AD7384 [ADI]

Differential Inputs, 1 MSPS/500 kSPS, Dual Simultaneous Sampling SAR ADCs;
AD7384
型号: AD7384
厂家: ADI    ADI
描述:

Differential Inputs, 1 MSPS/500 kSPS, Dual Simultaneous Sampling SAR ADCs

文件: 总29页 (文件大小:427K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Differential Inputs, 1 MSPS/500 kSPS, Dual  
Simultaneous Sampling SAR ADCs  
Data Sheet  
AD4680/AD4681  
FEATURES  
GENERAL DESCRIPTION  
16-bit ADC family  
The AD4680/AD4681 are 16-bit, pin-compatible, dual simultane-  
ous sampling, high speed, low power, successive approximation  
register (SAR) analog-to-digital converters (ADCs) that operate  
from a 3.0 V to 3.6 V power supply and feature throughput rates  
of 1 MSPS for the AD4680 and 500 kSPS for the AD4681. The  
analog input type is differential, accepts a wide common-mode  
input voltage, and is sampled and converted on the falling edge  
Dual simultaneous sampling  
Fully differential analog inputs  
Throughput conversion rate  
1 MSPS for AD4680  
500 kSPS for AD4681  
SNR (typical)  
92.5 dB, VREF = 3.3 V external  
100 dB with 8× OSR, RES = 1  
On-chip oversampling function  
Resolution boost function  
INL (maximum) 1.5 LSBs  
2.5 V internal reference at 10 ppm/°C  
High speed serial interface  
−40°C to +125°C operation  
3 mm × 3 mm, 16-lead LFCSP  
Wide common-mode range  
Alert function  
CS  
of . Integrated on-chip oversampling blocks improve dynamic  
range and reduce noise at lower bandwidths. A buffered internal  
2.5 V reference is included. Alternatively, an external reference  
up to 3.3 V can be used.  
The conversion process and data acquisition use standard control  
inputs, allowing easy interfacing to microprocessors or digital  
signal processors (DSPs). The device is compatible with 1.8 V,  
2.5 V, and 3.3 V interfaces using a separate logic supply. The  
AD4680/AD4681 are available in a 16-lead lead frame chip scale  
package (LFCSP) with operation specified from −40°C to +125°C.  
COMPANION PRODUCTS  
APPLICATIONS  
ADC Drivers: ADA4896-2, ADA4940-2, ADA4807-2, LTC6227  
Voltage References: ADR4533, ADR4525  
Low Dropout Regulators: ADP166, ADP7104, ADP7182  
Additional companion products on the AD4680 and AD4681  
product pages  
Motor control position feedback  
Motor control current sense  
Sonar  
Power quality  
Data acquisition systems  
Erbium doped fiber amplifier (EDFA) applications  
Inphase (I) and quadrature (Q) demodulation  
Table 1. Related Products  
Input Type  
16-Bit  
14-Bit  
12-Bit  
Differential  
Pseudo Differential  
Single-Ended  
AD7380  
AD7383  
AD7386  
AD7381  
AD7384  
AD7387  
AD7388  
FUNCTIONAL BLOCK DIAGRAM  
3.3V  
3.3V  
1µF  
1µF  
(
A
A+ AND A A–)  
IN IN  
V
V
LOGIC  
CC  
VREF  
C1  
C2  
C1  
A
A
A+  
A–  
R
R
IN  
0V  
OVER-  
ADC A  
SDOA  
SAMPLING  
IN  
VREF  
0V  
REFIO  
OSC  
REFCAP  
GND  
SCLK  
SDI  
REF  
LDO  
DIGITAL  
CONTROLLER  
CONTROL  
LOGIC  
(
A
B+ AND A B–)  
IN IN  
REGCAP  
CS  
VREF  
0V  
R
R
C1  
C2  
C1  
A
B+  
IN  
IN  
OVER-  
SAMPLING  
ADC B  
SDOB/ALERT  
A
B–  
VREF  
0V  
AD4680/AD4681  
GND  
Figure 1.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Analog  
Devices. Trademarks and registeredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2020 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
 
AD4680/AD4681  
Data Sheet  
TABLE OF CONTENTS  
Features.............................................................................................. 1  
Oversampling ............................................................................. 18  
Resolution Boost ........................................................................ 19  
Alert.............................................................................................. 19  
Power Modes .............................................................................. 20  
Internal and External Reference .............................................. 20  
Software Reset............................................................................. 20  
Diagnostic Self Test.................................................................... 20  
Interface........................................................................................... 21  
Reading Conversion Results..................................................... 21  
Low Latency Readback.............................................................. 22  
Reading from Device Registers ................................................ 23  
Writing to Device Registers...................................................... 23  
CRC.............................................................................................. 23  
Registers........................................................................................... 25  
Addressing Registers.................................................................. 25  
CONFIGURATION1 Register................................................. 26  
CONFIGURATION2 Register................................................. 27  
Applications ...................................................................................... 1  
General Description......................................................................... 1  
Companion Products....................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications .................................................................................... 3  
Timing Specifications .................................................................. 5  
Absolute Maximum Ratings ........................................................... 7  
Thermal Resistance...................................................................... 7  
Electrostatic Discharge (ESD) Ratings...................................... 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions ............................ 8  
Typical Performance Characteristics............................................. 9  
Terminology.................................................................................... 13  
Theory of Operation ...................................................................... 14  
Circuit Information ................................................................... 14  
Converter Operation.................................................................. 14  
Analog Input Structure.............................................................. 14  
ADC Transfer Function ............................................................ 15  
Applications Information.............................................................. 16  
Power Supply .............................................................................. 16  
Modes of Operation ....................................................................... 18  
ALERT  
Register.......................................................................... 27  
ALERT_LOW_THRESHOLD Register.................................. 28  
ALERT_HIGH_THRESHOLD Register ................................ 28  
Outline Dimensions....................................................................... 29  
Ordering Guide .......................................................................... 29  
REVISION HISTORY  
10/2020—Revision 0: Initial Version  
Rev. 0 | Page 2 of 29  
 
Data Sheet  
AD4680/AD4681  
SPECIFICATIONS  
VCC = 3.0 V to 3.6 V, VLOGIC = 1.65 V to 3.6 V, reference voltage (VREF) = 2.5 V internal, sampling frequency (fSAMPLE) = 1 MSPS (AD4680)  
or 500 kSPS (AD4681), TA = −40°C to +125°C, no oversampling enabled, unless otherwise noted. FS is full scale.  
Table 2.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
RESOLUTION  
16  
Bits  
THROUGHPUT  
AD4680  
AD4681  
1
500  
MSPS  
kSPS  
DC ACCURACY  
No Missing Codes  
Differential Nonlinearity (DNL) Error  
Integral Nonlinearity (INL) Error  
Gain Error  
Gain Error Temperature Drift  
Gain Error Match  
Offset Error  
16  
Bits  
LSB  
LSB  
% FS  
ppm/°C  
% FS  
mV  
mV  
μV/°C  
mV  
−1.0  
−1.5  
−0.015  
−11  
−0.01  
−0.2  
−0.5  
−2  
0.7  
0.7  
0.002  
+1.0  
+1.5  
+0.015  
+11  
+0.01  
+0.2  
+0.5  
+2  
1
0.002  
0.01  
At 25°C, VCC = 3.3 V  
Zero Error Drift  
Zero Error Matching  
AC ACCURACY  
0.5  
0.1  
−0.5  
+0.5  
Input frequency (fIN) = 1 kHz  
VREF = 3.3 V external  
Dynamic Range  
93.3  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
91.8  
95.2  
92.5  
91  
100  
89  
112  
−113  
−104  
92.5  
91  
Oversampled Dynamic Range  
Signal-to-Noise Ratio (SNR)  
Oversampling ratio (OSR) = 4×  
VREF = 3.3 V external  
91  
89.5  
OSR = 8×, RES = 1, VREF = 3.3 V external  
fIN = 100 kHz  
Spurious-Free Dynamic Range (SFDR)  
Total Harmonic Distortion (THD)  
fIN = 100 kHz  
VREF = 3.3 V external  
Signal-to-Noise-and-Distortion (SINAD) Ratio  
90  
89  
Channel to Channel Isolation  
ANALOG INPUT  
−110  
Voltage Range  
Absolute Input Voltage  
Common-Mode Input Range  
(AINx+) – (AINx−)  
AINx+, AINx−  
AINx+, AINx−  
−VREF  
−0.1  
+VREF  
VREF + 0.1  
V
V
V
0.2 to VREF  
0.2  
Analog Input Common-Mode Rejection  
Ratio (CMRR)  
f
IN = 500 kHz  
−75  
dB  
DC Leakage Current  
Input Capacitance  
0.1  
18  
5
1
μA  
pF  
pF  
When in track mode  
When in hold mode  
SAMPLING DYNAMICS  
Input Bandwidth  
At −0.1 dB  
At −3 dB  
6
25  
2
MHz  
MHz  
ns  
Aperture Delay  
Aperture Delay Match  
Aperture Jitter  
26  
20  
100  
ps  
ps  
Rev. 0 | Page 3 of 29  
 
