AD7467BRT [ADI]

1.8 V, Micro-Power, 8/10/12-Bit ADCs in 6 Lead SOT-23; 1.8 V ,微功耗,8 /10/ 12位ADC的6引脚SOT -23
AD7467BRT
型号: AD7467BRT
厂家: ADI    ADI
描述:

1.8 V, Micro-Power, 8/10/12-Bit ADCs in 6 Lead SOT-23
1.8 V ,微功耗,8 /10/ 12位ADC的6引脚SOT -23

文件: 总15页 (文件大小:167K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
pecifications  
1.8V, Micro-Power,  
a
Preliminary Technical Data  
8/10/12-BitADCsin6LeadSOT-23  
AD7466/AD7467/AD7468  
FEATURES  
F U NC T IO NAL B LO C K D IAG RAM  
Specified for VDD of 1.8 V to 3.6 V  
Low Pow er:  
V
DD  
0.9 m W m ax at 60 kSPS w ith 3.6 V Supplies  
0.4 m W m ax at 100 kSPS w ith 1.8 V Supplies  
Fast Throughput Rate: 100 kSPS  
12/10/8-BIT  
Wide Input Bandw idth:  
V
T/H  
SUCCESSIVE  
APPROXIMATION  
ADC  
IN  
70dB SNR at 30 kHz Input Frequency  
Flexible Pow er/ Serial Clock Speed Managem ent  
No Pipeline Delays  
High Speed Serial Interface  
SPI/ QSPI/ µWire/ DSP Com patible  
SCLK  
Standby Mode: 0.5 µA m ax  
6-Lead SOT-23 Package and 8 lead µSOIC  
CONTROL LOGIC  
SDATA  
CS  
AD7466/67/68  
APPLICATIONS  
Battery Pow ered System s  
Medical Instrum ents  
Ram ote Data Acquisition  
Isolated Data Acquisition  
GND  
P R O D U C T H IG H LIG H T S  
1. Specified for Supply voltages of 1.8 V to 3.6 V  
G E NE R AL D E S C R IP T IO N  
T he AD 7466/AD 7467/AD 7468 are 12/10/8-bit, high  
speed, low power, successive-approximation ADCs re-  
spectively. T he parts operate from a single 1.8 V to 3.6 V  
power supply and feature throughput rates up to 100  
kSPS. T he parts contain a low-noise, wide bandwidth  
track/hold amplifier which can handle input frequencies in  
excess of 100 kHz.  
2. 8/10/12-Bit ADCs in a SOT -23 package.  
3. H igh T hroughput with Low Power Consumption  
4 . Flexible Power/Serial Clock Speed Management  
The conversion rate is determined by the serial clock  
allowing the conversion time to be reduced through the  
serial clock speed increase. Automatic power down after  
conversion, which allows the average power cunsumption  
to be reduced when in powerdown. Power consumption  
is 0.5 µA max when in powerdown.  
T he conversion process and data acquisition are controlled  
using CS and the serial clock, allowing the devices to  
interface with microprocessors or DSPs. T he input signal  
is sampled on the falling edge of CS and the conversion is  
also initiated at this point. T here are no pipelined delays  
associated with the part.  
5. Reference derived from the power supply.  
6. N o Pipeline D elay  
T he part features a standard successive-approximation  
ADC with accurate control of the conversions via a CS  
input.  
T he AD7466/AD7467/AD7468 use advanced design tech-  
niques to achieve very low power dissipation at high  
throughput rates.  
T he reference for the part is taken internally from VDD.  
T his allows the widest dynamic input range to the ADC.  
T hus the analog input range for the part is 0 to VDD. T he  
conversion rate is determined by the SCLK.  
REV. PrC 07/01  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 781/ 329-4700  
Fax: 781/ 326-8703  
World Wide Web Site: http:/ / w w w.analog.com  
Analog Devices, Inc., 2001  
pecifications  
1
(V = 1.8 V to 3.6 V, fSCLK = 2.4 MHz, fSAMPLE = 100 kSPS unless otherwise noted; T =  
DD  
A
AD7466–SPECIFICATIONS  
T to T , unless otherwise noted.)  
MIN  
MAX  
P a r a m et er  
B Version1, 2  
U n it  
T est C on d it ion s/C om m en t s  
D YN AM IC P ERF O RM AN C E  
Signal-to-N oise + D istortion (SIN AD )2  
Signal-to-N oise Ratio (SN R) 2  
T otal H armonic Distortion (T H D)2  
Peak Harmonic or Spurious Noise (SFDR)2  
Intermodulation D istortion (IM D )2  
Second Order T erms  
fIN = 30 kHz Sine Wave  
7 0  
7 1  
–7 8  
–8 0  
dB min  
dB min  
dB typ  
dB typ  
fa = 29.1 kHz, fb = 29.9 kHz  
–7 8  
–7 8  
1 0  
dB typ  
dB typ  
ns typ  
T hird Order T erms  
Aperture D elay  
Aperture Jitter  
3 0  
ps typ  
Full Power Bandwidth  
Full Power Bandwidth  
T BD  
T BD  
M H z typ  
M H z typ  
@ 3 dB  
@ 0.1 dB  
D C AC C U RAC Y  
Resolution  
1 2  
± 1.5  
± 0.6  
–0.9/+ 1.5  
± 0.75  
± 1.5  
Bits  
LSB m ax  
LSB typ  
Integral N onlinearity2  
D ifferential N onlinearity2  
LSB max Guaranteed No Missed Codes to 12 Bits  
LSB typ  
LSB m ax  
LSB m ax  
Offset Error3  
Gain Error3  
± 1.5  
AN ALOG IN PU T  
Input Voltage Ranges  
D C Leakage Current  
Input C apacitance  
0 to VD D  
± 1  
3 0  
V
µA m ax  
pF typ  
LOG IC IN PU T S  
Input High Voltage, VIN H  
Input Low Voltage, VIN L  
Input Current, IIN, SCLK Pin  
Input Current, IIN, CS Pin  
0.7(VD D  
0.4  
± 1  
± 1  
1 0  
)
V min  
VD D = 1.8 V to 3.6 V  
V max  
µA m ax  
µA typ  
pF max  
T ypically 10 nA, VIN = 0 V or VD D  
2,3  
Input Capacitance, C IN  
LO G IC O U T PU T S  
Output High Voltage, VO H  
Output Low Voltage, VOL  
Floating-State Leakage C urrent  
Floating-State Output C apacitance2,3  
Output C oding  
VD D – 0.2  
0.2  
± 10  
V min  
ISOURCE = 200 µA; VDD = 1.8 V to 3.6 V  
ISINK = 200 µA  
V max  
µA m ax  
pF max  
1 0  
Straight (N atural) Binary  
C O N VERSIO N RAT E  
C onversion T ime  
T rack/H old Acquisition T ime  
6.66  
T BD  
T BD  
100  
µs max  
ns max  
ns max  
Sixteen SC LK C ycles  
Full-Scale Step Input  
Sine Wave Input  
T hroughput Rate  
kSP S m ax See Serial Interface Section  
PO WER REQ U IREM EN T S  
VDD  
1.8/3.6  
V min/max  
IDD  
Digital I/Ps = 0 V or VD D  
N ormal M ode (Operational)  
350  
200  
µA max  
µA max  
VDD = 3 V. SCLK On or Off  
VDD = 1.8 V. SCLK On or Off  
Power-D own  
0.5  
8 0  
µA m ax  
µA max  
SC LK Off  
SC LK O n  
Power D issipation4  
N ormal M ode (Operational)  
T BD  
m W m ax VD D = 3 V. fSAMPLE = T BD  
m W m ax VD D = 1.8 V. fSAMPLE = T BD  
Power-D own  
1.5  
0.9  
µW m ax  
µW m ax  
VD D = 3 V. SCLK Off  
VD D = 1.8 V. SCLK Off  
NOTES  
1Temperaturerangesasfollows:BVersions:–40°Cto+85°C.  
2SeeTerminology.  
3Sampletestedat25°Ctoensurecompliance.  
4SeePowerVersusThroughputRatesection.  
Specificationssubjecttochangewithoutnotice.  
–2–  
REV. PrC  
pecifications  
1
(V = 1.8 V to 3.6 V, fSCLK = 2.4 MHz, fSAMPLE = 100 kSPS unless otherwise noted; T =  
DD  
A
AD7467–SPECIFICATIONS  
T to T , unless otherwise noted.)  
MIN  
MAX  
2
P ar am eter  
B Version1,  
Un it  
Test C onditions/C om m ents  
DYNAMIC PERFORMANCE  
Signal-to-Noise + Distortion (SINAD)2  
T otal Harmonic Distortion (T HD)2  
Peak Harmonic or Spurious Noise (SFDR)2  
Intermodulation Distortion (IMD)2  
Second Order T erms  
fIN = 30 kHz Sine Wave,  
61  
–73  
–74  
dB min  
dB max  
dB max  
fa = 29.1 kHz, fb = 29.9 kHz  
–78  
–78  
10  
dB typ  
dB typ  
ns typ  
T hird Order T erms  
Aperture Delay  
Aperture Jitter  
30  
ps typ  
Full Power Bandwidth  
Full Power Bandwidth  
T BD  
T BD  
MHz typ  
M H z typ  
@ 3 dB  
@ 0.1 dB  
D C ACCURACY  
Resolution  
10  
Bits  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
±1  
±0.9  
±1  
LSB max  
LSB max  
LSB max  
LSB max  
Guaranteed No Missed Codes to 10 Bits  
Gain Error  
±1  
ANALOG INPUT  
Input Voltage Ranges  
DC Leakage Current  
Input Capacitance  
0 to VDD  
±1  
30  
V
µA max  
pF typ  
LOGIC INPUT S  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IIN, SCLK Pin  
Input Current, IIN, CS Pin  
0.7(VD D )  
V min  
VDD = 1.8 to 3.6 V  
0.4  
±1  
±1  
10  
V max  
µA max  
µA typ  
pF max  
T ypically 10 nA, VIN = 0 V or VDD  
2,3  
Input Capacitance, CIN  
LOGIC OUT PUT S  
Output High Voltage, VOH  
Output Low Voltage, VOL  
Floating-State Leakage Current  
Floating-State Output Capacitance2,3  
Output Coding  
VDD – 0.2  
0.2  
±10  
V min  
ISOURCE = 200 µA;  
ISINK = 200 µA  
V max  
µA max  
pF max  
10  
Straight (Natural) Binary  
CONVERSION RAT E  
Conversion T ime  
T rack/Hold Acquisition T ime  
T hroughput Rate  
5
µs max  
ns max  
kSPS max  
12 SCLK Cycles with SCLK at 20 MHz  
See Serial Interface Section  
T BD  
100  
POWER REQUIREMENT S  
VD D  
1.8/3.6  
V min/max  
I D D  
Digital I/Ps = 0 V or VDD  
VDD = 3 V . SCLK On or Off  
VDD = 1.8 V . SCLK On or Off  
SCLK Off  
Normal Mode (Operational)  
350  
200  
0.5  
80  
µA max  
µA max  
µA max  
µA max  
Power-Down Mode  
SCLK On  
Power Dissipation4  
Normal Mode (Operational)  
T BD  
T BD  
1.5  
mW max  
mW max  
µW max  
µW max  
VDD = 3 V. fSAMPLE = 100 kSPS  
VDD = 1.8 V. fSAMPLE = T BD  
VDD = 3 V. SCLK Off  
Power-D own  
0.9  
VDD = 1.8 V. SCLK Off  
NOTES  
1Temperaturerangesasfollows:BVersions:–40°Cto+85°C.  
2SeeTerminology.  
3Sampletestedat25°Ctoensurecompliance.  
4SeePowerVersusThroughputRatesection.  
Specificationssubjecttochangewithoutnotice.  
REV. PrC  
–3–  
pecifications  
1
(V = 1.8 V to 3.6 V, fSCLK = 2.4 MHz, fSAMPLE = 100 kSPS unless otherwise noted; T =  
DD  
A
AD7468–SPECIFICATIONS  
T to T , unless otherwise noted.)  
MIN  
MAX  
2
P ar am eter  
B Version1,  
Un it  
Test C onditions/C om m ents  
DYNAMIC PERFORMANCE  
Signal-to-Noise + Distortion (SINAD)2  
T otal Harmonic Distortion (T HD)2  
Peak Harmonic or Spurious Noise (SFDR)2  
Intermodulation Distortion (IMD)2  
Second Order T erms  
fIN =30 kHz Sine Wave, fSAMPLE=100kSPS  
fa = 29.1 kHz, fb = 29.9 kHz  
49  
–65  
–65  
dB min  
dB max  
dB max  
–68  
–68  
10  
dB typ  
dB typ  
ns typ  
T hird Order T erms  
Aperture Delay  
Aperture Jitter  
30  
ps typ  
Full Power Bandwidth  
Full Power Bandwidth  
T BD  
T BD  
MHz typ  
M H z typ  
@ 3 dB  
@ 0.1 dB  
D C ACCURACY2  
Resolution  
8
Bits  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
Gain Error  
T otal Unadjusted Error (T UE)  
±0.5  
±0.5  
±0.5  
±0.5  
±0.5  
LSB max  
LSB max  
LSB max  
LSB max  
LSB max  
Guaranteed No Missed Codes to 8 Bits  
ANALOG INPUT  
Input Voltage Ranges  
DC Leakage Current  
Input Capacitance  
0 to VDD  
±1  
30  
V
µA max  
pF typ  
LOGIC INPUT S  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IIN, SCLK Pin  
Input Current, IIN, CS Pin  
0.7(VD D )  
V min  
VDD = 1.8 to 3.6 V  
0.4  
±1  
±1  
10  
V max  
µA max  
µA typ  
pF max  
T ypically 10 nA, VIN = 0 V or VDD  
2,3  
Input Capacitance, CIN  
LOGIC OUT PUT S  
Output High Voltage, VOH  
Output Low Voltage, VOL  
Floating-State Leakage Current  
Floating-State Output Capacitance3,  
VDD – 0.2  
0.2  
±10  
V min  
ISOURCE = 200 µA; VDD = 1.8 V to 3.6 V  
ISINK = 200 µA  
V max  
µA max  
pF max  
4
10  
Output Coding  
Straight (Natural) Binary  
CONVERSION RAT E  
Conversion T ime  
T rack/Hold Acquisition T ime  
T hroughput Rate  
4.166  
T BD  
100  
µs max  
ns max  
kSPS max  
10 SCLK Cycles with SCLK at 2.4 MHz  
See Serial Interface Section  
POWER REQUIREMENT S  
VD D  
1.8/3.6  
V min/max  
I D D  
Digital I/Ps = 0 V or VDD  
VDD = 3V. SCLK On or Off  
VDD = 1.8 V . SCLK On or Off  
SCLK Off  
Normal Mode (Static)  
350  
200  
0.5  
80  
µA max  
µA max  
µA max  
µA max  
Power-Down Mode  
SCLK On  
Power Dissipation5  
Normal Mode (Operational)  
T BD  
T BD  
1.5  
mW max  
mW max  
µW max  
µW max  
VDD = 3 V. fSAMPLE = T BD  
VDD = 1.8 V. fSAMPLE = T BD  
VDD = 3 V. SCLK Off  
Power-D own  
0.9  
VDD = 1.8 V. SCLK Off  
NOTES  
1Temperaturerangesasfollows:BVersions:–40°Cto+85°C.  
2SeeTerminology.  
3Sampletestedat25°Ctoensurecompliance.  
4SeePowerVersusThroughputRatesection.  
Specificationssubjecttochangewithoutnotice.  
–4–  
REV. PrC  
pecifications  
AD7466/AD7467/AD7468  
(V = +1.8 V to +3.6 V; T = TMIN to T , unless otherwise noted.)  
1
DD  
A
MAX  
TIMINGSPECIFICATIONS  
P ar am eter  
AD7466  
Units  
D escription  
2
fSCLK  
10  
kH z min  
T BD  
16* tSCLK  
T BD  
M H z max  
tCONVERT  
tquiet  
ns min  
Minimum Quiet T ime required between Bus Relinquish  
and start of next conversion  
t1  
T BD  
10  
ns min  
ns min  
ns max  
ns max  
ns min  
ns min  
ns min  
ns max  
µs typ  
Minimum CS Pulse Width  
CS to SCLK Setup T ime  
Delay from CS Until SDAT A 3-State Disabled  
Data Access T ime After SCLK Falling Edge  
SCLK Low Pulse Width  
SCLK High Pulse Width  
SCLK to Data Valid Hold T ime  
SCLK falling Edge to SDAT A High Impedance  
Power up time from Full Power-down.  
t23  
t3  
T BD  
T BD  
0.4tSCLK  
0.4tSCLK  
T BD  
T BD  
T BD  
3
t4  
t5  
t6  
t74  
t8  
5
tpower-up  
NOTES  
1Sample tested at +25°C to ensure compliance. All input signals are specified with tr = tf = 5 ns (10% to 90% of VDD) and timed from a voltage level of 1.6 Volts.  
2Mark/Space ratio for the SCLK input is 40/60 to 60/40.  
3Measured with the load circuit of Figure 1 and defined as the time required for the output to cross 0.8 V or 2.0 V.  
4t8 is derived form the measured time taken by the data outputs to change 0.5 V when loaded with the circuit of Figure 1. The measured number is then extrapolated back to  
remove the effects of charging or discharging the 50 pF capacitor. T his means that the time, t8, quoted in the timing characteristics is the true bus relinquish time of the  
part and is independent of the bus loading.  
5See Power-up T ime section.  
Specifications subject to change without notice.  
AB SO LUT E M AXIM UM RAT ING S 1  
(T A = +25°C unless otherwise noted)  
VDD to GND  
–0.3 V to T BD V  
–0.3 V to VDD + 0.3 V  
–0.3 V to T BDV  
I
200µA  
OL  
Analog Input Voltage to GND  
Digital Input Voltage to GND  
Digital Output Voltage to GND  
–0.3 V to VDD + 0.3 V  
Input Current to Any Pin Except Supplies2  
Operating T emperature Range  
Commercial (A, B Version)  
± 10 mA  
TO  
OUTPUT  
PIN  
+1.6V  
–40°C to +85°C  
–65°C to +150°C  
+ 150°C  
C
L
Storage T emperature Range  
Junction T emperature  
50pF  
SOT -23 Package, Power D issipation  
θJA Thermal Impedance  
450 mW  
200µA  
I
OH  
229.6°C/W (SOT23)  
205.9°C/W (µSOIC)  
91.99°C/W (SOT23)  
43.74°C/W (µSOIC)  
θJC Thermal Impedance  
Figure 1. Load Circuit for Digital Output Tim ing  
Specifications  
Lead T emperature, Soldering  
Vapor Phase (60 secs)  
Infared (15 secs)  
+ 215°C  
+ 220°C  
T BD  
E S D  
NOTES  
1Stressesabove those listed under “Absolute Maximum Ratings” maycause permanent  
damage to the device. Thisisa stressratingonlyand functionaloperation ofthe device  
at these or any other conditions above those listed in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods mayaffect device reliability.  
2T ransient currents of up to 100 mA will not cause SCR latch up.  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD7466/AD7467/AD7468 feature proprietary ESD protection circuitry, per-  
manent damage may occur on devices subjected to high energy electrostatic discharges. There-  
fore, proper ESD precautions are recommended to avoid performance degradation or loss of  
functionality.  
REV. PrC  
–5–  
pecifications  
AD7466/AD7467/AD7468  
P IN F U NC T IO N D E SC R IP T IO N  
P in P in  
No. Mnem onic  
Function  
6
CS  
Chip Select. Active low logic input. T his input provides the dual function of initiating con-  
versions on the AD7466/AD7467/AD7468 and also frames the serial data transfer.  
1
2
VDD  
Power Supply Input. T he VDD range for the AD7466/67/68 is from +1.8 V to +3.6 V.  
G N D  
Analog Ground. Ground reference point for all circuitry on the AD7466/AD7467/AD7468.  
All analog input signals should be referred to this GND voltage.  
3
5
VIN  
Analog Input. Single-ended analog input channel. T he input range is 0 to VDD.  
SD AT A  
Data Out. Logic Output. T he conversion result from the AD7466/AD7467/AD7468 is pro-  
vided on this output as a serial data stream. T he bits are clocked out on the falling edge of  
the SCLK input. T he data stream from the AD7466 consists of four leading zeros followed  
by the 12 bits of conversion data which is provided MSB first. T he data stream for the  
AD7467 consists of four leading zeros followed by 10 bits of data. T he datastream for the  
AD7468 consists of four leading zeros followed by 8 bits of data.  
4
SC L K  
Serial Clock. Logic input. SCLK provides the serial clock for accessing data from the part.  
T his clock input is also used as the clock source for the AD7466/AD7467/AD7468 conver-  
sion process.  
O R D E R ING G U ID E  
Tem perature  
Range  
Linearity  
P ackage  
O ption2  
Branding  
Inform ation  
Model  
Error (LSB)1  
AD 7466BRT  
AD 7467BRT  
AD 7468BRT  
AD 7466BRM  
AD 7467BRM  
AD 7468BRM  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
± 1 max  
± 1 max  
± 0.5 max  
± 1 max  
± 1 max  
± 0.5 max  
RT -6  
RT -6  
RT -6  
RM -8  
RM -8  
RM -8  
C L B  
C M B  
C N B  
C Q B  
C RB  
C S B  
EVAL-AD 7466C B3  
EVAL-AD 7467C B3  
EVAL-C O N T RO L BRD 24  
NOTES  
1LinearityError here refers to integrallinearityerror.  
2RT = SOT -23, RM = µSOIC.  
3T his can be used as a stand-alone evaluation board or in conjunction with the EVAL-CONT ROL BOARD for evaluation/demonstration purposes.  
4T his board is a complete unit allowing a PC to control and communicate with all Analog Devices evaluation boards ending in the CB designators.  
AD 7466/67/68 P INC O NF IG URAT IO N  
AD 7466/67/68 SO T-23  
V
DD  
1
2
3
6
5
4
CS  
AD7466/7/8  
TOP VIEW  
(Not to Scale)  
SDATA  
GND  
V
SCLK  
IN  
AD 7466/67/68 µSO IC  
CS  
V
1
2
3
4
8
7
6
5
DD  
GND  
SDATA  
SCLK  
NC  
AD7466/7/8  
TOP VIEW  
(Not to Scale)  
V
IN  
NC  
–6–  
REV. PrC  
pecifications  
AD7466/AD7467/AD7468  
T ota l H a r m on ic D istor tion  
T E R M I N O L O G Y  
In t egr a l Non lin ea r it y  
T otal harmonic distortion (T HD) is the ratio of the rms  
sum of harmonics to the fundamental. For the AD7466/  
AD7467/AD7468, it is defined as:  
T his is the maximum deviation from a straight line pass-  
ing through the endpoints of the ADC transfer function.  
For the AD7466/67/68 the endpoints of the transfer  
function are zero scale, a point 1 LSB below the first  
code transition, and full scale, a point 1 LSB above the  
last code transition.  
2
2
2
4
2
2
V2  
V
V
V
V
+
6
+
+
+
3
5
THD (d B ) 20 lo g  
=
V1  
D iffer en t ia l Non lin ea r it y  
This is the difference between the measured and the ideal 1  
LSB change between any two adjacent codes in the ADC.  
where V1 is the rms amplitude of the fundamental and V2,  
V3, V4, V5 and V6 are the rms amplitudes of the second  
through the sixth harmonics.  
P eak H ar m onic or Spur ious Noise  
O ffset E r r or  
Peak harmonic or spurious noise is defined as the ratio of  
the rms value of the next largest component in the ADC  
output spectrum (up to fS/2 and excluding dc) to the rms  
value of the fundamental. Normally, the value of this  
specification is determined by the largest harmonic in the  
spectrum, but for ADCs where the harmonics are buried  
in the noise floor, it will be a noise peak.  
T his is the deviation of the first code transition (00 . . .  
000) to (00 . . . 001) from the ideal, i.e AGND + 1  
L SB.  
G a in E r r or  
T his is the deviation of the last code transition (111 . . .  
110) to (111 . . . 111) from the ideal (i.e., VREF – 1LSB)  
after the offset error has been adjusted out.  
In t er m od u la t ion D ist or t ion  
With inputs consisting of sine waves at two frequencies, fa  
and fb, any active device with nonlinearities will create  
distortion products at sum and difference frequencies of  
mfa ± nfb where m, n = 0, 1, 2, 3, etc. Intermodulation  
distortion terms are those for which neither m nor n are  
equal to zero. For example, the second order terms in-  
clude (fa + fb) and (fa – fb), while the third order terms  
include (2fa + fb), (2fa – fb), (fa + 2fb) and (fa – 2fb).  
T r a ck/H old Acqu isition T im e  
T he track/hold amplifier returns into track mode at the  
end of conversion. T rack/Hold acquisition time is the  
time required for the output of the track/hold amplifier  
to reach its final value, within ±0.5 LSB, after the end  
of conversion. See serial interface timing section for  
more details.  
T he AD7466/AD7467/AD7468 are tested using the CCIF  
standard where two input frequencies are used. In this  
case, the second order terms are usually distanced in fre-  
quency from the original sine waves while the third order  
terms are usually at a frequency close to the input frequen-  
cies. As a result, the second and third order terms are  
specified separately. T he calculation of the  
intermodulation distortion is as per the T H D specification  
where it is the ratio of the rms sum of the individual dis-  
tortion products to the rms amplitude of the sum of the  
fundamentals expressed in dBs.  
Signal to (Noise + D istor tion) Ratio  
T his is the measured ratio of signal to (noise + distor-  
tion) at the output of the A/D converter. T he signal is  
the rms amplitude of the fundamental. Noise is the sum  
of all nonfundamental signals up to half the sampling  
frequency (fS/2), excluding dc. T he ratio is dependent on  
the number of quantization levels in the digitization  
process; the more levels, the smaller the quantization  
noise. T he theoretical signal to (noise + distortion) ratio  
for an ideal N-bit converter with a sine wave input is  
given by:  
Signal to (Noise + Distortion) = (6.02 N + 1.76) dB  
T hus for a 12-bit converter, this is 74 dB and for a 10-  
bit converter this is 62dB.  
REV. PrC  
–7–  
pecifications  
AD7466/AD7467/AD7468  
AD 7466/AD 7467/AD 7468 T YP IC AL P E RF O RMANC E  
C U R VE S  
Figure 2 shows a typical FFT plot for the AD7466 at 100  
kHz sample rate and 30 kHz input frequency.  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
TITLE  
TITLE  
Figure 4. PSRR vs Supply Ripple Frequency  
Figure 2. AD7466 Dynam ic Perform ance at 100 kSPS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
TITLE  
TITLE  
Figure 5. AD7466 THD vs Analog Input Frequency at 100  
kSPS  
Figure 3. AD7466 SINAD vs Analog Input Frequency at 100  
kSPS  
–8–  
REV. PrC  
pecifications  
AD7466/AD7467/AD7468  
C IR C U IT INF O R M AT IO N  
T he AD 7466/AD 7467/AD 7468 are fast, micro-power, 12/  
10/8-bit, A/D converters respectively. T he parts can be  
operated from a +1.8 V to +3.6 V supply. When operated  
from any supply voltage within this range, the AD7466/  
AD7467/AD7468 is capable of throughput rates of 100  
kSPS when provided with a 2 MHz clock.  
CHARGE  
REDISTRIBUTION  
DAC  
SAMPLING  
CAPACITOR  
A
V
IN  
CONTROL  
LOGIC  
SW1  
SW2  
B
T he AD7466/AD7467/AD7468 provides the user with an  
on-chip track/hold, A/D converter, and a serial interface  
housed in a tiny 6-pin SOT -23 package, which offers the  
user considerable space saving advantages over alternative  
solutions. T he serial clock input accesses data from the  
part but also provides the clock source for the successive-  
approximation A/D converter. T he analog input range is 0  
to VDD. An external reference is not required for the ADC  
and neither is there a reference on-chip. T he reference for  
the AD7466/AD7467/AD7468 is derived from the power  
supply and thus gives the widest dynamic input range.  
CONVERSION  
PHASE  
COMPARATOR  
V
/ 2  
DD  
AGND  
Figure 9. ADC Conversion Phase  
AD C T RANSF E R F U NC T IO N  
T he output coding of the AD7466/AD7467/AD7468 is  
straight binary. T he designed code transitions occur at  
successive integer LSB values (i.e., 1LSB, 2LSBs, etc.).  
T he LSB size is = VDD/4096 for the AD7466,the LSB size  
T he AD7466/AD7467/AD7468 also features an automatic  
power-down mode option to allow power saving between  
conversions. T he power-down feature is implemented  
across the standard serial interface as described in the  
“Modes of Operation” section.  
is =  
VDD/1024 for the AD7467, and the LSB size is =  
VDD/256 for the AD7468 . T he ideal transfer characteristic  
for the AD7466/AD7467/AD7468 is shown in figure 10  
below.  
111...111  
111...110  
C O NVE R T E R O P E R AT IO N  
T he AD 7466/AD 7467/AD 7468 is a successive approxi-  
mation analog-to-digital converter based around a charge  
redistribution DAC. Figures 8 and 9 show simplified  
schematics of the ADC. Figure 8 shows the ADC during  
its acquisition phase. SW2 is closed and SW1 is in posi-  
tion A, the comparator is held in a balanced condition and  
111...000  
1LSB = V  
1LSB = V  
1LSB = V  
/4096 (AD7466)  
/1024 (AD7467)  
/256 (AD7468)  
DD  
DD  
DD  
011...111  
000...010  
000...001  
000...000  
1LSB  
+V  
-1LSB  
DD  
0V  
the sampling capacitor acquires the signal on VIN  
.
ANALOG INPUT  
Figure 10. AD7466/67/68 Transfer Characteristic  
C H A R G E  
R E D I S T R I B U T I O N  
D A C  
S A M P L I N G  
C A P A C I T O R  
A
V
I N  
C O N T R O L  
L O G I C  
S W 1  
B
S W 2  
A C Q U I S I T I O N  
P H A S E  
C O M P A R A T O R  
A G N D  
V
/ 2  
D D  
Figure 8. ADC Acquisition Phase  
When the ADC starts a conversion, see figure 9, SW2 will  
open and SW1 will move to position B causing the com-  
parator to become unbalanced. T he Control Logic and  
the Charge Redistribution DAC are used to add and sub-  
tract fixed amounts of charge from the sampling capacitor  
to bring the comparator back into a balanced condition.  
When the comparator is rebalanced the conversion is com-  
plete. T he Control Logic generates the ADC output code.  
Figure 10 shows the ADC transfer function.  
REV. PrC  
–9–  
pecifications  
AD7466/AD7467/AD7468  
T YP IC AL C O NNE C T IO N D IAG R AM  
An a log In p u t  
Figure 11 shows a typical connection diagram for the  
AD7466/AD7467/AD7468. VREF is taken internally from  
VDD and as such VDD should be well decoupled. T his pro-  
vides an analog input range of 0V to VDD. For the  
AD7466 the conversion result is output in a 16-bit word  
with four leading zeroes followed by the MSB of the 12-  
bit result. T he AD7467 conversion result consists of four  
leading zeros followed by the MSB of the 10-bit result.  
T he AD7468 conversion result consists of four leading  
zeros followed by the MSB of the 8-bit result.  
Alternatively, because the supply current required by the  
AD7466/AD7467/AD7468 is so low, a presision reference  
can be used as the supply source to the AD7466/AD7467/  
AD7468. A REF19x voltage reference (REF193 for 3V,  
REF192 for 2.5 V ) can be used to supply the required  
voltage to the ADC - see figure 11. T his configuration is  
especially useful if your power supply is quite noisy or if  
the system supply voltages are at some value other than 3V  
(e.g. 2.5V). T he REF19x will output a steady voltage to  
the AD 7466/AD 7467/AD 7468. In applications where  
power consumption is important, the automatic power  
down mode of the ADC and the sleep mode of the  
REF19x reference should be used to improve power per-  
formance. See Modes of Operation section of the  
datasheet.  
Figure 12 shows an equivalent circuit of the analog input  
sturcture of the AD7466/AD7467/7468. T he two diodes  
D1 and D2 provide ESD protection for the analog inputs.  
Care must be taken to ensure that the analog input signal  
never exceeds the supply rails by more than 200mV. T his  
will cause these diodes to become forward biased and start  
conducting current into the substrate. T he capacitor C1 in  
figure 12 is typically about 4pF and can primarily be at-  
tributed to pin capacitance. T he resistor R1 is a lumped  
component made up of the on resistance of a switch. T his  
resistor is typically about 100. T he capacitor C2 is the  
ADC sampling capacitor and has a capacitance of 16pF  
typically. For ac applications, removing high frequency  
components from the analog input signal is recommended  
by use of a band-pass filter on the relevant analog input  
pin. In applications where harmonic distortion and signal  
to noise ratio are critical the analog input should be driven  
V
DD  
D1  
D2  
C2  
16PF  
R1  
V
IN  
C1  
4pF  
CONVERSION PHASE - SWITCH OPEN  
TRACK PHASE - SWITCH CLOSED  
+3V  
+5V  
REF193  
SUPPLY  
1µF  
TANT  
0.1µF  
1mA  
10µF  
0.1µF  
680nF  
0V toV  
V
AD7466/67/68  
DD  
SCLK  
DD  
V
µC/µP  
IN  
Figure 12. Equivalent Analog Input Circuit  
INPUT  
SDATA  
GND  
CS  
from a low impedance source. Large source impedances  
will significantly affect the ac performance of the ADC.  
T his may necessitate the use of an input buffer amplifier.  
T he choice of the op amp will be a function of the par-  
ticular application.  
SERIAL  
INTERFACE  
When no amplifier is used to drive the analog input the  
source impedance should be limited to low values. T he  
maximum source impedance will depend on the amount of  
total harmonic distortion (T HD) that can be tolerated.  
T he T HD will increase as the source impedance increases  
and performance will degrade. Figure 13 shows a graph of  
the T otal Harmonic Distortion vs. analog input signal  
frequency for different source impedances when using a  
supply voltage of 2.7V and sampling at a rate of 100  
kSP S.  
Figure 11. REF193 as Power Supply to AD7466/AD7467/  
AD7468  
–10–  
REV. PrC  
pecifications  
AD7466/AD7467/AD7468  
0
0
0
M O D E O F O P E R AT IO N  
T he AD 7466/AD 7467/AD 7468 automatically enters  
powerdown at the end of each conversion. T his mode of  
operation is designed to provide flexible power manage-  
ment options and to optimize the power dissipation/  
throughput rate ratio for differing application require-  
ments. Figure 14 shows the general diagram of the  
operaion of the AD7466/AD7467/AD7468. On the falling  
CS edge the part begins to power up and the T rack and  
Hold, which was in Hold while the part was in power  
down, will go into track mode. When operating the part  
with a 2.4 MHz clock it will take 2 clock cycles to fully  
power up the part and acquire the input signal. On the  
third SCLK falling edge after the CS falling edge the  
T rack and Hold will return to hold mode. For the  
AD7466 sixteen serial clock cycles are required to com-  
plete the conversion and access the complete conversion  
result.On the 16th SCLK falling edge the part will auto-  
matically enter power down . T he AD7467 will automati-  
cally enter powerdown on the fourteenth SCLK falling  
edge. T he AD7468 will automatically enter powerdown  
on the twelveth SCLK falling edge. When supplies are  
first applied to the AD7466/AD7467/AD7468 a dummy  
conversion should be performed to ensure that the part is  
in powerdown mode.  
0
0
0
0
0
0
0
TITLE  
Figure 13. THD vs. Analog Input Frequency for Various  
Source Im pedance  
D igita l In p u ts  
T he digital inputs applied to the AD7466/AD7467/  
AD7468 are not limited by the maximum ratings which  
limit the analog inputs. One advantage of SCLK and CS  
not being restricted by the VDD + 0.3V limit is the fact that  
power supply sequencing issues are avoided. If CS or  
SCLK are applied before VDD then there is no risk of  
latch-up as there would be on the analog inputs if a signal  
T he conversion is iniated on the falling edge of CS as  
described in the Serial Interface section. For the AD7466  
if CS is brought high any time before the 16th SCLK  
falling edge the part will enter power down and the con-  
version that was initiated by the falling edge of CS will be  
terminated and SDAT A will go back into tri-state. T his  
also applies for the AD7467/AD7468, if CS is brought  
high before the conversion is complete (the 14th SCLK  
falling edge for the AD7467, and the 12th SCLK falling  
edge for the AD7468) the part will enter powerdown and  
the conversion will be terminated.  
greater than 0.3V was applied prior to VDD  
.
Once a data transfer is complete (SDAT A has returned to  
tri-state), another conversion can be initiated after the  
quiet time, tquiet, has elapsed by bringing CS low again.  
THE PART BEGINS  
TO POWER UP  
AD7467 ENTERS  
POWERDOWN  
AD7468 ENTERS  
POWERDOWN  
AD7466 ENTERS  
POWERDOWN  
12  
14  
16  
2
3
1
VALID DATA  
Figure 14. Norm al Mode Operation  
REV. PrC  
–11–  
pecifications  
AD7466/AD7467/AD7468  
SE R IAL INT E R F AC E  
terminated and the SDAT A line will go back into tri-state  
and the AD7467 will enter powerdown, otherwise SDAT A  
returns to tri-state on the 14th SCLK falling edge as  
ahown in figure 16. Fourteen serial clock cycles are re-  
quired to perform the conversion process and to access  
data from the AD7467.  
Figure 15, 16, 17 show the detailed timing diagram for  
serial interfacing to the AD 7466/AD 7467/AD 7468.T he  
serial clock provides the conversion clock and also con-  
trols the transfer of information from the ADC during a  
conversion.  
For the AD7468, the 12th SCLK falling edge will cause  
the SDAT A line to go back into tri-state and the part will  
enter powerdown. If the rising edge of CS occurs before  
12 SCLKs have elapsed then the conversion will be termi-  
nated and the SDAT A line will go back into tri-state and  
the AD7468 will enter powerdown, otherwise SDAT A  
returns to tri-state on the 12th SCLK falling edge as  
ahown in figure 17. T welve serial clock cycles are re-  
quired to perform the conversion process and to access  
data from the AD7468.  
On the CS falling edge the part begins to power up. T he  
falling edge of CS puts the track and hold into track mode  
and takes the bus out of tristate. T he conversion is also  
initiated at this point and will require 16 SCLK cycles to  
complete. On the third SCLK falling edge the part should  
be fully powered up, as shown in figure 15 at point B. On  
the third SCLK falling edge after the CS falling edge the  
track and hold will return to hold. On the 16th SCLK  
falling edge the SDAT A line will go back into tristate and  
the AD7466 will enter power down. If the rising edge of  
CS occurs before 16 SCLKs have elapsed then the conver-  
sion will be terminated and the SDAT A line will go back  
into tri-state and the part will enter power down, otherwise  
SDAT A returns to tri-state on the 16th SCLK falling  
edge as shown in Figure 15. Sixteen serial clock cycles  
are required to perform the conversion process and to  
access data from the AD7466.  
CS going low provides the first leading zero to be read in  
by the microcontroller or DSP. T he remaining data is  
then clocked out by subsequent SCLK falling edges be-  
ginning with the 2nd leading zero, thus the first falling  
clock edge on the serial clock has the first leading zero  
provided and also clocks out the second leading zero. For  
the Ad7466 the final bit in the data transfer is valid on the  
sixteenth falling edge, having being clocked out on the  
previous (15th) falling edge.  
For the AD7467, the fourteenth SCLK falling edge will  
cause the SDAT A line to go back into tri-state and the  
part will enter powerdown. If the rising edge of CS occurs  
before 14 SCLKs have elapsed then the conversion will be  
CS  
tconvert  
t2  
B
t6  
SCLK  
3
4
5
1
2
13  
15  
14  
t5  
16  
tquie  
t
t8  
DB0  
t7  
t4  
t3  
ZERO  
4 LEADING ZERO'S  
DB2  
ZERO  
ZERO  
DB10  
DB1  
Z
DB11  
SDATA  
3-STATE  
3-STATE  
Figure 15. AD7466 Serial Interface Tim ing Diagram  
CS  
SCLK  
SDATA  
tconvert  
t2  
B
3
t6  
4
5
1
2
13  
t5  
14  
tquiet  
t8  
DB0  
t3  
t7  
t4  
ZERO  
ZERO  
ZERO  
DB9  
Z
DB8  
3-STATE  
3-STATE  
4 LEADING ZERO'S  
Figure 16. AD7467 Serial Interface Tim ing Diagram  
CS  
tconvert  
t2  
B
t6  
SCLK  
3
4
1
2
12  
t8  
11  
t7  
tquiet  
t5  
t3  
t4  
ZERO  
4 LEADING ZERO'S  
ZERO  
ZERO  
DB7  
SDATA  
Z
DB0  
8 BITS OF DATA  
3-STATE  
3-STATE  
Figure 17. AD7468 Serial Interface Tim ing Diagram  
–12–  
REV. PrC  
pecifications  
AD7466/AD7467/AD7468  
equidistant sampling is necessary. However, in this ex-  
ample, the timer interrupt is used to control the sampling  
rate of the ADC and under certain conditions, equidistant  
sampling may not be acheived.  
M IC R O P R O C E S S O R INT E R F AC ING  
T he serial interface on the AD7466/AD7467/AD7468  
allows the part to be directly connected to a range of many  
different microprocessors. T his section explains how to  
interface the AD7466/AD7467/AD7468 with some of the  
more common microcontroller and DSP serial interface  
protocols.  
T he T imer registers etc. are loaded with a value  
which will provide an interrupt at the required sample  
interval. When an interrupt is received, a value is trans-  
mitted with T FS/DT (ADC control word). T he T FS is  
used to control the RFS and hence the reading of data.  
T he frequency of the serial clock is set in the SCLKDIV  
register. When the instrustion to transmit with T FS is  
given, (i.e. AX0=T X0), the state of the SCLK is checked.  
T he DSP will wait until the SCLK has gone High, Low  
and High before transmission will start. If the timer and  
SCLK values are chosen such that the instruction to trans-  
mit occurs on or near the rising edge of SCLK, then the  
data may be transmitted or it may wait until the next clock  
edge.  
AD 7466/7/8 to T MS320C 5xC 54x  
T he serial interface on the T MS320C5x uses a continuous  
serial clock and frame synchronization signals to synchro-  
nize the data transfer operations with peripheral devices  
like the AD7466/67/68. T he CS input allows easy inter-  
facing between the T MS320C5x and the AD7466/67/68  
without any glue logic required. T he serial port of the  
T MS320C5x/C54x is set up to operate in burst mode  
with internal CLKX (T X serial clock) and FSX (T X  
frame sync). T he serial port control register (SPC) must  
have the following setup: FO = 0, FSM = 1, MCM = 1  
and T XM = 1. T he format bit, FO, may be set to 1 to set  
the word length to 8-bits, in order to implement the  
power-down mode on the AD7466/67/68.  
For example, the ADSP2111 has a master clock frequency  
of 16MHz. If the SCLKDIV register is loaded with the  
value 3 then a SCLK of 2MHz is obtained, and 8 master  
clock periods will elapse for every 1 SCLK period. If the  
timer registers are loaded with the value 803, then 100.5  
SCLKs will occur between interrupts and subsequently  
between transmit instructions. T his situation will result in  
non-equidistant sampling as the transmit instruction is  
occuring on a SCLK edge. If the number of SCLKs be-  
tween interrupts is a whole integer figure of N then equi-  
distant sampling will be implemented by the DSP.  
T he connection diagram is shown in Figure 18. It should  
be noted that for signal processing applications, it is im-  
perative that the frame synchronisation signal from the  
T M S320C 5x/C 54x will provide equidistant sampling.  
TMS320C5x/C54x*  
AD7466/7/8*  
CLKX  
SCLK  
CLKR  
DR  
ADSP21xx*  
AD7466/7/8*  
SDATA  
SCLK  
SCLK  
FSX  
FSR  
CS  
DR  
SDATA  
RFS  
CS  
*Additional Pins omitted for clarity  
TFS  
Figure 18. Interfacing to the TMS320C5x  
AD 7466/7/8 to AD SP 21xx  
*Additional Pins omitted for clarity  
T he ADSP21xx family of DSPs are interfaced directly to  
the AD7466/67/68 without any glue logic required. T he  
SPORT control register should be set up as follows:  
T FSW = RFSW = 1, Alternate Framing  
INVRFS = INVT FS = 1, Active Low Frame Signal  
DT YPE = 00, Right Justify Data  
SLEN = 1111, 16-Bit Data words  
ISCLK = 1, Internal serial clock  
T FSR = RFSR = 1, Frame every word  
IRFS = 0,  
IT FS = 1.  
Figure 19. Interfacing to the ADSP-21xx  
AD 7466/67/68 to D SP 56xxx  
T he connection diagram in figure 20 shows how the  
AD7466/67/68 can be connected to the SSI (Synchronous  
Serial Interface) of the DSP56xxx family of DSPs from  
Motorola. T he SSI is operated in Synchronous Mode  
(SYN bit in CRB =1) with internally generated 1-bit  
clock period frame sync for both T X and RX (bits FSL1  
=1 and FSL0 =0 in CRB). Set the word length to 16 by  
setting bits WL1 =1 and WL0 = 0 in CRA. It should be  
noted that for signal processing applications, it is impera-  
tive that the frame synchronisation signal from the  
D SP56xxx will provide equidistant sampling.  
T he connection diagram is shown in Figure 19. T he  
ADSP21xx has the T FS and RFS of the SPORT tied  
together, with T FS set as an output and RFS set as an  
input. T he DSP operates in Alternate Framing Mode and  
the SPORT control register is set up as described. T he  
Frame synchronisation signal generated on the T FS is  
tied to CS and as with all signal processing applications  
REV. PrC  
–13–  
pecifications  
AD7466/AD7467/AD7468  
DSP56xxx*  
AD7466/7/8*  
SCK  
SCLK  
SDATA  
SRD  
SC2  
CS  
*Additional Pins omitted for clarity  
Figure 20. Interfacing to the DSP56xx  
AD 7466/67/68 to MC 68H C 16  
T he Serial Peripheral Interface (SPI) on the MC68H C16  
is configured for Master Mode (MST R = 1), Clock Po-  
larity Bit (CPOL) = 1 and the Clock Phase Bit (CPHA)  
= 0. T he SPI is configured by writing to the SPI Control  
Register (SPCR) - see 68HC16 user manual. T he serial  
transfer will take place as a 16-bit operation when the  
SIZE bit in the SPCR register is set to SIZE = 1. A con-  
nection diagram is shown in figure 21.  
MC68HC16*  
AD7466/7/8*  
SCLK/PMC2  
SCLK  
SDATA  
MISO/PMC0  
SS/PMC3  
CS  
*Additional Pins omitted for clarity  
Figure 21. Interfacing to the MC68HC16  
–14–  
REV. PrC  
pecifications  
AD7466/AD7467/AD7468  
O U T LINE D IM E NS IO NS  
D imensions shown in inches and (mm).  
6-lead SO T23 (RT-6)  
0.122 (3.10)  
0.106 (2.70)  
6
1
5
2
4
3
0.071 (1.80)  
0.059 (1.50)  
0.118 (3.00)  
0.098 (2.50)  
PIN  
1
0.037 (0.95) BSC  
0.075 (1.90)  
BSC  
0.051 (1.30)  
0.035 (0.90)  
0.057 (1.45)  
0.035 (0.90)  
10  
°
0.020 (0.50)  
0.010 (0.25)  
0.022 (0.55)  
0.014 (0.35)  
0.006 (0.15)  
0.000 (0.00)  
SEATING  
PLANE  
0
°
0.009 (0.23)  
0.003 (0.08)  
8-lead m icr oSO IC (RM-8)  
0.122 (3.10)  
0.114 (2.90)  
5
4
8
1
0.199 (5.05)  
0.187 (4.75)  
0.122 (3.10)  
0.114 (2.90)  
PIN 1  
0.0256 (0.65) BSC  
0.120 (3.05)  
0.112 (2.84)  
0.120 (3.05)  
0.112 (2.84)  
0.043 (1.09)  
0.006 (0.15)  
0.002 (0.05)  
0.037 (0.94)  
33°  
27°  
0.018 (0.46)  
0.028 (0.71)  
0.016 (0.41)  
SEATING  
PLANE  
0.011 (0.28)  
0.003 (0.08)  
0.008 (0.20)  
REV. PrC  
–15–  

相关型号:

AD7467BRT-R

1.6 V, Micropower 12-/10-/8-Bit ADCs
ADI

AD7467BRT-REEL

1.6 V, Micropower 12-/10-/8-Bit ADCs
ADI

AD7467BRT-REEL7

1.6 V, Micropower 12-/10-/8-Bit ADCs
ADI

AD7467BRT-RL2

IC 1-CH 10-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PDSO6, MO-178AB, SOT-23, 6 PIN, Analog to Digital Converter
ADI

AD7467BRTZ-R

1.6 V, Micropower 12-/10-/8-Bit ADCs
ADI

AD7467BRTZ-R2

1-CH 10-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PDSO6, MO-178-AB, SOT-23, 6 PIN
ADI

AD7467BRTZ-REEL

1.6 V, Micropower 12-/10-/8-Bit ADCs
ADI

AD7467BRTZ-REEL7

1.6 V, Micropower 12-/10-/8-Bit ADCs
ADI

AD7467_15

1.6 V, Micropower 12-/10-/8-Bit ADCs
ADI

AD7468

1.8 V, Micro-Power, 8/10/12-Bit ADCs in 6 Lead SOT-23
ADI

AD7468BRM

1.8 V, Micro-Power, 8/10/12-Bit ADCs in 6 Lead SOT-23
ADI

AD7468BRM-REEL

1.6 V, Micropower 12-/10-/8-Bit ADCs
ADI