AD737KRZ [ADI]

暂无描述;
AD737KRZ
型号: AD737KRZ
厂家: ADI    ADI
描述:

暂无描述

文件: 总24页 (文件大小:493K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Cost, Low Power,  
True RMS-to-DC Converter  
Data Sheet  
AD737  
FEATURES  
Computes  
FUNCTIONAL BLOCK DIAGRAM  
COM  
8kΩ  
8kΩ  
C
True rms value  
C
C
F
Average rectified value  
Absolute value  
Provides  
ABSOLUTE  
VALUE  
CIRCUIT  
OUTPUT  
SQUARER  
DIVIDER  
V
IN  
200 mV full-scale input range (larger inputs with  
input scaling)  
C
AV  
+V  
C
S
AV  
BIAS  
SECTION  
Direct interfacing with 3½ digit CMOS ADCs  
POWER  
DOWN  
–V  
S
High input impedance: 1012  
Low input bias current: 25 pA maximum  
High accuracy: 0.2 mV 0.3% of reading  
Figure 1.  
RMS conversion with signal crest factors up to 5  
Wide power supply range: 2.5 V to 16.5 V  
Low power: 25 µA (typical) standby current  
No external trims needed for specified accuracy  
The AD737 output is negative-going; the AD736 is a positive  
output-going version of the same basic device  
GENERAL DESCRIPTION  
The AD737 is a low power, precision, monolithic, true rms-to-  
dc converter. It is laser trimmed to provide a maximum error of  
0.2 mV 0.3% of reading with sine wave inputs. Furthermore,  
it maintains high accuracy while measuring a wide range of  
input waveforms, including variable duty cycle pulses and  
triac (phase) controlled sine waves. The low cost and small  
physical size of this converter make it suitable for upgrading  
the performance of non-rms precision rectifiers in many  
applications. Compared to these circuits, the AD737 offers  
higher accuracy at equal or lower cost.  
The AD737 has both high (1012 Ω) and low impedance input  
options. The high-Z FET input connects high source impedance  
input attenuators, and a low impedance (8 kΩ) input accepts  
rms voltages to 0.9 V while operating from the minimum power  
supply voltage of 2.5 V. The two inputs can be used either  
single ended or differentially.  
The AD737 achieves 1% of reading error bandwidth, exceeding  
10 kHz for input amplitudes from 20 mV rms to 200 mV rms,  
while consuming only 0.72 mW.  
The AD737 is available in two performance grades. The AD737J  
and AD737K grades operate over the commercial temperature  
range of 0°C to 70°C. The AD737JR-5 is tested with supply  
voltages of 2.5 V dc. The AD737A grade operates over the  
industrial temperature range of −40°C to +85°C. The AD737 is  
available in two low cost, 8­lead packages: PDIP and SOIC_N.  
The AD737 can compute the rms value of both ac and dc input  
voltages. It can also be operated ac-coupled by adding one  
external capacitor. In this mode, the AD737 can resolve input  
signal levels of 100 µV rms or less, despite variations in tem-  
perature or supply voltage. High accuracy is also maintained for  
input waveforms with crest factors of 1 to 3. In addition, crest  
factors as high as 5 can be measured (while introducing only  
2.5% additional error) at the 200 mV full-scale input level.  
PRODUCT HIGHLIGHTS  
1. Computes average rectified, absolute, or true rms value of a  
signal regardless of waveform.  
2. Only one external component, an averaging capacitor, is  
required for the AD737 to perform true rms measurement.  
3. The standby power consumption of 125 μW makes the  
AD737 suitable for battery-powered applications.  
The AD737 has no output buffer amplifier, thereby significantly  
reducing dc offset errors occurring at the output, which makes  
the device highly compatible with high input impedance ADCs.  
Requiring only 160 µA of power supply current, the AD737 is  
optimized for use in portable multimeters and other battery-  
powered applications. In power-down mode, the standby supply  
current in is typically 25 µA.  
Rev. I  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2012 Analog Devices, Inc. All rights reserved.  
 
 
 
 
AD737  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
DC Error, Output Ripple, and Averaging Error..................... 13  
AC Measurement Accuracy and Crest Factor........................ 13  
Calculating Settling Time.......................................................... 13  
Applications Information.............................................................. 14  
RMS Measurement—Choosing an Optimum Value for CAV ...14  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configurations and Function Descriptions ........................... 7  
Typical Performance Characteristics ............................................. 8  
Theory of Operation ...................................................................... 12  
Types of AC Measurement........................................................ 12  
Rapid Settling Times via the Average Responding  
Connection.................................................................................. 14  
Selecting Practical Values for Capacitors................................ 14  
Scaling Input and Output Voltages .......................................... 14  
AD737 Evaluation Board............................................................... 18  
Outline Dimensions....................................................................... 20  
Ordering Guide .......................................................................... 21  
REVISION HISTORY  
Changes to Ordering Guide.......................................................... 21  
6/12—Rev. H to Rev. I  
Removed CERDIP Package Throughout ........................Universal  
Changes to Features, General Description, Product Highlights  
Sections and Figure 1 ....................................................................... 1  
Changes to Table 1............................................................................ 3  
Changes to Table 2............................................................................ 6  
Deleted Figure 3, Renumbered Sequentially................................. 7  
Changes to Figure 5, Figure 7, and Figure 8 Captions................. 8  
Changes to Figure 12 Caption......................................................... 9  
Changes to Figure 19 Caption....................................................... 10  
Changes to Figure 23...................................................................... 12  
Changes to Figure 26...................................................................... 14  
Changes to Scaling the Output Voltage Section......................... 15  
Changes to Figure 27...................................................................... 16  
Deleted Table 7................................................................................ 19  
Updated Outline Dimensions....................................................... 20  
Changes to Ordering Guide .......................................................... 21  
1/05—Rev. E to Rev. F  
Updated Format..................................................................Universal  
Added Functional Block Diagram ..................................................1  
Changes to General Description Section .......................................1  
Changes to Pin Configurations and Function  
Descriptions Section .........................................................................6  
Changes to Typical Performance Characteristics Section ...........7  
Changes to Table 4.......................................................................... 11  
Change to Figure 24 ....................................................................... 12  
Change to Figure 27 ....................................................................... 15  
Changes to Ordering Guide.......................................................... 18  
6/03—Rev. D to Rev. E  
Added AD737JR-5..............................................................Universal  
Changes to Features ..........................................................................1  
Changes to General Description .....................................................1  
Changes to Specifications.................................................................2  
Changes to Absolute Maximum Ratings........................................4  
Changes to Ordering Guide.............................................................4  
Added TPCs 16 through 19 .............................................................6  
Changes to Figures 1 and 2 ..............................................................8  
Changes to Figure 8........................................................................ 11  
Updated Outline Dimensions....................................................... 12  
10/08—Rev. G to Rev. H  
Added Selectable Average or RMS Conversion Section and  
Figure 27 .......................................................................................... 14  
Updated Outline Dimensions....................................................... 20  
Changes to Ordering Guide .......................................................... 22  
12/06—Rev. F to Rev. G  
Changes to Specifications................................................................ 3  
Reorganized Typical Performance Characteristics ...................... 8  
Changes to Figure 21...................................................................... 11  
Reorganized Theory of Operation Section ................................. 12  
Reorganized Applications Section................................................ 14  
Added Scaling Input and Output Voltages Section.................... 14  
Deleted Application Circuits Heading......................................... 16  
Changes to Figure 28...................................................................... 16  
Added AD737 Evaluation Board Section.................................... 18  
Updated Outline Dimensions....................................................... 20  
12/02—Rev. C to Rev. D  
Changes to Functional Block Diagram...........................................1  
Changes to Pin Configuration.........................................................4  
Figure 1 Replaced ..............................................................................8  
Changes to Figure 2...........................................................................8  
Figure 5 Replaced ........................................................................... 10  
Changes to Application Circuits Figures 4, 6–8 ......................... 10  
Outline Dimensions Updated....................................................... 12  
12/99—Rev. B to Rev. C  
Rev. I | Page 2 of 24  
 
