AD7403-8BRIZ-RL7 [ADI]

16-Bit, Isolated Sigma-Delta Modulator;
AD7403-8BRIZ-RL7
型号: AD7403-8BRIZ-RL7
厂家: ADI    ADI
描述:

16-Bit, Isolated Sigma-Delta Modulator

文件: 总25页 (文件大小:655K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
16-Bit, Isolated Sigma-Delta Modulator  
Data Sheet  
AD7403  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
V
V
DD1  
DD2  
5 MHz to 20 MHz external clock input rate  
16 bits, no missing codes  
Signal-to-noise ratio (SNR): 88 dB typical  
Effective number of bits (ENOB): 14.2 bits typical  
Offset drift vs. temperature  
BUF  
CLK  
DECODER  
CLK  
ENCODER  
MCLKIN  
(5MHz  
TO 20MHz)  
REF  
AD7403: 1.6 µV/°C typical  
AD7403-8: 2 µV/°C typical  
On-board digital isolator  
V
V
IN+  
Σ-Δ ADC  
DATA  
ENCODER  
DATA  
DECODER  
IN–  
MDAT  
On-board reference  
Full-scale analog input range: 320 mV  
Operating range  
AD7403  
AD7403: −40°C to + 125°C  
AD7403-8: −40°C to + 105°C  
GND  
GND  
1
2
High common-mode transient immunity: >25 kV/µs  
Wide-body SOIC with increased creepage package  
Slew rate limited output for low EMI  
Safety and regulatory approvals  
UL recognition  
Figure 1.  
5000 V rms for 1 minute per UL 1577  
CSA Component Acceptance Notice 5A  
VDE Certificate of Conformity  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12  
V
IORM = 1250 VPEAK  
APPLICATIONS  
Shunt current monitoring  
AC motor controls  
Power and solar inverters  
Wind turbine inverters  
Data acquisition systems  
Analog-to-digital and optoisolator replacements  
information can be reconstructed with an appropriate digital  
filter to achieve 88 dB signal to noise ratio (SNR) at 78.1 kSPS.  
The serial input/output can use a 5 V or a 3 V supply (VDD2).  
GENERAL DESCRIPTION  
The AD74031 is a high performance, second-order, Σ-Δ modulator  
that converts an analog input signal into a high speed, single-bit  
data stream, with on-chip digital isolation based on Analog  
Devices, Inc., iCoupler® technology. The device operates from a  
5 V (VDD1) power supply and accepts a differential input signal  
of 250 mV ( 320 mV full-scale). The differential input is ideally  
suited to shunt voltage monitoring in high voltage applications  
where galvanic isolation is required.  
The serial interface is digitally isolated. High speed complementary  
metal oxide semiconductor (CMOS) technology, combined with  
monolithic transformer technology, means the on-chip isolation  
provides outstanding performance characteristics, superior to  
alternatives such as optocoupler devices. The AD7403 device is  
offered in a 16-lead, wide-body SOIC package and has an oper-  
ating temperature range of −40°C to +125°C. The AD7403-8  
device is offered in an 8-lead, wide-body SOIC package and has  
an operating temperature range of −40°C to +105°C.  
The analog input is continuously sampled by a high performance  
analog modulator, and converted to a ones density digital output  
stream with a data rate of up to 20 MHz. The original  
1 Protected by U.S. Patents 5,952,849; 6,873,065; and 7,075,329.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2014–2015 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD7403* Product Page Quick Links  
Last Content Update: 11/01/2016  
Comparable Parts  
Reference Materials  
View a parametric search of comparable parts  
Informational  
• ADSP-CM40x in Solar PV Inverters  
Evaluation Kits  
Press  
• AD-FMCMOTCON2-EBZ Evaluation Board  
• Highest Accuracy Isolated Sigma-Delta Modulator  
Increases Efficiency of Motor Drives and Power Inverters  
• AD7403 Evaluation Board  
Technical Articles  
• Evaluation board for evaluating FlexMC Motor Control  
Low Voltage Kit  
• A Networked Approach To Improving Energy Efficiency In  
Manufacturing Automation Systems  
• Evaluation board for evaluating FlexMC Motor Control  
Universal AC Kit  
• A System Approach to Understanding the Impact of  
Nonideal Effects in a Motor Drive Current Loop  
• Isolated Inverter Platform Evaluation Board  
• Functional Safety for Integrated Circuits Used in Variable  
Speed Drives  
Documentation  
Application Notes  
• MS-2652: Measurement Techniques for Industrial Motion  
Control  
• AN-1316: Generating Multiple Isolated Bias Rails for  
IGBT Motor Drives with Flyback, SEPIC, and Ćuk  
Combination  
• MS-2758: Enhancing Industrial Motor Control Performance  
Utilizing Digital Isolator Technology  
• Sigma-Delta Conversion Used for Motor Control  
• AN-1377: Gain and Offset Temperature Drift  
Compensation for the AD7403/AD7405  
Design Resources  
• AD7403 Material Declaration  
• PCN-PDN Information  
• Quality And Reliability  
• Symbols and Footprints  
Data Sheet  
• AD7403-EP: Enhanced Product Data Sheet  
• AD7403: 16-Bit, Isolated Sigma-Delt Modulator Data Sheet  
User Guides  
• UG-683: Evaluating the AD7403 16-Bit, Isolated Sigma-  
Delta ADC  
Discussions  
View all AD7403 EngineerZone Discussions  
Software and Systems Requirements  
• EVAL-FMCMOTCON2 Evaluation Software  
Sample and Buy  
Visit the product page to see pricing options  
Tools and Simulations  
• AD7403 MatLab Model  
• AD7403 IBIS Model  
Technical Support  
• AD7403-8 IBIS Model  
Submit a technical question or find your regional support  
number  
* This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet. Note: Dynamic changes to  
the content on this page does not constitute a change to the revision number of the product data sheet. This content may be  
frequently modified.  
AD7403  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 15  
Circuit Information.................................................................... 15  
Analog Input ............................................................................... 15  
Differential Inputs...................................................................... 16  
Digital Output............................................................................. 16  
Applications Information.............................................................. 17  
Current Sensing Applications................................................... 17  
Voltage Sensing Applications.................................................... 17  
Input Filter................................................................................... 18  
Digital Filter ................................................................................ 18  
Interfacing to ADSP-CM4xx .................................................... 21  
Power Supply Considerations................................................... 21  
Grounding and Layout .............................................................. 21  
Insulation Lifetime..................................................................... 21  
Outline Dimensions....................................................................... 23  
Ordering Guide .......................................................................... 24  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AD7403.......................................................................................... 3  
AD7403-8 ...................................................................................... 4  
Timing Specifications .................................................................. 5  
Package Characteristics ............................................................... 6  
Insulation and Safety Related Specifications ............................ 6  
Regulatory Information............................................................... 6  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 Insulation  
Characteristics .............................................................................. 7  
Absolute Maximum Ratings............................................................ 8  
ESD Caution.................................................................................. 8  
Pin Configurations and Function Descriptions ........................... 9  
Typical Performance Characteristics ........................................... 10  
Terminology .................................................................................... 14  
REVISION HISTORY  
5/15—Rev. A to Rev. B  
11/14—Rev. 0 to Rev. A  
Added AD7403-8................................................................Universal  
Added Endnote 3, Table 1 ............................................................... 4  
Added Table 2; Renumbered Sequentially .................................... 4  
Added Figure 4.................................................................................. 7  
Added Figure 6 and Table 11........................................................... 9  
Added Figure 8................................................................................ 10  
Added Figure 14 and Figure 18..................................................... 11  
Added Figure 20.............................................................................. 12  
Added Power Supply Considerations Section, Figure 41, and  
Figure 42 .......................................................................................... 21  
Added Figure 47, Outline Dimensions........................................ 23  
Changes to Ordering Guide .......................................................... 24  
Change to Figure 1 ............................................................................1  
Changes to Regulatory Information Section and Table 5 ............5  
Changes to Table 7.............................................................................7  
Changes to Ordering Guide.......................................................... 20  
4/14—Revision 0: Initial Version  
Rev. B | Page 2 of 24  
 
Data Sheet  
AD7403  
SPECIFICATIONS  
AD7403  
VDD1 = 4.5 V to 5.5 V, VDD2 = 3 V to 5.5 V, VIN+ = −250 mV to +250 mV, VIN− = 0 V, TA = −40°C to +125°C, fMCLKIN1 = 5 MHz to 20 MHz,  
tested with sinc3 filter, 256 decimation rate, as defined by Verilog code, unless otherwise noted. All voltages are relative to their respective  
ground.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
STATIC PERFORMANCE  
Resolution  
16  
Bits  
LSB  
LSB  
mV  
µV/°C  
µV/°C  
µV/V  
% FSR  
% FSR  
% FSR  
ppm/°C  
µV/°C  
mV/V  
Filter output truncated to 16 bits  
Guaranteed no missed codes to 16 bits  
Integral Nonlinearity (INL)2  
Differential Nonlinearity (DNL)2  
Offset Error2  
2
12  
0.99  
0.75  
3.8  
3.1  
0.2  
1.6  
1.3  
50  
0.2  
0.2  
0.2  
65  
Offset Drift vs. Temperature3  
0°C to 85°C  
3
Offset Drift vs. VDD1  
Gain Error2  
0.8  
0.8  
1.2  
95  
60  
fMCLKIN = 16 MHz  
fMCLKIN = 20 MHz, TA = −40°C to +85°C  
fMCLKIN = 20 MHz  
Gain Error Drift vs. Temperature3  
40  
0.6  
3
Gain Error Drift vs. VDD1  
ANALOG INPUT  
Input Voltage Range  
−320  
−250  
+320  
+250  
mV  
mV  
mV  
µA  
µA  
µA  
pF  
Full-scale range  
For specified performance  
Input Common-Mode Voltage Range  
Dynamic Input Current  
−200 to +300  
45  
0.05  
0.01  
14  
50  
VIN+ = 250 mV, VIN− = 0 V  
VIN+ = 0 V, VIN− = 0 V  
DC Leakage Current  
Input Capacitance  
0.6  
DYNAMIC SPECIFICATIONS  
VIN+ = 1 kHz  
Signal-to-Noise-and-Distortion Ratio (SINAD)2 81  
83  
87  
87  
88  
dB  
dB  
dB  
−40°C to +85°C  
Signal-to-Noise Ratio (SNR)2  
86  
Total Harmonic Distortion (THD)2  
Peak Harmonic or Spurious Noise (SFDR)2  
Effective Number of Bits (ENOB)2  
−96  
−97  
14.2  
14.2  
dB  
dB  
Bits  
Bits  
Bits  
kV/µs  
13.1  
13.4  
14  
−40°C to +85°C  
Noise Free Code Resolution2  
ISOLATION TRANSIENT IMMUNITY2  
25  
30  
LOGIC INPUTS  
CMOS with Schmitt trigger  
Input High Voltage (VIH)  
Input Low Voltage (VIL)  
Input Current (IIN)  
Input Capacitance (CIN)  
LOGIC OUTPUTS  
0.8 × VDD2  
V
V
µA  
pF  
0.2 × VDD2  
0.6  
10  
Output High Voltage (VOH  
)
VDD2 − 0.1  
V
V
IO = −200 µA  
IO = +200 µA  
Output Low Voltage (VOL  
)
0.4  
Rev. B | Page 3 of 24  
 
 
AD7403  
Data Sheet  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
POWER REQUIREMENTS  
VDD1  
VDD2  
IDD1  
4.5  
3
5.5  
5.5  
36  
18  
10  
V
V
30  
12  
6
231  
185  
mA  
mA  
mA  
mW  
mW  
VDD1 = 5.5 V  
VDD2 = 5.5 V  
VDD2 = 3.3 V  
VDD1 = VDD2 = 5.5 V  
VDD1 = 5.5 V, VDD2 = 3.3 V  
IDD2  
Power Dissipation  
297  
231  
1 For fMCLKIN > 16 MHz, mark space ratio is 48/52 to 52/48, VDD1 = 5 V 5%.  
2 See the Terminology section.  
3 Not production tested. Sample tested during initial release to ensure compliance.  
AD7403-8  
VDD1 = 4.5 V to 5.5 V, VDD2 = 3 V to 5.5 V, VIN+ = −250 mV to +250 mV, VIN− = 0 V, TA = −40°C to +105°C, fMCLKIN1 = 5 MHz to 20 MHz,  
tested with sinc3 filter, 256 decimation rate, as defined by Verilog code, unless otherwise noted. All voltages are relative to their respective  
ground.  
Table 2.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
STATIC PERFORMANCE  
Resolution  
16  
Bits  
LSB  
LSB  
mV  
µV/°C  
µV/V  
% FSR  
% FSR  
ppm/°C  
µV/°C  
mV/V  
Filter output truncated to 16 bits  
Guaranteed no missed codes to 16 bits  
Integral Nonlinearity (INL)2  
Differential Nonlinearity (DNL)2  
Offset Error2  
2
6.5  
0.99  
1.7  
6.8  
1
2
Offset Drift vs. Temperature3  
3
Offset Drift vs. VDD1  
Gain Error2  
425  
0.2  
0.2  
32  
20  
0.2  
0.8  
1.4  
80  
fMCLKIN = 16 MHz  
fMCLKIN = 20 MHz  
Gain Error Drift vs. Temperature3  
51  
3
Gain Error Drift vs. VDD1  
ANALOG INPUT  
Input Voltage Range  
−320  
−250  
+320  
+250  
mV  
mV  
mV  
µA  
µA  
µA  
pF  
Full-scale range  
For specified performance  
Input Common-Mode Voltage Range  
Dynamic Input Current  
−200 to +300  
45  
0.05  
0.01  
14  
50  
VIN+ = 250 mV, VIN− = 0 V  
VIN+ = 0 V, VIN− = 0 V  
VIN+ = 1 kHz  
DC Leakage Current  
Input Capacitance  
0.6  
DYNAMIC SPECIFICATIONS  
Signal-to-Noise-and-Distortion Ratio (SINAD)2 82  
87  
dB  
Signal-to-Noise Ratio (SNR)2  
Total Harmonic Distortion (THD)2  
Peak Harmonic or Spurious Noise (SFDR)2  
Effective Number of Bits (ENOB)2  
ISOLATION TRANSIENT IMMUNITY2  
LOGIC INPUTS  
86  
88  
dB  
dB  
dB  
Bits  
kV/µs  
−94  
−94  
14.2  
30  
13.3  
25  
CMOS with Schmitt trigger  
Input High Voltage (VIH)  
0.8 × VDD2  
V
Input Low Voltage (VIL)  
Input Current (IIN)  
Input Capacitance (CIN)  
0.2 × VDD2  
0.6  
10  
V
µA  
pF  
LOGIC OUTPUTS  
Output High Voltage (VOH  
)
VDD2 − 0.1  
V
V
IO = −200 µA  
IO = +200 µA  
Output Low Voltage (VOL  
)
0.4  
Rev. B | Page 4 of 24  
 
Data Sheet  
AD7403  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
POWER REQUIREMENTS  
VDD1  
VDD2  
IDD1  
4.5  
3
5.5  
5.5  
33.5  
16  
8
272  
211  
V
V
30  
13  
6.5  
237  
187  
mA  
mA  
mA  
mW  
mW  
VDD1 = 5.5 V  
VDD2 = 5.5 V  
VDD2 = 3.3 V  
VDD1 = VDD2 = 5.5 V  
VDD1 = 5.5 V, VDD2 = 3.3 V  
IDD2  
Power Dissipation  
1 For fMCLKIN > 16 MHz, mark space ratio is 48/52 to 52/48, VDD1 = 5 V 5ꢀ.  
2 See the Terminology section.  
3 Not production tested. Sample tested during initial release to ensure compliance.  
TIMING SPECIFICATIONS  
VDD1 = 4.5 V to 5.5 V, VDD2 = 3 V to 5.5 V, TA = −40°C to +105°C (AD7403-8) or −40°C to +125°C (AD7403), unless otherwise noted.  
Sample tested during initial release to ensure compliance. It is recommended to read MDAT on the MCLKIN rising edge.  
Table 3.  
Limit at TMIN, TMAX  
Parameter  
Min  
Typ Max  
Unit  
MHz  
MHz  
Description  
fMCLKIN  
5
Master clock input frequency  
20  
1
t1  
Data access time after MCLKIN rising edge  
VDD2 = 4.5 V to 5.5 V  
VDD2 = 3 V to 3.6 V, AD7403  
VDD2 = 3 V to 3.6 V, AD7403-8  
Data hold time after MCLKIN rising edge  
VDD2 = 4.5 V to 5.5 V  
40  
45  
42  
ns  
ns  
ns  
1
t2  
12  
17  
ns  
ns  
VDD2 = 3 V to 3.6 V  
t3  
t4  
Master clock low time  
fMCLKIN ≤ 16 MHz  
16 MHz < fMCLKIN ≤ 20 MHz  
Master clock high time  
fMCLKIN ≤ 16 MHz  
0.45 × tMCLKIN  
0.48 × tMCLKIN  
ns  
ns  
0.45 × tMCLKIN  
0.48 × tMCLKIN  
ns  
ns  
16 MHz < fMCLKIN ≤ 20 MHz  
1 Defined as the time required from an 80ꢀ MCLKIN input level to when the output crosses 0.8 V or 2.0 V for VDD2 = 3 V to 3.6 V or when the output crosses 0.8 V or 0.7 ×  
VDD2 for VDD2 = 4.5 V to 5.5 V as outlined in Figure 2. Measured with a 200 ꢁA load and a 25 pF load capacitance.  
t4  
80%  
MCLKIN  
t1  
t2  
t3  
1
2.0V OR 0.7 × V  
0.8V  
DD2  
MDAT  
1
SEE NOTE 1 OF TABLE 3 FOR FURTHER DETAILS.  
Figure 2. Data Timing  
Rev. B | Page 5 of 24  
 
 
AD7403  
Data Sheet  
PACKAGE CHARACTERISTICS  
Table 4.  
Parameter  
Resistance (Input to Output)1  
Capacitance (Input to Output)1  
Symbol Min Typ Max Unit Test Conditions/Comments  
RI-O  
CI-O  
1012  
2.2  
45  
pF  
f = 1 MHz  
IC Junction to Ambient Thermal Resistance θJA  
°C/W Thermocouple located at center of package underside,  
test conducted on 4-layer board with thin traces  
1 The device is considered a 2-terminal device. For AD7403, Pin 1 to Pin 8 are shorted together and Pin 9 to Pin 16 are shorted together. For AD7403-8, Pin 1 to Pin 4 are  
shorted together, Pin 5 to Pin 8 are shorted together.  
INSULATION AND SAFETY RELATED SPECIFICATIONS  
Table 5.  
Parameter  
Symbol Value  
Unit Test Conditions/Comments  
Input to Output Momentary Withstand Voltage  
Minimum External Air Gap (Clearance)  
AD7403  
VISO  
5000 min  
V
1 minute duration  
L(I01)  
L(I01)  
8.3 min1, 2  
8.1 min1, 2  
mm  
mm  
Measured from input terminals to output  
terminals, shortest distance through air  
Measured from input terminals to output  
terminals, shortest distance through air  
AD7403-8  
Minimum External Tracking (Creepage)  
AD7403  
L(I02)  
L(I02)  
8.3 min1  
8.1 min1  
mm  
mm  
Measured from input terminals to output  
terminals, shortest distance path along body  
Measured from input terminals to output  
terminals, shortest distance path along body  
AD7403-8  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index)  
Isolation Group  
0.034 min mm  
Distance through insulation  
CTI  
>400  
II  
V
DIN IEC 112/VDE 0303 Part 13  
Material Group (DIN VDE 0110, 1/89, Table I)3  
1 In accordance with IEC 60950-1 guidelines for the measurement of creepage and clearance distances for a pollution degree of 2 and altitudes ≤2000 m.  
2 Consideration must be given to pad layout to ensure the minimum required distance for clearance is maintained.  
3 CSA CTI rating for the AD7403 is >600 V and a Material Group I isolation group. AD7403-8 is >400 and a Material Group II isolation group.  
REGULATORY INFORMATION  
Table 6.  
UL1  
CSA  
VDE2  
Recognized under 1577  
Component Recognition  
Program1  
Approved under CSA Component Acceptance Notice 5A  
Certified according to DIN V VDE V 0884-10  
(VDE V 0884-10):2006-122  
5000 V rms Isolation Voltage  
Single Protection  
Basic insulation per CSA 60950-1-07 and IEC 60950-1,  
AD7403: 830 V rms (1173 VPEAK), AD7403-8: 810 Vrms  
(1145 VPEAK) maximum working voltage3  
Reinforced insulation per DIN V VDE V 0884-10  
(VDE V 0884-10):2006-12, 1250 VPEAK  
Reinforced insulation per CSA 60950-1-07 and  
IEC 60950-1. AD7403: 415 V rms (586 VPEAK), AD7403-8:  
405 V rms (583 VPEAK) maximum working voltage3  
Reinforced insulation per IEC 60601-1, 250 V rms  
(353 VPEAK) maximum working voltage  
File E214100  
File 205078  
File 2471900-4880-0001  
1 In accordance with UL 1577, each AD7403 is proof tested by applying an insulation test voltage ≥ 6000 V rms for 1 second (current leakage detection limit = 15 µA).  
2 In accordance with DIN V VDE V 0884-10, each AD7403 is proof tested by applying an insulation test voltage ≥ 2344 VPEAK for 1 second (partial discharge detection limit = 5 pC).  
3 Rating is calculated for a pollution degree of 2 and a Material Group III. The AD7403 RI-16-2 package material is rated by CSA to a CTI of >600 V and therefore  
Material Group I. The AD7403-8 RI-8-1 package material is rated by CSA to a CTI of >400 V and therefore Material Group II.  
Rev. B | Page 6 of 24  
 
 
 
Data Sheet  
AD7403  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 INSULATION CHARACTERISTICS  
This isolator is suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by  
means of protective circuits.  
Table 7.  
Description  
Symbol  
Characteristic Unit  
INSTALLATION CLASSIFICATION PER DIN VDE 0110  
For Rated Mains Voltage ≤300 V rms  
For Rated Mains Voltage ≤450 V rms  
For Rated Mains Voltage ≤600 V rms  
For Rated Mains Voltage ≤1000 V rms  
I to IV  
I to IV  
I to IV  
I to IV  
40/105/21  
2
CLIMATIC CLASSIFICATION  
POLLUTION DEGREE (DIN VDE 0110, TABLE 1)  
MAXIMUM WORKING INSULATION VOLTAGE  
INPUT TO OUTPUT TEST VOLTAGE, METHOD B1  
VIORM × 1.875 = VPR, 100% Production Test, tm = 1 Second, Partial Discharge < 5 pC  
INPUT TO OUTPUT TEST VOLTAGE, METHOD A  
After Environmental Test Subgroup 1  
VIORM  
1250  
VPEAK  
VPEAK  
VPD(M)  
VPR(M)  
2344  
VIORM × 1.6 = VPR, tm = 60 Seconds, Partial Discharge < 5 pC  
After Input and/or Safety Test Subgroup 2/ Safety Test Subgroup 3  
VIORM × 1.2 = VPR, tm = 60 Seconds, Partial Discharge < 5 pC  
HIGHEST ALLOWABLE OVERVOLTAGE (TRANSIENT OVERVOLTAGE, tTR = 10 Seconds)  
SURGE ISOLATION VOLTAGE  
2000  
VPEAK  
1500  
8000  
VPEAK  
VPEAK  
VPEAK  
VPEAK  
VIOTM  
VIOSM  
1.2 µs Rise Time, 50 μs, 50% Fall Time  
12000  
150  
SAFETY LIMITING VALUES (MAXIMUM VALUE ALLOWED IN THE EVENT OF A FAILURE, SEE Figure 3  
AND Figure 4)  
Case Temperature  
TS  
°C  
Side 1 (PVDD1) and Side 2 (PVDD2) Power Dissipation  
AD7403  
AD7403-8  
PSO  
2.78  
1.19  
>109  
W
W
INSULATION RESISTANCE AT TS, VIO = 500 V  
RIO  
4
2
3
2
1
1
0
0
0
50  
100  
150  
200  
0
50  
100  
150  
200  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
Figure 3. AD7403 Thermal Derating Curve, Dependence of Safety Limiting  
Values with Case Temperature per DIN V VDE V 0884-10  
Figure 4. AD7403-8 Thermal Derating Curve, Dependence of Safety Limiting  
Values with Case Temperature per DIN V VDE V 0884-10  
Rev. B | Page 7 of 24  
 
 
 
AD7403  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted. All voltages are relative to  
their respective ground.  
1
Table 9. Maximum Continuous Working Voltage  
Parameter  
Max  
Unit  
Constraint  
AC Voltage  
Bipolar Waveform  
Table 8.  
Parameter  
1250  
VPEAK  
20-year minimum  
lifetime (VDE  
Rating  
VDD1 to GND1  
VDD2 to GND2  
−0.3 V to +6.5 V  
−0.3 V to +6.5 V  
−1 V to VDD1 + 0.3 V  
−0.3 V to VDD2 + 0.5 V  
−0.3 V to VDD2 + 0.3 V  
10 mA  
approved working  
voltage)  
20-year minimum  
lifetime  
Analog Input Voltage to GND1  
Digital Input Voltage to GND2  
Output Voltage to GND2  
Input Current to Any Pin Except Supplies1  
Operating Temperature Range  
AD7403  
Unipolar Waveform 1250  
DC Voltage 1250  
VPEAK  
VPEAK  
20-year minimum  
lifetime  
1 Refers to continuous voltage magnitude imposed across the isolation  
barrier.  
−40°C to +125°C  
−40°C to +105°C  
−65°C to +150°C  
150°C  
AD7403-8  
Storage Temperature Range  
Junction Temperature  
Pb-Free Temperature, Soldering  
Reflow  
ESD CAUTION  
260°C  
2 kV  
ESD  
FICDM2  
HBM3  
1250 V  
4000 V  
1 Transient currents of up to 100 mA do not cause SCR to latch up.  
2 JESD22-C101; RC network: 1 Ω, Cpkg; Class: IV.  
3 ESDA/JEDEC JS-001-2011; RC network: 1.5 kΩ, 100 pF; Class: 3A.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. B | Page 8 of 24  
 
 
 
Data Sheet  
AD7403  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
V
1
2
3
4
5
6
7
8
16 GND  
DD1  
2
2
V
15 NIC  
IN+  
IN–  
V
14 V  
DD2  
AD7403  
GND  
NIC  
NIC  
13 MCLKIN  
1
1
TOP VIEW  
2
(Not to Scale)  
12 NIC  
1
11 MDAT  
2
V
10 NIC  
DD1  
GND  
9 GND  
2
1
1
2
NIC = NOT INTERNALLY CONNECTED. CONNECT TO V  
NIC = NOT INTERNALLY CONNECTED. CONNECT TO V  
, GND , OR LEAVE FLOATING.  
1
DD1  
DD2  
, GND , OR LEAVE FLOATING.  
2
Figure 5. AD7403 Pin Configuration  
Table 10. AD7403 Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1, 7  
VDD1  
Supply Voltage, 4.5 V to 5.5 V. This is the supply voltage for the isolated side of the AD7403 and is relative to GND1.  
For device operation, connect the supply voltage to both Pin 1 and Pin 7. Decouple each supply pin to GND1 with  
a 10 µF capacitor in parallel with a 1 nF capacitor.  
2
VIN+  
Positive Analog Input.  
3
VIN−  
Negative Analog Input. Normally connected to GND1.  
4, 8  
5, 6  
9, 16  
10, 12, 15  
11  
GND1  
NIC  
GND2  
NIC  
Ground 1. This pin is the ground reference point for all circuitry on the isolated side.  
Not Internally Connected. These pins are not internally connected. Connect to VDD1, GND1, or leave floating.  
Ground 2. This pin is the ground reference point for all circuitry on the nonisolated side.  
Not Internally Connected. These pins are not internally connected. Connect to VDD2, GND2, or leave floating.  
Serial Data Output. The single bit modulator output is supplied to this pin as a serial data stream. The bits are  
clocked out on the rising edge of the MCLKIN input and are valid on the following MCLKIN rising edge.  
MDAT  
13  
14  
MCLKIN  
VDD2  
Master Clock Logic Input. 5 MHz to 20 MHz frequency range. The bit stream from the modulator is propagated on  
the rising edge of the MCLKIN.  
Supply Voltage, 3 V to 5.5 V. This is the supply voltage for the nonisolated side and is relative to GND2. Decouple  
this supply to GND2 with a 100 nF capacitor.  
V
1
2
3
4
8
7
6
5
V
DD2  
DD1  
AD7403-8  
V
MCLKIN  
MDAT  
IN+  
TOP VIEW  
V
IN–  
(Not to Scale)  
GND  
GND  
2
1
Figure 6. AD7403-8 Pin Configuration  
Table 11. AD7403-8 Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
VDD1  
Supply Voltage, 4.5 V to 5.5 V. This is the supply voltage for the isolated side of the AD7403-8 and is relative to GND1.  
For device operation, connect the supply voltage to both Pin 1 and Pin 7. Decouple each supply pin to GND1 with  
a 10 µF capacitor in parallel with a 1 nF capacitor.  
2
3
4
5
6
VIN+  
VIN−  
GND1  
GND2  
MDAT  
Positive Analog Input.  
Negative Analog Input. Normally connected to GND1.  
Ground 1. This pin is the ground reference point for all circuitry on the isolated side.  
Ground 2. This pin is the ground reference point for all circuitry on the nonisolated side.  
Serial Data Output. The single bit modulator output is supplied to this pin as a serial data stream. The bits are  
clocked out on the rising edge of the MCLKIN input and are valid on the following MCLKIN rising edge.  
7
8
MCLKIN  
VDD2  
Master Clock Logic Input. 5 MHz to 20 MHz frequency range. The bit stream from the modulator is propagated on  
the rising edge of the MCLKIN.  
Supply Voltage, 3 V to 5.5 V. This is the supply voltage for the nonisolated side and is relative to GND2. Decouple  
this supply to GND2 with a 100 nF capacitor.  
Rev. B | Page 9 of 24  
 
AD7403  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VDD1 = 5 V, VDD2 = 5 V, V IN+ = −250 mV to +250 mV, VIN− = 0 V, fMCLKIN = 20 MHz, using a sinc3 filter with a 256 oversampling  
ratio (OSR), unless otherwise noted.  
0
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
200mV p-p SINE WAVE ON V  
1nF DECOUPLING  
DD1  
–20  
–40  
16MHz MCLKIN, V  
16MHz MCLKIN, V  
16MHz MCLKIN, V  
20MHz MCLKIN, V  
20MHz MCLKIN, V  
20MHz MCLKIN, V  
= 4.5V  
= 5.0V  
= 5.5V  
= 4.5V  
= 5.0V  
= 5.5V  
DD1  
DD1  
DD1  
DD1  
DD1  
DD1  
–60  
MCLKIN = 20MHz  
MCLKIN = 10MHz  
–80  
–100  
–120  
100  
1k  
10k  
0
200k  
400k  
600k  
800k  
1M  
SUPPLY RIPPLE FREQUENCY (Hz)  
ANALOG INPUT FREQUENCY (Hz)  
Figure 7. AD7403 PSRR vs. Supply Ripple Frequency  
Figure 10. SINAD vs. Analog Input Frequency  
0
–20  
0
–20  
fIN = 1kHz  
SNR = 88.6dB  
SINAD = 88.3dB  
THD = –100.5dB  
200mV p-p SINE WAVE ON V  
1nF DECOUPLING  
DD1  
–40  
–40  
–60  
–60  
–80  
–80  
MCLKIN = 20MHz  
MCLKIN = 10MHz  
–100  
–120  
–140  
–160  
–100  
–120  
–140  
0
200k  
400k  
600k  
800k  
1M  
0
5
10  
15  
20  
25  
30  
SUPPLY RIPPLE FREQUENCY (Hz)  
FREQUENCY (kHz)  
Figure 8. AD7403-8 PSRR vs. Supply Ripple Frequency  
Figure 11. Typical Fast Fourier Transform (FFT)  
0
–20  
1.0  
0.8  
SHORTED INPUTS  
200mV p-p SINE WAVE ON INPUTS  
0.6  
–40  
0.4  
MCLKIN = 20MHz, SINC3 DECIMATION RATE = 256  
MCLKIN = 10MHz, SINC3 DECIMATION RATE = 256  
MCLKIN = 20MHz, UNFILTERED  
0.2  
–60  
MCLKIN = 10MHz, UNFILTERED  
0
–80  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–100  
–120  
–140  
100  
1k  
10k  
100k  
1M  
0
10  
20  
30  
40  
50  
60  
RIPPLE FREQUENCY (Hz)  
CODE (k)  
Figure 9. CMRR vs. Common-Mode Ripple Frequency  
Figure 12. Typical DNL Error  
Rev. B | Page 10 of 24  
 
Data Sheet  
AD7403  
1.0  
100  
90  
80  
70  
60  
fIN = 1kHz  
0.8  
0.6  
0.4  
SNR  
SINAD  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
150  
125  
0
10  
20  
30  
40  
50  
60  
CODE (k)  
TEMPERATURE (°C)  
Figure 13. AD7403 Typical INL Error  
Figure 16. SNR and SINAD vs. Temperature  
1.0  
0.5  
–60  
–70  
fIN = 1kHz  
–80  
0
THD  
–90  
SFDR  
–0.5  
–1.0  
–1.5  
–100  
–110  
–120  
–50  
–25  
0
25  
50  
75  
100  
125  
0
10  
20  
30  
40  
50  
60  
CODE (k)  
TEMPERATURE (°C)  
Figure 14. AD7403-8 Typical INL Error  
Figure 17. AD7403 THD and SFDR vs. Temperature  
–60  
–70  
800  
700  
600  
500  
400  
300  
200  
100  
0
THD  
SFDR  
fIN = 1kHz  
MCLKIN = 10MHz  
= V = 0V  
692381  
V
IN+  
IN–  
1M SAMPLES  
–80  
–90  
–100  
160941  
144470  
32766  
–110  
–120  
1147  
1061  
0
0
–50  
–25  
0
25  
50  
75  
100  
32764  
32765  
32767  
CODE  
32768  
32769  
32770  
TEMPERATURE (°C)  
Figure 15. Histogram of Codes at Code Center  
Figure 18. AD7403-8 THD and SFDR vs. Temperature  
Rev. B | Page 11 of 24  
AD7403  
Data Sheet  
200  
150  
100  
50  
35  
30  
25  
20  
15  
10  
5
MCLKIN = 20MHz  
V)  
(µ  
0
–50  
SET  
F
MCLKIN = 20MHz, –40°C  
F
O
MCLKIN = 20MHz, +25°C  
MCLKIN = 20MHz, +85°C  
MCLKIN = 20MHz, +125°C  
MCLKIN = 10MHz, –40°C  
MCLKIN = 10MHz, +25°C  
MCLKIN = 10MHz, +85°C  
MCLKIN = 10MHz, +125°C  
–100  
–150  
–200  
0
4.50  
4.75  
5.00  
(V)  
5.25  
5.50  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
TEMPERATURE (°C)  
V
DD1  
Figure 19. AD7403 Offset vs. Temperature  
Figure 22. IDD1 vs. VDD1 at Various Temperatures and Clock Rates  
800  
600  
400  
200  
0
32  
T
T
T
T
T
= –40°C  
= 0°C  
= +25°C  
= +85°C  
= +125°C  
DC INPUT  
A
A
A
A
A
31  
30  
29  
28  
27  
26  
25  
MCLKIN = 10MHz  
MCLKIN = 16MHz  
MCLKIN = 20MHz  
–200  
–400  
–50  
–25  
0
25  
50  
75  
100  
125  
–250  
–125  
0
125  
250  
TEMPERATURE (°C)  
V
DC INPUT (mV)  
IN+  
Figure 20. AD7403-8 Offset vs. Temperature  
Figure 23. IDD1 vs. VIN+ DC Input at Various Temperatures  
10  
8
14  
12  
10  
8
MCLKIN = 10MHz  
MCLKIN = 20MHz  
6
4
2
0
6
–2  
–4  
–6  
–8  
–10  
MCLKIN = 20MHz, –40°C  
MCLKIN = 20MHz, +25°C  
MCLKIN = 20MHz, +85°C  
MCLKIN = 20MHz, +125°C  
MCLKIN = 10MHz, –40°C  
MCLKIN = 10MHz, +25°C  
MCLKIN = 10MHz, +85°C  
MCLKIN = 10MHz, +125°C  
4
2
0
3.0  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
3.5  
4.0  
4.5  
5.0  
5.5  
TEMPERATURE (°C)  
V
(V)  
DD2  
Figure 21. Gain Error vs. Temperature  
Figure 24. IDD2 vs. VDD2 at Various Temperatures and Clock Rates  
Rev. B | Page 12 of 24  
Data Sheet  
AD7403  
14  
60  
40  
T
T
T
T
T
= –40°C  
= 0°C  
= +25°C  
= +85°C  
= +125°C  
A
A
A
A
A
DC INPUT  
DC INPUT  
13  
12  
11  
10  
20  
mA)  
(
0
D2  
I
MCLKIN = 5MHz  
MCLKIN = 10MHz  
MCLKIN = 20MHz  
–20  
–40  
–60  
–320  
–240  
–160  
–80  
V
0
80  
160  
240  
320  
–250  
–125  
0
125  
250  
DC INPUT (mV)  
V
DC INPUT (mV)  
IN+  
IN+  
Figure 26. IIN+ vs. VIN+ DC Input at Various Clock Rates  
Figure 25. IDD2 vs. VIN+ DC Input at Various Temperatures  
Rev. B | Page 13 of 24  
AD7403  
Data Sheet  
TERMINOLOGY  
Total Harmonic Distortion (THD)  
THD is the ratio of the rms sum of harmonics to the  
fundamental. It is defined as  
Differential Nonlinearity (DNL)  
DNL is the difference between the measured and the ideal  
1 LSB change between any two adjacent codes in the ADC.  
V22 +V32 +V42 +V52 +V6  
2
Integral Nonlinearity (INL)  
THD(dB) = 20log  
V1  
INL is the maximum deviation from a straight line passing  
through the endpoints of the ADC transfer function. The  
endpoints of the transfer function are specified negative full  
scale, −250 mV (VIN+ − VIN−), Code 7168 for the 16-bit level,  
and specified positive full scale, +250 mV (VIN+ − VIN−),  
Code 58,368 for the 16-bit level.  
where:  
V1 is the rms amplitude of the fundamental.  
V2, V3, V4, V5, and V6 are the rms amplitudes of the second  
through the sixth harmonics.  
Peak Harmonic or Spurious Noise (SFDR)  
Offset Error  
Peak harmonic or spurious noise is defined as the ratio of the  
rms value of the next largest component in the ADC output  
spectrum (up to fS/2, excluding dc) to the rms value of the  
fundamental. Normally, the value of this specification is  
determined by the largest harmonic in the spectrum, but for  
ADCs where the harmonics are buried in the noise floor, it is  
a noise peak.  
Offset error is the deviation of the midscale code (32,768 for the  
16-bit level) from the ideal VIN+ − VIN− (that is, 0 V).  
Gain Error  
The gain error includes both positive full-scale gain error and  
negative full-scale gain error. Positive full-scale gain error is the  
deviation of the specified positive full-scale code (58,368 for the  
16-bit level) from the ideal VIN+ − VIN− (250 mV) after the offset  
error is adjusted out. Negative full-scale gain error is the  
deviation of the specified negative full-scale code (7168 for the  
16-bit level) from the ideal VIN+ − VIN− (−250 mV) after the  
offset error is adjusted out.  
Effective Number of Bits (ENOB)  
ENOB is defined by  
ENOB = (SINAD − 1.76)/6.02 bits  
Noise Free Code Resolution  
Noise free code resolution represents the resolution in bits for  
which there is no code flicker. The noise free code resolution for  
an N-bit converter is defined as  
Noise Free Code Resolution (Bits) = log2(2N/Peak-to-Peak Noise)  
Signal-to-Noise-and-Distortion Ratio (SINAD)  
SINAD is the measured ratio of signal to noise and distortion at  
the output of the ADC. The signal is the rms value of the sine  
wave, and noise is the rms sum of all nonfundamental signals  
up to half the sampling frequency (fS/2), including harmonics,  
but excluding dc.  
The peak-to-peak noise in LSBs is measured with VIN+ = VIN− = 0 V.  
Common-Mode Rejection Ratio (CMRR)  
Signal-to-Noise Ratio (SNR)  
CMRR is defined as the ratio of the power in the ADC output at  
250 mV frequency, f, to the power of a +250 mV peak-to-peak  
sine wave applied to the common-mode voltage of VIN+ and VIN−  
of frequency, fS, as  
SNR is the measured ratio of signal to noise at the output of the  
ADC. The signal is the rms amplitude of the fundamental. Noise  
is the sum of all nonfundamental signals up to half the sampling  
frequency (fS/2), excluding dc.  
CMRR (dB) = 10 log(Pf/PfS)  
The ratio is dependent on the number of quantization levels in the  
digitization process: the greater the number of levels, the smaller  
the quantization noise. The theoretical signal-to-noise ratio for  
an ideal N-bit converter with a sine wave input is given by  
where:  
Pf is the power at frequency, f, in the ADC output.  
PfS is the power at frequency, fS, in the ADC output.  
Power Supply Rejection Ratio (PSRR)  
Signal-to-Noise Ratio = (6.02N + 1.76) dB  
Variations in power supply affect the full-scale transition but  
not the linearity of the converter. PSRR is the maximum change  
in the specified full-scale ( 250 mV) transition point due to a  
change in power supply voltage from the nominal value.  
Therefore, for a 12-bit converter, the SNR is 74 dB.  
Isolation Transient Immunity  
The isolation transient immunity specifies the rate of rise and  
fall of a transient pulse applied across the isolation boundary,  
beyond which clock or data is corrupted. The AD7403 was  
tested using a transient pulse frequency of 100 kHz.  
Rev. B | Page 14 of 24  
 
Data Sheet  
AD7403  
THEORY OF OPERATION  
A differential signal of 0 V ideally results in a stream of alter-  
CIRCUIT INFORMATION  
nating 1s and 0s at the MDAT output pin. This output is high  
50% of the time and low 50% of the time. A differential input of  
250 mV produces a stream of 1s and 0s that are high 89.06% of  
the time. A differential input of −250 mV produces a stream of  
1s and 0s that are high 10.94% of the time.  
The AD7403 isolated Σ-Δ modulator converts an analog input  
signal into a high speed (20 MHz maximum), single-bit data  
stream; the time average single-bit data from the modulator is  
directly proportional to the input signal. Figure 27 shows a  
typical application circuit where the AD7403 is used to provide  
isolation between the analog input, a current sensing resistor or  
shunt, and the digital output, which is then processed by a  
digital filter to provide an N-bit word.  
A differential input of 320 mV ideally results in a stream of all  
1s. A differential input of −320 mV ideally results in a stream of  
all 0s. The absolute full-scale range is 320 mV and the specified  
full-scale performance range is 250 mV, as shown in Table 12.  
ANALOG INPUT  
Table 12. Analog Input Range  
The differential analog input of the AD7403 is implemented  
with a switched capacitor circuit. This circuit implements a  
second-order modulator stage that digitizes the input signal  
into a single-bit output stream. The sample clock (MCLKIN)  
provides the clock signal for the conversion process as well as  
the output data framing clock. This clock source is externally  
supplied to the AD7403. The analog input signal is  
Analog Input  
Voltage Input (mV)  
Positive Full-Scale Value  
Positive Specified Performance Input  
Zero  
+320  
+250  
0
Negative Specified Performance Input  
Negative Full-Scale Value  
−250  
−320  
continuously sampled by the modulator and compared to an  
internal voltage reference. A digital stream that accurately  
represents the analog input over time appears at the output of  
the converter (see Figure 28).  
FLOATING  
POWER SUPPLY  
+400V  
NONISOLATED  
5V/3V  
GATED  
10µF 1nF  
DRIVE  
V
AD7403  
V
V
DD  
DD1  
DD2  
CIRCUIT  
GND  
SINC3 FILTER*  
MDAT  
5.1V  
1
220pF  
10Ω  
CS  
Σ-Δ  
MOD/  
MDAT  
DECODER  
ENCODER  
V
V
IN+  
IN–  
ENCODER  
SCLK  
R
SHUNT  
10Ω  
MCLKIN  
MCLK  
MOTOR  
SDAT  
10µF 1nF  
220pF  
100nF  
FLOATING  
POWER SUPPLY  
DECODER  
V
DD1  
GND  
GND  
2
GND  
1
GATED  
DRIVE  
CIRCUIT  
*THIS FILTER IS IMPLEMENTED  
WITH AN FPGA OR DSP  
–400V  
Figure 27. Typical Application Circuit  
MODULATOR OUTPUT  
+FS ANALOG INPUT  
–FS ANALOG INPUT  
ANALOG INPUT  
Figure 28. Analog Input vs. Modulator Output  
Rev. B | Page 15 of 24  
 
 
 
 
 
 
AD7403  
Data Sheet  
To reconstruct the original information, this output must be  
digitally filtered and decimated. A sinc3 filter is recommended  
because it is one order higher than that of the AD7403 modulator,  
which is a second-order modulator. If a 256 decimation rate is  
used, the resulting 16-bit word rate is 78.1 kSPS, assuming a  
20 MHz external clock frequency. See the Digital Filter section  
for more detailed information on the sinc filter implementation.  
Figure 29 shows the transfer function of the AD7403 relative to  
the 16-bit output.  
DIFFERENTIAL INPUTS  
The analog input to the modulator is a switched capacitor  
design. The analog signal is converted into charge by highly  
linear sampling capacitors. A simplified equivalent circuit  
diagram of the analog input is shown in Figure 30. A signal  
source driving the analog input must provide the charge onto the  
sampling capacitors every half MCLKIN cycle and settle to the  
required accuracy within the next half cycle.  
φA  
300Ω  
φB  
65535  
V
IN+  
IN–  
1.9pF  
1.9pF  
φA  
φB  
58368  
300Ω  
V
SPECIFIED RANGE  
φA φB φA φB  
MCLKIN  
Figure 30. Analog Input Equivalent Circuit  
7168  
Because the AD7403 samples the differential voltage across its  
analog inputs, low noise performance is attained with an input  
circuit that provides low common-mode noise at each input.  
0
–320mV  
DIGITAL OUTPUT  
–250mV  
ANALOG INPUT  
+250mV +320mV  
The AD7403 MDAT output driver is a slew rate limited driver.  
This driver lowers electromagnetic emissions, thus minimizing  
electromagnetic interference (EMI), both conducted and  
radiated.  
Figure 29. Filtered and Decimated 16-Bit Transfer Function  
Rev. B | Page 16 of 24  
 
 
 
 
Data Sheet  
AD7403  
APPLICATIONS INFORMATION  
90  
85  
80  
75  
70  
65  
60  
AD7403 20MHz  
AD7403-8 20MHz  
CURRENT SENSING APPLICATIONS  
The AD7403 is ideally suited for current sensing applications  
where the voltage across a shunt resistor (RSHUNT) is monitored.  
The load current flowing through an external shunt resistor  
produces a voltage at the input terminals of the AD7403. The  
AD7403 provides isolation between the analog input from the  
current sensing resistor and the digital outputs. By selecting the  
appropriate shunt resistor value, a variety of current ranges can  
be monitored.  
14-BIT  
ENOB  
13-BIT  
ENOB  
12-BIT  
ENOB  
fIN = 1kHz  
MCLKIN = 20MHz  
V
V
T
= 5V  
= 5V  
= 25°C  
DD1  
Choosing RSHUNT  
DD2  
11-BIT  
ENOB  
A
The shunt resistor (RSHUNT) values used in conjunction with the  
AD7403 are determined by the specific application require-  
ments in terms of voltage, current, and power. Small resistors  
minimize power dissipation, whereas low inductance resistors  
prevent any induced voltage spikes, and good tolerance devices  
reduce current variations. The final values chosen are a  
compromise between low power dissipation and accuracy.  
Higher value resistors use the full performance input range  
of the ADC, thus achieving maximum SNR performance.  
Low value resistors dissipate less power but do not use the  
full performance input range. The AD7403, however, delivers  
excellent performance, even with lower input signal levels,  
allowing low value shunt resistors to be used while maintaining  
system performance.  
0
50  
100  
V
150  
(mV)  
200  
250  
IN+  
Figure 31. SINAD vs. VIN+ AC Input Signal Amplitude  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
DC INPUT  
100k SAMPLES PER DATA POINT  
MCLKIN = 5MHz  
MCLKIN = 10MHz  
MCLKIN = 20MHz  
To choose a suitable shunt resistor, first determine the current  
through the shunt. The shunt current for a 3-phase induction  
motor can be expressed as  
–320  
–240  
–160  
–80  
0
80  
160  
240  
320  
V
DC INPUT SIGNAL AMPLITUDE (mV)  
IN+  
PW  
IRMS  
=
Figure 32. RMS Noise vs. VIN+ DC Input Signal Amplitude  
1.73×V × EF × PF  
RSHUNT must be able to dissipate the I2R power losses. If the  
power dissipation rating of the resistor is exceeded, its value  
may drift or the resistor may be damaged, resulting in an open  
circuit. This open circuit can result in a differential voltage  
across the terminals of the AD7403, in excess of the absolute  
maximum ratings. If ISENSE has a large high frequency  
component, choose a resistor with low inductance.  
where:  
RMS is the motor phase current (A rms).  
W is the motor power (Watts).  
V is the motor supply voltage (V ac).  
EF is the motor efficiency (%).  
PF is the power efficiency (%).  
I
P
To determine the shunt peak sense current, ISENSE, consider the  
motor phase current and any overload that may be possible in  
the system. When the peak sense current is known, divide the  
voltage range of the AD7403 ( 250 mV) by the peak sense  
current to yield a maximum shunt value.  
VOLTAGE SENSING APPLICATIONS  
The AD7403 can also be used for isolated voltage monitoring.  
For example, in motor control applications, it can be used to  
sense the bus voltage. In applications where the voltage being  
monitored exceeds the specified analog input range of the  
AD7403, a voltage divider network can be used to reduce the  
voltage being monitored to the required range.  
If the power dissipation in the shunt resistor is too large, the  
shunt resistor can be reduced and less of the ADC input range can  
be used. Figure 31 shows the SINAD performance characteristics  
and the ENOB of resolution for the AD7403 for different input  
signal amplitudes. Figure 32 shows the rms noise performance  
for dc input signal amplitudes. The performance of the AD7403  
at lower input signal ranges allows smaller shunt values to be  
used while still maintaining a high level of performance and  
overall system efficiency.  
Rev. B | Page 17 of 24  
 
 
 
 
 
AD7403  
Data Sheet  
INPUT FILTER  
DIGITAL FILTER  
In a typical use case for directly measuring the voltage across a  
shunt resistor, the AD7403 can be connected directly across the  
shunt resistor with a simple RC low-pass filter on each input.  
The output of the AD7403 is a continuous digital bit stream. To  
reconstruct the original input signal information, this output  
bit stream needs to be digitally filtered and decimated. A sinc  
filter is recommended due to its simplicity. A sinc3 filter is  
recommended because it is one order higher than that of the  
AD7403 modulator, which is a second-order modulator. The type  
of filter selected, the decimation rate, and the modulator clock used  
determines the overall system resolution and throughput rate. The  
higher the decimation rate, the greater the system accuracy, as  
illustrated in Figure 36. However, there is a trade-off between  
accuracy and throughput rate and, therefore, higher decimation  
rates result in lower throughput solutions. Note that for a given  
bandwidth requirement, a higher MCLKIN frequency can allow  
higher decimation rates to be used, resulting in higher SNR  
performance.  
The recommended circuit configuration for driving the  
differential inputs to achieve best performance is shown in  
Figure 33. An RC low-pass filter is placed on both the analog  
input pins. Recommended values for the resistors and capacitors  
are 10 Ω and 220 pF, respectively. If possible, equalize the  
source impedance on each analog input to minimize offset.  
C
R
V
V
IN+  
AD7403  
R
IN–  
C
100  
fIN = 1kHz  
90  
Figure 33. RC Low-Pass Filter Input Network  
80  
70  
60  
50  
40  
The input filter configuration for the AD7403 is not limited to  
the low-pass structure shown in Figure 33. The differential RC  
filter configuration shown in Figure 34 also achieves excellent  
performance. Recommended values for the resistors and  
capacitor are 22 Ω and 47 pF, respectively.  
SINC1  
SINC2  
30  
R
V
SINC3  
SINC4  
IN+  
20  
C
AD7403  
10  
R
V
IN–  
0
10  
100  
1000  
Figure 34. Differential RC Filter Network  
DECIMATION RATE  
Figure 36. SNR vs. Decimation Rate for Different Sincx Filter Orders  
Figure 35 compares the typical performance for the input filter  
structures outlined in Figure 33 and Figure 34 for different  
resistor and capacitor values.  
A sinc3 filter is recommended for the AD7403. This filter can  
be implemented on a field programmable gate array (FPGA) or  
a digital signal processor (DSP).  
95  
fIN = 1kHz  
90  
85  
80  
75  
70  
Equation 1 describes the transfer function of a sinc filter.  
N  
1 (1Z DR  
)
H(z) =  
(1)  
(1Z 1  
)
DR  
where:  
DR is the decimation rate.  
N is the sinc filter order.  
65  
LOW PASS, 10Ω, 220pF  
DIFFERENTIAL, 22Ω, 47pF  
DIFFERENTIAL, 22Ω, 10nF  
60  
55  
50  
The throughput rate of the sinc filter is determined by the  
modulator clock and the decimation rate selected.  
MCLK  
10  
100  
DECIMATION RATE  
1000  
Throughput =  
(2)  
DR  
Figure 35. SNR vs. Decimation Rate for Different Filter Structures for Different  
Resistor and Capacitor Values  
where MCLK is the modulator clock frequency  
As the decimation rate increases, the data output size from the  
sinc filter increases. The output data size is expressed in  
Equation 3. The 16 most significant bits are used to return a  
16-bit result.  
Data size = N × log2 DR  
(3)  
Rev. B | Page 18 of 24  
 
 
 
 
 
 
Data Sheet  
AD7403  
For a sinc3 filter, the −3 dB filter response point can be derived  
from the filter transfer function, Equation 1, and is 0.262 times  
the throughput rate. The filter characteristics for a third-order  
sinc filter are summarized in Table 13.  
Z = one sample delay MCLKOUT = modulators  
conversion bit rate */  
MCLKIN  
ACC2+  
+
ACC1+  
ACC3+  
IP_DATA1  
Z
Z
Z
+
+
Table 13. Sinc3 Filter Characteristics for 20 MHz MCLKIN  
Decimation Throughput Output Data Filter  
Figure 37. Accumulator  
Ratio (DR)  
Rate (kHz)  
Size (Bits)  
Response (kHz)  
always @ (negedge mclk1, posedge reset)  
begin  
32  
64  
128  
256  
625  
15  
18  
21  
24  
27  
163.7  
81.8  
40.9  
20.4  
10.2  
312.5  
156.2  
78.1  
if (reset)  
begin  
/* initialize acc registers on reset  
512  
39.1  
*/  
acc1 <= 37'd0;  
acc2 <= 37'd0;  
acc3 <= 37'd0;  
The following Verilog code provides an example of a sinc3 filter  
implementation on a Xilinx® Spartan®-6 FPGA. Note that the  
data is read on the positive clock edge. It is recommended to  
read in the data on the positive clock edge. The code is  
end  
else  
begin  
configurable to accommodate decimation rates from 32 to 4096.  
/*perform accumulation process */  
acc1 <= acc1 + ip_data1;  
acc2 <= acc2 + acc1;  
acc3 <= acc3 + acc2;  
end  
module dec256sinc24b  
(
input mclk1, /* used to clk filter */  
input reset, /* used to reset filter */  
input mdata1, /* input data to be filtered  
*/  
end  
output reg [15:0] DATA, /* filtered output  
*/  
output reg data_en,  
input [15:0] dec_rate  
);  
/*decimation stage (MCLKOUT/WORD_CLK) */  
always @ (posedge mclk1, posedge reset)  
begin  
if (reset)  
word_count <= 16'd0;  
/* Data is read on positive clk edge */  
else  
begin  
reg [36:0] ip_data1;  
reg [36:0] acc1;  
reg [36:0] acc2;  
reg [36:0] acc3;  
reg [36:0] acc3_d2;  
reg [36:0] diff1;  
reg [36:0] diff2;  
reg [36:0] diff3;  
reg [36:0] diff1_d;  
reg [36:0] diff2_d;  
if ( word_count == dec_rate - 1  
)
word_count <= 16'd0;  
else  
word_count <= word_count  
+ 16'b1;  
end  
end  
always @ ( posedge mclk1, posedge reset )  
begin  
reg [15:0] word_count;  
if ( reset )  
word_clk <= 1'b0;  
reg word_clk;  
reg enable;  
else  
begin  
if ( word_count == dec_rate/2 -  
/*Perform the Sinc action*/  
always @ (mdata1)  
if(mdata1==0)  
ip_data1 <= 37'd0;  
/* change 0 to a -1 for twos  
complement */  
1 )  
word_clk <= 1'b1;  
else if ( word_count ==  
dec_rate - 1 )  
word_clk <= 1'b0;  
end  
end  
else  
ip_data1 <= 37'd1;  
/*Differentiator (including decimation  
stage)  
Perform the differentiation stage (FIR) at a  
lower speed.  
/*Accumulator (Integrator)  
Perform the accumulation (IIR) at the speed  
of the modulator.  
Rev. B | Page 19 of 24  
 
AD7403  
Data Sheet  
Z = one sample delay WORD_CLK = output word  
rate */  
DATA <= (diff3[24:8] ==  
17'h10000) ? 16'hFFFF : diff3[23:8];  
end  
16'd512:begin  
DATA <= (diff3[27:11] ==  
17'h10000) ? 16'hFFFF : diff3[26:11];  
DIFF1  
DIFF2  
DIFF3  
+
+
+
ACC3  
–1  
–1  
–1  
Z
Z
Z
end  
16'd1024:begin  
WORD_CLK  
DATA <= (diff3[30:14] ==  
17'h10000) ? 16'hFFFF : diff3[29:14];  
Figure 38. Differentiator  
end  
16'd2048:begin  
DATA <= (diff3[33:17] ==  
17'h10000) ? 16'hFFFF : diff3[32:17];  
always @ (posedge word_clk, posedge reset)  
begin  
if(reset)  
begin  
end  
16'd4096:begin  
acc3_d2 <= 37'd0;  
diff1_d <= 37'd0;  
diff2_d <= 37'd0;  
diff1 <= 37'd0;  
diff2 <= 37'd0;  
diff3 <= 37'd0;  
DATA <= (diff3[36:20] ==  
17'h10000) ? 16'hFFFF : diff3[35:20];  
end  
default:begin  
DATA <= (diff3[24:8] ==  
17'h10000) ? 16'hFFFF : diff3[23:8];  
end  
endcase  
end  
else  
begin  
end  
diff1 <= acc3 - acc3_d2;  
diff2 <= diff1 - diff1_d;  
diff3 <= diff2 - diff2_d;  
acc3_d2 <= acc3;  
diff1_d <= diff1;  
diff2_d <= diff2;  
/* Synchronize Data Output*/  
always@ ( posedge mclk1, posedge reset )  
begin  
if ( reset )  
begin  
data_en <= 1'b0;  
enable <= 1'b1;  
end  
end  
end  
else  
begin  
if ( (word_count == dec_rate/2  
- 1) && enable )  
begin  
/* Clock the Sinc output into an output  
register  
WORD_CLK = output word rate */  
data_en <= 1'b1;  
enable <= 1'b0;  
end  
WORD_CLK  
else if ( (word_count ==  
dec_rate - 1) && ~enable )  
begin  
DIFF3  
DATA  
Figure 39. Clocking Sinc3 Output into an Output Register  
data_en <= 1'b0;  
enable <= 1'b1;  
end  
always @ ( posedge word_clk )  
begin  
else  
data_en <= 1'b0;  
case ( dec_rate )  
end  
end  
16'd32:begin  
DATA <= (diff3[15:0] ==  
16'h8000) ? 16'hFFFF : {diff3[14:0], 1'b0};  
end  
endmodule  
16'd64:begin  
DATA <= (diff3[18:2] ==  
17'h10000) ? 16'hFFFF : diff3[17:2];  
end  
16'd128:begin  
DATA <= (diff3[21:5] ==  
17'h10000) ? 16'hFFFF : diff3[20:5];  
end  
16'd256:begin  
Rev. B | Page 20 of 24  
Data Sheet  
AD7403  
Another method is to regulate a dc supply on the high voltage  
side of the isolation barrier using a step-down dc-to-dc regulator,  
such as the ADP2441.  
INTERFACING TO ADSP-CM4xx  
The ADSP-CM4xx family of mixed-signal control processors  
contains on-chip sinc filter and clock generation modules for  
direct connection to the AD7403 MCLKIN and MDAT pins.  
The ADSP-CM4xx can process bit streams from four AD7403  
devices using a pair of configurable sinc filters for each bit stream.  
The primary sinc filter of each pair produces the filtered and  
decimated output for the pair. The output can be decimated to  
any integer rate between 8 and 256 times lower than the input  
rate. The four secondary sinc filters are low latency filters with  
programmable positive and negative overrange detection  
comparators that can be used to detect system fault conditions  
ISOLATION  
BARRIER  
ADP2441  
4.5V TO 36V  
5V V  
V
5V DIGITAL  
DD1  
DD2  
DC-TO-DC  
SWITCHING  
REGULATOR  
Figure 42. ADP2441 Step-Down DC-to-DC Regulator Example  
GROUNDING AND LAYOUT  
It is recommended to decouple the VDD1 supply with a 10 μF  
capacitor in parallel with a 1 nF capacitor to GND1. Decouple  
Pin 1 and Pin 7 individually. Decouple the VDD2 supply with a  
100 nF value to GND2. In applications involving high common-  
mode transients, ensure that board coupling across the isolation  
barrier is minimized. Furthermore, design the board layout so  
that any coupling that occurs equally affects all pins on a given  
component side. Failure to ensure equal coupling can cause  
voltage differentials between pins to exceed the absolute maximum  
ratings of the device, thereby leading to latch-up or permanent  
damage. Place any decoupling used as close to the supply pins as  
possible.  
Figure 40 shows the typical interface between the AD7403 and  
the ADSP-CM4xx. Additional information on the configuration of  
the sinc filter modules in the ADSP-CM4xx can be found in the  
AN-1265 Application Note.  
SINC PAIR n  
PRIMARY  
SINC0_D0  
LIMIT  
MDAT  
SECONDARY  
CONTROL FOR GROUP n  
SINC0_CLK0  
MODULATOR CLOCK n  
MCLKIN  
Minimize series resistance in the analog inputs to avoid any  
distortion effects, especially at high temperatures. If possible,  
equalize the source impedance on each analog input to minimize  
offset. Check for mismatch and thermocouple effects on the analog  
input printed circuit board (PCB) tracks to reduce offset drift.  
AD74031  
ADSP-CM4xx1  
1
ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 40. Interfacing the AD7403 to the ADSP-CM4xx  
POWER SUPPLY CONSIDERATIONS  
INSULATION LIFETIME  
The AD7403 requires a 5 V VDD1 supply, and there are various  
means of achieving this. One method is to use an isolated dc-to-  
dc converter such as the ADuM6000. This method provides a 5 V  
regulated dc supply across the isolation barrier. Note that the  
inherent isolation of the ADuM6000 is lower than the AD7403.  
All insulation structures eventually break down when subjected  
to voltage stress over a sufficiently long period. The rate of  
insulation degradation is dependent on the characteristics of  
the voltage waveform applied across the insulation. In addition  
to the testing performed by the regulatory agencies, Analog  
Devices carries out an extensive set of evaluations to determine  
the lifetime of the insulation structure within the AD7403.  
ISOLATION  
BARRIER  
Analog Devices performs accelerated life testing using voltage  
levels higher than the rated continuous working voltage.  
Acceleration factors for several operating conditions are  
determined. These factors allow calculation of the time to  
failure at the actual working voltage. The values shown in Table 9  
summarize the peak voltage for 20 years of service life for a  
bipolar, ac operating condition and the maximum VDE  
approved working voltages.  
5V ISO  
5V DIGITAL  
V
V
DD2  
DD1  
Figure 41. ADuM6000 Isolated 5 V DC-to-DC Regulator Example  
Rev. B | Page 21 of 24  
 
 
 
 
 
AD7403  
Data Sheet  
These tests subjected the AD7403 to continuous cross isolation  
voltages. To accelerate the occurrence of failures, the selected  
test voltages were values exceeding those of normal use. The  
time to failure values of these units were recorded and used to  
calculate the acceleration factors. These factors were then used  
to calculate the time to failure under the normal operating  
conditions. The values shown in Table 9 are the lesser of the  
following two values:  
Figure 43, Figure 44, and Figure 45 illustrate the different  
isolation voltage waveforms.  
RATED PEAK VOLTAGE  
0V  
Figure 43. Bipolar AC Waveform, 50 Hz or 60 Hz  
RATED PEAK VOLTAGE  
The value that ensures at least a 20-year lifetime of  
continuous use.  
0V  
The maximum VDE approved working voltage.  
Figure 44. Unipolar AC Waveform, 50 Hz or 60 Hz  
Note that the lifetime of the AD7403 varies according to the  
waveform type imposed across the isolation barrier. The  
iCoupler insulation structure is stressed differently, depending  
on whether the waveform is bipolar ac, unipolar ac, or dc.  
RATED PEAK VOLTAGE  
0V  
Figure 45. DC Waveform  
Rev. B | Page 22 of 24  
 
 
 
Data Sheet  
AD7403  
OUTLINE DIMENSIONS  
12.85  
12.75  
12.65  
1.93 REF  
16  
9
8
7.60  
7.50  
7.40  
10.51  
10.31  
10.11  
1
PIN 1  
MARK  
0.71  
0.50 45°  
0.31  
0.25 BSC  
2.64  
2.54  
2.44  
2.44  
2.24  
GAGE  
0.32  
0.23  
PLANE  
0.30  
0.20  
0.10  
SEATING  
PLANE  
8°  
0°  
1.27 BSC  
1.01  
0.76  
0.51  
0.46  
0.36  
COPLANARITY  
0.1  
COMPLIANT TO JEDEC STANDARDS MS-013-AC  
Figure 46. 16-Lead Standard Small Outline Package, with Increased Creepage [SOIC_IC]  
Wide Body  
(RI-16-2)  
Dimensions shown in millimeters  
6.05  
5.85  
5.65  
8
1
5
4
7.60  
7.50  
7.40  
10.51  
10.31  
10.11  
PIN 1  
MARK  
0.75  
0.50 45°  
0.25  
2.45  
2.35  
2.25  
2.65  
2.50  
2.35  
1.04  
BSC  
8°  
0°  
0.30  
0.33  
0.27  
0.20  
SEATING  
PLANE  
0.20  
0.10  
COPLANARITY  
0.10  
0.51  
0.41  
0.31  
1.27 BSC  
0.75  
0.58  
0.40  
Figure 47. 8-Lead Standard Small Outline Package, with Increased Creepage [SOIC_IC]  
Wide Body  
(RI-8-1)  
Dimensions shown in millimeters  
Rev. B | Page 23 of 24  
 
AD7403  
Data Sheet  
ORDERING GUIDE  
Package  
Option  
Model1  
Temperature Range Package Description  
AD7403-8BRIZ  
−40°C to +105°C  
8-Lead Standard Small Outline Package, with Increased Creepage [SOIC_IC]  
8-Lead Standard Small Outline Package, with Increased Creepage [SOIC_IC]  
RI-8-1  
RI-8-1  
RI-8-1  
RI-16-2  
RI-16-2  
RI-16-2  
AD7403-8BRIZ-RL  
AD7403-8BRIZ-RL7  
AD7403BRIZ  
AD7403BRIZ-RL  
AD7403BRIZ-RL7  
EVAL-AD7403-8FMCZ  
EVAL-AD7403FMCZ  
EVAL-SDP-CH1Z  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
8-Lead Standard Small Outline Package, with Increased Creepage [SOIC_IC]  
16-Lead Standard Small Outline Package, with Increased Creepage [SOIC_IC]  
16-Lead Standard Small Outline Package, with Increased Creepage [SOIC_IC]  
16-Lead Standard Small Outline Package, with Increased Creepage [SOIC_IC]  
AD7403-8 Evaluation Board  
AD7403 Evaluation Board  
System Demonstration Platform  
1 Z = RoHS Compliant Part.  
©2014–2015 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12196-0-5/15(B)  
Rev. B | Page 24 of 24  
 

相关型号:

AD7403BRIZ

16-Bit, Isolated Sigma-Delta Modulator
ADI

AD7403BRIZ-RL

16-Bit, Isolated Sigma-Delta Modulator
ADI

AD7403BRIZ-RL7

16-Bit, Isolated Sigma-Delta Modulator
ADI

AD741

Low Cost, High Accuracy IC Op Amps
ADI

AD74111

Low Cost, Low Power Mono Audio Codec
ADI

AD74111YRU

Low Cost, Low Power Mono Audio Codec
ADI

AD74111YRU

SPECIALTY CONSUMER CIRCUIT, PDSO16, TSSOP-16
ROCHESTER

AD74111YRU-REEL

SPECIALTY CONSUMER CIRCUIT, PDSO16, TSSOP-16
ROCHESTER

AD74111YRU-REEL7

SPECIALTY CONSUMER CIRCUIT, PDSO16, TSSOP-16
ROCHESTER

AD74111YRUZ

Low Cost, Low Power Mono Audio Codec
ADI

AD74111YRUZ

SPECIALTY CONSUMER CIRCUIT, PDSO16, TSSOP-16
ROCHESTER

AD74111YRUZ-REEL

Low Cost, Low Power Mono Audio Codec
ADI