
8
7
0.280 (7.11)  
0.240 (6.10)  
14  
8
7
0.325 (8.25)  
0.195 (4.95)  
0.115 (2.93)  
0.300 (7.62)  
0.060 (1.52)  
0.015 (0.38)  
PIN 1  
0.210 (5.33)  
MAX  
1
0.130  
(3.30)  
MIN  
0.160 (4.06)  
0.115 (2.93)  
0.015 (0.381)  
0.008 (0.204)  
SEATING  
PLANE  
0.022 (0.558)  
0.014 (0.356)  
0.100 0.070 (1.77)  
PIN 1  
(2.54)  
BSC  
0.045 (1.15)  
0.006 (0.15)  
0.002 (0.05)  
0.0433  
(1.10)  
MAX  
0.028 (0.70)  
0.020 (0.50)  
8°  
0°  
0.0118 (0.30)  
0.0075 (0.19)  
0.0256  
(0.65)  
BSC  
SEATING  
PLANE  
0.0079 (0.20)  
0.0035 (0.090)  
16-Lead Wide Body SO IC  
(R-16)  
0.4133 (10.50)  
0.3977 (10.00)  
16  
9
1
8
0.1043 (2.65)  
0.0926 (2.35)  
0.0291 (0.74)  
0.0098 (0.25)  
PIN 1  
x 45°  
0.0118 (0.30)  
0.0040 (0.10)  
0.0500 (1.27)  
0.0157 (0.40)  
8°  
0°  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
SEATING  
PLANE  
0.0125 (0.32)  
0.0091 (0.23)  
0.0138 (0.35)  
REV. 0  
–11–  
–12–  

相关型号:

AD7376AN50

+-15 V Operation Digital Potentiometer
ADI

AD7376AR10

+-15 V Operation Digital Potentiometer
ADI

AD7376AR10-REEL

IC 10K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 128 POSITIONS, PDSO16, MS-013AA, SOIC-16, Digital Potentiometer
ADI

AD7376AR10-REEL7

IC 10K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 128 POSITIONS, PDSO16, MS-013AA, SOIC-16, Digital Potentiometer
ADI

AD7376AR100

+-15 V Operation Digital Potentiometer
ADI

AD7376AR1M

+-15 V Operation Digital Potentiometer
ADI

AD7376AR1M-REEL

IC 1000K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 128 POSITIONS, PDSO16, SOIC-16, Digital Potentiometer
ADI

AD7376AR50

+-15 V Operation Digital Potentiometer
ADI

AD7376ARU10

+-15 V Operation Digital Potentiometer
ADI

AD7376ARU10-REEL

IC 10K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 128 POSITIONS, PDSO14, MO-153AB-1, TSSOP-14, Digital Potentiometer
ADI

AD7376ARU100

+-15 V Operation Digital Potentiometer
ADI

AD7376ARU100-REEL7

IC 100K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 128 POSITIONS, PDSO14, TSSOP-14, Digital Potentiometer
ADI