AD7400AYRWZREEL7 [ADI]

Isolated Sigma-Delta Modulator; 隔离式Σ-Δ调制器
AD7400AYRWZREEL7
型号: AD7400AYRWZREEL7
厂家: ADI    ADI
描述:

Isolated Sigma-Delta Modulator
隔离式Σ-Δ调制器

文件: 总19页 (文件大小:321K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Isolated Sigma-Delta Modulator  
Preliminary Technical Data  
AD7400A  
FEATURES  
GENERAꢀ DESCRIPTION  
10 MHz clock rate  
Second-order modulator  
16 bits no missing codes  
2 ꢀSB INꢀ typical at 16 bits  
3.5 µV/°C maximum offset drift  
On-board digital isolator  
On-board reference  
ꢀow power operation: 18 mA maximum at 5.25 V  
−40°C to +125°C operating range  
16-lead SOIC, 8-lead gull-wing surface mount DIP packages  
AD7401A, external clock version  
Safety and regulatory approvals  
Uꢀ recognition  
The AD7400A1 is a second-order, Σ-Δ modulator that converts  
an analog input signal into a high speed, 1-bit data stream with  
on-chip digital isolation based on Analog Devices, Inc.  
iCoupler® technology. The AD7400A operates from a 5 V power  
supply and accepts a differential input signal of ±±00 mV  
(±±0 mV full scale). The analog input is continuously sampled  
by the analog modulator, eliminating the need for external  
sample-and-hold circuitry. The input information is contained  
in the output stream as a density of ones with a data rate of  
10 MHz. The original information can be reconstructed with an  
appropriate digital filter. The serial I/O can use a 5 V or a ꢀ V  
supply (VDD±).  
The serial interface is digitally isolated. High speed CMOS,  
combined with monolithic air core transformer technology,  
means the on-chip isolation provides outstanding performance  
characteristics superior to alternatives such as optocoupler  
devices. The part contains an on-chip reference. The AD7400A  
is offered in a 16-lead SOIC and 8-lead gull-wing surface mount  
DIP and has an operating temperature range of −40°C to  
+1±5°C.  
3750 V rms for 1 minute per Uꢀ 1577  
CSA Component Acceptance Notice #5A  
VDE Certificate of Conformity  
DIN EN 60747-5-2 (VDE 0884 Part 2): 2003-01  
DIN EN 60950 (VDE 0805): 2001-12; EN 60950: 2000  
VIORM = 891 V peak  
APPꢀICATIONS  
AC motor controls  
Data acquisition systems  
A/D + opto-isolator replacements  
FUNCTIONAꢀ BꢀOCK DIAGRAM  
V
V
DD2  
DD1  
AD7400A  
V
V
+
IN  
T/H  
Σ-ADC  
IN  
UPDATE  
WATCHDOG  
ENCODE  
DECODE  
BUF  
MDAT  
REF  
CONTROL LOGIC  
UPDATE  
WATCHDOG  
ENCODE  
MCLKOUT  
DECODE  
GND  
GND  
1
2
Figure 1.  
1 Protected by U.S. Patents 5,952,849; 6,873,065; and 7,075,329. Other patents pending.  
Rev. PrA  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
AD7400A  
Preliminary Technical Data  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................9  
Terminology.................................................................................... 1±  
Theory of Operation ...................................................................... 1ꢀ  
Circuit Information.................................................................... 1ꢀ  
Analog Input ............................................................................... 1ꢀ  
Differential Inputs...................................................................... 14  
Digital Filter ................................................................................ 14  
Application Information................................................................ 17  
Grounding and Layout .............................................................. 17  
Evaluating the AD7400A Performance................................... 17  
Insulation Lifetime..................................................................... 17  
Outline Dimensions....................................................................... 18  
Ordering Guide ....................... Error! Bookmark not defined.  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... ±  
Specifications..................................................................................... ꢀ  
Timing Specifications .................................................................. 4  
Insulation and Safety-Related Specifications............................ 5  
Regulatory Information............................................................... 5  
DIN EN 60747-5-± (VDE 0884 Part ±) Insulation  
Characteristics .............................................................................. 6  
Absolute Maximum Ratings............................................................ 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