AD4680/AD4681  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
REFERENCE INPUT AND OUTPUT  
VREF Input Voltage Range  
VREF Input Current  
AD4680  
AD4681  
VREF Output Voltage  
External reference  
External reference  
1 MSPS  
500 kSPS  
At 25°C  
2.49  
3.4  
V
0.26  
0.23  
2.5  
0.29  
0.26  
2.502  
2.505  
10  
mA  
mA  
V
V
ppm/°C  
μV rms  
2.498  
2.495  
−40°C to +125°C  
VREF Temperature Coefficient  
VREF Noise  
1
7
DIGITAL INPUTS (SCLK, SDI, CS)  
Logic Levels  
Input Voltage  
Low (VIL)  
High (VIH)  
0.2 × VLOGIC  
V
V
0.8 × VLOGIC  
Input Current  
Low (IIL)  
High (IIH)  
−1  
−1  
+1  
+1  
μA  
μA  
DIGITAL OUTPUTS (SDOA, SDOB/ALERT)  
Output Coding  
Twos complement  
0.4  
Bits  
V
Output Low Voltage (VOL  
)
Sink current (ISINK) = 300 μA  
Output High Voltage (VOH  
)
Source current (ISOURCE) = −300 μA  
VLOGIC − 0.3  
V
Floating-State Leakage Current  
Floating-State Output Capacitance  
POWER SUPPLIES  
1
μA  
pF  
10  
VCC  
3.0  
3.2  
1.65  
3.3  
3.3  
3.6  
3.6  
3.6  
V
V
V
External reference = 3.3 V  
VLOGIC  
VCC Current (IVCC  
)
Normal Mode (Operational)  
AD4680, 1 MSPS  
AD4681, 500 kSPS  
7.28  
4.76  
2.3  
8.4  
5.6  
2.8  
200  
mA  
mA  
mA  
μA  
Normal Mode (Static)  
Shutdown Mode  
100  
VLOGIC Current (IVLOGIC  
)
SDOA and SDOB/ALERT at 0x1FFF  
AD4680, 1 MSPS  
Normal Mode (Operational)  
884  
438  
10  
950  
470  
200  
200  
μA  
μA  
nA  
nA  
AD4681, 500 kSPS  
Normal Mode (Static)  
Shutdown Mode  
10  
POWER DISSIPATION  
Total Power (PTOTAL  
)
AD4680  
AD4681  
29.4  
18.7  
33.7  
21.9  
mW  
mW  
VCC Power (PVCC  
)
Normal Mode  
Operational  
AD4680, 1 MSPS  
AD4681, 500 kSPS  
26.2  
17.1  
7
30.3  
20.2  
10  
mW  
mW  
mW  
μW  
Static  
Shutdown Mode  
VLOGIC Power (PVLOGIC  
Normal Mode  
330  
720  
)
Operational  
AD4680, 1 MSPS  
AD4681, 500 kSPS  
3.2  
1.6  
33  
3.4  
1.7  
720  
720  
mW  
mW  
nW  
Static  
Shutdown Mode  
33  
nW  
Rev. 0 | Page 4 of 29  
Data Sheet  
AD4680/AD4681  
TIMING SPECIFICATIONS  
VCC = 3.0 V to 3.6 V, VLOGIC = 1.65 V to 3.6 V, VREF = 2.5 V internal, and TA = −40°C to +125°C, unless otherwise noted.  
Table 3.  
Parameter Min  
Typ  
Max  
Unit Description  
Time between conversions  
AD4680  
tCYC  
1
2
μs  
μs  
ns  
ns  
ns  
ns  
ns  
AD4681  
tSCLKED  
tSCLK  
tSCLKH  
tSCLKL  
tCSH  
190  
25  
10  
10  
CS falling edge to first SCLK falling edge  
SCLK period  
SCLK high time  
SCLK low time  
CS pulse width  
10  
tQUIET  
Interface quiet time prior to conversion  
500  
1500  
ns  
ns  
tSDOEN  
CS low to SDOA and SDOB/ALERT enabled  
VLOGIC ≥ 2.25 V  
1.65 V ≤ VLOGIC < 2.25 V  
SCLK rising edge to SDOA and SDOB/ALERT hold time  
SCLK rising edge to SDOA and SDOB/ALERT setup time  
VLOGIC ≥ 2.25 V  
6
8
ns  
ns  
ns  
tSDOH  
tSDOS  
2
6
8
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1.65 V ≤ VLOGIC < 2.25 V  
tSDOT  
CS rising edge to SDOA and SDOB/ALERT high impedance  
SDI setup time prior to SCLK falling edge  
SDI hold time after SCLK falling edge  
SCLK rising edge to CS rising edge  
Conversion time  
tSDIS  
tSDIH  
tSCLKCS  
tCONVERT  
tACQUIRE  
1
1
0
190  
Acquire time  
810  
1800  
ns  
ns  
AD4680  
AD4681  
tRESET  
Valid time to start conversion after software reset (see Figure 37)  
Valid time to start conversion after soft reset  
Valid time to start conversion after hard reset  
Supply active to conversion  
250  
800  
ns  
ns  
tPOWERUP  
5
11  
5
ms  
ms  
ms  
ms  
First conversion allowed  
Settled to within 1% with internal reference  
Settled to within 1% with external reference  
Supply active to register read write access allowed  
Exiting shutdown mode to conversion  
Settled to within 1% with internal reference  
Settled to within 1% with external reference  
Time from CS to ALERT indication (see Figure 36)  
Time from CS to ALERT clear (see Figure 36)  
tREGWRITE  
tSTARTUP  
5
11  
10  
200  
12  
ms  
μs  
ns  
ns  
tALERTS  
tALERTC  
Rev. 0 | Page 5 of 29  
 
AD4680/AD4681  
Data Sheet  
Timing Diagrams  
t
CYC  
t
CSH  
t
t
SCLKL  
SCLKH  
t
QUIET  
t
SCLK  
t
t
SCLKCS  
SCLKED  
CS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
SCLK  
TRISTATE  
SDOA  
TRISTATE  
TRISTATE  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
15  
14  
14  
13  
13  
12  
11  
10  
9
9
8
8
7
6
5
4
3
2
2
1
1
0
0
TRISTATE  
SDOB/ALERT  
DB  
15  
12  
11  
10  
7
6
5
4
3
t
t
t
SDOT  
SDOH  
SDOS  
t
SDOEN  
DB  
DB  
14  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
0
SDI  
15  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
t
t
SDIH  
SDIS  
Figure 2. Serial Interface Timing Diagram  
t
CONVERT  
CS  
CONVERSION  
ACQUIRE  
CONVERSION  
ACQUIRE  
t
ACQUIRE  
Figure 3. Internal Conversion Acquire Timing  
t
POWERUP  
V
CC  
CS  
Figure 4. Power-Up Time to Conversion  
t
REGWRITE  
V
CC  
CS  
SDI  
REG WRITE  
Figure 5. Power-Up Time to Register Read Write Access  
t
STARTUP  
CS  
SDI  
SHUTDOWN  
SHUTDOWN  
NORMAL  
NORMAL  
MODE  
ACCURATE  
CONVERSION  
MODE  
Figure 6. Shutdown Mode to Normal Mode Timing  
tCONVERT0  
CS  
INTERNAL  
CONVERSION  
ACQUIRE  
CONVERSION  
ACQUIRE  
CONVERSION  
ACQUIRE  
CONVERSION  
ACQUIRE  
tCONVERT1  
tCONVERT2  
tCONVERT3  
t
CONVERT4  
Figure 7. Conversion Timing During OS Normal Mode  
Rev. 0 | Page 6 of 29  
Data Sheet  
AD4680/AD4681  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 4.  
Thermal performance is directly linked to printed circuit  
board (PCB) design and operating environment. Careful  
attention to PCB thermal design is required.  
Parameter  
Rating  
VCC to Ground (GND)  
VLOGIC to GND  
Analog Input Voltage to GND  
−0.3 V to +4 V  
−0.3 V to +4 V  
−0.3 V to VREF + 0.3 V, VCC  
0.3 V, or 4 V (whichever is  
smaller)  
−0.3 V to VLOGIC + 0.3 V, or  
4 V (whichever is smaller)  
−0.3 V to VLOGIC + 0.3 V, or  
4 V (whichever is smaller)  
+
θJA is the natural convection junction to ambient thermal  
resistance measured in a one cubic foot sealed enclosure. θJC is  
the junction to case thermal resistance.  
Digital Input Voltage to GND  
Digital Output Voltage to GND  
Table 5. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
CP-16-451  
55.4  
12.7  
°C/W  
Reference Input and Output (REFIO) −0.3 V to VCC + 0.3 V, or  
Input to GND  
Input Current to Any Pin Except  
Supplies  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
4 V (whichever is smaller)  
10 mA  
1 Test Condition 1: thermal impedance simulated values are based on  
JEDEC 2S2P thermal test board four thermal vias. See JEDEC JESDS1.  
ELECTROSTATIC DISCHARGE (ESD) RATINGS  
−40°C to +125°C  
−65°C to +150°C  
150°C  
The following ESD information is provided for handling of  
ESD-sensitive devices in an ESD protected area only.  
Pb-Free Soldering Reflow  
Temperature  
260°C  
Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.  
Field induced charge device model (FICDM) per  
ANSI/ESDA/JEDEC JS-002.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the  
operational section of this specification is not implied.  
Operation beyond the maximum operating conditions for  
extended periods may affect product reliability.  
ESD Ratings for AD4680/AD4681  
Table 6. AD4680/AD4681, 16-Lead LFCSP  
ESD Model  
Withstand Threshold (V)  
Class  
3A  
C3  
HBM  
FICDM  
4000  
1250  
ESD CAUTION  
Rev. 0 | Page 7 of 29  
 
 
 
 
AD4680/AD4681  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
AD4680/AD4681  
TOP VIEW  
(Not to Scale)  
GND  
1
2
3
4
CS  
12  
V
11 REFIO  
LOGIC  
10  
9
REGCAP  
GND  
V
REFCAP  
CC  
NOTES  
1. EXPOSED PAD. FOR CORRECT OPERATION OF THE DEVICE,  
THE EXPOSED PAD MUST BE CONNECTED TO GROUND.  
Figure 8. Pin Configuration  
Table 7. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1, 10  
2
3
GND  
VLOGIC  
REGCAP  
Ground Reference Point. This pin is the ground reference point for all circuitry on the device.  
Logic Interface Supply Voltage, 1.65 V to 3.6 V. Decouple this pin to GND with a 1 μF capacitor.  
Decoupling Capacitor Pin for Voltage Output from Internal Regulator. Decouple this pin to GND with a  
1 μF capacitor. The voltage at this pin is 1.9 V typical.  
4
VCC  
AINB−, AINB+  
Power Supply Input Voltage, 3.0 V to 3.6 V. Decouple this pin to GND using a 1 μF capacitor.  
Analog Inputs of ADC B. These analog inputs form a differential pair.  
5, 6  
7, 8  
9
AINA−, AINA+ Analog Inputs of ADC A. These analog inputs form a differential pair.  
REFCAP  
Decoupling Capacitor Pin for Band Gap Reference. Decouple this pin to GND with a 0.1 μF capacitor. The  
voltage at this pin is 2.5 V typical.  
11  
REFIO  
Reference Input and Output. The on-chip reference of 2.5 V is available as an output on this pin for  
external use if the device is configured accordingly. Alternatively, an external reference of 2.5 V to 3.3 V  
can be input to this pin. Decoupling is required on this pin for both the internal and external reference  
options. A 1 μF capacitor must be applied from this pin to GND.  
12  
13  
14  
CS  
Chip Select Input. Active low, logic input. This input provides the dual function of initiating conversions on  
the AD4680/AD4681 and framing the serial data transfer.  
Serial Data Output A. This pin functions as a serial data output pin to access the ADC A or ADC B  
conversion results or data from any of the on-chip registers.  
SDOA  
SDOB/ALERT Serial Data Output B (SDOB). This pin functions as a serial data output to access the conversion results.  
Alert Indication Output (ALERT). This pin operates as an alert going low to indicate that a conversion result  
has exceeded a configured threshold.  
This pin can operate as a serial data output pin or alert indication output.  
15  
16  
SDI  
SCLK  
EPAD  
Serial Data Input. This input provides the data written to the on-chip control registers.  
Serial Clock Input. This serial clock input is for data transfers to and from the ADC.  
Exposed Pad. For correct operation of the device, the exposed pad must be connected to ground.  
Rev. 0 | Page 8 of 29  
 