Data Sheet  
AD737  
SPECIFICATIONS  
TA = 25°C, VS = 5 V except as noted, CAV = 33 µF, CC = 10 µF, f = 1 kHz, sine wave input applied to Pin 2, unless otherwise specified.  
Specifications shown in boldface are tested on all production units at final electrical test. Results from these tests are used to calculate  
outgoing quality levels.  
Table 1.  
AD737A, AD737J  
AD737K  
Typ  
AD737J-5  
Typ  
Test Conditions/  
Comments  
Parameter  
ACCURACY  
Total Error  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
Unit  
mV/ POR1  
EIN = 0 to 200 mV rms  
VS = 2.5 V  
0.2/0.3  
0.4/0.5  
2.0  
0.2/0.2  
0.2/0.3  
mV/ POR1  
mV/ POR1  
0.2/0.3  
0.2/0.3  
0.4/0.5  
0.4/0.5  
VS = 2.5 V,  
input to Pin 1  
EIN = 200 mV to 1 V rms  
−1.2  
−1.2  
2.0  
POR  
Over  
Temperature  
JN, JR, KR  
EIN = 200 mV rms,  
VS = 2.5 V  
EIN = 200 mV rms,  
VS = 2.5 V  
0.007  
0.014  
0.007  
0.014  
0.02  
POR/°C  
POR/°C  
AN and AR  
vs. Supply Voltage  
E
E
IN = 200 mV rms,  
VS = 2.5 V to 5 V  
IN = 200 mV rms,  
VS = 5 V to 16.5 V  
−0.18  
0.06  
1.3  
−0.18  
0.06  
1.3  
−0.18  
0.06  
%/V  
0
0
−0.3  
0.1  
0
0
−0.3  
0.1  
0
0
−0.3  
0.1  
%/V  
POR  
POR  
POR  
DC Reversal Error  
DC-coupled,  
IN = 600 mV dc  
2.5  
2.5  
V
VS = 2.5 V  
IN = 200 mV dc  
IN = 0 mV to  
1.7  
2.5  
0.1  
V
E
Nonlinearity2  
Input to Pin 13  
0
0.25  
0.35  
0
0.25  
0.35  
200 mV rms,  
@ 100 mV rms  
AC coupled,  
0.02  
POR  
E
IN = 100 mV rms, after  
correction, VS = 2.5 V  
Total Error,  
External Trim  
EIN = 0 mV to  
200 mV rms  
0.1/0.2  
0.7  
0.1/0.2  
0.7  
0.1/0.2  
mV/ POR  
ADDITIONAL  
CREST FACTOR  
ERROR4  
For Crest Factors  
from 1 to 3  
CAV = CF = 100 µF  
%
%
C
AV = 22 µF, CF = 100 µF,  
VS = 2.5 V, input to  
Pin 1  
1.7  
For Crest Factors CAV = CF = 100 µF  
from 3 to 5  
2.5  
2.5  
%
INPUT  
CHARACTERISTICS  
High-Z Input (Pin 2)  
Signal Range  
Continuous  
RMS Level  
VS = +2.5 V  
mV rms  
200  
VS = +2.8 V/−3.2 V  
200  
1
200  
1
mV rms  
V rms  
VS = 5 V to 16.5 V  
Rev. I | Page 3 of 24  
 