REVISION HISTORY  
Rev. PrA | Page 2 of 19  
Preliminary Technical Data  
SPECIFICATIONS  
AD7400A  
VDD1 = 4.5 V to 5.±5 V, VDD± = ꢀ V to 5.5 V, VIN+ = −±00V to +±00mV, and VIN− = 0 V (single-ended); TA = TMIN to TMAX  
,
fMCLK = 10 MHz, tested with Sincfilter, ±56 decimation rate, as defined by Verilog code, unless otherwise noted.1  
Table 1.  
Parameter  
Y Version1, 2  
Unit  
Test Conditions/Comments  
STATIC PERFORMANCE  
Resolution  
16  
15  
25  
0.9  
0.5  
50  
3.5  
1
120  
1
23  
110  
Bits min  
LSB max  
LSB max  
LSB max  
mꢀ max  
µꢀ typ  
µꢀ/°C max  
µꢀ/°C typ  
µꢀ/ꢀ typ  
mꢀ max  
µꢀ/°C typ  
µꢀ/ꢀ typ  
Filter output truncated to 16 bits  
−40°C to +85°C; 2 LSB typical  
>85°C to 105°C  
Integral Nonlinearity3  
Differential Nonlinearity3  
Offset Error3  
Guaranteed no missing codes to 16 bits  
TA = 25°C  
−40°C to +105°C  
Offset Drift vs. Temperature3  
Offset Drift vs. ꢀDD1  
Gain Error3  
Gain Error Drift vs. Temperature3  
Gain Error Drift vs. ꢀDD1  
−40°C to +105°C  
3
ANALOG INPUT  
Input ꢀoltage Range  
Dynamic Input Current  
200  
7
mꢀ min/mꢀ max  
µA max  
For specified performance; full range 320 mꢀ  
IN+ = 400 mꢀ, ꢀIN− = 0 ꢀ  
0.5  
10  
µA typ  
pF typ  
IN+ = ꢀIN− = 0 ꢀ  
Input Capacitance  
DYNAMIC SPECIFICATIONS  
IN+ = 35 Hz, 400 mꢀ p-p sine  
−40°C to +85°C  
>85°C to 105°C  
Signal-to-(Noise + Distortion) Ratio (SINAD)3  
70  
65  
79  
71  
−88  
−88  
11.5  
25  
dB min  
dB min  
dB typ  
dB min  
dB typ  
dB typ  
Bits  
Signal-to-Noise Ratio (SNR)3  
−40°C to +105°C  
Total Harmonic Distortion (THD)3  
Peak Harmonic or Spurious Noise (SFDR)3  
Effective Number of Bits (ENOB)3  
Isolation Transient Immunity3  
kꢀ/µs min  
kꢀ/µs typ  
30  
LOGIC OUTPUTS  
Output High ꢀoltage, ꢀOH  
Output Low ꢀoltage, ꢀOL  
POWER REQUIREMENTS  
DD1  
DD2 − 0.1  
0.4  
ꢀ min  
ꢀ max  
IO = −200 µA  
IO = +200 µA  
4.5/5.25  
ꢀ min/ꢀ max  
ꢀ min/ꢀ max  
mA max  
mA max  
mA max  
DD2  
3/5.5  
12  
6
4
IDD1  
DD1 = 5.25 ꢀ  
DD2 = 5.5 ꢀ  
DD2 = 3.3 ꢀ  
5
IDD2  
4
1 Temperature range is −40°C to +125°C except where specified.  
2 All voltages are relative to their respective ground.  
3 See the Terminology section.  
4 See Figure 15.  
5 See Figure 16.  
Rev. PrA | Page 3 of 19  
AD7400A  
Preliminary Technical Data  
TIMING SPECIFICATIONS  
VDD1 = 4.5 V to 5.±5 V, VDD± = ꢀ V to 5.5 V, TA = TMAX to TMIN, unless otherwise noted.1  
Table 2.  
Parameter  
ꢀimit at TMIN, TMAX  
Unit  
Description  
2
fMCLKOUT  
10  
9/11  
40  
10  
0.4 × tMCLKOUT  
0.4 × tMCLKOUT  
MHz typ  
MHz min/MHz max  
ns max  
ns min  
ns min  
Master clock output frequency  
Master clock output frequency  
Data access time after MCLK rising edge  
Data hold time after MCLK rising edge  
Master clock low time  
3
t1  
3
t2  
t3  
t4  
ns min  
Master clock high time  
1 Sample tested during initial release to ensure compliance.  
2 Mark space ratio for clock output is 40/60 to 60/40.  
3 Measured with the load circuit of Figure 2 and defined as the time required for the output to cross 0.8 ꢀ or 2.0 ꢀ.  
200µA  
I
OL  
TO OUTPUT  
PIN  
+1.6V  
C
L
25pF  
200µA  
I
OH  
Figure 2. Load Circuit for Digital Output Timing Specifications  
t4  
MCLKOUT  
MDAT  
t1  
t2  
t3  
Figure 3. Data Timing  
Rev. PrA | Page 4 of 19  
Preliminary Technical Data  
INSUꢀATION AND SAFETY-REꢀATED SPECIFICATIONS  
Table 3.  
AD7400A  
Parameter  
Symbol Value  
Unit Conditions  
Input-to-Output Withstand Momentary Withstand ꢀoltage  
Minimum External Air Gap (Clearance)  
ISO  
L(I01)  
3750 min  
7.46 min  
mm  
1-minute duration  
Measured from input terminals to output  
terminals, shortest distance through air  
Minimum External Tracking (Creepage)  
L(I02)  
CTI  
8.1 min  
mm  
Measured from input terminals to output  
terminals, shortest distance path along body  
Insulation distance through insulation  
DIN IEC 112/ꢀDE 0303 Part 1  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index)  
Isolation Group  
0.017 min mm  
>175  
IIIa  
Material group (DIN ꢀDE 0110, 1/89, Table 1)  
REGUꢀATORY INFORMATION  
Table 4.  
Uꢀ1  
CSA  
Approved under CSA Component  
VDE2  
Recognized Under 1577  
Certified according to DIN EN 60747-5-2  
(ꢀDE 0884 Part 2): 2003-012  
Component Recognition Program1 Acceptance Notice #5A  
3750 ꢀ rms Isolation ꢀoltage  
Reinforced insulation per  
CSA 60950-1-03 and IEC 60950-1,  
630 ꢀrms maximum working  
voltage  
Basic insulation, 891 ꢀ peak  
Complies with DIN EN 60747-5-2 (ꢀDE 0884 Part 2): 2003-01,  