Data Sheet  
AD4680/AD4681  
TYPICAL PERFORMANCE CHARACTERISTICS  
VREF = 2.5 V internal, VCC = 3.6 V, VLOGIC = 3.3 V, fIN = 1 kHz, and TA = 25°C, unless otherwise noted.  
0
0
SNR = 91.02dB  
THD = –111.12dB  
SINAD = 90.98dB  
fIN = 1kHz  
SNR = 91.0dB  
THD = –111.05dB  
SINAD = 90.97dB  
fIN = 1kHz  
–20  
–20  
–40  
–40  
V
= 2.5V (INTERNAL)  
V
= 2.5V (INTERNAL)  
REF  
REF  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
0
50  
100  
150  
200  
250  
0
100  
200  
300  
400  
500  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 12. AD4681 FFT, VREF = 2.5 V Internal  
Figure 9. AD4680 Fast Fourier Transform (FFT), VREF = 2.5 V Internal  
0
0
SNR = 92.48dB  
THD = –105.66dB  
SINAD = 92.29dB  
fIN = 1kHz  
SNR = 92.51dB  
THD = –105.79dB  
SINAD = 92.31dB  
–20  
–40  
–20  
fIN = 1kHz  
–40  
V
= 3.3V (EXTERNAL)  
REF  
V
= 3.3V (EXTERNAL)  
REF  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
0
50  
100  
150  
200  
250  
0
50  
100 150 200 250 300 350 400 450 500  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 13. AD4681 FFT, VREF =3.3 V External  
Figure 10. AD4680 FFT, VREF = 3.3 V External  
180000  
160000  
140000  
120000  
100000  
80000  
60000  
40000  
20000  
0
0
–20  
SNR = 100.09dB  
THD = –106.16dB  
SINAD = 99.14dB  
fIN = 1kHz  
159754  
–40  
V
= 3.3V (EXTERNAL)  
REF  
OSR = 8, RES = 1  
–60  
–80  
87843  
–100  
–120  
–140  
–160  
–180  
13074  
2101  
2
25  
2
3
–6 –5 –4 –3 –2 –1  
0
1
4
5
6
7
0
50  
100 150 200 250 300 350 400 450 500  
FREQUENCY (MHz)  
CODE  
Figure 14. DC Histogram Codes at Code Center  
Figure 11. AD4680 FFT with Oversampling, VREF = 3.3 V External  
Rev. 0 | Page 9 of 29  
 
AD4680/AD4681  
Data Sheet  
1.0  
0.8  
1.0  
0.8  
0.6  
–0.6  
–0.4  
–0.2  
0
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.0  
–3200 –2400 –1600 –800  
0
800  
1600  
2400  
3200  
–3200 –2400 –1600 –800  
0
800  
1600  
2400  
3200  
CODE  
CODE  
Figure 15. INL Error  
Figure 18. DNL Error  
96  
94  
92  
90  
88  
86  
84  
82  
80  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
EXTERNAL REFERENCE = 3.3V  
INTERNAL REFERENCE = 2.5V  
EXTERNAL REFERENCE = 3.3V  
INTERNAL REFERENCE = 2.5V  
1k  
10k  
100k  
1M  
–40 –25 –10  
5
20  
35  
50  
65  
95 110 125  
80  
INPUT FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 19. AD4680 SNR vs. Input Frequency  
Figure 16. SNR vs. Temperature  
–50  
–60  
EXTERNAL REFERENCE = 3.3V  
INTERNAL REFERENCE = 2.5V  
EXTERNAL REFERENCE = 3.3V  
INTERNAL REFERENCE = 2.5V  
–70  
–80  
–90  
–100  
–110  
–120  
1k  
10k  
100k  
1M  
–40 –25 –10  
5
20  
35  
50  
65  
95 110 125  
80  
INPUT FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 17. THD vs. Temperature  
Figure 20. AD4680 THD vs. Input Frequency  
Rev. 0 | Page 10 of 29  
Data Sheet  
AD4680/AD4681  
–50  
–60  
96  
EXTERNAL REFERENCE = 3.3V  
INTERNAL REFERENCE = 2.5V  
EXTERNAL REFERENCE = 3.3V  
INTERNAL REFERENCE = 2.5V  
94  
92  
90  
88  
86  
84  
82  
80  
–70  
–80  
–90  
–100  
–110  
–120  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
INPUT FREQUENCY (Hz)  
INPUT FREQUENCY (Hz)  
Figure 24. AD4681 THD vs. Input Frequency  
Figure 21. AD4680 SINAD vs. Input Frequency  
96  
94  
92  
90  
88  
86  
84  
82  
96  
94  
92  
90  
88  
86  
84  
82  
EXTERNAL REFERENCE = 3.3V  
INTERNAL REFERENCE = 2.5V  
EXTERNAL REFERENCE = 3.3V  
INTERNAL REFERENCE = 2.5V  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
INPUT FREQUENCY (Hz)  
INPUT FREQUENCY (Hz)  
Figure 25. AD4681 SINAD vs. Input Frequency  
Figure 22. AD4681 SNR vs. Input Frequency  
102  
100  
98  
12  
10  
8
EXTERNAL REFERENCE = 3.3V  
INTERNAL REFERENCE = 2.5V  
96  
6
94  
92  
4
90  
2
88  
0
86  
NO  
OVERSAMPLING  
2
4
8
0
200  
400  
600  
800  
1000  
THROUGHPUT (kSPS)  
OVERSAMPLING RATIO (OSR)  
Figure 26. AD4680 SNR vs. Oversampling Ratio, Oversampling Mode  
Figure 23. Dynamic Current vs. Throughput  
Rev. 0 | Page 11 of 29  
AD4680/AD4681  
Data Sheet  
–40  
–50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
–60  
–70  
–80  
–90  
–100  
–110  
0
100  
1k  
1k  
100k  
1M  
–40 –25 –10  
5
20  
35  
50  
65  
95 110 125  
80  
RIPPLE FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 29. CMRR vs. Ripple Frequency  
Figure 27. Shutdown Current vs. Temperature  
110  
100  
90  
80  
70  
60  
50  
40  
100  
1k  
1k  
100k  
1M  
RIPPLE FREQUENCY (Hz)  
Figure 28. Power Supply Rejection Ratio (PSRR) vs. Ripple Frequency  
Rev. 0 | Page 12 of 29  
Data Sheet  
AD4680/AD4681  
TERMINOLOGY  
Differential Nonlinearity (DNL)  
Signal-to-Noise Ratio (SNR)  
In an ideal ADC, code transitions are 1 LSB apart. DNL is the  
maximum deviation from this ideal value. DNL is often  
specified in terms of resolution for which no missing codes are  
guaranteed.  
SNR is the ratio of the rms value of the actual input signal to  
the rms sum of all other spectral components below the  
Nyquist frequency, excluding harmonics and dc. The value for  
SNR is expressed in decibels (dB).  
Integral Nonlinearity (INL)  
Spurious-Free Dynamic Range (SFDR)  
INL is the deviation of each individual code from a line drawn  
from negative full scale through positive full scale. The point  
used as negative full scale occurs ½ LSB before the first code  
transition. Positive full scale is defined as a level 1½ LSB beyond  
the last code transition. The deviation is measured from the  
middle of each code to the true straight line.  
SFDR is the difference, in dB, between the rms amplitude of the  
input signal and the peak spurious signal.  
Total Harmonic Distortion (THD)  
THD is the ratio of the rms sum of the first five harmonic  
components to the rms value of a full-scale input signal and is  
expressed in dB.  
Gain Error  
Signal-to-Noise-and-Distortion (SINAD) Ratio  
The first transition (from 100 … 000 to 100 … 001) occurs at a  
level ½ LSB above nominal negative full scale. The last transition  
(from 011 … 110 to 011 … 111) occurs for an analog voltage  
1½ LSB below the nominal full scale. The gain error is the  
deviation of the difference between the actual level of the last  
transition and the actual level of the first transition from the  
difference between the ideal levels.  
SINAD is the ratio of the rms value of the actual input signal to  
the rms sum of all other spectral components that are less than  
the Nyquist frequency, including harmonics but excluding dc.  
The value for SINAD is expressed in dB.  
Common-Mode Rejection Ratio (CMRR)  
CMRR is the ratio of the power in the ADC output at the  
frequency, f, to the power of a 200 mV p-p sine wave applied to  
the common-mode voltage of AINx+ and AINx− of frequency, f.  
CMRR is expressed in dB.  
Gain Error Drift  
The gain error drift is the gain error change due to a temperature  
change of 1°C.  
CMRR = 10log(PADC_IN/PADC_OUT  
where:  
ADC_IN is the common-mode power at the frequency, f, applied  
to the AINx+ and AINx− inputs.  
ADC_OUT is the power at the frequency, f, in the ADC output.  
)
Gain Error Matching  
Gain error matching is the difference in negative full-scale error  
between the input channels and the difference in positive full-  
scale error between the input channels.  
P
P
Zero Error  
Aperture Delay  
Aperture delay is the measure of the acquisition performance  
Zero error is the difference between the ideal midscale voltage,  
0 V, and the actual voltage producing the midscale output code,  
0 LSB.  
CS  
and is the time between the falling edge of the  
when the input signal is held for a conversion.  
input and  
Zero Error Drift  
The zero error drift is the zero error change due to a temperature  
change of 1°C.  
Aperture Delay Match  
Aperture delay match is the difference of the aperture delay  
between ADC A and ADC B.  
Zero Error Matching  
Zero error matching is the difference in zero error between the  
input channels.  
Aperture Jitter  
Aperture jitter is the variation in aperture delay.  
Rev. 0 | Page 13 of 29  
 
AD4680/AD4681  
Data Sheet  
THEORY OF OPERATION  
DACs are used to add and subtract fixed amounts of charge  
from the sampling capacitor arrays to bring the comparator  
back into a balanced condition. When the comparator is  
rebalanced, the conversion is complete. The control logic  
generates the ADC output code. The output impedances of the  
sources driving the AINx+ and AINx− pins must be matched.  
Otherwise, the two inputs have different settling times,  
resulting in errors.  
CIRCUIT INFORMATION  
The AD4680/AD4681 are high speed, dual simultaneous sampling,  
fully differential 16-bit, SAR ADCs. The AD4680/AD4681  
operate from a 3.0 V to 3.6 V power supply and feature  
throughput rates of 1 MSPS (AD4680) and 500 kSPS (AD4681).  
The AD4680/AD4681 contain two SAR ADCs and a serial  
interface with two separate data output pins. The device is  
housed in a 16-lead LFCSP, offering the user considerable space-  
saving advantages over alternative solutions.  
CAPACITIVE  
DAC  
Data is accessed from the device via the serial interface. The  
interface can operate with one or two serial outputs. The  
AD4680/AD4681 have an on-chip, 2.5 V, internal VREF. If an  
external reference is desired, the internal reference can be  
disabled, and a reference value ranging from 2.5 V to 3.3 V can  
be supplied. If the internal reference is used elsewhere in the  
system, the reference output must be buffered. The differential  
analog input range for the AD4680/AD4681 is the common-  
COMPARATOR  
C
C
B
A
S
A
A
x+  
x–  
IN  
SW1  
SW2  
CONTROL  
LOGIC  
SW3  
S
A
B
IN  
V
REF  
CAPACITIVE  
DAC  
Figure 31. ADC Conversion Phase  
mode voltage (VCM  
)
VREF/2.  
ANALOG INPUT STRUCTURE  
The AD4680/AD4681 feature on-chip oversampling blocks to  
improve performance. Rolling average oversampling mode and  
power-down options that allow power saving between  
conversions are also available. Configuration of the device is  
implemented via the standard serial interface (see the Interface  
section).  
Figure 32 shows the equivalent circuit of the analog input structure  
of the AD4680/AD4681. The four diodes (D) provide ESD  
protection for the analog inputs. Ensure that the analog input  
signals never exceed the supply rails by more than 300 mV.  
Exceeding the limit causes these diodes to become forward-  
biased and start conducting into the substrate. These diodes can  
conduct up to 10 mA without causing irreversible damage to  
the device.  
CONVERTER OPERATION  
The AD4680/AD4681 have two SAR ADCs, each based around  
two capacitive digital-to-analog converters (DACs). Figure 30  
and Figure 31 show simplified schematics of one of the ADCs  
in acquisition and conversion phases, respectively. The ADC  
comprises control logic, an SAR, and two capacitive DACs. In  
Figure 30 (the acquisition phase), SW3 is closed, SW1 and SW2  
are in Position A, the comparator is held in a balanced  
condition, and the sampling capacitor (CS) arrays can acquire  
the differential signal on the input.  
The C1 capacitors in Figure 32 are typically 3 pF and can primarily  
be attributed to pin capacitance. The R1 resistors are lumped  
components made up of the on resistance of the switches. The  
value of these resistors is typically about 200 Ω. The C2 capacitors  
are the sampling capacitors of the ADC with a capacitance of  
15 pF typically.  
V
CC  
D
D
C2  
R1  
CAPACITIVE  
DAC  
A
x+  
IN  
C1  
COMPARATOR  
C
C
B
A
S
A
A
x+  
x–  
IN  
SW1  
SW2  
CONTROL  
LOGIC  
SW3  
V
CC  
S
A
B
IN  
D
D
C2  
R1  
A
x–  
IN  
V
REF  
CAPACITIVE  
DAC  
C1  
Figure 30. ADC Acquisition Phase  
Figure 32. Equivalent Analog Input Circuit,  
Conversion Phase—Switches Open, Track Phase—Switches Closed  
When the ADC starts a conversion (see Figure 31), SW3 opens  
and SW1 and SW2 move to Position B, causing the comparator  
to become unbalanced. Both inputs are disconnected when the  
conversion begins. The control logic and charge redistribution  
Rev. 0 | Page 14 of 29  
 
 
 
 
 
 
 
Data Sheet  
AD4680/AD4681  
ADC TRANSFER FUNCTION  
The AD4680/AD4681 can use a 2.5 V to 3.3 V VREF. The  
AD4680/AD4681convert the differential voltage of the analog  
inputs (AINA+, AINA−, AINB+, and AINB−) into a digital output.  
011 ... 111  
011 ... 110  
011 ... 101  
The conversion result is MSB first, twos complement. The LSB  
size is (2 × VREF)/2N, where N is the ADC resolution. The ADC  
resolution is determined by the resolution of the device chosen,  
and if resolution boost mode is enabled. Table 8 outlines the  
LSB size expressed in microvolts for different resolutions and  
reference voltages options.  
100 ... 010  
100 ... 001  
100 ... 000  
The ideal transfer characteristic for the AD4680/AD4681 is  
shown in Figure 33.  
–FSR  
–FSR – 1LSB  
+FSR – 1LSB  
–FSR – 0.5LSB  
+FSR – 1.5LSB  
Figure 33. ADC Ideal Transfer Function (FSR = Full-Scale Range)  
Table 8. LSB Size  
Resolution  
(Bits)  
2.5 V Reference  
(μV)  
3.3 V Reference  
(μV)  
16  
18  
76.3  
19.1  
100.7  
25.2  
Rev. 0 | Page 15 of 29  
 
 
 
AD4680/AD4681  
Data Sheet  
APPLICATIONS INFORMATION  
Figure 34 shows an example of a typical application circuit for  
the AD4680/AD4681. Decouple the VCC, VLOGIC, REGCAP, and  
REFIO pins with suitable decoupling capacitors as shown.  
POWER SUPPLY  
The typical application circuit in Figure 34 can be powered by  
a single 5 V (V+) voltage source that supplies the entire signal  
chain. The 5 V supply can come from a low noise, CMOS, low  
dropout (LDO) regulator (ADP7105). The driver amplifier  
supply is supplied by the 5 V (V+) and −2.5 V (V−) derived  
from the inverter (ADM660), which then converts the +5 V to  
−5 V, then to the ADP7182 low noise voltage regulator to output  
the −2.5 V. The two independent supplies of the AD4680/  
AD4681, VCC and VLOGIC, that supply the analog circuitry and  
digital interface, respectively, can be supplied by a low  
quiescent current LDO regulator such as the ADP166. The  
ADP166 is a suitable supply with a fixed output voltage range  
from 1.2 V to 3.3 V for typical VCC and VLOGIC levels. Decouple  
both the VCC supply and the VLOGIC supply separately with a 1 μF  
capacitor. Additionally, an internal LDO regulator supplies the  
AD4680/AD4681. The on-chip regulator provides a 1.9 V supply  
for internal use on the device only. Decouple the REGCAP pin  
with a 1 μF capacitor connected to GND.  
The exposed pad is a ground reference point for circuitry on  
the device and must be connected to the board ground.  
A differential RC filter must be placed on the analog inputs to  
ensure optimal performance is achieved. On a typical application,  
it is recommended that resistance (R) = 33 ꢀ, C1 = 68 pF, and  
C2 = 330 pF.  
The performance of the AD4680/AD4681devices may be  
impacted by noise on the digital interface. This impact depends  
on the on-board layout and design. Keep a minimal distance  
between the digital line and the digital interface, or place a 100 ꢀ  
resistor in series and close to the SDOA pin and SDOB/  
pin to reduce noise from the digital interface coupling of the  
AD4680/AD4681.  
ALERT  
The two differential channels of the AD4680/AD4681 can  
accept an input voltage range from 0 V to VREF, and have a wide  
common-mode range that allows the conversion of a variety of  
signals. These analog input pins can easily be driven with an  
amplifier. Table 9 lists the recommended driver amplifiers that  
best fit and add value to the application.  
Power-Up  
The AD4680/AD4681 are not easily damaged by power supply  
sequencing. VCC and VLOGIC can be applied in any sequence. An  
external reference must be applied after VCC and VLOGIC are  
applied.  
The AD4680 and the AD4681 have a buffered internal 2.5 V  
reference that can be accessed via the REFIO pin. The buffered  
internal 2.5V reference must use an external buffer like the  
ADA4807-2, when connecting it to the external circuitry. Both  
devices have an option to use an ultralow noise, high accuracy  
voltage reference as an external voltage source, ranging from  
2.5 V to 3.3 V, such as the ADR4533 and ADR4525.  
The AD4680/AD4681 require a tPOWERUP time from applying  
VCC and VLOGIC until the ADC conversion results are stable.  
CS  
Applying  
pulses or interfacing with the AD4680/AD4681  
prior to the setup time elapsing does not have a negative impact  
on ADC operation. Conversion results are not guaranteed to  
meet data sheet specifications during this time, however, and  
must be ignored.  
Table 9. Signal Chain Components  
Companion Devices Part Name  
Description  
Typical Application  
ADC Driver  
ADA4896-2  
ADA4940-2  
ADA4807-2  
LTC6227  
1 nV/√Hz, rail-to-rail output amplifier  
Ultralow power, full differential, low distortion  
1 mA, rail-to-rail output amplifier  
Low distortion rail-to-rail output op amp  
Ultralow noise, high accuracy voltage reference  
Ultralow noise, high accuracy voltage reference  
Low quiescent, 150 mA, LDO regulator  
Low noise, CMOS LDO regulator  
Precision, low noise, high frequency  
Precision, low density, low power  
Precision, low power, high frequency  
Precision, low noise, high frequency  
2.5 V reference voltage  
External Reference  
LDO Regulator  
ADR4525  
ADR4533  
ADP166  
ADP7104  
ADP7182  
3.3 V reference voltage  
3.0 V to 3.6 V supply for VCC and VLOGIC  
5 V supply for driver amplifier  
−2.5 V supply for driver amplifier  
Low noise line regulator  
Rev. 0 | Page 16 of 29  
 