AD737  
Data Sheet  
AD737A, AD737J  
AD737K  
Typ  
AD737J-5  
Typ  
Test Conditions/  
Comments  
Parameter  
Min  
Typ  
Max  
Min  
Max  
Min  
0.6  
Max  
Unit  
Peak Transient  
VS = +2.5 V input to  
Pin 1  
V
Input  
VS = +2.8 V/−3.2 V  
VS = 5 V  
VS = 16.5 V  
0.9  
4.0  
0.9  
V
2.7  
2.7  
25  
V
V
4.0  
1012  
1
Input Resistance  
Input Bias  
Current  
Low-Z Input  
(Pin 1) Signal  
Range  
1012  
1
1012  
1
pA  
VS = 5 V  
25  
25  
Continuous  
RMS Level  
VS = +2.5 V  
300  
mV rms  
VS = +2.8 V/−3.2 V  
VS = 5 V to 16.5 V  
VS = +2.5 V  
300  
1
300  
1
mV rms  
V rms  
V
Peak Transient  
Input  
1.7  
VS = +2.8 V/−3.2 V  
VS = 5 V  
VS = 16.5 V  
1.7  
3.8  
11  
1.7  
3.8  
11  
V
V
V
Input Resistance  
6.4  
8
9.6  
12  
6.4  
8
9.6  
12  
6.4  
8
9.6  
12  
kΩ  
V p-p  
Maximum  
Continuous  
Nondestructive  
Input  
Input Offset  
Voltage5  
All supply voltages  
AC-coupled  
3
3
3
mV  
Over the Rated  
Operating  
Temperature  
Range  
8
30  
8
30  
8
30  
µV/°C  
vs. Supply  
VS = 2.5 V to 5 V  
VS = 5 V to 16.5 V  
No load, output is  
80  
50  
80  
50  
80  
µV/V  
µV/V  
150  
150  
OUTPUT  
CHARACTERISTICS negative with respect  
to COM  
Output Voltage  
Range  
VS = +2.8 V/−3.2 V  
−1.6  
−1.7  
−1.6  
−1.7  
V6  
V6  
V
VS = 5 V  
−3.3  
−3.4  
−3.3  
−3.4  
VS = 16.5 V  
−4  
−5  
−4  
−5  
V6  
VS = 2.5 V, input to  
Pin 1  
−1.1  
6.4  
–0.9  
8
Output  
Resistance  
DC  
6.4  
8
9.6  
6.4  
8
9.6  
9.6  
kΩ  
FREQUENCY  
RESPONSE  
High-Z Input  
(Pin 2)  
1% Additional  
Error  
VIN = 1 mV rms  
1
1
1
kHz  
VIN = 10 mV rms  
VIN = 100 mV rms  
VIN = 200 mV rms  
6
37  
33  
6
37  
33  
6
37  
33  
kHz  
kHz  
kHz  
Rev. I | Page 4 of 24  
Data Sheet  
AD737  
AD737A, AD737J  
AD737K  
Typ  
5
AD737J-5  
Typ  
5
Test Conditions/  
Comments  
Parameter  
Min  
Typ  
5
Max  
Min  
Max  
Min  
Max  
Unit  
3 dB Bandwidth VIN = 1 mV rms  
VIN = 10 mV rms  
kHz  
kHz  
kHz  
kHz  
55  
55  
55  
VIN = 100 mV rms  
VIN = 200 mV rms  
170  
190  
170  
190  
170  
190  
Low-Z Input  
(Pin 1)  
1% Additional  
Error  
VIN = 1 mV rms  
1
6
1
6
1
kHz  
VIN = 10 mV rms  
VIN = 40 mV rms  
VIN = 100 mV rms  
VIN = 200 mV rms  
6
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
25  
90  
90  
5
55  
350  
460  
90  
90  
5
55  
350  
460  
90  
90  
5
55  
350  
460  
3 dB Bandwidth VIN = 1 mV rms  
VIN = 10 mV rms  
VIN = 100 mV rms  
VIN = 200 mV rms  
POWER-DOWN  
MODE  
Disable Voltage  
0
0
V
Input Current,  
PD Enabled  
VPD = VS  
11  
11  
µA  
POWER SUPPLY  
Operating  
Voltage Range  
+2.8/  
−3.2  
5
16.5  
160  
210  
40  
+2.8/  
−3.2  
5
16.5  
2.5  
5
16.5  
V
Current  
No input  
120  
170  
25  
120  
170  
25  
160  
210  
40  
120  
170  
25  
160  
210  
40  
µA  
µA  
µA  
Rated input  
Powered down  
1 POR is % of reading.  
2 Nonlinearity is defined as the maximum deviation (in percent error) from a straight line connecting the readings at 0 V and at 200 mV rms.  
3 After fourth-order error correction using the equation  
y = − 0.31009x4− 0.21692x3− 0.06939x2 + 0.99756x + 11.1 × 10−6  
where y is the corrected result and x is the device output between 0.01 V and 0.3 V.  
4 Crest factor error is specified as the additional error resulting from the specific crest factor, using a 200 mV rms signal as a reference. The crest factor is defined as  
VPEAK/V rms.  
5 DC offset does not limit ac resolution.  
6 Value is measured with respect to COM.  
Rev. I | Page 5 of 24  
 
AD737  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 2.  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
16.5 V  
Supply Voltage  
Internal Power Dissipation  
Input Voltage  
Pin 1  
200 mW  
Table 3. Thermal Resistance  
Package Type  
θJA  
Unit  
°C/W  
°C/W  
12 V  
VS  
Indefinite  
+VS and −VS  
−65°C to +125°C  
300°C  
8-Lead PDIP (N-8)  
8-Lead SOIC_N (R-8)  
165  
155  
Pin 2 to Pin 8  
Output Short-Circuit Duration  
Differential Input Voltage  
Storage Temperature Range  
Lead Temperature, Soldering (60 sec)  
ESD Rating  
ESD CAUTION  
500 V  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. I | Page 6 of 24  
 
 
 
Data Sheet  
AD737  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
C
1
2
3
4
8
7
6
5
COM  
+V  
C
C
1
2
3
4
8
7
6
5
COM  
C
AD737  
V
IN  
POWER DOWN  
–V  
S
V
+V  
S
AD737  
IN  
OUTPUT  
TOP VIEW  
(Not to Scale)  
TOP VIEW  
POWER DOWN  
OUTPUT  
(Not to Scale)  
C
S
AV  
–V  
S
C
AV  
Figure 2. SOIC_N Pin Configuration (R-8)  
Figure 3. PDIP Pin Configuration (N-8)  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
4
5
6
7
8
CC  
VIN  
Coupling Capacitor for Indirect DC Coupling.  
RMS Input.  
POWER DOWN Disables the AD737. Low is enabled; high is powered down.  
–VS  
CAV  
OUTPUT  
+VS  
Negative Power Supply.  
Averaging Capacitor.  
Output.  
Positive Power Supply.  
Common.  
COM  
Rev. I | Page 7 of 24  
 
AD737  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VS = 5 V (except AD737J-5, where VS = 2.5 V), CAV = 33 µF, CC = 10 µF, f = 1 kHz, sine wave input applied to Pin 2,  
unless otherwise specified.  
0.7  
0.5  
0.3  
0.1  
10V  
V
= 200mV rms  
= 100µF  
IN  
C
= 22µF, C = 4.7µF, C = 22µF  
AV  
F
C
C
C
AV  
= 22µF  
F
1V  
100mV  
10mV  
1% ERROR  
0
–0.1  
–3dB  
1mV  
–0.3  
–0.5  
10% ERROR  
100µV  
0
2
4
6
8
10  
12  
14  
16  
0.1  
1
10  
100  
1000  
SUPPLY VOLTAGE (±V)  
FREQUENCY (kHz)  
Figure 4. Additional Error vs. Supply Voltage  
Figure 7. Frequency Response Driving Pin 1; Negative DC Output  
16  
10V  
DC COUPLED  
C
= 22µF, C = 4.7µF, C = 22µF  
AV  
F
C
14  
12  
1V  
100mV  
10mV  
1mV  
10  
8
PIN 1  
1% ERROR  
PIN 2  
6
10% ERROR  
4
–3dB  
2
0
100µV  
0
2
4
6
8
10  
12  
14  
16  
0.1  
1
10  
FREQUENCY (kHz)  
100  
1000  
SUPPLY VOLTAGE (±V)  
Figure 5. Peak Input Level for 1% Saturation vs. Supply Voltage  
Figure 8. Frequency Response Driving Pin 2; Negative DC Output  
25  
6
3ms BURST OF 1kHz =  
3 CYCLES  
200mV rms SIGNAL  
C
= 10µF  
5
4
3
AV  
C
= 22µF  
C
F
20  
15  
10  
5
C
= 100µF  
C
= 33µF  
AV  
2
1
0
C
= 100µF  
AV  
C
= 250µF  
AV  
1
2
3
4
5
0
2
4
6
8
10  
12  
14  
16  
18  
CREST FACTOR (V  
/V rms)  
DUAL SUPPLY VOLTAGE (±V)  
PEAK  
Figure 6. Supply Current (Power-Down Mode) vs. Supply Voltage (Dual)  
Figure 9. Additional Error vs. Crest Factor  
Rev. I | Page 8 of 24  
 
 
Data Sheet  
AD737  
0.8  
1.0  
0.5  
V
C
= 200mV rms  
= 100µF  
IN  
AV  
0.6  
0.4  
0.2  
C
= 22µF  
F
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
0
–0.2  
–0.4  
–0.6  
–0.8  
C
= 22µF, C = 4F,  
C
= 4.7µF  
AV  
C
F
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
10mV  
100mV  
INPUT LEVEL (rms)  
1V  
2V  
TEMPERATURE (°C)  
Figure 10. Additional Error vs. Temperature  
Figure 13. Error vs. RMS Input Level Using Circuit in Figure 29  
500  
100  
V
C
C
= 200mV rms  
= 47µF  
= 47µF  
IN  
C
F
400  
300  
10  
200  
–0.5%  
100  
0
–1%  
1
10  
0
0.2  
0.4  
0.6  
0.8  
1.0  
100  
FREQUENCY (Hz)  
1k  
RMS INPUT LEVEL (V)  
Figure 11. DC Supply Current vs. RMS Input Level  
Figure 14. Value of Averaging Capacitor vs. Frequency  
for Specified Averaging Error  
10mV  
1mV  
1V  
AC-COUPLED  
–0.5%  
–1%  
100mV  
10mV  
1mV  
100µV  
10µV  
AC-COUPLED  
C
= 10µF, C = 47µF,  
AV  
= 47µF  
C
C
F
100  
1k  
10k  
100k  
1
10  
100  
1k  
–3dB FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 12. RMS Input Level vs. –3 dB Frequency; Negative DC Output  
Figure 15. RMS Input Level vs. Frequency for Specified Averaging Error  
Rev. I | Page 9 of 24  
AD737  
Data Sheet  
4.0  
3.5  
3.0  
2.5  
10nA  
1nA  
100pA  
10pA  
1pA  
2.0  
1.5  
1.0  
100fA  
0
2
4
6
8
10  
12  
14  
16  
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
SUPPLY VOLTAGE (±V)  
TEMPERATURE (°C)  
Figure 16. Input Bias Current vs. Supply Voltage  
Figure 18. Input Bias Current vs. Temperature  
1V  
100mV  
10mV  
1mV  
10V  
V
=±2.5V,  
S
C
C
= 22µF  
= 0µF  
C
C
= 22µF, C = 4.7µF, C = 22µF  
F C  
AV  
F
1V  
C
= 10µF  
C
= 100µF  
100mV  
AV  
AV  
C
= 33µF  
AV  
10mV  
1mV  
100µV  
100µV  
1ms  
10ms  
100ms  
1s  
10s  
100s  
0.1  
1
10  
FREQUENCY (kHz)  
100  
1000  
SETTLING TIME  
Figure 17. RMS Input Level vs. Settling Time for Three Values of CAV  
Figure 19. Frequency Response Driving Pin 1; Negative DC Output  
Rev. I | Page 10 of 24  
 