DIN EN 60950 (ꢀDE 0805): 2001-12; EN 60950: 2000  
Reinforced insulation, 891 ꢀ peak  
File E214100  
File 205078  
File 2471900-4880-0001  
1 In accordance with UL 1577, each AD7400A is proof tested by applying an insulation test voltage ≥ 4500 ꢀ rms for 1 second (current leakage detection limit = 7.5 µA).  
2 In accordance with DIN EN 60747-5-2, each AD7400A is proof tested by applying an insulation test voltage ≥ 1671 ꢀ peak for 1 second (partial discharge detection  
limit = 5 pC).  
Rev. PrA | Page 5 of 19  
AD7400A  
Preliminary Technical Data  
DIN EN 60747-5-2 (VDE 0884 PART 2) INSUꢀATION CHARACTERISTICS  
This isolator is suitable for basic electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by means  
of protective circuits.  
Table 5.  
Description  
Symbol Characteristic Unit  
INSTALLATION CLASSIFICATION PER DIN ꢀDE 0110  
For Rated Mains ꢀoltage ≤ 300 ꢀ rms  
I–Iꢀ  
For Rated Mains ꢀoltage ≤ 450 ꢀ rms  
I–II  
For Rated Mains ꢀoltage ≤ 600 ꢀ rms  
I–II  
CLIMATIC CLASSIFICATION  
40/105/21  
2
POLLUTION DEGREE (DIN ꢀDE 0110, Table 1)  
MAXIMUM WORKING INSULATION ꢀOLTAGE  
INPUT-TO-OUTPUT TEST ꢀOLTAGE, METHOD B1  
IORM × 1.875 = ꢀPR, 100% Production Test, tm = 1 sec, Partial Discharge < 5 pC  
INPUT-TO-OUTPUT TEST ꢀOLTAGE, METHOD A  
After Environmental Test Subgroup 1  
IORM × 1.6 = ꢀPR, tm = 60 sec, Partial Discharge < 5 pC  
After Input and/or Safety Test Subgroup 2/3  
IORM × 1.2 = ꢀPR, tm = 60 sec, Partial Discharge < 5 pC  
HIGHEST ALLOWABLE OꢀERꢀOLTAGE (TRANSIENT OꢀERꢀOLTAGE, tTR = 10 sec)  
SAFETY-LIMITING ꢀALUES (MAXIMUM ꢀALUE ALLOWED IN THE EꢀENT OF A FAILURE, ALSO SEE Figure 4)  
Case Temperature  
IORM  
891  
ꢀ peak  
ꢀ peak  
ꢀ peak  
ꢀ peak  
ꢀ peak  
PR  
PR  
1671  
1426  
1069  
6000  
TR  
TS  
IS1  
IS2  
RS  
150  
265  
335  
>109  
°C  
Side 1 Current  
Side 2 Current  
mA  
mA  
INSULATION RESISTANCE AT TS, ꢀIO = 500 ꢀ  
350  
300  
250  
SIDE #2  
200  
150  
SIDE #1  
100  
50  
0
0
50  
100  
150  
200  
CASE TEMPERATURE (°C)  
Figure 4. Thermal Derating Curve, Dependence of Safety-Limiting Values  
with Case Temperature per DIN EN 60747-5-2  
Rev. PrA | Page 6 of 19  
Preliminary Technical Data  
AD7400A  
ABSOLUTE MAXIMUM RATINGS  
TA = ±5°C, unless otherwise noted. All voltages are relative to  
their respective ground.  
Table 6.  
Parameter  
DD1 to GND1  
DD2 to GND2  
Analog Input ꢀoltage to GND1  
Output ꢀoltage to GND2  
Input Current to Any Pin Except Supplies1  
Operating Temperature Range  
Storage Temperature Range  
Junction Temperature  
SOIC Package  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
−0.3 ꢀ to +6.5 ꢀ  
−0.3 ꢀ to +6.5 ꢀ  
−0.3 ꢀ to ꢀDD1 + 0.3 ꢀ  
−0.3 ꢀ to ꢀDD2 + 0.3 ꢀ  
10 mA  
−40°C to +125°C  
−65°C to +150°C  
150°C  
Table 7. Maximum Continuous Working Voltage1  
Parameter  
Max Unit Constraint  
AC ꢀoltage,  
Bipolar Waveform  
AC ꢀoltage,  
Unipolar Waveform  
565  
891  
891  
PK  
PK  
50-year minimum lifetime  
θJA Thermal Impedance  
θJC Thermal Impedance  
Resistance (Input-to-Output), RI-O  
89.2°C/W  
55.6°C/W  
1012 Ω  
Maximum CSA/ꢀDE  
approved working voltage  
Maximum CSA/ꢀDE  
DC ꢀoltage  
2
Capacitance (Input-to-Output), CI-O  
1.7 pF typ  
approved working voltage  
1 Refers to continuous voltage magnitude imposed across the isolation  
barrier. See the Insulation Lifetime section for more details.  
Pb-Free Temperature, Soldering  
Reflow  
ESD  
260 (+0)°C  
1.5 kꢀ  
1 Transient currents of up to 100 mA do not cause SCR to latch up.  
2 f = 1 MHz.  
ESD CAUTION  
Rev. PrA | Page 7 of 19  
AD7400A  
Preliminary Technical Data  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
V
DD1  
1
2
3
4
8
7
6
5
V
DD2  
V
GND  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
DD1  
2
AD7400A  
TOP VIEW  
(Not to Scale)  
V
+
-
MCLKIN  
MDAT  
IN  
V
+
NC  
V
IN  
AD7400A  
V
IN  
V
TOP VIEW  
IN  
DD2  
GND  
GND  
2
1
(Not to Scale)  
NC  
NC  
NC  
DD1  
MCLKOUT  
NC  
NC = NO CONNECT  
Figure 6 Pin Configuration (NS-8)  
MDAT  
NC  
V
GND  
GND  
2
1
NC = NO CONNECT  
Figure 5. Pin Configuration (RW-16)  
Table 8. Pin Function Descriptions  
Mnemonic  
Description  
DD1  
Supply ꢀoltage, 4.5 ꢀ to 5.25 ꢀ. This is the supply voltage for the isolated side of the AD7400A and  
is relative to GND1.  
IN+  
Positive Analog Input. Specified range of 200 mꢀ.  
IN−  
NC  
Negative Analog Input. Normally connected to GND1.  
No Connect.  
GND1  
GND2  
MDAT  
Ground 1. This is the ground reference point for all circuitry on the isolated side.  
Ground 2. This is the ground reference point for all circuitry on the nonisolated side.  
Serial Data Output. The single bit modulator output is supplied to this pin as a serial data stream.  
The bits are clocked out on the rising edge of the MCLKOUT output and valid on the following  
MCLKOUT rising edge.  
MCLKOUT  
DD2  
Master Clock Logic Output. 10 MHz typical. The bit stream from the modulator is valid on the rising edge  
of MCLKOUT.  
Supply ꢀoltage. 3 ꢀ to 5.5 ꢀ. This is the supply voltage for the nonisolated side and is relative to GND2.  
Rev. PrA | Page 8 of 19  
Preliminary Technical Data  
AD7400A  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = ±5°C, using ±0 kHz brickwall filter, unless otherwise noted.  
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
100  
V
= V  
= 5V  
200mV p-p SINEWAVE ON V  
DD1  
NO DECOUPLING  
DD1  
DD2  
90  
80  
70  
60  
50  
40  
30  
20  
V
= V = 4.5V TO 5.25V  
DD1  
DD2  
10  
0
0.195  
0.215  
0.235  
0.255  
0.275  
0.295  
0.315  
0
100 200 300 400 500 600 700 800 900 1000  
SUPPLY RIPPLE FREQUENCY (kHz)  
± INPUT AMPLITUDE (V)  
Figure 10. SINAD vs. VIN  
Figure 7. PSRR vs. Supply Ripple Frequency Without Supply Decoupling  
(1 MHz Filter Used)  
0.5  
0.4  
–90  
–80  
–70  
V
V
+ = –200mV TO +200mV  
– = 0V  
IN  
IN  
0.3  
V
= V = 4.5V  
DD2  
DD1  
0.2  
–60  
–50  
–40  
–30  
–20  
–10  
0
0.1  
0
V
= V  
= 5.25V  
DD2  
DD1  
V
= V = 5V  
DD2  
DD1  
–0.1  
–0.2  
–0.3  
–0.4  
0
10000  
20000  
30000  
CODE  
40000  
50000  
60000  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
INPUT FREQUENCY (Hz)  
Figure 8. SINAD vs. Analog Input Frequency for Various Supply Voltages  
Figure 11. Typical DNL, 200 mV Range  
(Using Sinc3 Filter, 256 Decimation Rate)  
0.8  
0.6  
0
V
V
+ = –200mV TO +200mV  
– = 0V  
8192 POINT FFT  
IN  
IN  
–20  
–40  
fIN = 35Hz  
SINAD = 79.6991dB  
THD = –92.6722dB  
DECIMATION BY 256  
0.4  
–60  
0.2  
–80  
–100  
–120  
–140  
–160  
–180  
0
–0.2  
–0.4  
–0.6  
0
10000  
20000  
30000  
CODE  
40000  
50000  
60000  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (kHz)  
Figure 9. Typical FFT, 200 mV Range  
(Using Sinc3 Filter, 256 Decimation Rate)  
Figure 12. Typical INL, 200 mV Range  
(Using Sinc3 Filter, 256 Decimation Rate)  
Rev. PrA | Page 9 of 19  
AD7400A  
Preliminary Technical Data  
100  
0.0036  
0.0035  
0.0034  
0.0033  
0.0032  
0.0031  
0.0030  
V
= V  
= 5V  
DD2  
DD1  
I
@ +25°C  
DD2  
V
= V = 4.5V  
DD2  
DD1  
I
@ +85°  
C
50  
DD2  
0
I
@ –40°C  
DD2  
V
= V = 5V  
DD2  
DD1  
–50  
–100  
–150  
–200  
V
= V = 5.25V  
DD2  
DD1  
–45 –35 –25 –15 –5  
5
15 25 35 45 55 65 75 85 95 105  
TEMPERATURE (°C)  
V
DC INPUT VOLTAGE (V)  
IN  
Figure 13. Offset Drift vs. Temperature for Various Supply Voltages  
Figure 16. IDD2 vs. VIN at Various Temperatures  
9
6
0.20  
0.15  
0.10  
V
=
V
= 4.5V TO 5.25V  
DD1  
DD2  
3
V
= V = 4.5V  
DD2  
DD1  
0.05  
0
V
= V = 5V  
DD2  
DD1  
0
–0.05  
–0.10  
–0.15  
–0.20  
–3  
–6  
–9  
V
= V  
= 5.25V  
DD2  
DD1  
–45 –35 –25 –15 –5  
5
15 25 35 45 55 65 75 85 95 105  
TEMPERATURE (°C)  
V
+ DC INPUT (V)  
IN  
Figure 14 . Gain Error Drift vs. Temperature for Various Supply Voltages  
Figure 17. IIN vs. VIN+ DC Input  
0.0099  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
V
= V = 5V  
DD2  
DD1  
0.0098  
0.0097  
0.0096  
0.0095  
0.0094  
0.0093  
0.0092  
0.0091  
0.0090  
0.0089  
T
= +85°C  
A
T
= +25°C  
A
T
= –40°C  
A
0.1  
1
10  
100  
1000  
10000  
V
DC INPUT VOLTAGE (V)  
RIPPLE FREQUENCY (kHz)  
IN  
Figure 18. CMRR vs. Common-Mode Ripple Frequency  
Figure 15. IDD1 vs. VIN at Various Temperatures  
Rev. PrA | Page 10 of 19  
Preliminary Technical Data  
AD7400A  
1.0  
11.0  
10.8  
10.6  
10.4  
10.2  
10.0  
9.8  
BANDWIDTH = 100kHz  
0.8  
0.6  
0.4  
0.2  
0
V
= V = 4.5V  
DD2  
DD1  
V
= V = 5.25V  
DD2  
9.6  
DD1  
9.4  
V
= V = 5V  
DD2  
DD1  
9.2  
9.0  
TEMPERATURE (°C)  
V
DC INPUT (V)  
IN  
Figure 19. RMS Noise Voltage vs. VIN DC Input  
Figure 20. MCLKOUT vs. Temperature for Various Supplies  
Rev. PrA | Page 11 of 19  
AD7400A  
Preliminary Technical Data  
TERMINOLOGY  
Differential Nonlinearity  
Total Harmonic Distortion (THD)  
Differential nonlinearity is the difference between the measured  
and the ideal 1 LSB change between any two adjacent codes  
in the ADC.  
THD is the ratio of the rms sum of harmonics to the  
fundamental. For the AD7400A, it is defined as  
±
V±± +V± +V4± +V5± +V6  
THD(dB) = ±0log  
Integral Nonlinearity  
V1  
Integral nonlinearity is the maximum deviation from a straight  
line passing through the endpoints of the ADC transfer function.  
The endpoints of the transfer function are specified negative  
full scale, −±00 mV (VIN+ − VIN−), Code 1±,±88 for the 16-bit  
level, and specified positive full scale, +±00 mV (VIN+ − VIN−),  
Code 5ꢀ,±48 for the 16-bit level.  
where:  
V1 is the rms amplitude of the fundamental.  
V2, V3, V4, V5, and V6 are the rms amplitudes of the second  
through the sixth harmonics.  
Peak Harmonic or Spurious Noise  
Offset Error  
Peak harmonic or spurious noise is defined as the ratio of the  
rms value of the next largest component in the ADC output  
spectrum (up to fS/±, excluding dc) to the rms value of the  
fundamental. Normally, the value of this specification is  
determined by the largest harmonic in the spectrum, but for  
ADCs where the harmonics are buried in the noise floor, it is a  
noise peak.  
Offset is the deviation of the midscale code (Code ꢀ±,768 for  
the 16-bit level) from the ideal VIN+ − VIN− (that is, 0 V).  
Gain Error  
This includes both positive full-scale gain error and negative  
full-scale gain error. Positive full-scale gain error is the  
deviation of the specified positive full-scale code (5ꢀ,±48 for the  
16-bit level) from the ideal VIN+ − VIN− (+±00 mV) after the  
offset error is adjusted out. Negative full-scale gain error is the  
deviation of the specified negative full-scale code (1±,±88 for  
the 16-bit level) from the ideal VIN+ − VIN− (−±00 mV) after the  
offset error is adjusted out. Gain error includes reference error.  
Common-Mode Rejection Ratio (CMRR)  
CMRR is defined as the ratio of the power in the ADC output at  
±±00 mV frequency, f, to the power of a ±00 mV p-p sine wave  
applied to the common-mode voltage of VIN+ and VIN− of  
frequency fS as  
Signal-to-(Noise + Distortion) Ratio (SINAD)  
CMRR (dB) = 10log(Pf/PfS)  
where:  
This ratio is the measured ratio of signal-to-(noise + distortion)  
at the output of the ADC. The signal is the rms amplitude of the  
fundamental. Noise is the sum of all nonfundamental signals up  
to half the sampling frequency (fS/±), excluding dc. The ratio is  
dependent on the number of quantization levels in the digitization  
process; the more levels, the smaller the quantization noise. The  
theoretical signal-to-(noise + distortion) ratio for an ideal N-bit  
converter with a sine wave input is given by  
Pf is the power at frequency f in the ADC output.  
PfS is the power at frequency fS in the ADC output.  
Power Supply Rejection Ratio (PSRR)  
Variations in power supply affect the full-scale transition but  
not converter linearity. PSRR is the maximum change in the  
specified full-scale (±±00 mV) transition point due to a change  
in power supply voltage from the nominal value (see Figure 7).  
Signal-to-(Noise + Distortion) = (6.0±N + 1.76) dB  
Therefore, for a 1±-bit converter, this is 74 dB.  
Isolation Transient Immunity  
Effective Number of Bits (ENOB)  
The ENOB is defined by  
The isolation transient immunity specifies the rate of rise/fall of  
a transient pulse applied across the isolation boundary beyond  
which clock or data is corrupted. (It was tested using a transient  
pulse frequency of 100 kHz.)  
ENOB = (SINAD − 1.76)/6.0±  
Rev. PrA | Page 12 of 19  
Preliminary Technical Data  
AD7400A  
THEORY OF OPERATION  
A differential input of ꢀ±0 mV results in a stream of ideally all  
ones. This is the absolute full-scale range of the AD7400A,  
while ±00 mV is the specified full-scale range, as shown in Table  
9.  
CIRCUIT INFORMATION  
The AD7400A isolated Σ-Δ modulator converts an analog input  
signal into a high speed (10 MHz typ), single-bit data stream;  
the time average of the modulators single-bit data is directly  
proportional to the input signal. Figure ±ꢀ shows a typical  
application circuit where the AD7400A is used to provide  
isolation between the analog input, a current sensing resistor,  
and the digital output, which is then processed by a digital filter  
to provide an N-bit word.  
Table 9. Analog Input Range  
Analog Input  
Voltage Input  
+640 mꢀ  
+320 mꢀ  
+200 mꢀ  
0 mꢀ  
Full-Scale Range  
Positive Full Scale  
Positive Specified Input Range  
Zero  
ANAꢀOG INPUT  
Negative Specified Input Range  
Negative Full Scale  
−200 mꢀ  
−320 mꢀ  
The differential analog input of the AD7400A is implemented  
with a switched capacitor circuit. This circuit implements a  
second-order modulator stage that digitizes the input signal  
into a 1-bit output stream. The sample clock (MCLKOUT)  
provides the clock signal for the conversion process as well as  
the output data-framing clock. This clock source is internal on  
the AD7400A. The analog input signal is continuously sampled  
by the modulator and compared to an internal voltage  
reference. A digital stream that accurately represents the  
analog input over time appears at the output of the converter  
(see Figure ±1).  
To reconstruct the original information, this output needs to be  
digitally filtered and decimated. A Sincfilter is recommended  
because this is one order higher than that of the AD7400A  
modulator. If a ±56 decimation rate is used, the resulting  
16-bit word rate is ꢀ9 kHz, assuming a 10 MHz internal clock  
frequency. Figure ±± shows the transfer function of the  
AD7400A relative to the 16-bit output.  
65535  
MODULATOR OUTPUT  
+FS ANALOG INPUT  
53248  
SPECIFIED RANGE  
–FS ANALOG INPUT  
ANALOG INPUT  
Figure 21. Analog Input vs. Modulator Output  
12288  
A differential signal of 0 V results (ideally) in a stream of ones  
and zeros at the MDAT output pin. This output is high 50% of  
the time and low 50% of the time. A differential input of  
±00 mV produces a stream of ones and zeros that are high  
81.±5% of the time. A differential input of −±00 mV produces a  
stream of ones and zeros that are high 18.75% of the time.  
0
–320mV  
–200mV  
ANALOG INPUT  
+200mV +320mV  
Figure 22. Filtered and Decimated 16-Bit Transfer Characteristic  
ISOLATED  
5V  
NONISOLATED  
5V/3V  
AD7400  
V
V
V
DD  
DD1  
DD2  
3
SINC FILTER  
Σ-∆  
MOD/  
CS  
V
V
+
MDAT  
MDAT  
MCLK  
IN  
ENCODER  
DECODER  
ENCODER  
+
SCLK  
INPUT  
CURRENT  
MCLKOUT  
IN  
SDAT  
R
SHUNT  
DECODER  
GND  
GND  
GND  
1
2
Figure 23. Typical Application Circuit  
Rev. PrA | Page 13 of 19  
AD7400A  
Preliminary Technical Data  
DIGITAꢀ FIꢀTER  
DIFFERENTIAꢀ INPUTS  
A Sincfilter is recommended for use with the AD7400A. This  
filter can be implemented on an FPGA or a DSP. The following  
Verilog code provides an example of a Sincfilter implementation  
on a Xilinx® Spartan-II ±.5 V FPGA. This code can possibly be  
compiled for another FPGA, such as an Altera® device. Note  
that the data is read on the negative clock edge in this case;  
although, it can be read on the positive edge, if preferred. Figure ±9  
shows the effect of using different decimation rates with various  
filter types.  
The analog input to the modulator is a switched capacitor  
design. The analog signal is converted into charge by highly  
linear sampling capacitors. A simplified equivalent circuit  
diagram of the analog input is shown in Figure ±4. A signal  
source driving the analog input must be able to provide the  
charge onto the sampling capacitors every half MCLKOUT cycle  
and settle to the required accuracy within the next half cycle.  
φA  
1kΩ  
φB  
/*`Data is read on negative clk edge*/  
module DEC256SINC24B(mdata1, mclk1, reset,  
DATA);  
V
+
IN  
2pF  
2pF  
φA  
φB  
input mclk1;  
input reset;  
input mdata1;  
filtered*/  
/*used to clk filter*/  
/*used to reset filter*/  
/*ip data to be  
1kΩ  
V
IN  
φA φB φA φB  
MCLKOUT  
output [15:0] DATA;  
/*filtered op*/  
Figure 24. Analog Input Equivalent Circuit  
integer location;  
integer info_file;  
Since the AD7400A samples the differential voltage across its  
analog inputs, low noise performance is attained with an input  
circuit that provides low common-mode noise at each input.  
The amplifiers used to drive the analog inputs play a critical role in  
attaining the high performance available from the AD7400A.  
reg [23:0]  
reg [23:0]  
reg [23:0]  
reg [23:0]  
reg [23:0]  
reg [23:0]  
reg [23:0]  
reg [23:0]  
reg [23:0]  
reg [23:0]  
reg [23:0]  
reg [15:0]  
reg [7:0]  
ip_data1;  
acc1;  
acc2;  
acc3;  
When a capacitive load is switched onto the output of an op  
amp, the amplitude momentarily drops. The op amp tries to  
correct the situation and, in the process, hits its slew rate limit.  
This nonlinear response, which can cause excessive ringing, can  
lead to distortion. To remedy the situation, a low-pass RC filter  
can be connected between the amplifier and the input to the  
AD7400A. The external capacitor at each input aids in  
supplying the current spikes created during the sampling process,  
and the resistor isolates the op amp from the transient nature of the  
load.  
acc3_d1;  
acc3_d2;  
diff1;  
diff2;  
diff3;  
diff1_d;  
diff2_d;  
DATA;  
word_count;  
The recommended circuit configuration for driving the differential  
inputs to achieve best performance is shown in Figure ±5. A  
capacitor between the two input pins sources or sinks charge  
to allow most of the charge that is needed by one input to be  
effectively supplied by the other input. The series resistor again  
isolates any op amp from the current spikes created during the  
sampling process. Recommended values for the resistors and  
capacitor are ±± Ω and 47 pF, respectively.  
reg word_clk;  
reg init;  
R
V
+
IN  
C
AD7400A  
R
V
IN  
Figure 25. Differential Input RC Network  
Rev. PrA | Page 14 of 19  
Preliminary Technical Data  
AD7400A  
/*Perform the Sinc ACTION*/  
Z = one sample delay  
WORD_CLK = output word rate  
*/  
always @ (mdata1)  
if(mdata1==0)  
ip_data1 <= 0;  
to a -1 for 2's comp */  
else  
/* change from a 0  
always @ (posedge word_clk or posedge reset)  
if(reset)  
begin  
ip_data1 <= 1;  
/*ACCUMULATOR (INTEGRATOR)  
Perform the accumulation (IIR) at the speed  
of the modulator.  
acc3_d2 <= 0;  
diff1_d <= 0;  
diff2_d <= 0;  
diff1 <= 0;  
diff2 <= 0;  
diff3 <= 0;  
end  
MCLKOUT  
ACC1+  
+
ACC2+  
+
ACC3  
IP_DATA1  
Z
Z
Z
+
Figure 26. Accumulator  
else  
begin  
Z = one sample delay  
diff1 <= acc3 - acc3_d2;  
diff2 <= diff1 - diff1_d;  
diff3 <= diff2 - diff2_d;  
acc3_d2 <= acc3;  
diff1_d <= diff1;  
diff2_d <= diff2;  
end  
MCLKOUT = modulators conversion bit rate  
*/  
always @ (negedge mclk1 or posedge reset)  
if (reset)  
begin  
/*initialize acc registers on reset*/  
acc1 <= 0;  
acc2 <= 0;  
acc3 <= 0;  
/* Clock the Sinc output into an output  
register  
end  
WORD_CLK  
else  
begin  
DIFF3  
DATA  
/*perform accumulation process*/  
acc1 <= acc1 + ip_data1;  
acc2 <= acc2 + acc1;  
acc3 <= acc3 + acc2;  
end  
Figure 28. Clocking Sinc Output into an Output Register  
WORD_CLK = output word rate  
*/  
always @ (posedge word_clk)  
begin  
/*DECIMATION STAGE (MCLKOUT/ WORD_CLK)  
*/  
DATA[15] <= diff3[23];  
DATA[14] <= diff3[22];  
DATA[13] <= diff3[21];  
DATA[12] <= diff3[20];  
DATA[11] <= diff3[19];  
DATA[10] <= diff3[18];  
DATA[9] <= diff3[17];  
DATA[8] <= diff3[16];  
DATA[7] <= diff3[15];  
DATA[6] <= diff3[14];  
DATA[5] <= diff3[13];  
DATA[4] <= diff3[12];  
DATA[3] <= diff3[11];  
DATA[2] <= diff3[10];  
DATA[1] <= diff3[9];  
DATA[0] <= diff3[8];  
always @ (posedge mclk1 or posedge reset)  
if (reset)  
word_count <= 0;  
else  
word_count <= word_count + 1;  
always @ (word_count)  
word_clk <= word_count[7];  
/*DIFFERENTIATOR ( including decimation  
stage)  
Perform the differentiation stage (FIR) at a  
lower speed.  
DIFF1  
DIFF2  
DIFF3  
+
+
+
ACC3  
–1  
–1  
–1  
Z
Z
Z
end  
WORD_CLK  
endmodule  
Figure 27. Differentiator  
Rev. PrA | Page 15 of 19  
AD7400A  
Preliminary Technical Data  
90  
80  
70  
60  
50  
40  
30  
20  
10  
3
2
SINC  
SINC  
1
SINC  
0
1
10  
100  
DECIMATION RATE  
1k  
Figure 29. SNR vs. Decimation Rate for Different Filter Types  
Rev. PrA | Page 16 of 19  
Preliminary Technical Data  
AD7400A  
APPLICATION INFORMATION  
GROUNDING AND ꢀAYOUT  
These tests subjected populations of devices to continuous  
cross-isolation voltages. To accelerate the occurrence of failures,  
the selected test voltages were values exceeding those of normal  
use. The time to failure values of these units were recorded and  
used to calculate acceleration factors. These factors were then  
used to calculate the time to failure under normal operating  
conditions. The values shown in Table 7 are the lesser of the  
following two values:  
Supply decoupling with a value of 100 nF is strongly recom-  
mended on both VDD1 and VDD±. Decoupling on one or both  
VDD1 pins does not significantly affect performance. In  
applications involving high common-mode transients, care  
should be taken to ensure that board coupling across the  
isolation barrier is minimized. Furthermore, the board layout  
should be designed so that any coupling that occurs equally  
affects all pins on a given component side. Failure to ensure this  
could cause voltage differentials between pins to exceed the  
absolute maximum ratings of the device, thereby leading to  
latch-up or permanent damage. Any decoupling used should be  
placed as close to the supply pins as possible.  
The value that ensures at least a 50-year lifetime of  
continuous use.  
The maximum CSA/VDE approved working voltage.  
It should also be noted that the lifetime of the AD7400A varies  
according to the waveform type imposed across the isolation  
barrier. The iCoupler insulation structure is stressed differently  
depending on whether the waveform is bipolar ac, unipolar ac,  
or dc. Figure ꢀ0, Figure ꢀ1, and Figure ꢀ± illustrate the different  
isolation voltage waveforms.  
Series resistance in the analog inputs should be minimized to  
avoid any distortion effects, especially at high temperatures. If  
possible, equalize the source impedance on each analog input to  
minimize offset. Beware of mismatch and thermocouple effects  
on the analog input PCB tracks to reduce offset drift.  
RATED PEAK VOLTAGE  
EVAꢀUATING THE AD7400A PERFORMANCE  
0V  
A simple standalone AD7400A evaluation board is available  
with split ground planes and a board split beneath the  
AD7400A package to ensure isolation. This board allows access  
to each pin on the device for evaluation purposes. External  
supplies and all other circuitry (such as a digital filter) must be  
provided by the user.  
Figure 30. Bipolar AC Waveform  
RATED PEAK VOLTAGE  
0V  
INSUꢀATION ꢀIFETIME  
Figure 31. Unipolar AC Waveform  
All insulation structures, subjected to sufficient time and/or  
voltage, are vulnerable to breakdown. In addition to the testing  
performed by the regulatory agencies, Analog Devices has  
carried out an extensive set of evaluations to determine the  
lifetime of the insulation structure within the AD7400A.  
RATED PEAK VOLTAGE  
0V  
Figure 32. DC Waveform  
Rev. PrA | Page 17 of 19  
AD7400A  
Preliminary Technical Data  
OUTLINE DIMENSIONS  
10.50 (0.4134)  
10.10 (0.3976)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
0.25 (0.  
0098)  
1.27 (0.0500)  
BSC  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 33. 16-Lead Standard Small Outline Package [SOIC_W]  
Wide Body  
(RW-16)  
Dimensions shown in millimeters and (inches)  
9.90 (0.390)  
9.65 (0.380)  
9.40 (0.370)  
9.90 (0.390)  
9.65 (0.380)  
9.40 (0.370)  
8
1
5
4
6.60 (0.260)  
6.35 (0.250)  
6.10 (0.240)  
IN 1  
MOLDED P  
INDICATOR  
1.40 (0.056)  
1.08 (0.043)  
0.76 (0.003)  
2.54 (0.100)  
BSC  
7.87 (0.310)  
7.62 (0.300)  
7.37 (0.290)  
4.19 (0.165)  
MAX  
0.255 (0.075)  
0.010 (0.003)  
0.64 (0.025)  
0.51 (0.020)  
0.38 (0.015)  
1.19 (0.047)  
MAX  
12° NOM  
LEAD COPLANARITY  
0.102 (0.004) MAX  
1.78 (0.070)  
MAX  
0.885 (0.035)  
0.635 (0.025)  
0.385 (0.015)  
CONTROLLING DIMENSIONS ARE IN MILLIMETER; INCHES DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 34 8-Lead Dual In Line Gull-wing Surface Mount Package [PDIP_SMD]  
(NS-8)  
Dimensions shown in millimeters and (inches)  
Rev. PrA | Page 18 of 19  
Preliminary Technical Data  
AD7400A  
Model  
AD7400AYRWZ1  
Temperature Range Package Description  
−40°C to +125°C 16-Lead Standard Small Outline Package (SOIC_W)  
Package Option  
RW-16  
AD7400AYRWZ-  
REELError! Bookmark  
not defined.  
−40°C to +125°C  
16-Lead Standard Small Outline Package (SOIC_W)  
RW-16  
AD7400AYRWZ-  
−40°C to +125°C  
16-Lead Standard Small Outline Package (SOIC_W)  
RW-16  
REEL7Error! Bookmark  
not defined.  
AD7400AYNSZError!  
−40°C to +125°C  
−40°C to +125°C  
8-Lead Dual In Line Gull-wing Surface Mount Package (PDIP_SMD)  
8-Lead Dual In Line Gull-wing Surface Mount Package (PDIP_SMD)  
NS-8  
NS-8  
Bookmark not defined.  
AD7400AYNSZ-  
REELError! Bookmark  
not defined.  
AD7400AYNSZ-  
−40°C to +125°C  
8-Lead Dual In Line Gull-wing Surface Mount Package (PDIP_SMD)  
Standalone Evaluation Board  
NS-8  
REEL7Error! Bookmark  
not defined.  
EꢀAL-AD7400AEBZError!  
Bookmark not defined.  
1 Z = Pb-free part.  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
PR07077-0-1/08(PrA)  
Rev. PrA | Page 19 of 19  

相关型号:

AD7400BRW

Isolated Sigma-Delta Modulator
ADI

AD7400YRWZ

Isolated Sigma-Delta Modulator
ADI

AD7400YRWZ-REEL

Isolated Sigma-Delta Modulator
ADI

AD7400YRWZ-REEL7

Isolated Sigma-Delta Modulator
ADI

AD7400_06

Isolated Sigma-Delta Modulator
ADI

AD7401

Isolated Sigma-Delta Modulator
ADI

AD7401A

Isolated Sigma-Delta Modulator
ADI

AD7401AYRWZ

Isolated Sigma-Delta Modulator
ADI

AD7401AYRWZ-REEL

IC,CONVERTER, OTHER/SPECIAL/MISCELLANEOUS,CMOS,SOP,16PIN
ADI

AD7401AYRWZ-REEL7

IC,CONVERTER, OTHER/SPECIAL/MISCELLANEOUS,CMOS,SOP,16PIN
ADI

AD7401AYRWZ-RL

Isolated Sigma-Delta Modulator
ADI

AD7401BRW

Isolated Sigma-Delta Modulator
ADI