 
 
Data Sheet  
AD4680/AD4681  
V+ = 5V  
LDO  
V+  
REF  
LDO  
INVERTER  
+
V+  
V
= 2.5V TO 3.3V 3.0V TO 3.6V  
1.65V TO 3.6V +5V TO –5V  
REF  
VCM = REF/2  
10kΩ  
10kΩ  
+
LDO  
1µF  
1µF  
V+  
V– = –2.5V  
V
REF  
V
REFIO  
A+  
A
A
x+  
x–  
CC  
R
IN  
V
CM  
0V  
A
A
IN  
IN  
+
V
C1  
C1  
LOGIC  
AD4680/AD4681  
1µF  
A–  
V–  
V+  
C2  
SDI  
SDOA  
100Ω  
100Ω  
V
EXPOSED  
PAD  
REF  
IN  
R
V
+
DIGITAL HOST  
(MICROPROCESSOR/FPGA)  
CM  
0V  
SDOB/ALERT  
SCLK  
CS  
V–  
A
A
B+  
B–  
IN  
REGCAP  
IN  
1µF  
REFCAP  
0.1µF  
GND  
Figure 34. Typical Application Circuit  
Rev. 0 | Page 17 of 29  
 
AD4680/AD4681  
Data Sheet  
MODES OF OPERATION  
The AD4680/AD4681 have several on-chip configuration  
registers for controlling the operational mode of the device.  
The oversampling ratio of the digital filter is controlled using the  
oversampling bits, OSR (see Table 10). The output result is  
decimated to 16-bit resolution for the AD4680/AD4681. If  
additional resolution is required, this resolution can be  
achieved by configuring the resolution boost bit, RES, in the  
CONFIGURATION1 register. See the Resolution Boost section  
for further details.  
OVERSAMPLING  
Oversampling is a common method used in analog electronics  
to improve the accuracy of the ADC result. Multiple samples of  
the analog input are captured and averaged to reduce the noise  
component from quantization noise and thermal noise (kTC)  
of the ADC. The AD4680 and the AD4681 offer an  
In rolling average oversampling mode, all ADC conversions are  
CS  
controlled and initiated by the falling edge of . After a  
oversampling function on chip, rolling average oversampling.  
conversion is complete, the result is loaded into the FIFO. The  
FIFO length is 8, regardless of the oversampling ratio set. The  
FIFO is filled on the first conversion after a power-on reset, the  
first conversion after a software controlled hard or soft reset, or  
on the first conversion after the REFSEL bit is toggled. A new  
conversion result is shifted into the FIFO on completion of  
every ADC conversion, regardless of the status of the OSR bits  
and the OS_MODE bit. This conversion allows a seamless  
transition from no oversampling to rolling average oversampling,  
or different rolling average oversampling ratios without waiting  
for the FIFO to fill.  
The rolling average oversampling functionality is enabled by  
writing a 1 to the OS_MODE bit and a valid nonzero to the  
OSR bits, Bits[8:6] in the CONFIGURATION1 register.  
Oversampling can be disabled by writing 0 to OS_MODE and a  
zero value to the OSR bits of the CONFIGURATION1 register.  
Rolling Average Oversampling  
Rolling average oversampling mode can be used in applications  
where higher output data rates are required and where higher  
SNR or dynamic range is desirable. Rolling averaging involves  
taking a number of samples, adding the samples together, and  
dividing the result by the number of samples taken. This result  
is then output from the device. The sample data is not cleared  
after the process is completed. The rolling average oversampling  
mode uses a first in, first out (FIFO) buffer of the most recent  
samples in the averaging calculation, allowing the ADC  
throughput rate and output data rate to stay the same.  
The number of samples, n, defined by the OSR bits are taken from  
the FIFO, added together, and the result is divided by n. The time  
CS  
between falling edges is the cycle time, which can be controlled  
by the user, depending on the desired data output rate.  
Table 10. Rolling Average Oversampling Performance Overview  
AD4680  
AD4681  
SNR (dB Typical)  
VREF = 2.5 V  
VREF = 3.3 V  
SNR (dB Typical)  
Oversampling  
Ratio  
Output Data Rate  
Output Data Rate  
RES = 0 RES = 1 RES = 0 RES = 1 (kSPS Maximum)  
RES = 0 RES = 1 (kSPS Maximum)  
Disabled  
91  
92  
94  
95.5  
91  
93  
96  
98.6  
92.5  
93.2  
94.8  
95.9  
92.5  
94.5  
97.2  
99.6  
1000  
1000  
1000  
1000  
85  
84.5  
85  
85  
87.7  
91  
500  
500  
500  
500  
2
4
8
85.5  
93  
V
CC  
CS  
INTERNAL  
S
ACQ  
S
ACQ  
S
ACQ  
S
ACQ  
S
ACQ  
S
ACQ  
S
7
ACQ  
...  
1
2
3
4
5
6
SDI  
ENABLE OS = 4  
(FIFO  
ENABLE OS = 2  
(FIFO  
+
+
(FIFO  
+
(FIFO + FIFO +  
1 2  
1
1
1
FIFO )/2  
FIFO )/2  
FIFO )/2  
FIFO + FIFO )/4  
2
2
2
3
4
SDOA  
SDOB/ALERT  
DON’T CARE  
FIFO  
S1  
S2  
FIFO  
FIFO  
FIFO  
FIFO  
FIFO  
FIFO  
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
7
S
6
S
5
S
4
S
3
S
2
S
1
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
1
3
2
1
4
3
2
1
5
4
3
2
1
6
5
4
3
2
1
Figure 35. Rolling Average Oversampling Operation  
Rev. 0 | Page 18 of 29  
 
 
 
Data Sheet  
AD4680/AD4681  
ALERT  
The  
register contains two status bits per ADC, one  
RESOLUTION BOOST  
corresponding to the high limit, and the other to the low limit.  
A logical OR of alert signals for all ADCs creates a common alert  
The default conversion result output data size is 16 bits for the  
AD4680/AD4681. When the on-chip oversampling function is  
enabled, the performance of the ADC can exceed 16 bits. To  
accommodate the performance boost achievable, it is possible to  
enable an additional two bits of resolution. If the RES bit in the  
CONFIGURATION1 register is set to Logic 1 and the AD4680/  
AD4681 are in a valid oversampling mode, the conversion  
result size is 18 bits. In this mode, 18 SCLK cycles are required  
to propagate the data for the AD4680/AD4681.  
ALERT  
pin is  
value. This value can be configured to drive out on the  
ALERT ALERT  
configured as  
function of the SDOB/  
ALERT  
pin. The SDOB/  
by configuring the following bits in  
CONFIGURATION1 and the CONFIGURATION2:  
Set the SDO bit to 1.  
Set the ALERT_EN bit to 1.  
Set a valid value to the ALERT_HIGH_THRESHOLD  
register and the ALERT_LOW_THRESHOLD register.  
ALERT  
The alert functionality is an out of range indicator and can be  
used as an early indicator of an out of bounds conversion  
result. An alert event triggers when the conversion result value  
register exceeds the alert high limit value in the ALERT_  
HIGH_THRESHOLD register or falls below the alert low limit  
value in the ALERT_LOW_THRESHOLD register. The  
ALERT_HIGH_THRESHOLD register and the ALERT_  
LOW_THRESHOLD register are common to all ADCs. When  
setting the threshold limits, the alert high threshold must always  
be greater than the alert low threshold. Detailed alert  
The alert indication function is available in both rolling average  
oversampling and in nonoversampling modes.  
ALERT  
ALERT  
pin is updated at the  
The  
function of the SDOB/  
end of a conversion. The alert indication status bits in the  
ALERT  
register are updated as well and must be read before the  
ALERT  
end of the next conversion. The  
function of the  
CS  
pin is cleared with a falling edge of . Issuing a  
ALERT  
SDOB/  
ALERT  
software reset also clears the alert status in the  
register.  
ALERT  
information is accessible in the  
register.  
tALERTS  
tALERTC  
CS  
SDOA  
CONV  
ACQ  
CONV  
ACQ  
CONV  
ACQ  
CONV  
ACQ  
INTERNAL  
ALERT  
EXCEEDS THRESHOLD  
Figure 36. Alert Operation  
Rev. 0 | Page 19 of 29  
 
 
 