Data Sheet  
AD737  
10V  
1.0  
V
=±2.5V,  
S
C
= 22µF, C = 4.7µF, C = 22µF  
AV  
F
C
0.5  
0
1V  
100mV  
–0.5  
–1.0  
–1.5  
–2.0  
0.5%  
10mV  
10%  
1mV  
–3dB  
1%  
C
C
= 22µF, V = ±2.5V  
S
AV  
= 47µF, C = 4.7µF  
C
F
100µV  
–2.5  
10mV  
0.1  
1
10  
FREQUENCY (kHz)  
100  
1000  
100mV  
INPUT LEVEL (rms)  
1V  
2V  
Figure 20. Error Contours Driving Pin 1  
Figure 22. Error vs. RMS Input Level Driving Pin 1  
5
4
3
2
1
0
3 CYCLES OF 1kHz  
200mV rms  
C
10µF  
=
AV  
V
C
C
= ±2.5V  
= 22µF  
= 100µF  
S
C
F
C
=
AV  
22µF  
C
=
AV  
33µF  
C
=
AV  
100µF  
C
AV  
220µF  
=
1
2
3
4
5
CREST FACTOR  
Figure 21. Additional Error vs. Crest Factor for Various Values of CAV  
Rev. I | Page 11 of 24  
AD737  
Data Sheet  
THEORY OF OPERATION  
As shown in Figure 23, the AD737 has four functional subsec-  
tions: an input amplifier, a full-wave rectifier, an rms core, and a  
bias section. The FET input amplifier allows a high impedance,  
buffered input at Pin 2 or a low impedance, wide dynamic range  
input at Pin 1. The high impedance input, with its low input bias  
current, is ideal for use with high impedance input attenuators.  
The input signal can be either dc-coupled or ac-coupled to the  
input amplifier. Unlike other rms converters, the AD737 permits  
both direct and indirect ac coupling of the inputs. AC coupling is  
provided by placing a series capacitor between the input signal  
and Pin 2 (or Pin 1) for direct coupling and between Pin 1 and  
ground (while driving Pin 2) for indirect coupling.  
external averaging capacitor, CF. In the rms circuit, this addi-  
tional filtering stage reduces any output ripple that was not  
removed by the averaging capacitor.  
Finally, the bias subsection permits a power-down function.  
This reduces the idle current of the AD737 from 160 µA to  
30 µA. This feature is selected by connecting Pin 3 to Pin 7 (+VS).  
TYPES OF AC MEASUREMENT  
The AD737 is capable of measuring ac signals by operating as  
either an average responding converter or a true rms-to-dc con-  
verter. As its name implies, an average responding converter  
computes the average absolute value of an ac (or ac and dc)  
voltage or current by full-wave rectifying and low-pass filtering  
the input signal; this approximates the average. The resulting  
output, a dc average level, is then scaled by adding (or reducing)  
gain; this scale factor converts the dc average reading to an rms  
equivalent value for the waveform being measured. For example,  
the average absolute value of a sine wave voltage is 0.636 that  
AC  
C
10µF  
C =  
+
DC  
OPTIONAL RETURN PATH  
CURRENT  
MODE  
ABSOLUTE  
VALUE  
of VPEAK; the corresponding rms value is 0.707 times VPEAK  
Therefore, for sine wave voltages, the required scale factor is  
1.11 (0.707 divided by 0.636).  
.
C
1
2
3
4
8
C
8kΩ  
COM  
In contrast to measuring the average value, true rms measure-  
ment is a universal language among waveforms, allowing the  
magnitudes of all types of voltage (or current) waveforms to be  
compared to one another and to dc. RMS is a direct measure of  
the power or heating value of an ac voltage compared to that of  
a dc voltage; an ac signal of 1 V rms produces the same amount  
of heat in a resistor as a 1 V dc signal.  
V
IN  
C
10µF  
F
+
(OPTIONAL  
LPF)  
+V  
7
V
S
IN  
8kΩ  
FET  
OP AMP  
I
< 10pA  
B
POWER  
DOWN  
BIAS  
SECTION  
6
OUTPUT  
Mathematically, the rms value of a voltage is defined (using a  
simplified equation) as  
RMS  
TRANSLINEAR  
CORE  
V rms = Avg(V 2 )  
–V  
S
5
C
AV  
This involves squaring the signal, taking the average, and then  
obtaining the square root. True rms converters are smart recti-  
fiers; they provide an accurate rms reading regardless of the  
type of waveform being measured. However, average responding  
converters can exhibit very high errors when their input signals  
deviate from their precalibrated waveform; the magnitude of  
the error depends on the type of waveform being measured. As  
an example, if an average responding converter is calibrated to  
measure the rms value of sine wave voltages and then is used  
to measure either symmetrical square waves or dc voltages,  
the converter has a computational error 11% (of reading)  
higher than the true rms value (see Table 5).  
C
33µF  
A
+
+V  
POSITIVE SUPPLY  
COMMON  
S
0.1µF  
0.1µF  
–V  
NEGATIVE SUPPLY  
S
Figure 23. AD737 True RMS Circuit (Test Circuit)  
The output of the input amplifier drives a full-wave precision  
rectifier, which, in turn, drives the rms core. It is the core that  
provides the essential rms operations of squaring, averaging,  
and square rooting, using an external averaging capacitor, CAV  
.
The transfer function for the AD737 is  
Without CAV, the rectified input signal passes through the core  
unprocessed, as is done with the average responding connection  
(see Figure 25). In the average responding mode, averaging is  
carried out by an RC post filter consisting of an 8 kΩ internal  
scale factor resistor connected between Pin 6 and Pin 8 and an  
2
VOUT  
=
Avg(VIN  
)
Rev. I | Page 12 of 24  
 
 
 
Data Sheet  
AD737  
DC ERROR, OUTPUT RIPPLE, AND  
AVERAGING ERROR  
AC MEASUREMENT ACCURACY AND  
CREST FACTOR  
Figure 24 shows the typical output waveform of the AD737 with  
a sine wave input voltage applied. As with all real-world devices,  
the ideal output of VOUT = VIN is never exactly achieved; instead,  
the output contains both a dc and an ac error component.  
The crest factor of the input waveform is often overlooked when  
determining the accuracy of an ac measurement. Crest factor is  
defined as the ratio of the peak signal amplitude to the rms  
amplitude (crest factor = VPEAK/V rms). Many common  
waveforms, such as sine and triangle waves, have relatively low  
crest factors (≥2). Other waveforms, such as low duty cycle  
pulse trains and SCR waveforms, have high crest factors. These  
types of waveforms require a long averaging time constant to  
average out the long time periods between pulses. Figure 9  
shows the additional error vs. the crest factor of the AD737 for  
various values of CAV.  
E
O
IDEAL  
E
O
DC ERROR = E – E (IDEAL)  
O
O
AVERAGE E = E  
O
O
DOUBLE-FREQUENCY  
RIPPLE  
CALCULATING SETTLING TIME  
TIME  
Figure 24. Output Waveform for Sine Wave Input Voltage  
Figure 17 can be used to closely approximate the time required  
for the AD737 to settle when its input level is reduced in ampli-  
tude. The net time required for the rms converter to settle is  
the difference between two times extracted from the graph:  
the initial time minus the final settling time. As an example,  
consider the following conditions: a 33 μF averaging capacitor,  
an initial rms input level of 100 mV, and a final (reduced) input  
level of 1 mV. From Figure 17, the initial settling time (where  
the 100 mV line intersects the 33 μF line) is approximately  
80 ms. The settling time corresponding to the new or final  
input level of 1 mV is approximately 8 seconds. Therefore, the  
net time for the circuit to settle to its new value is 8 seconds  
minus 80 ms, which is 7.92 seconds.  
As shown, the dc error is the difference between the average  
of the output signal (when all the ripple in the output has been  
removed by external filtering) and the ideal dc output. The dc  
error component is, therefore, set solely by the value of the  
averaging capacitor used—no amount of post filtering (using a  
very large postfiltering capacitor, CF) allows the output voltage  
to equal its ideal value. The ac error component, an output  
ripple, can be easily removed using a large enough CF.  
In most cases, the combined magnitudes of the dc and ac error  
components must be considered when selecting appropriate  
values for CAV and CF capacitors. This combined error, repre-  
senting the maximum uncertainty of the measurement, is termed  
the averaging error and is equal to the peak value of the output  
ripple plus the dc error. As the input frequency increases, both  
error components decrease rapidly. If the input frequency  
doubles, the dc error and ripple reduce to one-quarter and  
one-half of their original values, respectively, and rapidly  
become insignificant.  
Note that, because of the inherent smoothness of the decay  
characteristic of a capacitor/diode combination, this is the  
total settling time to the final value (not the settling time to 1%,  
0.1%, and so on, of the final value). Also, this graph provides  
the worst-case settling time because the AD737 settles very  
quickly with increasing input levels.  
Table 5. Error Introduced by an Average Responding Circuit When Measuring Common Waveforms  
Type of Waveform  
1 V Peak Amplitude  
Crest Factor  
(VPEAK/V rms)  
True RMS  
Value (V)  
Reading of an Average Responding Circuit  
Calibrated to an RMS Sine Wave Value (V)  
Error (%)  
0
Undistorted Sine Wave  
Symmetrical Square Wave  
Undistorted Triangle Wave  
Gaussian Noise (98% of Peaks <1 V)  
Rectangular  
1.414  
1.00  
1.73  
3
2
10  
0.707  
1.00  
0.577  
0.333  
0.5  
0.707  
1.11  
0.555  
0.295  
0.278  
0.011  
11.0  
−3.8  
−11.4  
−44  
Pulse Train  
0.1  
−89  
SCR Waveforms  
50% Duty Cycle  
2
0.495  
0.212  
0.354  
0.150  
−28  
−30  
25% Duty Cycle  
4.7  
Rev. I | Page 13 of 24  
 
 
 
 
 
AD737  
Data Sheet  
APPLICATIONS INFORMATION  
RMS MEASUREMENT—CHOOSING AN OPTIMUM  
VALUE FOR CAV  
1
2
3
4
8
7
C
COM  
C
AD737  
VIN  
V
+V  
S
+2.5V  
RMS  
IN  
Because the external averaging capacitor, CAV, holds the rec-  
tified input signal during rms computation, its value directly  
affects the accuracy of the rms measurement, especially at low  
frequencies. Furthermore, because the averaging capacitor is  
connected across a diode in the rms core, the averaging time  
constant (τAV) increases exponentially as the input signal  
decreases. It follows that decreasing the input signal decreases  
errors due to nonideal averaging but increases the settling time  
approaching the decreased rms-computed dc value. Thus,  
diminishing input values allow the circuit to perform better  
(due to increased averaging) while increasing the waiting time  
between measurements. A trade-off must be made between  
1MΩ  
6
5
OUT  
VOUT  
DC  
–V  
C
AV  
S
33µF  
NTR4501NT1  
33µF  
ASSUMED TO  
BE A LOGIC  
SOURCE  
rms  
AVG  
–2.5V  
Figure 26. CMOS Switch Is Used to Select RMS or Average Responding Modes  
SELECTING PRACTICAL VALUES FOR CAPACITORS  
Table 6 provides practical values of CAV and CF for several  
common applications.  
computational accuracy and settling time when selecting CAV  
.
The input coupling capacitor, CC, in conjunction with the 8 kΩ  
internal input scaling resistor, determines the −3 dB low frequency  
roll-off. This frequency, FL, is equal to  
RAPID SETTLING TIMES VIA THE AVERAGE  
RESPONDING CONNECTION  
Because the average responding connection shown in Figure 25  
does not use an averaging capacitor, its settling time does not vary  
with input signal level; it is determined solely by the RC time  
constant of CF and the internal 8 kΩ output scaling resistor.  
1
FL =  
(1)  
2π × 8000 ×CC  
(
inFarads  
)
Note that, at FL, the amplitude error is approximately −30%  
(−3 dB) of reading. To reduce this error to 0.5% of reading,  
choose a value of CC that sets FL at one-tenth of the lowest  
frequency to be measured.  
8kΩ  
AD737  
C
1
2
3
4
8
C
COM  
FULL-WAVE  
RECTIFIER  
In addition, if the input voltage has more than 100 mV of dc  
offset, the ac coupling network at Pin 2 is required in addition  
to Capacitor CC.  
+
C
F
+V  
7
6
V
S
IN  
8kΩ  
33µF  
INPUT  
AMPLIFIER  
POWER  
DOWN  
BIAS  
V
OUT  
SECTION  
SCALING INPUT AND OUTPUT VOLTAGES  
OUTPUT  
The AD737 is an extremely flexible device. With minimal  
external circuitry, it can be powered with single- or dual-  
polarity power supplies, and input and output voltages are  
independently scalable to accommodate nonmatching I/O  
devices. This section describes a few such applications.  
RMS  
CORE  
–V  
S
5
C
AV  
+V  
POSITIVE SUPPLY  
COMMON  
S
0.1µF  
0.1µF  
Extending or Scaling the Input Range  
–V  
NEGATIVE SUPPLY  
S
For low supply voltage applications, the maximum peak voltage  
to the device is extended by simply applying the input voltage to  
Pin 1 across the internal 8 kΩ input resistor. The AD737 input  
circuit functions quasi-differentially, with a high impedance  
FET input at Pin 2 (noninverting) and a low impedance input at  
Pin 1 (inverting, see Figure 25). The internal 8 kΩ resistor behaves  
as a voltage-to-current converter connected to the summing  
node of a feedback loop around the input amplifier. Because the  
feedback loop acts to servo the summing node voltage to match  
the voltage at Pin 2, the maximum peak input voltage increases  
until the internal circuit runs out of headroom, approximately  
double for a symmetrical dual supply.  
Figure 25. AD737 Average Responding Circuit  
Selectable Average or RMS Conversion  
For some applications, it is desirable to be able to select between  
rms-value-to-dc conversion and average-value-to-dc conversion.  
If CAV is disconnected from the root-mean core, the AD737 full-  
wave rectifier is a highly accurate absolute value circuit. A CMOS  
switch whose gate is controlled by a logic level selects between  
average and rms values.  
Rev. I | Page 14 of 24  
 
 
 
 
 
 
Data Sheet  
AD737  
Battery Operation  
Next, using the IOUTMAG value from Equation 2, calculate the new  
feedback resistor value (R5) required for 6 V output using  
All the level-shifting for battery operation is provided by  
the 3½ digit converter, shown in Figure 27. Alternatively, an  
external op amp adds flexibility by accommodating nonzero  
common-mode voltages and providing output scaling and  
offset to zero. When an external operational amplifier is used,  
the output polarity is positive going.  
6 V  
125μA  
R5 =  
= 48.1kΩ  
(3)  
Select the closest-value standard 1% resistor, 47.5 kΩ.  
Because the supply is 12 V, the common-mode voltage at the  
R7/R8 divider is 6 V, and the combined resistor value  
(R3 + R4) is equal to the feedback resistor, or 47.5 kΩ.  
Figure 28 shows an op amp used in a single-supply application.  
Note that the combined input resistor value (R1 + R2 + 8 kΩ)  
matches that of the R5 feedback resistor. In this instance, the  
magnitudes of the output dc voltage and the rms of the ac input  
are equal. R3 and R4 provide current to offset the output to 0 V.  
R2 is used to calibrate the transfer function (gain), and R4 sets  
the output voltage to zero with no input voltage.  
Perform calibration as follows:  
Scaling the Output Voltage  
1. With no ac input applied, adjust R4 for 0 V.  
2. Apply a known input to the input.  
3. Adjust the R2 trimmer until the input and output match.  
The output voltage can be scaled to the input rms voltage. For  
example, assume that the AD737 is retrofitted to an existing  
application using an averaging responding circuit (full-wave  
rectifier). The power supply is 1 2 V, the input voltage is 10 V  
ac, and the desired output is 6 V dc.  
The op amp selected for any single-supply application must be a  
rail-to-rail type, for example an AD8541, as shown in Figure 28.  
For higher voltages, a higher voltage part, such as an OP196,  
can be used. When calibrating to 0 V, the specified voltage  
above ground for the operational amplifier must be taken into  
account. Adjust R4 slightly higher as appropriate.  
For convenience, use the same combined input resistance as  
shown in Figure 28. Calculate the rms input current as  
10 V  
IINMAG  
=
=125µA = IOUTMAG (2)  
69.8 kΩ + 2.5 kΩ + 8 kΩ  
Table 6. AD737 Capacitor Selection  
Low Frequency  
Cutoff (−3 dB)  
Maximum  
Crest Factor  
Application  
RMS Input Level  
CAV (µF)  
CF(µF)  
Settling Time1 to 1%  
General-Purpose RMS  
Computation  
0 V to 1 V  
20 Hz  
5
150  
10  
360 ms  
200 Hz  
20 Hz  
200 Hz  
20 Hz  
5
5
5
15  
33  
3.3  
None  
1
10  
1
36 ms  
360 ms  
36 ms  
1.2 sec  
0 mV to 200 mV  
0 V to 1 V  
General-Purpose Average  
Responding  
33  
200 Hz  
20 Hz  
200 Hz  
50 Hz  
None  
None  
None  
100  
3.3  
33  
3.3  
33  
120 ms  
1.2 sec  
120 ms  
1.2 sec  
0 mV to 200 mV  
0 mV to 200 mV  
SCR Waveform  
Measurement  
5
60 Hz  
50 Hz  
60 Hz  
5
5
5
82  
50  
47  
27  
33  
27  
1.0 sec  
1.2 sec  
1.0 sec  
0 mV to 100 mV  
Audio Applications  
Speech  
0 mV to 200 mV  
0 mV to 100 mV  
300 Hz  
20 Hz  
3
10  
1.5  
100  
0.5  
68  
18 ms  
2.4 sec  
Music  
1 Settling time is specified over the stated rms input level with the input signal increasing from zero. Settling times are greater for decreasing amplitude input signals.  
Rev. I | Page 15 of 24  
 
 
AD737  
Data Sheet  
SWITCH CLOSED  
ACTIVATES  
POWER-DOWN  
+
C
10µF  
1µF  
C
20kΩ  
MODE. AD737 DRAWS  
JUST 40µA IN THIS MODE  
+V  
S
+
AD589  
1.23V  
1
3 /  
2 DIGIT ICL7136  
TYPE CONVERTER  
200kΩ  
50kΩ  
1PRV  
0.01µF  
200mV  
C
C
COM  
8
8kΩ  
AD737  
V
1
IN  
REF HIGH  
1N4148  
9MΩ  
FULL-WAVE  
RECTIFIER  
+V  
S
V
IN  
2
2V  
REF LOW  
COMMON  
7
+V  
8kΩ  
900kΩ  
90kΩ  
10kΩ  
47kΩ  
INPUT  
AMPLIFIER  
20V  
1W  
OUTPUT  
6
1MΩ  
1N4148  
+
BIAS  
LOW  
3
9V  
200V  
SECTION  
POWER  
DOWN  
0.1µF  
ANALOG  
C
–V  
S
4
AV  
HIGH  
RMS  
CORE  
5
1µF  
–V  
+
S
+
33µF  
Figure 27. 3½ Digit DVM Circuit  
INPUT SCALE FACTOR ADJ  
R1 R2  
C1  
69.8kΩ 5kΩ  
C
F
0.47µF  
1%  
0.47µF  
COM  
1
2
3
C
V
8
7
6
INPUT  
NC  
5V  
C
R4  
5kΩ  
R3  
78.7kΩ  
R5  
80.6kΩ  
+V  
S
IN  
5V  
C2  
0.01µF  
AD737  
OUTPUT ZERO  
ADJUST  
0.01µF  
1
POWER  
DOWN  
OUTPUT  
2
3
7
6
OUTPUT  
AD8541AR  
5
4
C
4
–V  
S
5
AV  
C3  
0.01µF  
5V  
+
C4  
2.2µF  
C
R7  
100kΩ  
AV  
33µF  
2.5V  
+
R8  
100kΩ  
C5  
1µF  
NC = NO CONNECT  
Figure 28. Battery-Powered Operation for 200 mV Maximum RMS Full-Scale Input  
C
C
10µF  
+
100Ω  
SCALE FACTOR  
ADJUST  
COM  
8kΩ  
AD737  
C
1
2
3
8
C
200Ω  
FULL-WAVE  
RECTIFIER  
+
C
10µF  
F
+V  
7
V
S
IN  
8kΩ  
INPUT  
AMPLIFIER  
OUTPUT  
6
POWER  
DOWN  
BIAS  
SECTION  
V
OUT  
–V  
C
S
4
AV  
RMS  
CORE  
5
+
C
AV  
33µF  
Figure 29. External Scale Factor Trim  
Rev. I | Page 16 of 24  
 
 
 
Data Sheet  
AD737  
14  
13  
Q1  
12  
1kΩ  
3500PPM/°C  
C
10µF  
C
PRECISION  
RESISTOR  
CORP  
*
C
C
8kΩ  
AD737  
+
1
8
7
NC  
+V  
60.4Ω  
COM  
TYPE PT/ST  
SCALE  
FACTOR  
TRIM  
FULL-WAVE  
RECTIFIER  
2
3
2kΩ  
V
S
IN  
8kΩ  
INPUT  
AMPLIFIER  
OUTPUT  
31.6kΩ  
POWER  
DOWN  
BIAS  
6
2
3
SECTION  
dB OUTPUT  
100mV/dB  
6
AD711  
–V  
C
S
AV  
RMS  
CORE  
4
5
*
+
11  
Q2  
10  
C
AV  
I
REF  
9
R
**  
R1**  
CAL  
NC = NO CONNECT  
*Q1, Q2 PART OF RCA CA3046 OR SIMILAR NPN TRANSISTOR ARRAY.  
4.3V  
**R1 + R  
IN = 10,000 ×  
CAL  
0dB INPUT LEVEL IN V  
Figure 30. dB Output Connection  
OFFSET ADJUST  
500kΩ  
+V  
–V  
S
S
1MΩ  
1kΩ  
C
C
COM  
8
499Ω  
8kΩ  
1
AD737  
1kΩ  
SCALE  
FACTOR  
ADJUST  
FULL-WAVE  
RECTIFIER  
V
2
3
7
6
+V  
IN  
S
INPUT  
AMPLIFIER  
POWER  
DOWN  
V
OUT  
Figure 31. DC-Coupled Offset Voltage and Scale Factor Trims  
Rev. I | Page 17 of 24  
AD737  
Data Sheet  
AD737 EVALUATION BOARD  
An evaluation board, AD737-EVALZ, is available for experi-  
ments or for becoming familiar with rms-to-dc converters.  
Figure 32 is a photograph of the board; Figure 34 to Figure 37  
show the signal and power plane copper patterns. The board  
is designed for multipurpose applications and can be used for  
the AD736 as well. Although not shipped with the board, an  
optional socket that accepts the 8­lead surface-mount package  
is available from Enplas Corp.  
Figure 34. AD737 Evaluation Board—Component-Side Copper  
Figure 32. AD737 Evaluation Board  
Figure 35. AD737 Evaluation Board—Secondary-Side Copper  
Figure 33. AD737 Evaluation Board—Component-Side Silkscreen  
As described in the Applications Information section, the AD737  
can be connected in a variety of ways. As shipped, the board is  
configured for dual supplies with the high impedance input  
connected and the power-down feature disabled. Jumpers are  
provided for connecting the input to the low impedance input  
(Pin 1) and for dc connections to either input. The schematic  
with movable jumpers is shown in Figure 38. The jumper positions  
in black are default connections; the dotted-outline jumpers are  
optional connections. The board is tested prior to shipment and  
requires only a power supply connection and a precision meter to  
perform measurements.  
Figure 36. AD737 Evaluation Board—Internal Power Plane  
Figure 37. AD737 Evaluation Board—Internal Ground Plane  
Rev. I | Page 18 of 24  
 
 
 
 
Data Sheet  
AD737  
GND1 GND2 GND3 GND4  
–V  
–V  
+V  
+V  
S
S
S
S
C2  
10µF  
25V  
C1  
10µF  
25V  
+
+
W3  
W1  
AC COUP  
LO-Z  
DC  
W4  
LO-Z IN  
R3  
0Ω  
COUP  
+
CC  
DUT  
AD737  
V
IN  
C
IN  
0.1µF  
P2  
R4  
0Ω  
J1  
HI-Z SEL  
HI-Z  
1
8
7
6
5
COM  
C
V
C
IN  
2
3
IN  
V
+V  
S
OUT  
GND  
+V  
S
W2  
C6  
0.1µF  
POWER  
DOWN  
OUTPUT  
J2  
R1  
1MΩ  
C
F1  
CAV  
4
–V  
S
C
+
V
AV  
S
J3  
C
33µF  
16V  
AV  
PD  
FILT  
–V  
S
+
NORM  
C4  
0.1µF  
SEL  
PIN3  
C
F2  
Figure 38. AD737 Evaluation Board Schematic  
Rev. I | Page 19 of 24  
 
AD737  
Data Sheet  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 39. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
0.400 (10.16)  
0.365 (9.27)  
0.355 (9.02)  
8
1
5
4
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 40. 8-Lead Plastic Dual-In-Line Package [PDIP]  
(N-8)  
Dimensions shown in inches and (millimeters)  
Rev. I | Page 20 of 24  
 
Data Sheet  
AD737  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
0°C to 70°C  
Package Description  
Package Option  
AD737ANZ  
AD737ARZ  
AD737JNZ  
8-Lead Plastic Dual In-Line Package [PDIP]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Plastic Dual In-Line Package [PDIP]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
Evaluation Board  
N-8  
R-8  
N-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
AD737JRZ  
0°C to 70°C  
AD737JRZ-R7  
AD737JRZ-RL  
AD737JRZ-5  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
AD737JRZ-5-R7  
AD737JRZ-5-RL  
AD737KR-REEL  
AD737KR-REEL7  
AD737KRZ-RL  
AD737KRZ-R7  
AD737-EVALZ  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
1 Z = RoHS Compliant Part.  
Rev. I | Page 21 of 24  
 
 
AD737  
NOTES  
Data Sheet  
Rev. I | Page 22 of 24  
Data Sheet  
NOTES  
AD737  
Rev. I | Page 23 of 24  
AD737  
NOTES  
Data Sheet  
©2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00828-0-6/12(I)  
Rev. I | Page 24 of 24  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY