AD7402-8BRIZ-RL [ADI]

16-Bit, Isolated Sigma-Delta Modulator;
AD7402-8BRIZ-RL
型号: AD7402-8BRIZ-RL
厂家: ADI    ADI
描述:

16-Bit, Isolated Sigma-Delta Modulator

文件: 总20页 (文件大小:519K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
16-Bit, Isolated Sigma-Delta Modulator  
Data Sheet  
AD7402  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
VDD1  
REF  
VDD2  
10 MHz internal clock rate  
16 bits, no missing codes  
Signal-to-noise ratio (SNR): 87 dB typical  
Effective number of bits (ENOB): 13.5 bits typical  
Typical offset drift vs. temperature: 1.7 µV/°C  
On-board digital isolator  
AD7402  
MCLKOUT  
(10MHz)  
CLK  
ENCODER  
CLK  
DECODER  
BUF  
CLOCK  
VIN+  
VIN–  
DATA  
ENCODER  
CLK  
DECODER  
On-board reference  
MDAT  
Σ-Δ ADC  
Full-scale analog input range: 320 mV  
−40°C to +105°C operating range  
High common-mode transient immunity: >25 kV/µs  
8-lead, wide-body SOIC, with increased creepage package  
Slew rate limited output for low electromagnetic  
interference (EMI)  
GND1  
GND2  
Figure 1.  
Safety and regulatory approvals  
UL recognition  
5000 V rms for 1 minute per UL 1577  
CSA Component Acceptance Notice 5A  
VDE Certificate of Conformity  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12  
V
IORM = 1250 VPEAK  
APPLICATIONS  
Shunt current monitoring  
AC motor controls  
Power and solar inverters  
Wind turbine inverters  
Data acquisition systems  
Analog-to-digital and opto-isolator replacements  
GENERAL DESCRIPTION  
The AD74021 is a high performance, second-order, Σ-Δ modulator  
that converts an analog input signal into a high speed, single-bit  
data stream, with on-chip digital isolation based on Analog  
Devices, Inc., iCoupler® technology. The AD7402 operates from  
a 4.5 V to 5.5 V (VDD1) power supply and accepts a differential  
input signal of 250 mV ( 320 mV full scale). The differential  
input is ideally suited to shunt voltage monitoring in high  
voltage applications where galvanic isolation is required.  
information can be reconstructed with an appropriate digital  
filter to achieve 87 dB signal to noise ratio (SNR) at 39 kSPS. The  
serial input/output can use a 3 V to 5.5 V or a 3.3 V supply (VDD2).  
The serial interface is digitally isolated. High speed complementary  
metal oxide semiconductor (CMOS) technology, combined with  
monolithic transformer technology, means the on-chip isolation  
provides outstanding performance characteristics, superior to  
alternatives such as optocoupler devices. The AD7402 device is  
offered in an 8-lead, wide body SOIC package and has an  
operating temperature range of −40°C to +105°C.  
The analog input is continuously sampled by a high performance  
analog modulator, and converted to a ones density, digital  
output stream with a data rate of 10 MHz. The original  
1 Protected by U.S. Patents 5,952,849; 6,873,065; and 7,075,329.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2015 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
AD7402  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 13  
Circuit Information.................................................................... 13  
Analog Input............................................................................... 13  
Differential Inputs...................................................................... 14  
Digital Output............................................................................. 14  
Applications Information.............................................................. 15  
Current Sensing Applications................................................... 15  
Voltage Sensing Applications.................................................... 15  
Input Filter .................................................................................. 15  
Digital Filter ................................................................................ 16  
Power Supply Considerations................................................... 19  
Grounding and Layout .............................................................. 19  
Insulation Lifetime..................................................................... 19  
Outline Dimensions....................................................................... 20  
Ordering Guide .......................................................................... 20  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Specifications .................................................................. 4  
Package Characteristics ............................................................... 5  
Insulation and Safety-Related Specifications............................ 5  
Regulatory Information............................................................... 5  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 Insulation  
Characteristics .............................................................................. 6  
Absolute Maximum Ratings............................................................ 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ............................................. 9  
Terminology .................................................................................... 12  
REVISION HISTORY  
6/15—Rev. 0 to Rev. A  
Changes to Figure 1.......................................................................... 1  
Changes to Ordering Guide .......................................................... 20  
2/15—Revision 0: Initial Version  
Rev. A | Page 2 of 20  
 
Data Sheet  
AD7402  
SPECIFICATIONS  
VDD1 = 4.5 V to 5.5 V, V DD2 = 3 V to 5.5 V, VIN+ = −250 mV to +250 mV, VIN− = 0 V, TA = −40°C to +105°C, tested with sinc3 filter, 256  
decimation rate, as defined by Verilog code, unless otherwise noted. All voltages are relative to their respective ground.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
STATIC PERFORMANCE  
Resolution  
Integral Nonlinearity (INL)1  
Differential Nonlinearity (DNL)1  
Offset Error1  
Offset Drift vs. Temperature  
Offset Drift vs. VDD1  
Gain Error1  
16  
Bits  
LSB  
0.99 LSB  
0.75 mV  
Filter output truncated to 16 bits  
Guaranteed no missed codes to 16 bits  
1
5
0.2  
1.7  
85  
0.2  
18  
5
µV/°C  
µV/V  
% FSR  
ppm/°C  
µV/°C  
mV/V  
0.5  
32  
20  
Gain Error Drift vs. Temperature  
11  
0.2  
Gain Error Drift vs. VDD1  
ANALOG INPUT  
Input Voltage Range  
−320  
+320 mV  
Input Common-Mode Voltage Range  
Dynamic Input Current  
−200 to +300  
19  
0.05  
14  
28  
µA  
µA  
pF  
VIN+ = 250 mV, VIN− = 0 V  
VIN+ = 0 V, VIN− = 0 V  
Input Capacitance  
DYNAMIC SPECIFICATIONS  
Signal-to-(Noise + Distortion) Ratio (SINAD)1  
Signal-to-Noise Ratio (SNR)1  
Total Harmonic Distortion (THD)1  
Peak Harmonic or Spurious Noise (SFDR)1  
Effective Number of Bits (ENOB)1  
Noise Free Code Resolution1  
ISOLATION TRANSIENT IMMUNITY1  
LOGIC OUTPUTS  
VIN+ = 35 Hz  
74  
86  
82  
87  
−84  
−84  
13.5  
dB  
dB  
dB  
dB  
Bits  
Bits  
kV/µs  
12  
14  
25  
30  
Output High Voltage, VOH  
Output Low Voltage, VOL  
POWER REQUIREMENTS  
VDD1  
VDD2  
IDD1  
VDD2 − 0.1  
V
V
IO = −200 µA  
IO = +200 µA  
0.4  
4.5  
3
5.5  
5.5  
31  
7
5.5  
209  
V
V
mA  
mA  
mA  
mW  
26  
6
4.5  
VDD1 = 5.5 V  
VDD2 = 5.5 V  
VDD2 = 3.3 V  
IDD2  
POWER DISSIPATION  
VDD1 = VDD2 = 5.5 V  
1 See the Terminology section.  
Rev. A | Page 3 of 20  
 
AD7402  
Data Sheet  
TIMING SPECIFICATIONS  
VDD1 = 4.5 V to 5.5 V, VDD2 = 3 V to 5.5 V, TA = −40°C to +105°C, unless otherwise noted.  
Table 2.  
Parameter1  
Min  
Typ  
Max  
10.6  
10  
Unit  
MHz  
ns  
ns  
ns  
Description  
2
fMCLKOUT  
9.4  
10  
Master clock output frequency  
Data access time after MCLKOUT rising edge  
Data hold time after MCLKOUT falling edge  
Master clock low time  
3
t1  
3
t2  
44  
33  
33  
t3  
t4  
ns  
Master clock high time  
1 Sample tested during initial release to ensure compliance.  
2 Mark space ratio for clock output is 45/55 to 55/45.  
3 Defined as the time required for the output to cross 0.8 V or 2.0 V for VDD2 = 3 V to 3.6 V, or when the output crosses 0.8 V or 0.7 × VDD2 for VDD2 = 4.5 V to 5.5 V, as  
outlined in Figure 2. Measured with a 200 μA load and a 25 pF load capacitance.  
t4  
1
2.0V OR 0.7V × V  
0.8V  
DD2  
MCLKOUT  
MDAT  
t1  
t2  
t3  
1
2.0V OR 0.7V × V  
0.8V  
DD2  
1
SEE NOTE 3 OF TABLE 2 FOR FURTHER DETAILS.  
Figure 2. Data Timing  
Rev. A | Page 4 of 20  
 
 
Data Sheet  
AD7402  
PACKAGE CHARACTERISTICS  
Table 3.  
Parameter  
Resistance (Input to Output)1  
Capacitance (Input to Output)1  
Symbol Min Typ Max Unit Test Conditions/Comments  
RI-O  
CI-O  
1012  
Ω
pF  
2.2  
f = 1 MHz  
IC Junction to Ambient Thermal Resistance θJA  
105  
°C/W Thermocouple located at center of package underside,  
test conducted on 4-layer board with thin traces  
1 The device is considered a 2-terminal device: Pin 1 to Pin 4 are shorted together, and Pin 5 to Pin 8 are shorted together.  
INSULATION AND SAFETY-RELATED SPECIFICATIONS  
Table 4.  
Parameter  
Symbol  
VISO  
L(I01)  
Value  
Unit Test Conditions/Comments  
Input-to-Output Momentary Withstand Voltage  
Minimum External Air Gap (Clearance)  
5000 min  
8.1 min1, 2  
V
1-minute duration  
mm  
Measured from input terminals to output  
terminals, shortest distance through air  
Minimum External Tracking (Creepage)  
L(I02)  
CTI  
8.1 min1  
mm  
Measured from input terminals to output  
terminals, shortest distance path along body  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index)  
Isolation Group  
0.034 min  
>400  
II  
mm  
V
Insulation distance through insulation  
DIN IEC 112/VDE 0303 Part 1  
Material Group (DIN VDE 0110, 1/89, Table I)  
1 In accordance with IEC 60950-1 guidelines for the measurement of creepage and clearance distances for a pollution degree of 2 and altitudes ≤2000 meters.  
2 Consideration must be given to pad layout to ensure the minimum required distance for clearance is maintained.  
REGULATORY INFORMATION  
Table 5.  
UL1  
CSA  
VDE2  
Recognized under 1577  
Component Recognition  
Program1  
Approved under CSA Component Acceptance Notice 5A  
Certified according to DIN V VDE V 0884-10  
(VDE V 0884-10):2006-122  
5000 V rms Isolation Voltage  
Single Protection  
Basic insulation per CSA 60950-1-07 and IEC 60950-1,  
810 V rms (1145 VPEAK) maximum working voltage3  
Reinforced insulation per DIN V VDE V 0884-10  
(VDE V 0884-10):2006-12, 1250 VPEAK  
Reinforced insulation per CSA 60950-1-07 and  
IEC 60950-1, 405 V rms (583 VPEAK) maximum working  
voltage3  
Reinforced insulation per IEC 60601-1, 250 V rms  
(353 VPEAK) maximum working voltage  
File E214100  
File 205078  
File 2471900-4880-0001  
1 In accordance with UL 1577, each AD7402-8 is proof tested by applying an insulation test voltage ≥ 6000 V rms for 1 second (current leakage detection limit = 15 µA).  
2 In accordance with DIN V VDE V 0884-10, each AD7402-8 is proof tested by applying an insulation test voltage ≥ 2344 VPEAK for 1 second (partial discharge detection limit = 5 pC).  
3 Rating is calculated for a pollution degree of 2 and a Material Group III. The AD7402 RI-8-1 package material is rated by CSA to a CTI of >400 V and therefore  
Material Group II.  
Rev. A | Page 5 of 20  
 
 
 
 
 
AD7402  
Data Sheet  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 INSULATION CHARACTERISTICS  
This isolator is suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by  
means of protective circuits.  
Table 6.  
Description  
Symbol  
Characteristic Unit  
INSTALLATION CLASSIFICATION PER DIN VDE 0110  
For Rated Mains Voltage ≤ 300 V rms  
For Rated Mains Voltage ≤ 450 V rms  
For Rated Mains Voltage ≤ 600 V rms  
For Rated Mains Voltage ≤ 1000V rms  
I to IV  
I to IV  
I to IV  
I to IV  
40/105/21  
2
CLIMATIC CLASSIFICATION  
POLLUTION DEGREE (DIN VDE 0110, TABLE 1)  
MAXIMUM WORKING INSULATION VOLTAGE  
INPUT TO OUTPUT TEST VOLTAGE, METHOD B1  
VIORM × 1.875 = VPR, 100% Production Test, tm = 1 Second, Partial Discharge < 5 pC  
INPUT TO-OUTPUT TEST VOLTAGE, METHOD A  
After Environmental Test Subgroup 1  
VIORM × 1.6 = VPR, tm = 60 Seconds, Partial Discharge < 5 pC  
After Input and/or Safety Test Subgroup 2/Safety Test Subgroup 3  
VIORM × 1.2 = VPR, tm = 60 Seconds, Partial Discharge < 5 pC  
HIGHEST ALLOWABLE OVERVOLTAGE (TRANSIENT OVERVOLTAGE, tTR = 10 Seconds)  
SURGE ISOLATION VOLTAGE  
VIORM  
VPD(M)  
1250  
2344  
VPEAK  
VPEAK  
VPR(M)  
2000  
1500  
8000  
12000  
VPEAK  
VPEAK  
VPEAK  
VPEAK  
VIOTM  
VIOSM  
1.2 μs Rise Time, 50 μs, 50% Fall Time  
SAFETY LIMITING VALUES (MAXIMUM VALUE ALLOWED IN THE EVENT OF A FAILURE, SEE Figure 3)  
Case Temperature  
Side 1 (PVDD1) and Side 2 (PVDD2) Power Dissipation  
INSULATION RESISTANCE AT TS, VIO = 500 V  
TS  
PSO  
RIO  
150  
1.19  
>109  
°C  
W
Ω
2
1
0
0
50  
100  
150  
200  
AMBIENT TEMPERATURE (°C)  
Figure 3. Thermal Derating Curve, Dependence of Safety Limiting Values  
with Case Temperature per DIN V VDE V 0884-10  
Rev. A | Page 6 of 20  
 
 
Data Sheet  
AD7402  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted. All voltages are relative to  
their respective ground.  
1
Table 8. Maximum Continuous Working Voltage  
Parameter  
Max  
Unit  
Constraint  
AC Voltage  
Bipolar Waveform  
Table 7.  
Parameter  
1250  
VPEAK  
20-year minimum  
lifetime (VDE  
Rating  
VDD1 to GND1  
VDD2 to GND2  
−0.3 V to +6.5 V  
−0.3 V to +6.5 V  
−1 V to VDD1 + 0.3 V  
−0.3 V to VDD2 + 0.3 V  
10 mA  
−40°C to +105°C  
−65°C to +150°C  
150°C  
approved working  
voltage)  
20-year minimum  
lifetime  
Analog Input Voltage to GND1  
Output Voltage to GND2  
Input Current to Any Pin Except Supplies1  
Operating Temperature Range  
Storage Temperature Range  
Junction Temperature  
Pb-Free Temperature, Soldering  
Reflow  
Unipolar Waveform 1250  
DC Voltage 1250  
VPEAK  
VPEAK  
20-year minimum  
lifetime  
1 Refers to continuous voltage magnitude imposed across the isolation barrier.  
ESD CAUTION  
260°C  
2 kV  
1250 V  
4000 V  
ESD  
FICDM2  
HBM3  
1 Transient currents of up to 100 mA do not cause silicon controlled rectifier  
(SCR) to latch up.  
2 JESD22-C101; RC network: 1 Ω, package capacitance (CPKG); Class: IV.  
3 ESDA/JEDEC JS-001-2011; RC network: 1.5 kΩ, 100 pF; Class: 3A.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. A | Page 7 of 20  
 
 
 
AD7402  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
VDD1  
1
2
3
4
8
7
6
5
VDD2  
AD7402-8  
VIN+  
MCLKOUT  
MDAT  
TOP VIEW  
(Not to Scale)  
VIN–  
GND1  
GND2  
Figure 4. Pin Configuration  
Table 9. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
3
4
5
6
VDD1  
VIN+  
VIN−  
GND1  
GND2  
MDAT  
Supply Voltage, 4.5 V to 5.5 V. This is the supply voltage for the isolated side of the AD7402 and is relative to GND1.  
Positive Analog Input.  
Negative Analog Input. Normally connected to GND1.  
Ground 1. This is the ground reference point for all circuitry on the isolated side.  
Ground 2. This is the ground reference point for all circuitry on the nonisolated side.  
Serial Data Output. The single bit modulator output is supplied to this pin as a serial data stream. The bits are  
clocked out on the rising edge of the MCLKOUT input and are valid on the following MCLKOUT falling edge.  
7
8
MCLKOUT  
VDD2  
Master Clock Logic Output, 10 MHz (Typical). The bit stream from the modulator is valid on the falling edge of  
MCLKOUT.  
Supply Voltage, 3 V to 5.5 V. This is the supply voltage for the nonisolated side and is relative to GND2.  
Rev. A | Page 8 of 20  
 
Data Sheet  
AD7402  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VDD1 = 5 V, VDD2 = 5 V, using sinc3 filter with a 256 oversampling ratio (OSR), unless otherwise noted.  
0
0
fIN = 35.8Hz  
–20  
200mV p-p SINE WAVE ON VDD1  
1nF DECOUPLING  
–20  
SNR = 87.4dB  
SINAD = 86dB  
THD = –92dB  
–40  
–40  
–60  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
–80  
–100  
–120  
–140  
0
5
10  
FREQUENCY (kHz)  
15  
10k  
100k  
1M  
SUPPLY RIPPLE FREQUENCY (Hz)  
Figure 5. PSRR vs. Supply Ripple Frequency  
Figure 8. Fast Fourier Transform (FFT)  
2.0  
1.5  
0
–20  
SINC3 OSR = 256 FILTER  
UNFILTERED  
1.0  
–40  
0.5  
–60  
0
–80  
–0.5  
–1.0  
–1.5  
–2.0  
–100  
–120  
–140  
0
10  
20  
30  
40  
50  
60  
70  
10k  
100k  
1M  
CODE (k)  
COMMON-MODE RIPPLE FREQUENCY (Hz)  
Figure 6. CMRR vs. Common-Mode Ripple Frequency  
Figure 9. Typical DNL Error  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.5  
2.0  
5.5V  
5V  
4.5V  
1.5  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
0
10  
20  
30  
40  
50  
60  
70  
10  
100  
1k  
ANALOG INPUT FREQUENCY (Hz)  
CODE (k)  
Figure 7. SINAD vs. Analog Input Frequency  
Figure 10. Typical INL Error  
Rev. A | Page 9 of 20  
 
AD7402  
Data Sheet  
0.3  
0.2  
800  
700  
600  
500  
400  
300  
200  
100  
0
VIN+ = VIN– = 0V  
1M SAMPLES  
676225  
0.1  
0
–0.1  
–0.2  
–0.3  
V
V
V
V
V
V
= 5.5V, V  
= 5.5V, V  
= 4.5V, V  
= 4.5V, V  
= 5.0V, V  
= 5.0V, V  
= 5.5V  
= 5.0V  
= 5.5V  
= 3.0V  
= 5.0V  
= 3.3V  
DD1  
DD1  
DD1  
DD1  
DD1  
DD1  
DD2  
DD2  
DD2  
DD2  
DD2  
DD2  
159024  
32767  
161448  
1401  
1902  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95  
32766  
32768  
CODE  
32769  
32770  
TEMPERATURE (°C)  
Figure 11. Histogram of Codes at Code Center  
Figure 14. Offset vs. Temperature  
100  
1.5  
1.0  
fIN = 35Hz  
V
V
V
V
V
V
= 5.5V, V  
= 5.5V, V  
= 4.5V, V  
= 4.5V, V  
= 5.0V, V  
= 5.0V, V  
= 5.5V  
= 5.0V  
= 5.5V  
= 3.0V  
= 5.0V  
= 3.3V  
DD1  
DD1  
DD1  
DD1  
DD1  
DD1  
DD2  
DD2  
DD2  
DD2  
DD2  
DD2  
90  
80  
70  
60  
0.5  
0
–0.5  
–1.0  
–1.5  
SNR  
SINAD  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 12. SNR and SINAD vs. Temperature  
Figure 15. Gain Error vs. Temperature  
–60  
–70  
35  
30  
25  
20  
15  
10  
5
fIN = 35Hz  
T
T
T
= –40°C  
= +25°C  
= +105°C  
A
A
A
–80  
–90  
–100  
–110  
–120  
THD  
SFDR  
0
4.50  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95  
4.75  
5.00  
(V)  
5.25  
5.50  
TEMPERATURE (°C)  
V
DD1  
Figure 13. THD and SFDR vs. Temperature  
Figure 16. IDD1 vs. VDD1 at Various Temperatures  
Rev. A | Page 10 of 20  
Data Sheet  
AD7402  
27.0  
6
T
T
T
T
= –40°C  
= +25°C  
= +85°C  
= +105°C  
A
A
A
A
T
T
= –40°C  
= +85°C  
T
T
= +25°C  
= +105°C  
A
A
A
A
26.5  
26.0  
25.5  
25.0  
24.5  
24.0  
23.5  
23.0  
5
4
–250  
–250  
–125  
0
125  
250  
–125  
0
125  
250  
VIN+ DC INPUT (mV)  
VIN+ DC INPUT (mV)  
Figure 19. IDD2 vs. VIN+ DC Input at Various Temperatures  
Figure 17. IDD1 vs. VIN+ DC Input at Various Temperatures  
10  
9
8
7
6
5
4
3
2
1
0
30  
T
T
T
= –40°C  
= +25°C  
= +105°C  
A
A
A
20  
10  
0
–10  
–20  
–30  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
–320  
–240  
–160  
–80  
0
80  
160  
240  
320  
V
(V)  
VIN+ DC INPUT (mV)  
DD2  
Figure 18. IDD2 vs. VDD2 at Various Temperatures  
Figure 20. IIN+ vs. VIN+ DC Input  
10.5  
10.4  
10.3  
10.2  
10.1  
10  
V
V
V
= 4.5V  
= 5.0V  
= 5.5V  
DD1  
DD1  
DD1  
9.9  
9.8  
9.7  
9.6  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95  
TEMPERATURE (°C)  
Figure 21. Clock Frequency vs. Temperature for Various Supply Voltages  
Rev. A | Page 11 of 20  
AD7402  
Data Sheet  
TERMINOLOGY  
Differential Nonlinearity (DNL)  
Total Harmonic Distortion (THD)  
DNL is the difference between the measured and the ideal  
1 LSB change between any two adjacent codes in the ADC.  
THD is the ratio of the rms sum of harmonics to the  
fundamental. For the AD7402, it is defined as  
2
V22 +V32 +V42 +V52 +V6  
Integral Nonlinearity (INL)  
THD(dB) = 20log  
INL is the maximum deviation from a straight line passing  
through the endpoints of the ADC transfer function. The  
endpoints of the transfer function are specified negative full  
scale, −250 mV (VIN+ − VIN−), Code 7168 for the 16-bit level,  
and specified positive full scale, +250 mV (VIN+ − VIN−),  
Code 58,368 for the 16-bit level.  
V1  
where:  
V1 is the rms amplitude of the fundamental.  
V2, V3, V4, V5, and V6 are the rms amplitudes of the second  
through the sixth harmonics.  
Peak Harmonic or Spurious Noise (SFDR)  
Offset Error  
Peak harmonic or spurious noise is defined as the ratio of the  
rms value of the next largest component in the ADC output  
spectrum (up to fS/2, excluding dc) to the rms value of the  
fundamental. Normally, the value of this specification is  
determined by the largest harmonic in the spectrum, but for  
ADCs where the harmonics are buried in the noise floor, it is  
a noise peak.  
Offset error is the deviation of the midscale code (32,768 for the  
16-bit level) from the ideal VIN+ − VIN− (that is, 0 V).  
Gain Error  
The gain error includes both positive full-scale gain error and  
negative full-scale gain error. Positive full-scale gain error is the  
deviation of the specified positive full-scale code (58,368 for the  
16-bit level) from the ideal VIN+ − VIN− (250 mV) after the offset  
error is adjusted out. Negative full-scale gain error is the  
deviation of the specified negative full-scale code (7168 for the  
16-bit level) from the ideal VIN+ − VIN− (−250 mV) after the  
offset error is adjusted out.  
Effective Number of Bits (ENOB)  
ENOB is defined by  
ENOB = (SINAD − 1.76)/6.02 bits  
Noise Free Code Resolution  
Signal-to-Noise-and-Distortion Ratio (SINAD)  
SINAD is the measured ratio of signal to noise and distortion at  
the output of the ADC. The signal is the rms value of the sine  
wave, and noise is the rms sum of all nonfundamental signals  
up to half the sampling frequency (fS/2), including harmonics,  
but excluding dc.  
Noise free code resolution represents the resolution in bits for  
which there is no code flicker. The noise free code resolution for  
an N-bit converter is defined as  
Noise Free Code Resolution (Bits) = log2(2N/Peak-to-Peak Noise)  
The peak-to-peak noise in LSBs is measured with VIN+ = VIN− = 0 V.  
Common-Mode Rejection Ratio (CMRR)  
Signal-to-Noise Ratio (SNR)  
CMRR is defined as the ratio of the power in the ADC output at  
250 mV frequency, f, to the power of a +250 mV peak-to-peak  
sine wave applied to the common-mode voltage of VIN+ and VIN−  
of frequency, fS, as  
SNR is the measured ratio of signal to noise at the output of the  
ADC. The signal is the rms amplitude of the fundamental. Noise  
is the sum of all nonfundamental signals up to half the sampling  
frequency (fS/2), excluding dc.  
CMRR (dB) = 10 log(Pf/PfS)  
The ratio is dependent on the number of quantization levels in the  
digitization process: the greater the number of levels, the smaller  
the quantization noise. The theoretical signal-to-noise ratio for  
an ideal N-bit converter with a sine wave input is given by  
where:  
Pf is the power at frequency, f, in the ADC output.  
PfS is the power at frequency, fS, in the ADC output.  
Signal-to-Noise Ratio = (6.02N + 1.76) dB  
Power Supply Rejection Ratio (PSRR)  
Variations in power supply affect the full-scale transition but  
not the linearity of the converter. PSRR is the maximum change  
in the specified full-scale ( 250 mV) transition point due to a  
change in power supply voltage from the nominal value.  
Therefore, for a 12-bit converter, the SNR is 74 dB.  
Isolation Transient Immunity  
The isolation transient immunity specifies the rate of rise and  
fall of a transient pulse applied across the isolation boundary,  
beyond which clock or data is corrupted. The AD7402 was  
tested using a transient pulse frequency of 100 kHz.  
Rev. A | Page 12 of 20  
 
Data Sheet  
AD7402  
THEORY OF OPERATION  
A differential signal of 0 V ideally results in a stream of alter-  
CIRCUIT INFORMATION  
nating 1s and 0s at the MDAT output pin. This output is high  
50% of the time and low 50% of the time. A differential input of  
250 mV produces a stream of 1s and 0s that are high 89.06% of  
the time. A differential input of −250 mV produces a stream of  
1s and 0s that are high 10.94% of the time.  
The AD7402 isolated Σ-Δ modulator converts an analog input  
signal into a high speed (10 MHz maximum), single-bit data  
stream; the time average single-bit data from the modulator is  
directly proportional to the input signal. Figure 22 shows a  
typical application circuit where the AD7402 is used to provide  
isolation between the analog input, a current sensing resistor or  
shunt, and the digital output, which is then processed by a  
digital filter to provide an N-bit word.  
A differential input of 320 mV ideally results in a stream of all  
1s. A differential input of −320 mV ideally results in a stream of  
all 0s. The absolute full-scale range is 320 mV and the specified  
full-scale performance range is 250 mV, as shown in Table 10.  
ANALOG INPUT  
Table 10. Analog Input Range  
The differential analog input of the AD7402 is implemented  
with a switched capacitor circuit. This circuit implements a  
second-order modulator stage that digitizes the input signal  
into a single-bit output stream. The sample clock (MCLKOUT)  
provides the clock signal for the conversion process as well as  
the output data framing clock. This clock source is internal on  
the AD7402. The analog input signal is continuously sampled  
by the modulator and compared to an internal voltage  
reference. A digital stream that accurately represents the  
analog input over time appears at the output of the converter  
(see Figure 23).  
Analog Input  
Voltage Input (mV)  
Positive Full-Scale Value  
Positive Specified Performance Input  
Zero  
+320  
+250  
0
Negative Specified Performance Input  
Negative Full-Scale Value  
−250  
−320  
FLOATING  
POWER SUPPLY  
+400V  
NONISOLATED  
5V/3.3V  
GATED  
DRIVE  
CIRCUIT  
AD7402  
VDD1  
VDD2  
VDD  
SINC3 FILTER*  
5.1V  
220pF  
CS  
10Ω  
MDAT  
MDAT  
MCLK  
VIN+  
SCLK  
Σ-Δ  
MOD/  
ENCODER  
R
SHUNT  
10Ω  
DECODER  
MCLKOUT  
MOTOR  
VIN–  
SDAT  
220pF  
100nF  
FLOATING  
POWER SUPPLY  
10µF 1nF  
GND1  
GND2  
GND  
GATED  
DRIVE  
CIRCUIT  
*THIS FILTER IS IMPLEMENTED  
WITH AN FPGA OR DSP  
–400V  
Figure 22. Typical Application Circuit  
MODULATOR OUTPUT  
+FS ANALOG INPUT  
–FS ANALOG INPUT  
ANALOG INPUT  
Figure 23. Analog Input vs. Modulator Output  
Rev. A | Page 13 of 20  
 
 
 
 
 
 
AD7402  
Data Sheet  
To reconstruct the original information, this output must be  
digitally filtered and decimated. A sinc3 filter is recommended  
because it is one order higher than that of the AD7402 modulator,  
which is a second-order modulator. If a 256 decimation rate is  
used, the resulting 16-bit word rate is 39 kSPS. See the Digital  
Filter section for more detailed information on the sinc filter  
implementation. Figure 24 shows the transfer function of the  
AD7402 relative to the 16-bit output.  
DIFFERENTIAL INPUTS  
The analog input to the modulator is a switched capacitor  
design. The analog signal is converted into charge by highly  
linear sampling capacitors. A simplified equivalent circuit  
diagram of the analog input is shown in Figure 25. A signal  
source driving the analog input must provide the charge onto the  
sampling capacitors every half MCLKOUT cycle and settle to the  
required accuracy within the next half cycle.  
φA  
65535  
300Ω  
φB  
VIN+  
VIN–  
1.9pF  
1.9pF  
58368  
φA  
φB  
300Ω  
SPECIFIED RANGE  
φA φB φA φB  
MCLKIN  
7168  
Figure 25. Analog Input Equivalent Circuit  
Because the AD7402 samples the differential voltage across its  
analog inputs, low noise performance is attained with an input  
circuit that provides low common-mode noise at each input.  
0
–320mV  
DIGITAL OUTPUT  
–250mV  
ANALOG INPUT  
+250mV +320mV  
The AD7402 MDAT output driver is a slew rate limited driver.  
This driver lowers electromagnetic emissions, thus minimizing  
electromagnetic interference, both conducted and radiated.  
Figure 24. Filtered and Decimated 16-Bit Transfer Function  
Rev. A | Page 14 of 20  
 
 
 
 
Data Sheet  
AD7402  
APPLICATIONS INFORMATION  
90  
85  
80  
75  
70  
65  
60  
CURRENT SENSING APPLICATIONS  
The AD7402 is ideally suited for current sensing applications  
where the voltage across a shunt resistor (RSHUNT) is monitored.  
The load current flowing through an external shunt resistor  
produces a voltage at the input terminals of the AD7402. The  
AD7402 provides isolation between the analog input from the  
current sensing resistor and the digital outputs. By selecting the  
appropriate shunt resistor value, a variety of current ranges can  
be monitored.  
fIN = 35Hz  
V
V
= 5V  
= 5V  
= 25°C  
DD1  
DD2  
11-BIT  
ENOB  
T
A
12-BIT  
ENOB  
13-BIT  
ENOB  
14-BIT  
ENOB  
Choosing RSHUNT  
The shunt resistor (RSHUNT) values used in conjunction with the  
AD7402 are determined by the specific application  
0
50  
100  
150  
200  
250  
requirements in terms of voltage, current, and power. Small  
resistors minimize power dissipation, whereas low inductance  
resistors prevent any induced voltage spikes, and good tolerance  
devices reduce current variations. The final values chosen are a  
compromise between low power dissipation and accuracy.  
Higher value resistors use the full performance input range of  
the ADC, thus achieving maximum SNR performance. Low  
value resistors dissipate less power but do not use the full  
performance input range. The AD7402, however, delivers  
excellent performance, even with lower input signal levels,  
allowing low value shunt resistors to be used while maintaining  
system performance.  
VIN+ AC INPUT SIGNAL AMPLITUDE (mV)  
Figure 26. SINAD vs. VIN+ AC Input Signal Amplitude  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
DC INPUT  
100k SAMPLES PER DATA POINT  
To choose a suitable shunt resistor, first determine the current  
through the shunt. The shunt current for a 3-phase induction  
motor can be expressed as  
–250  
–170  
–90  
–10  
70  
150  
230  
RMS NOISE (LSB)  
PW  
IRMS  
=
Figure 27. RMS Noise vs. VIN+ DC Input Signal Amplitude  
1.73V EF PF  
RSHUNT must be able to dissipate the I2R power losses. If the  
power dissipation rating of the resistor is exceeded, its value  
may drift or the resistor may be damaged, resulting in an open  
circuit. This open circuit can result in a differential voltage  
across the terminals of the AD7402, in excess of the absolute  
maximum ratings. If ISENSE has a large high frequency  
component, choose a resistor with low inductance.  
where:  
RMS is the motor phase current (A rms)  
PW is the motor power (Watts)  
V is the motor supply voltage (V ac)  
EF is the motor efficiency (%)  
PF is the power efficiency (%)  
I
To determine the shunt peak sense current, ISENSE, consider the  
motor phase current and any overload that may be possible in  
the system. When the peak sense current is known, divide the  
voltage range of the AD7402 ( 250 mV) by the peak sense  
current to yield a maximum shunt value.  
VOLTAGE SENSING APPLICATIONS  
The AD7402 can also be used for isolated voltage monitoring.  
For example, in motor control applications, it can be used to  
sense the bus voltage. In applications where the voltage being  
monitored exceeds the specified analog input range of the  
AD7402, a voltage divider network can be used to reduce the  
voltage being monitored to the required range.  
If the power dissipation in the shunt resistor is too large, the  
shunt resistor can be reduced and less of the ADC input range can  
be used. Figure 26 shows the SINAD performance characteristics  
and the ENOB of resolution for the AD7402 for different input  
signal amplitudes. Figure 27 shows the rms noise performance  
for dc input signal amplitudes. The AD7402 performance at  
lower input signal ranges allows smaller shunt values to be used  
while still maintaining a high level of performance and overall  
system efficiency.  
INPUT FILTER  
In a typical use case for directly measuring the voltage across a  
shunt resistor, the AD7402 can be connected directly across the  
shunt resistor with a simple RC low-pass filter on each input.  
Rev. A | Page 15 of 20  
 
 
 
 
 
 
AD7402  
Data Sheet  
The recommended circuit configuration for driving the  
differential inputs to achieve best performance is shown in  
Figure 28. An RC low-pass filter is placed on both the analog  
input pins. Recommended values for the resistors and capacitors  
are 10 Ω and 220 pF, respectively. If possible, equalize the  
source impedance on each analog input to minimize offset.  
higher the decimation rate, the greater the system accuracy, as  
illustrated in Figure 31. However, there is a trade-off between  
accuracy and throughput rate and, therefore, higher decimation  
rates result in lower throughput solutions.  
100  
fIN = 35Hz  
90  
80  
70  
60  
50  
40  
30  
C
R
VIN+  
AD7402  
R
VIN–  
C
SINC1  
SINC2  
Figure 28. RC Low-Pass Filter Input Network  
20  
SINC3  
SINC4  
10  
The input filter configuration for the AD7402 is not limited to  
the low-pass structure shown in Figure 28. The differential RC  
filter configuration shown in Figure 29 also achieves excellent  
performance. Recommended values for the resistors and  
capacitor are 22 Ω and 47 pF, respectively.  
0
10  
100  
DECIMATION RATE  
Figure 31. SNR vs. Decimation Rate for Different Sincx Filter Orders  
A sinc3 filter is recommended for use with the AD7402. This  
filter can be implemented on a field programmable gate array  
(FPGA) or a digital signal processor (DSP).  
R
V
IN+  
C
AD7402  
R
V
IN–  
Equation 1 describes the transfer function of a sinc filter.  
Figure 29. Differential RC Filter Network  
N  
1
DR  
(
1Z DR  
)
(1)  
(2)  
H(z) =  
(
1Z 1  
)
Figure 30 compares the typical performance for the input filter  
structures outlined in Figure 28 and Figure 29 for different  
resistor and capacitor values.  
where DR is the decimation rate and N is the sinc filter order.  
The throughput rate of the sinc filter is determined by the  
modulator clock and the decimation rate selected.  
95  
90  
fIN = 35Hz  
85  
MCLK  
Throughput =  
DR  
80  
75  
70  
65  
60  
where MCLK is the modulator clock frequency  
As the decimation rate increases, the data output size from the  
sinc filter increases. The output data size is expressed in  
Equation 3. The 16 most significant bits are used to return a  
16-bit result.  
55  
10Ω, 220pF  
DIFFERENTIAL 22Ω, 47pF  
DIFFERENTIAL 22Ω, 10nF  
Data size = N × log2 DR  
(3)  
50  
For a sinc3 filter, the −3 dB filter response point can be derived  
from the filter transfer function, Equation 1, and is 0.262 times  
the throughput rate. The filter characteristics for a third-order  
sinc filter are summarized in Table 11.  
45  
10  
100  
DECIMATION RATE  
Figure 30. SNR vs. Decimation Rate for Different Filter Structures for Different  
Resistor and Capacitor Values  
Table 11. Sinc3 Filter Characteristics for 10 MHz  
Decimation Throughput Output Data Filter Response  
DIGITAL FILTER  
The output of the AD7402 is a continuous digital bit stream. To  
reconstruct the original input signal information, this output bit  
stream needs to be digitally filtered and decimated. A sinc filter  
is recommended due to its simplicity. A sinc3 filter is  
recommended because it is one order higher than that of the  
AD7402 modulator, which is a second-order modulator. The type  
of filter selected, the decimation rate, and the modulator clock used  
determines the overall system resolution and throughput rate. The  
Ratio (DR)  
Rate (kHz)  
312.5  
156.2  
78.1  
39.1  
19.55  
Size (Bits)  
(kHz)  
81.8  
40.9  
20.4  
10.2  
5.1  
32  
64  
128  
256  
15  
18  
21  
24  
27  
512  
Rev. A | Page 16 of 20  
 
 
 
 
 
 
Data Sheet  
AD7402  
acc3 <= 37'd0;  
The following Verilog code provides an example of a sinc3 filter  
implementation on a Xilinx® Spartan®-6 FPGA. Note that the  
data is read on the negative clock edge. It is recommended to  
read in the data on the negative clock edge. The code is  
end  
else  
begin  
/*perform accumulation process */  
acc1 <= acc1 + ip_data1;  
acc2 <= acc2 + acc1;  
acc3 <= acc3 + acc2;  
end  
configurable to accommodate decimation rates from 32 to 4096.  
module dec256sinc24b  
(
input mclk1, /* used to clk filter */  
input reset, /* used to reset filter */  
end  
input mdata1, /* input data to be filtered  
*/  
output reg [15:0] DATA, /* filtered output  
*/  
output reg data_en,  
input [15:0] dec_rate  
);  
/*decimation stage (MCLKOUT/WORD_CLK) */  
always @ (negedge mclk1, posedge reset)  
begin  
if (reset)  
word_count <= 16'd0;  
else  
begin  
/* Data is read on negative clk edge */  
if ( word_count == dec_rate -  
1 )  
reg [36:0] ip_data1;  
reg [36:0] acc1;  
reg [36:0] acc2;  
reg [36:0] acc3;  
reg [36:0] acc3_d2;  
reg [36:0] diff1;  
reg [36:0] diff2;  
reg [36:0] diff3;  
reg [36:0] diff1_d;  
reg [36:0] diff2_d;  
word_count <= 16'd0;  
else  
word_count <= word_count  
+ 16'b1;  
end  
end  
always @ ( negedge mclk1, posedge reset )  
begin  
if ( reset )  
word_clk <= 1'b0;  
reg [15:0] word_count;  
else  
begin  
reg word_clk;  
reg enable;  
if ( word_count == dec_rate/2 -  
1 )  
word_clk <= 1'b1;  
else if ( word_count ==  
/*Perform the Sinc action*/  
always @ (mdata1)  
if(mdata1==0)  
ip_data1 <= 37'd0;  
/* change 0 to a -1 for twos  
complement */  
dec_rate - 1 )  
word_clk <= 1'b0;  
end  
end  
else  
/*Differentiator (including decimation  
stage)  
ip_data1 <= 37'd1;  
Perform the differentiation stage (FIR) at a  
lower speed.  
Z = one sample delay WORD_CLK = output word  
rate */  
/*Accumulator (Integrator)  
Perform the accumulation (IIR) at the speed  
of the modulator.  
Z = one sample delay MCLKOUT = modulators  
conversion bit rate */  
DIFF1  
DIFF2  
DIFF3  
+
+
+
MCLKIN  
ACC3  
ACC2+  
+
ACC1+  
+
ACC3+  
–1  
–1  
–1  
Z
Z
Z
IP_DATA1  
Z
Z
Z
+
WORD_CLK  
Figure 32. Accumulator  
Figure 33. Differentiator  
always @ (negedge mclk1, posedge reset)  
begin  
always @ (negedge word_clk, posedge reset)  
begin  
if (reset)  
begin  
/* initialize acc registers on reset  
if(reset)  
begin  
acc3_d2 <= 37'd0;  
diff1_d <= 37'd0;  
diff2_d <= 37'd0;  
*/  
acc1 <= 37'd0;  
acc2 <= 37'd0;  
Rev. A | Page 17 of 20  
AD7402  
Data Sheet  
diff1 <= 37'd0;  
diff2 <= 37'd0;  
diff3 <= 37'd0;  
end  
default:begin  
DATA <= (diff3[24:8] ==  
17'h10000) ? 16'hFFFF : diff3[23:8];  
end  
endcase  
end  
else  
begin  
end  
diff1 <= acc3 - acc3_d2;  
diff2 <= diff1 - diff1_d;  
diff3 <= diff2 - diff2_d;  
acc3_d2 <= acc3;  
/* Synchronize Data Output*/  
always@ (negedge mclk1, posedge reset )  
begin  
diff1_d <= diff1;  
if ( reset )  
diff2_d <= diff2;  
begin  
data_en <= 1'b0;  
enable <= 1'b1;  
end  
end  
else  
begin  
end  
if ( (word_count == dec_rate/2  
- 1) && enable )  
begin  
/* Clock the Sinc output into an output  
register  
WORD_CLK = output word rate */  
data_en <= 1'b1;  
enable <= 1'b0;  
end  
WORD_CLK  
else if ( (word_count ==  
dec_rate - 1) && ~enable )  
begin  
DIFF3  
DATA  
Figure 34. Clocking Sinc3 Output into an Output Register  
data_en <= 1'b0;  
enable <= 1'b1;  
end  
always @ (negedge word_clk )  
begin  
else  
data_en <= 1'b0;  
case ( dec_rate )  
16'd32:begin  
DATA <= (diff3[15:0] ==  
16'h8000) ? 16'hFFFF : {diff3[14:0], 1'b0};  
end  
end  
end  
endmodule  
16'd64:begin  
DATA <= (diff3[18:2] ==  
17'h10000) ? 16'hFFFF : diff3[17:2];  
end  
16'd128:begin  
DATA <= (diff3[21:5] ==  
17'h10000) ? 16'hFFFF : diff3[20:5];  
end  
16'd256:begin  
DATA <= (diff3[24:8] ==  
17'h10000) ? 16'hFFFF : diff3[23:8];  
end  
16'd512:begin  
DATA <= (diff3[27:11] ==  
17'h10000) ? 16'hFFFF : diff3[26:11];  
end  
16'd1024:begin  
DATA <= (diff3[30:14] ==  
17'h10000) ? 16'hFFFF : diff3[29:14];  
end  
16'd2048:begin  
DATA <= (diff3[33:17] ==  
17'h10000) ? 16'hFFFF : diff3[32:17];  
end  
16'd4096:begin  
DATA <= (diff3[36:20] ==  
17'h10000) ? 16'hFFFF : diff3[35:20];  
Rev. A | Page 18 of 20  
Data Sheet  
AD7402  
POWER SUPPLY CONSIDERATIONS  
INSULATION LIFETIME  
The AD7402 requires a 5 V VDD1 supply, and there are various  
means of achieving this. One method is to use an isolated dc-to-  
dc converter such as the ADuM6000. This method provides a 5 V  
regulated dc supply across the isolation barrier. Note that the  
inherent isolation of the ADuM6000 is lower than the AD7402.  
All insulation structures eventually break down when subjected  
to voltage stress over a sufficiently long period. The rate of  
insulation degradation is dependent on the characteristics of the  
voltage waveform applied across the insulation. In addition to  
the testing performed by the regulatory agencies, Analog  
Devices carries out an extensive set of evaluations to determine  
the lifetime of the insulation structure within the AD7402.  
ISOLATION  
BARRIER  
Analog Devices performs accelerated life testing using voltage  
levels higher than the rated continuous working voltage.  
Acceleration factors for several operating conditions are  
determined. These factors allow calculation of the time to  
failure at the actual working voltage. The values shown in Table 8  
summarize the peak voltage for 20 years of service life for a  
bipolar, ac operating condition and the maximum VDE  
approved working voltages.  
5V ISO  
5V DIGITAL  
VDD1  
VDD2  
These tests subjected the AD7402 to continuous cross isolation  
voltages. To accelerate the occurrence of failures, the selected  
test voltages were values exceeding those of normal use. The  
time to failure values of these units were recorded and used to  
calculate the acceleration factors. These factors were then used  
to calculate the time to failure under the normal operating  
conditions. The values shown in Table 8 are the lesser of the  
following two values:  
Figure 35. ADuM6000 Isolated 5 V DC-to-DC Regulator Example  
Another method is to regulate a dc supply on the high voltage  
side of the isolation barrier using a step-down dc-to-dc regulator,  
such as the ADP2441.  
ISOLATION  
BARRIER  
ADP2441  
4.5V TO 36V  
5V VDD1  
VDD2 5V DIGITAL  
The value that ensures at least a 20-year lifetime of  
continuous use.  
DC-TO-DC  
SWITCHING  
REGULATOR  
The maximum VDE approved working voltage.  
Figure 36. ADP2441 Step-Down DC-to-DC Regulator Example  
Note that the lifetime of the AD7402 varies according to the  
waveform type imposed across the isolation barrier. The  
iCoupler insulation structure is stressed differently, depending  
on whether the waveform is bipolar ac, unipolar ac, or dc.  
Figure 37, Figure 38, and Figure 39 illustrate the different  
isolation voltage waveforms.  
GROUNDING AND LAYOUT  
It is recommended to decouple the VDD1 supply with a 10 μF  
capacitor in parallel with a 1 nF capacitor to GND1. Decouple  
the VDD2 supply with a 100 nF value to GND2. In applications  
involving high common-mode transients, ensure that board  
coupling across the isolation barrier is minimized.  
RATED PEAK VOLTAGE  
Furthermore, design the board layout so that any coupling that  
occurs equally affects all pins on a given component side.  
Failure to ensure equal coupling can cause voltage differentials  
between pins to exceed the absolute maximum ratings of the  
device, thereby leading to latch-up or permanent damage. Place  
any decoupling used as close to the supply pins as possible.  
0V  
Figure 37. Bipolar AC Waveform, 50 Hz or 60 Hz  
RATED PEAK VOLTAGE  
Minimize series resistance in the analog inputs to avoid any  
distortion effects, especially at high temperatures. If possible,  
equalize the source impedance on each analog input to minimize  
offset. Check for mismatch and thermocouple effects on the analog  
input printed circuit board (PCB) tracks to reduce offset drift.  
0V  
Figure 38. Unipolar AC Waveform, 50 Hz or 60 Hz  
RATED PEAK VOLTAGE  
0V  
Figure 39. DC Waveform  
Rev. A | Page 19 of 20  
 
 
 
 
 
 
AD7402  
Data Sheet  
OUTLINE DIMENSIONS  
6.05  
5.85  
5.65  
8
1
5
4
7.60  
7.50  
7.40  
10.51  
10.31  
10.11  
PIN 1  
MARK  
0.75  
0.50 45°  
0.25  
2.45  
2.35  
2.25  
2.65  
2.50  
2.35  
1.04  
BSC  
8°  
0°  
0.30  
0.33  
0.27  
0.20  
SEATING  
PLANE  
0.20  
0.10  
COPLANARITY  
0.10  
0.51  
0.41  
0.31  
1.27 BSC  
0.75  
0.58  
0.40  
Figure 40. 8-Lead Standard Small Outline Package, with Increased Creepage [SOIC_IC]  
Wide Body  
(RI-8-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
Range  
Package  
Option  
Model1  
Package Description  
AD7402-8BRIZ  
AD7402-8BRIZ-RL  
AD7402-8BRIZ-RL7  
EVAL-AD7402-8FMCZ  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
8-Lead Standard Small Outline Package, with Increased Creepage [SOIC_IC]  
8-Lead Standard Small Outline Package, with Increased Creepage [SOIC_IC]  
8-Lead Standard Small Outline Package, with Increased Creepage [SOIC_IC]  
Evaluation Board  
RI-8-1  
RI-8-1  
RI-8-1  
1 Z = RoHS Compliant Part.  
©2015 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12898-0-6/15(A)  
Rev. A | Page 20 of 20  
 
 

相关型号:

AD7402-8BRIZ-RL7

16-Bit, Isolated Sigma-Delta Modulator
ADI

AD7403

16-Bit, Isolated Sigma-Delta Modulator
ADI

AD7403-8BRIZ

16-Bit, Isolated Sigma-Delta Modulator
ADI

AD7403-8BRIZ-RL

16-Bit, Isolated Sigma-Delta Modulator
ADI

AD7403-8BRIZ-RL7

16-Bit, Isolated Sigma-Delta Modulator
ADI

AD7403BRIZ

16-Bit, Isolated Sigma-Delta Modulator
ADI

AD7403BRIZ-RL

16-Bit, Isolated Sigma-Delta Modulator
ADI

AD7403BRIZ-RL7

16-Bit, Isolated Sigma-Delta Modulator
ADI

AD741

Low Cost, High Accuracy IC Op Amps
ADI

AD74111

Low Cost, Low Power Mono Audio Codec
ADI

AD74111YRU

Low Cost, Low Power Mono Audio Codec
ADI

AD74111YRU

SPECIALTY CONSUMER CIRCUIT, PDSO16, TSSOP-16
ROCHESTER