AD4680/AD4681  
Data Sheet  
POWER MODES  
INTERNAL AND EXTERNAL REFERENCE  
The AD4680/AD4681 have two power modes, normal mode  
and shutdown mode. These modes of operation provide flexible  
power management options, allowing optimization of the  
power dissipation and throughput rate ratio for different  
application requirements.  
The AD4680/AD4681 have a buffered 2.5 V internal reference  
primarily used as a reference voltage for device operation. When  
using the buffered internal 2.5 V reference externally via the  
REFIO pin, the internal 2.5 V reference must use an external  
buffer before connecting to the external circuitry. Alternatively,  
if a more accurate reference or higher dynamic range is  
required, an external reference can be supplied. An externally  
supplied reference can be in the range of 2.5 V to 3.3 V.  
Program the PMODE bit in the CONFIGURATION1 register to  
configure the power modes in the AD4680/AD4681. Set PMODE  
to Logic 0 for normal mode and Logic 1 for shutdown mode.  
Reference selection (internal or external) is configured by the  
REFSEL bit in the CONFIGURATION1 register. If REFSEL is  
set to 0, the internal reference buffer is enabled. If an external  
reference is preferred, the REFSEL bit must be set to 1, and an  
external reference must be supplied to the REFIO pin.  
Normal Mode  
Keep the AD4680/AD4681 in normal mode to achieve the  
fastest throughput rate. All blocks within the AD4680/AD4681  
remain fully powered at all times, and an ADC conversion can  
CS  
be initiated by a falling edge of , when required. When the  
SOFTWARE RESET  
AD4680/AD4681 are not converting, the devices are in static  
mode, and power consumption is automatically reduced. Addi-  
tional current is required to perform a conversion, therefore,  
power consumption on the AD4680/AD4681 scales with  
throughput.  
The AD4680/AD4681 have two reset modes, a soft reset and a  
hard reset. A reset is initiated by writing to the reset bits in the  
CONFIGURATION2 register.  
A soft reset maintains the contents of the configurable registers  
but refreshes the interface and the ADC blocks. Any internal  
state machines are reinitialized, and the oversampling block  
Shutdown Mode  
When slower throughput rates and lower power consumption  
are required, use shutdown mode by either powering down the  
ADC between each conversion or by performing a series of  
conversions at a high throughput rate and then powering down  
the ADC for a relatively long duration between these burst  
conversions. When the AD4680/AD4681 are in shutdown mode,  
all analog circuitry powers down, including the internal reference,  
if enabled. The serial interface remains active during shutdown  
mode to allow the AD4680/AD4681 to exit shutdown mode.  
ALERT  
and FIFO are flushed. The  
register is cleared. The  
reference and LDO regulator remain powered.  
A hard reset, in addition to the blocks reset by a soft reset,  
resets all user registers to the default status, resets the reference  
buffer, and resets the internal oscillator block.  
t
RESET  
CS  
SDI  
SOFTWARE RESET  
To enter shutdown mode, write to the PMODE bit in the  
CONFIGURATION1 register. The AD4680/AD4681 shut  
down and current consumption reduces.  
Figure 37. Software Reset Operation  
DIAGNOSTIC SELF TEST  
To exit shutdown mode and return to normal mode, set the  
PMODE bit in the CONFIGURATION1 register to Logic 0. All  
register configuration settings remain unchanged entering or  
leaving shutdown mode. After exiting shutdown mode, suffi-  
cient time must be allowed for the circuitry to turn on before  
starting a conversion. If the internal reference is enabled, the  
reference must be allowed to settle for accurate conversions to  
happen.  
The AD4680/AD4681 run a diagnostic self test after a power-on  
reset (POR) or after a software hard reset to ensure correct  
configuration is loaded into the device.  
The result of the self test is displayed in the SETUP_F bit in the  
ALERT  
register. If the SETUP_F bit is set to Logic 1, the diagnostic  
self test has failed. If the test fails, perform a software hard reset  
to reset the AD4680/AD4681 registers to the default status.  
t
STARTUP  
CS  
SDI  
SHUTDOWN  
SHUTDOWN  
NORMAL  
NORMAL  
MODE  
ACCURATE  
CONVERSION  
MODE  
Figure 38. Shutdown Mode Operation  
Rev. 0 | Page 20 of 29  
 
 
 
 
 
Data Sheet  
AD4680/AD4681  
INTERFACE  
The interface to the AD4680/AD4681 is via a serial interface.  
CS  
signal  
are available on the next SPI access. Then, take the  
CS  
ALERT  
The interface consists of the , SCLK, SDOA, SDOB/  
and SDI pins.  
,
low, and the conversion result clocks out on the serial output  
pins. The next conversion is also initiated at this point.  
CS  
The conversion result is shifted out of the device as a 16-bit  
result for the AD4680/AD4681. The MSB of the conversion result  
The  
signal frames a serial data transfer and initiates an ADC  
CS  
conversion process. The falling edge of  
hold into hold mode, at which point the analog input is sampled,  
and the bus is taken out of three-state.  
puts the track-and-  
CS  
is shifted out on the  
falling edge. The remaining data is  
shifted out of the device under the control of the SCLK input.  
The data is shifted out on the rising edge of SCLK, and the data  
bits are valid on both the falling edge and the rising edge. After  
The SCLK signal synchronizes data in and out of the device via  
the SDOA, SDOB, and SDI signals. A minimum of 16 SCLK  
cycles are required for a write to or read from a register. The  
minimum numbers of SCLK cycles for a conversion read is  
dependent on the resolution of the device and the configuration  
settings (see Table 11).  
CS  
the final SCLK falling edge, take high again to return the SDOA  
ALERT  
and SDOB/  
pins to a high impedance state.  
The number of SCLK cycles to propagate the conversion results  
ALERT  
on the SDOA and SDOB/  
pins is dependent on the serial  
mode of operation configured and if resolution boost mode is  
enabled (see Figure 39 and Table 11 for details). If CRC reading  
is enabled, additional SCLK cycles are required to propagate the  
CRC information (see the CRC section for more details).  
The ADC conversion operation is driven internally by an on-board  
oscillator and is independent of the SCLK signal.  
The AD4680/AD4681 have two serial output signals, SDOA  
and SDOB. To achieve the highest throughput of the device,  
use both SDOA and SDOB, 2-wire mode, to read the  
conversion results. If a reduced throughput is required or  
oversampling is used, it is possible to use 1-wire mode, the  
SDOA signal only, for reading conversion results.  
Programming the SDO bit in the CONFIGURATION2 register  
configures 2-wire or 1-wire mode.  
CS  
As the  
signal initiates a conversion, as well as framing the  
data, any data access must be completed within a single frame.  
Table 11. Number of SCLK Cycles, n, Required for Reading  
Conversion Results  
Interface  
Resolution  
CRC  
SCLK  
Configuration  
Boost Mode  
Read  
Cycles  
Configuring the cyclic redundancy check (CRC) operation for  
SPI reads or SPI writes alters the operation of the interface.  
Consult the relevant CRC Read, CRC Write, and CRC  
Polynomial sections to ensure proper operation.  
2-Wire  
Disabled  
Enabled  
Disabled  
Enabled  
Disabled 16  
Enabled 24  
Disabled 18  
Enabled 26  
Disabled 32  
Enabled 40  
Disabled 36  
Enabled 44  
1-Wire  
READING CONVERSION RESULTS  
CS  
The  
signal initiates the conversion process. A high to low  
CS  
transition on the  
signal initiates a simultaneous conversion  
of both ADCs, ADC A and ADC B. The AD4680/AD4681 have  
a one-cycle readback latency. Therefore, the conversion results  
CS  
1
SCLK  
1
2
3
n–2  
n–1  
n
SDOA  
SDOB/ALERT  
CONVERSION RESULT  
1
CONSULT TABLE 11 FOR n, THE NUMBER OF SCLK CYCLES REQUIRED  
Figure 39. Reading Conversion Result  
Rev. 0 | Page 21 of 29  
 
 
 
 
AD4680/AD4681  
Data Sheet  
Serial 2-Wire Mode  
LOW LATENCY READBACK  
Configure 2-wire mode by setting the SDO bit to 0 in the  
CONFIGURATION1 register. In 2-wire mode, the conversion  
result for ADC A is output on the SDOA pin, and the conversion  
The interface on the AD4680/AD4681 has a one-cycle latency,  
as shown in Figure 42. For applications that operate at lower  
throughput rates, the latency of reading the conversion result  
can be reduced. When the conversion time elapses, tCONVERT, a  
ALERT  
result for ADC B is output on the SDOB/  
Figure 40).  
pin (see  
CS  
CS  
second  
pulse after the initial  
pulse that initiates the  
conversion, can be used to read back the conversion result. This  
operation is shown in Figure 42.  
Serial 1-Wire Mode  
In applications where slower throughput rates are allowed, the  
serial interface can be configured to operate in 1-wire mode. In  
1-wire mode, the conversion results from ADC A and ADC B  
are output on the serial output, SDOA. Additional SCLK cycles  
are required to propagate all data. The ADC A data is output  
first, followed by the ADC B conversion results (see Figure 41).  
S
S
S
S
3
0
1
2
CS  
SDOA  
DON’T CARE  
DON’T CARE  
NOP  
ADC A S  
ADC B S  
NOP  
ADC A S  
ADC B S  
NOP  
0
0
1
1
SDOB/ALERT  
SDI  
Figure 40. Reading Conversion Results for 2-Wire Mode  
S
S
S
S
0
1
2
3
CS  
DON’T CARE  
NOP  
ADC A S ADC B S  
ADC A S ADC B S  
SDOA  
0
0
1
1
SDI  
NOP  
NOP  
Figure 41. Read Conversion Results for 1-Wire Mode  
CS  
CNV  
DON’T CARE  
RESULT  
ACQ  
CNV  
DON’T CARE  
ACQ  
n
n+1  
INTERNAL  
SDOA  
SDOB/ALERT  
RESULT  
n
n+1  
SCLK  
TARGET SAMPLE PERIOD  
Figure 42. Low Throughput Low Latency  
Rev. 0 | Page 22 of 29  
 
 
 
 
Data Sheet  
AD4680/AD4681  
The CRC read function can be used in 2-wire SPI mode, 1-wire  
SPI mode, and resolution boost mode.  
READING FROM DEVICE REGISTERS  
All registers in the device can be read over the serial interface. A  
register read is performed by issuing a register read command  
followed by an additional SPI command that can be either a  
valid command or no operation command (NOP). The format  
for a read command is shown in Table 14. Bit D15 must be set  
to 0 to select a read command. Bits[D14:D12] contain the  
register address, and the subsequent 12 bits, Bits[D11:D0], are  
ignored.  
CRC Write  
To enable the CRC write function, the CRC_W bit in the  
CONFIGURATION1 register must be set to 1. To set the  
CRC_W bit to 1 to enable the CRC feature, the request frame  
must have a valid CRC appended to the frame.  
After the CRC feature is enabled, all register write requests are  
ignored unless accompanied by a valid CRC command, requiring a  
valid CRC to both enable and disable the CRC write feature.  
WRITING TO DEVICE REGISTERS  
All read/write registers in the AD4680/AD4681 can be written  
to over the serial interface. The length of an SPI write access is  
determined by the CRC write function. An SPI access is 16-bit  
if CRC write is disabled and is 24-bit when CRC write is  
enabled. The format for a write command is shown in Table 14.  
Bit D15 must be set to 1 to select a write command.  
Bits[D14:D12] contain the register address, and the subsequent  
12 bits, Bits[D11:D0], contain the data to be written to the  
selected register.  
CRC Polynomial  
For CRC checksum calculations, the following polynomial is  
always used: x8 + x2 + x + 1.  
The following is an example of how to generate the checksum  
on a conversion read. The 16-bit data conversion result of the  
two channels are combined to produce a 32-bit data. The  
8 MSBs of the 32-bit data are inverted and then left shifted by  
eight bits to create a number ending in eight Logic 0s. The  
polynomial is aligned such that the MSB is adjacent to the  
leftmost Logic 1 of the data. An exclusive OR (XOR) function is  
applied to the data to produce a new, shorter number. The  
polynomial is again aligned such that the MSB is adjacent to the  
leftmost Logic 1 of the new result, and the procedure is  
repeated. This process repeats until the original data is reduced  
to a value less than the polynomial, which is the 8-bit  
CRC  
The AD4680/AD4681 have CRC checksum modes that can be  
used to improve interface robustness by detecting errors in data  
transmissions. The CRC feature is independently selectable for  
SPI interface reads and SPI interface writes. For example, the  
CRC function for SPI writes can be enabled to prevent  
unexpected changes to the device configuration but disabled on  
SPI reads, therefore maintaining a higher throughput rate. The  
CRC feature is controlled by the programming of the CRC_W  
and CRC_R bits in the CONFIGURATION1 register.  
checksum. The polynomial for this example is 100000111.  
Let the original data of two channels be 0xAAAA and 0x5555,  
that is, 1010 1010 1010 1010 and 0101 0101 0101 0101. The data  
of the two channels is appended including eight zeros on the  
right, and then becomes 1010 1010 1010 1010 0101 0101 0101  
0101 0000 0000.  
CRC Read  
If enabled, a CRC is appended to the conversion result or  
register reads and consists of an 8-bit word. The CRC is  
calculated in the conversion result for ADC A and ADC B and  
is output on SDOA. A CRC is also calculated and appended to  
register read outputs.  
Table 12 shows the CRC calculation of 16-bit, 2-channel data  
for the AD4680/AD4681. In the final XOR operation, the  
reduced data is less than the polynomial. Therefore, the  
remainder is the CRC for the assumed data.  
S
S
S
S
S
0
1
2
3
4
CS  
NOP  
READ REG 1  
READ REG 2  
REG 1DATA  
NOP  
NOP  
SDI  
SDOA  
INVALID  
INVALID  
RESULT S  
REG 2DATA  
RESULT S  
3
0
SDOB/ALERT  
RESULT S  
RESULT S  
3
0
Figure 43. Register Read  
S
S
S
S
3
0
1
2
CS  
SDI  
NOP  
WRITE REG 1  
WRITE REG 2  
NOP  
SDOA  
SDOB/ALERT  
INVALID  
RESULT S  
RESULT S  
RESULT S  
2
0
1
Figure 44. Register Write  
Rev. 0 | Page 23 of 29  
 
 
 
 
 
 
AD4680/AD4681  
Data Sheet  
Table 12. Example CRC Calculation for 2-Channel, 16-Bit Data1  
Data  
1
0
1
1
1
0
0
0
1
0
1
1
1
0
0
0
0
0
1
0
1
0
1
1
1
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
0
0
0
0
0
0
1
1
1
0
0
1
0
1
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
X
0
X
0
X
0
X
0
X
0
X
0
X
0
X
0
Process Data  
0
1
0
1
0
1
0
0
1
1
0
0
0
1
1
1
1
1
0
1
1
1
1
0
1
1
0
0
0
0
0
0
0
0
1
0
1
0
1
1
0
0
0
0
0
0
1
1
0
0
0
0
0
1
1
1
0
0
1
1
0
1
1
0
1
1
0
1
1
0
1
0
1
1
1
1
0
0
0
0
0
1
1
0
1
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
1
1
1
0
0
1
1
0
1
1
0
1
1
0
1
1
1
0
0
1
1
0
0
0
1
1
0
1
0
0
0
0
0
0
0
1
1
0
1
1
0
1
1
CRC  
0
0
1 X means don’t care.  
16 + 8 = 24 BITS  
RESULT_A  
CRC  
SDOA  
A,B  
2-WIRE 16-BIT  
1-WIRE 16-BIT  
SDOB/  
ALERT  
RESULT_B  
16 + 16 + 8 = 40 BITS  
RESULT_B  
RESULT_A  
CRC  
SDOA  
A,B  
16 + 8 = 26 BITS  
RESULT_A  
RESULT_B  
CRC  
A,B  
SDOA  
2-WIRE 18-BIT  
1-WIRE 18-BIT  
SDOB/  
ALERT  
18 + 18 + 8 = 44 BITS  
RESULT_B  
RESULT_A  
CRC  
A,B  
SDOA  
16 + 8 = 24 BITS  
REGISTER X  
CRC  
REGISTER READ RESULT  
SDOA  
SDI  
REG X  
REG X  
REG X  
16 + 8 = 24 BITS  
REGISTER X  
16 + 8 = 24 BITS  
WRITE REGISTER X CRC  
CRC  
REGISTER READ REQUEST  
REGISTER WRITE  
SDI  
Figure 45. CRC Operation  
Rev. 0 | Page 24 of 29  
 
Data Sheet  
REGISTERS  
AD4680/AD4681  
The AD4680/AD4681 have user programmable on-chip registers for configuring the device. Table 13 shows a complete overview of the  
registers available on the AD4680/AD4681. The registers are either read/write (R/W) or read only (R). Any read request to a write only  
register is ignored. Any write request to a read only register is ignored. Writes to any other register address are considered an NOP and  
are ignored. Any read request to a register address, other than those listed in Table 13, are considered an NOP, and the data transmitted  
in the next SPI frame are the conversion results.  
Table 13. Register Summary  
Bit 15  
Bit 7  
Bit 14  
Bit 6  
Bit 13  
Bit 5  
Bit 12  
Bit 4  
Bit 11  
Bit 3  
Bit 10  
Bit 2  
Bit 9  
Bit 8  
Hex. No.  
Register Name  
Bits  
Bit 1  
Bit 0  
Reset  
R/W  
0x1  
CONFIGURATION1  
[15:8]  
[7:0]  
ADDRESSING  
CRC_W  
RESERVED  
OS_MODE  
REFSEL  
OSR, Bit 2  
PMODE  
SDO  
0x0000  
R/W  
OSR, Bits[1:0]  
CRC_R  
ALERT_EN  
RES  
0x2  
0x3  
0x4  
0x5  
CONFIGURATION2  
ALERT  
[15:8]  
[7:0]  
ADDRESSING  
RESERVED  
0x0000  
0x0000  
0x0800  
0x07FF  
R/W  
R
RESET  
[15:8]  
[7:0]  
ADDRESSING  
AL_B_HIGH  
ADDRESSING  
RESERVED  
RESERVED  
CRCW_F  
AL_A_HIGH  
SETUP_F  
RESERVED  
AL_B_LOW  
AL_A_LOW  
ALERT_LOW_THRESHOLD  
ALERT_HIGH_THRESHOLD  
[15:8]  
[7:0]  
ALERT_LOW, Bits[11:8]  
R/W  
R/W  
ALERT_LOW, Bits[7:0]  
ALERT_HIGH, Bits[7:0]  
[15:8]  
[7:0]  
ADDRESSING  
ALERT_HIGH, Bits[11:8]  
ADDRESSING REGISTERS  
A serial register transfer on the AD4680/AD4681 consists of 16 SCLK cycles. The four MSBs written to the device are decoded to  
determine which register is addressed. The four MSBs consist of the register address (REGADDR), Bits[14:12], and the read/write bit  
(WR). The register address bits determine which on-chip register is selected. If the addressed register is a valid write register, the  
read/write bit determines whether the remaining 12 bits of data on the SDI input are loaded into the addressed register. If the WR bit is  
1, the bits load into the register addressed by the register select bits. If the WR bit is 0, the command is seen as a read request. The  
addressed register data is available to be read during the next read operation.  
Table 14. Addressing Register Format  
MSB  
D15  
WR  
LSB  
D0  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
REGADDR  
Data  
Table 15. Bit Descriptions for Addressing Registers  
Bit  
Mnemonic  
Description  
D15  
WR  
When a 1 is written to this bit, Bits[11:0] of this register are written to the register specified by REGADDR, if it  
is a valid address. Alternatively, when a 0 is written, the next data sent out on the SDOA pin is a read from  
the designated register if it is a valid address.  
D14 to D12 REGADDR  
When WR = 1, the contents of REGADDR determine the register for selection as outlined in Table 13.  
When WR = 0 and REGADDR contains a valid register address, the contents on the requested register are  
output on the SDOA pin during the next interface access.  
When WR = 0 and REGADDR contains 0x0, 0x6, or 0x7, the contents on the SDI line are ignored. The next  
interface access results in the conversion results being read back.  
D11 to D0  
Data  
These bits are written into the corresponding register specified by the REGADDR bits when the WR bit is  
equal to 1 and the REGADDR bits contain a valid address.  
Rev. 0 | Page 25 of 29  
 
 
 
 
AD4680/AD4681  
Data Sheet  
CONFIGURATION1 REGISTER  
Address: 0x1, Reset: 0x0000, Name: CONFIGURATION1  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
[15:12] ADDRESSING (R/W)  
[0] PMODE (R/W)  
Addressing  
Power-Down Mode.  
[11:10] RESERVED  
[1] REFSEL (R/W)  
Reference Select.  
[9] OS_MODE (R/W)  
Oversampling Mode.  
[2] RES (R/W)  
Resolution.  
[8:6] OSR (R/W)  
Oversampling Ratio.  
[3] ALERT_EN (R/W)  
Enable Alert Indicator Function.  
[5] CRC_W (R/W)  
CRC Write.  
[4] CRC_R (R/W)  
CRC Read.  
Table 16. Bit Descriptions for CONFIGURATION1 Register  
Bits Bit Name Description  
Reset Access  
[15:12] ADDRESSING Addressing. Bits[15:12] define the address of the relevant register. See the Addressing  
Registers section for further details.  
0x0  
R/W  
[11:10] RESERVED  
Reserved.  
0x0  
0x0  
R
R/W  
9
OS_MODE  
Oversampling Mode. Enables the rolling average oversampling mode of the ADC.  
0: disable.  
1: enable.  
[8:6]  
OSR  
Oversampling Ratio. Sets the oversampling ratio for all the ADCs in the rolling average mode.  
Rolling average mode supports oversampling ratios of ×2, ×4, and ×8.  
0x0  
R/W  
000: disabled.  
001: 2×.  
010: 4×.  
011: 8×.  
100: disabled.  
101: disabled.  
110: disabled.  
111: disabled.  
5
CRC_W  
CRC Write. Controls the CRC functionality for the SDI interface. When setting this bit from a 0  
to a 1, the command must be followed by a valid CRC to set this configuration bit. If a valid  
CRC is not received, the entire frame is ignored. If the bit is set to 1, it requires a CRC to clear it to 0.  
0x0  
R/W  
0: no CRC function.  
1: CRC function.  
4
3
CRC_R  
CRC Read. Controls the CRC functionality for the SDOA and SDOB/ALERT interface.  
0x0  
0x0  
R/W  
R/W  
0: no CRC function.  
1: CRC function.  
ALERT_EN  
Enable Alert Indicator Function. This alert function (on the SDOB/ALERT pin) is enabled when  
the SDO bit (Register 0x2, Bit 8) = 1. Otherwise, the ALERT_EN bit is ignored.  
0: SDOB.  
1: ALERT.  
2
RES  
Resolution. Sets the size of the conversion result data. If OSR = 0, these bits are ignored, and  
the resolution is set to the default resolution.  
0x0  
R/W  
0: normal resolution.  
1: 2-bit higher resolution.  
1
0
REFSEL  
PMODE  
Reference Select. Selects the ADC reference source.  
0: selects internal reference.  
1: selects external reference.  
Power-Down Mode. Sets the power modes.  
0: normal mode.  
0x0  
0x0  
R/W  
R/W  
1: shutdown mode.  
Rev. 0 | Page 26 of 29  
 
Data Sheet  
AD4680/AD4681  
CONFIGURATION2 REGISTER  
Address: 0x2, Reset: 0x0000, Name: CONFIGURATION2  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
[15:12] ADDRESSING(R/W)  
[7:0] RESET (R/W)  
Addressing  
Reset  
[11:9] RESERVED  
[8] SDO (R/W)  
SDO  
Table 17. Bit Descriptions for CONFIGURATION2 Register  
Bits Bit Name Description  
Reset Access  
[15:12] ADDRESSING Addressing. Bits[15:12] define the address of the relevant register. See the Addressing  
Registers section for further details.  
0x0  
R/W  
[11:9]  
8
RESERVED  
SDO  
Reserved.  
0x0  
0x0  
R
R/W  
SDO. Conversion results serial data output.  
0: 2-wire, conversion data are output on both SDOA and SDOB/ALERT.  
1: 1-wire, conversion data are output on SDOA only.  
Reset.  
[7:0]  
RESET  
0x0  
R/W  
Set to 0x3C to perform a soft reset, which refreshes some blocks, and register contents remain  
unchanged. Clears the ALERT register and flushes any oversampling stored variables or active  
state machine.  
Set to 0xFF to perform a hard reset, which resets all possible blocks in the device. Register  
contents are set to defaults. All other values are ignored.  
ALERT REGISTER  
ALERT  
Address: 0x3, Reset: 0x0000, Name:  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
[15:12] ADDRESSING (R)  
[0] AL_A_LOW (R)  
Addressing  
Alert A Low  
[11:10] RESERVED  
[1] AL_A_HIGH (R)  
Alert A High  
[9] CRCW_F (R)  
CRC Error  
[3:2] RESERVED  
[8] SETUP_F(R)  
[4] AL_B_LOW (R)  
Load Error  
Alert B Low  
[7:6] RESERVED  
[5] AL_B_HIGH (R)  
Alert B High  
ALERT  
Description  
Table 18. Bit Descriptions for  
Bits Bit Name  
Reset Access  
[15:12] ADDRESSING Addressing. Bits[15:12] define the address of the relevant register. See the Addressing Registers  
section for further details.  
0x0  
R
[11:10] RESERVED  
Reserved.  
0x0  
0x0  
R
R
9
CRCW_F  
CRC Error. Indicates that a register write command failed due to a CRC error. This fault bit is  
sticky and remains set until the register is read.  
0: no CRC error.  
1: CRC error.  
8
SETUP_F  
Load Error. The SETUP_F indicates that the device configuration data did not load correctly on  
startup. This bit does not clear on an ALERT register read. A hard reset via the  
CONFIGURATION2 register is required to clear this bit and restart the device setup again.  
0: no setup error.  
1: setup error.  
Reserved.  
0x0  
0x0  
R
R
[7:6]  
RESERVED  
Rev. 0 | Page 27 of 29  
 
 
AD4680/AD4681  
Data Sheet  
Bits  
Bit Name  
Description  
Reset Access  
5
AL_B_HIGH  
Alert B High. The alert indication high bit indicates if a conversion result for the respective  
input channel exceeds the value set in the ALERT_HIGH_THRESHOLD register. This fault bit is  
sticky and remains set until the register is read.  
0x0  
R
1: alert indication.  
0: no alert indication.  
4
AL_B_LOW  
Alert B Low. The alert indication low bit indicates if a conversion result for the respective input 0x0  
channel exceeds the value set in the ALERT_LOW_THRESHOLD register. This fault bit is sticky  
and remains set until the register is read.  
R
1: alert indication.  
0: no alert indication.  
[3:2]  
1
RESERVED  
AL_A_HIGH  
Reserved.  
0x0  
0x0  
R
R
Alert A High. The alert indication high bit indicates if a conversion result for the respective  
input channel exceeds the value set in the ALERT_HIGH_THRESHOLD register. This fault bit is  
sticky and remains set until the register is read.  
1: alert indication.  
0: no alert indication.  
0
AL_A_LOW  
Alert A Low. The alert indication low bit indicates if a conversion result for the respective input 0x0  
channel exceeds the value set in the ALERT_LOW_THRESHOLD register. This fault bit is sticky  
and remains set until the register is read.  
R
1: alert indication.  
0: no alert indication.  
ALERT_LOW_THRESHOLD REGISTER  
Address: 0x4, Reset: 0x0800, Name: ALERT_LOW_THRESHOLD  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
[15:12] ADDRESSING (R/W)  
[11:0] ALERT_LOW (R/W)  
Addressing  
Alert Low  
Table 19. Bit Descriptions for ALERT_LOW_THRESHOLD  
Bits Bit Name Description  
Reset Access  
[15:12] ADDRESSING Addressing. Bits[15:12] define the address of the relevant register. See the Addressing  
Registers section for further details.  
0x0  
R/W  
[11:0]  
ALERT_LOW  
Alert Low. Bits[11:0] from ALERT_LOW move to the MSBs of the internal ALERT_LOW register,  
Bits[15:4]. The remaining Bits[3:0] of the internal register are fixed at 0x0. Sets an alert when  
the converter result is below ALERT_LOW_THRESHOLD and the alert is disabled when it is  
above ALERT_LOW_THRESHOLD.  
0x800 R/W  
ALERT_HIGH_THRESHOLD REGISTER  
Address: 0x5, Reset: 0x07FF, Name: ALERT_HIGH_THRESHOLD  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
[15:12] ADDRESSING (R/W)  
[11:0] ALERT_HIGH (R/W)  
Addressing  
Alert High  
Table 20. Bit Descriptions for ALERT_HIGH_THRESHOLD  
Bits Bit Name Description  
Reset Access  
[15:12] ADDRESSING Addressing. Bits[15:12] define the address of the relevant register. See the Addressing  
Registers section for further details.  
0x0  
R/W  
[11:0]  
ALERT_HIGH Alert High. Bits[11:0] from ALERT_HIGH move to the MSBs of the internal ALERT_HIGH register, 0x7FF R/W  
Bits[15:4]. The remaining Bits[3:0] of the internal register are fixed at 0xF. Sets an alert when  
the converter result is above the ALERT_HIGH_THRESHOLD register and the alert is disabled  
when the converter result is below the ALERT_HIGH_THRESHOLD register.  
Rev. 0 | Page 28 of 29  
 
 
Data Sheet  
AD4680/AD4681  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
3.10  
3.00 SQ  
2.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
AREA  
PIN 1  
IONS  
INDICATOR AR E A OP T  
(SEE DETAIL A)  
13  
16  
12  
1
0.45  
0.50  
BSC  
*
1.20  
EXPOSED  
PAD  
1.10 SQ  
1.00  
9
4
8
5
0.55 REF  
0.45  
0.40  
0.35  
TOP VIEW  
BOTTOM VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
SECTION OF THIS DATA SHEET.  
0.08  
SEATING  
PLANE  
0.15 REF  
*
COMPLIANT TO JEDEC STANDARDS MO-220-WEED-4  
WITH EXCEPTION TO THE EXPOSED PAD  
Figure 46. 16-Lead Lead Frame Chip Scale Package [LFCSP]  
3 mm × 3 mm Body and 0.75 mm Package Height  
(CP-16-45)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Throughput  
Resolution Rate  
Package  
Option  
Marking  
Code  
Model1, 2  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
16-Lead LFCSP  
16-Lead LFCSP  
AD4680BCPZ-RL  
AD4680BCPZ-RL7  
AD4681BCPZ-RL  
AD4681BCPZ-RL7  
EVAL-AD7380FMCZ  
16-Bit  
16-Bit  
16-Bit  
16-Bit  
1 MSPS  
1 MSPS  
CP-16-45  
CP-16-45  
CP-16-45  
CP-16-45  
CAK  
CAK  
CAM  
CAM  
500 kSPS  
500 kSPS  
16-Lead LFCSP  
16-Lead LFCSP  
AD7380 Evaluation Board  
1 Z = RoHS Compliant Part.  
2 Use the EVAL-AD7380FMCZ to evaluate the AD4680 and AD4681. The EVAL-AD7380FMCZ is compatible with the EVAL-SDP-CH1Z high speed controller board.  
©2020 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D23409-10/20(0)  
Rev. 0 | Page 29 of 29  
 
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY