AD7528SQ [ADI]

CMOS Dual 8-Bit Buffered Multiplying DAC; CMOS双8位缓冲乘法DAC
AD7528SQ
型号: AD7528SQ
厂家: ADI    ADI
描述:

CMOS Dual 8-Bit Buffered Multiplying DAC
CMOS双8位缓冲乘法DAC

文件: 总8页 (文件大小:191K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CMOS Dual 8-Bit  
a
Buffered Multiplying DAC  
AD7528  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
On-Chip Latches for Both DACs  
+5 V to +15 V Operation  
V
A
REF  
DACs Matched to 1%  
R
A
V
FB  
DD  
Four Quadrant Multiplication  
TTL/CMOS Compatible  
Latch Free (Protection Schottkys not Required)  
DB0  
OUT A  
DATA  
INPUTS  
INPUT  
BUFFER  
LATCH  
DAC A  
DB7  
AGND  
APPLICATIONS  
AD7528  
Digital Control of:  
Gain/Attenuation  
Filter Parameters  
Stereo Audio Circuits  
X-Y Graphics  
DAC A/  
DAC B  
R
B
FB  
CONTROL  
LOGIC  
CS  
OUT B  
WR  
LATCH  
DAC B  
DGND  
V
B
REF  
GENERAL DESCRIPTION  
ORDERING GUIDE1  
The AD7528 is a monolithic dual 8-bit digital/analog converter  
featuring excellent DAC-to-DAC matching. It is available in  
skinny 0.3" wide 20-lead DIPs and in 20-lead surface mount  
packages.  
Temperature  
Ranges  
Relative Gain  
Accuracy Error  
Package  
Options3  
Model2  
AD7528JN –40°C to +85°C  
AD7528KN –40°C to +85°C  
AD7528LN –40°C to +85°C  
±1 LSB  
±4 LSB N-20  
±1/2 LSB ±2 LSB N-20  
±1/2 LSB ±1 LSB N-20  
Separate on-chip latches are provided for each DAC to allow  
easy microprocessor interface.  
AD7528JP  
–40°C to +85°C  
±1 LSB  
±4 LSB P-20A  
Data is transferred into either of the two DAC data latches via a  
common 8-bit TTL/CMOS compatible input port. Control  
input DAC A/DAC B determines which DAC is to be loaded.  
The AD7528’s load cycle is similar to the write cycle of a ran-  
dom access memory and the device is bus compatible with most  
8-bit microprocessors, including 6800, 8080, 8085, Z80.  
AD7528KP –40°C to +85°C  
AD7528LP –40°C to +85°C  
±1/2 LSB ±2 LSB P-20A  
±1/2 LSB ±1 LSB P-20A  
AD7528JR  
–40°C to +85°C  
±1 LSB  
±4 LSB R-20  
AD7528KR –40°C to +85°C  
AD7528LR –40°C to +85°C  
AD7528AQ –40°C to +85°C  
AD7528BQ –40°C to +85°C  
AD7528CQ –40°C to +85°C  
AD7528SQ –55°C to +125°C ±1 LSB  
AD7528TQ –55°C to +125°C ±1/2 LSB ±2 LSB Q-20  
AD7528UQ –55°C to +125°C ±1/2 LSB ±1 LSB Q-20  
±1/2 LSB ±2 LSB R-20  
±1/2 LSB ±1 LSB R-20  
±1 LSB  
±4 LSB Q-20  
±1/2 LSB ±2 LSB Q-20  
±1/2 LSB ±1 LSB Q-20  
The device operates from a +5 V to +15 V power supply, dis-  
sipating only 20 mW of power.  
±4 LSB Q-20  
Both DACs offer excellent four quadrant multiplication charac-  
teristics with a separate reference input and feedback resistor for  
each DAC.  
NOTES  
1Analog Devices reserves the right to ship side-brazed ceramic in lieu of cerdip. Parts  
will be marked with cerdip designator “Q.”  
2Processing to MIL-STD-883C, Class B is available. To order, add suffix “/883B” to  
part number. For further information, see Analog Devices’ 1990 Military Products  
Databook.  
PRODUCT HIGHLIGHTS  
1. DAC-to-DAC matching: since both of the AD7528 DACs are  
fabricated at the same time on the same chip, precise match-  
ing and tracking between DAC A and DAC B is inherent.  
The AD7528’s matched CMOS DACs make a whole new  
range of applications circuits possible, particularly in the  
audio, graphics and process control areas.  
3N = Plastic DIP; P = Plastic Leaded Chip Carrier; Q = Cerdip; R = SOIC.  
2. Small package size: combining the inputs to the on-chip DAC  
latches into a common data bus and adding a DAC A/DAC B  
select line has allowed the AD7528 to be packaged in either a  
small 20-lead DIP, SOIC or PLCC.  
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1998  
(VREF A = VREF B = +10 V; OUT A = OUT B = O V unless otherwise noted)  
AD7528–SPECIFICATIONS  
VDD = +5 V  
Version1 TA = +25°C TMIN, TMAX  
VDD = +15 V  
Parameter  
TA= +25°C TMIN, TMAX  
Units  
Test Conditions/Comments  
STATIC PERFORMANCE2  
Resolution  
Relative Accuracy  
All  
8
±1  
±1/2  
±1/2  
±1  
8
±1  
±1/2  
±1/2  
±1  
8
±1  
±1/2  
±1/2  
±1  
8
±1  
±1/2  
±1/2  
±1  
Bits  
J, A, S  
K, B, T  
L, C, U  
All  
LSB max  
LSB max  
LSB max  
LSB max  
This is an Endpoint Linearity Specification  
Differential Nonlinearity  
Gain Error  
All Grades Guaranteed Monotonic Over  
Full Operating Temperature Range  
Measured Using Internal RFB A and RFB B  
Both DAC Latches Loaded with 11111111  
Gain Error is Adjustable Using Circuits  
of Figures 4 and 5  
J, A, S  
K, B, T  
L, C, U  
±4  
±2  
±1  
±6  
±4  
±3  
±4  
±2  
±1  
±5  
±3  
±1  
LSB max  
LSB max  
LSB max  
Gain Temperature Coefficient3  
Gain/Temperature  
All  
±0.007  
±0.007  
±0.0035  
±0.0035  
%/°C max  
Output Leakage Current  
OUT A (Pin 2)  
OUT B (Pin 20)  
All  
All  
All  
±50  
±50  
8
±400  
±400  
8
±50  
±50  
8
±200  
±200  
8
nA max  
nA max  
kmin  
kmax  
DAC Latches Loaded with 00000000  
Input Resistance (VREF A, VREF B)  
Input Resistance TC = –300 ppm/°C, Typical  
Input Resistance is 11 kΩ  
15  
15  
15  
15  
VREF A/VREF B Input Resistance  
Match  
All  
±1  
±1  
±1  
±1  
% max  
DIGITAL INPUTS4  
Input High Voltage  
VIH  
Input Low Voltage  
VIL  
All  
All  
All  
2.4  
0.8  
±1  
2.4  
0.8  
±10  
13.5  
1.5  
±1  
13.5  
1.5  
V min  
V max  
µA max  
Input Current  
IIN  
±10  
VIN = 0 or VDD  
Input Capacitance  
DB0–DB7  
WR, CS, DAC A/DAC B  
All  
All  
10  
15  
10  
15  
10  
15  
10  
15  
pF max  
pF max  
SWITCHING CHARACTERISTICS3  
See Timing Diagram  
Chip Select to Write Set Up Time  
tCS  
Chip Select to Write Hold Time  
tCH  
DAC Select to Write Set Up Time  
tAS  
DAC Select to Write Hold Time  
tAH  
Data Valid to Write Set Up Time  
tDS  
Data Valid to Write Hold Time  
tDH  
Write Pulsewidth  
tWR  
All  
All  
All  
All  
All  
All  
All  
90  
0
100  
0
60  
10  
60  
10  
30  
0
80  
15  
80  
15  
40  
0
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
90  
0
100  
0
80  
0
90  
0
90  
100  
60  
80  
POWER SUPPLY  
IDD  
See Figure 3  
All Digital Inputs VIL or VIH  
All Digital Inputs 0 V or VDD  
All  
All  
2
100  
2
500  
2
100  
2
500  
mA max  
µA max  
(Measured Using Recommended P.C. Board Layout (Figure 7) and AD644 as  
Output Amplifiers)  
AC PERFORMANCE CHARACTERISTICS5  
VDD = +5 V  
VDD = +15 V  
Parameter  
Version1 TA = +25°C TMIN, TMAX TA= +25°C TMIN, TMAX Units  
Test Conditions/Comments  
% per % max VDD = ±5%  
DC SUPPLY REJECTION (GAIN/VDD  
CURRENT SETTLING TIME2  
)
All  
All  
0.02  
350  
0.04  
400  
0.01  
180  
0.02  
200  
ns max  
To 1/2 LSB. OUT A/OUT B Load = 100 .  
WR = CS = 0 V. DB0–DB7 = 0 V to VDD or  
VDD to 0 V  
PROPAGATION DELAY (From Digital In-  
put to 90% of Final Analog Output Current) All  
VREF A = VREF B = +10 V  
220  
160  
270  
80  
100  
ns max  
OUT A, OUT B Load = 100 CEXT = 13 pF  
WR = CS = 0 V DB0–DB7 = 0 V to VDD or  
VDD to 0 V  
DIGITAL-TO-ANALOG GLITCH IMPULSE All  
OUTPUT CAPACITANCE  
440  
nV sec typ  
For Code Transition 00000000 to 11111111  
COUT  
COUT  
COUT  
COUT  
A
B
A
B
All  
50  
50  
120  
120  
50  
50  
120  
120  
50  
50  
120  
120  
50  
50  
120  
120  
pF max  
pF max  
pF max  
pF max  
DAC Latches Loaded with 00000000  
DAC Latches Loaded with 11111111  
AC FEEDTHROUGH6  
VREF A to OUT A  
VREF B to OUT B  
All  
–70  
–70  
–65  
–65  
–70  
–70  
–65  
–65  
dB max  
dB max  
VREF A, VREF B = 20 V p-p Sine Wave  
@ 100 kHz  
–2–  
REV. B  
AD7528  
VDD = +5 V  
VDD = +15 V  
Parameter  
Version1 TA = +25°C TMIN, TMAX TA= +25°C TMIN, TMAX Units  
Test Conditions/Comments  
CHANNEL-TO-CHANNEL ISOLATION  
VREF A to OUT B  
Both DAC Latches Loaded with 11111111.  
VREF A = 20 V p-p Sine Wave @ 100 kHz  
VREF B = 0 V see Figure 6.  
VREF A = 20 V p-p Sine Wave @ 100 kHz  
VREF A = 0 V see Figure 6.  
All  
–77  
–77  
–77  
–77  
dB typ  
dB typ  
VREF B to OUT A  
DIGITAL CROSSTALK  
All  
All  
30  
60  
nV sec typ  
dB typ  
Measured for Code Transition 00000000 to  
11111111  
HARMONIC DISTORTlON  
NOTES  
–85  
–85  
VIN = 6 V rms @ 1 kHz  
1Temperature Ranges are J, K, L Versions: –40°C to +85°C  
A, B, C Versions: –40°C to +85°C  
AD7528, ideal maximum output is VREF – 1 LSB. Gain error of  
both DACs is adjustable to zero with external resistance.  
S, T, U Versions: –55°C to +125°C  
2Specifications applies to both DACs in AD7528.  
3Guaranteed by design but not production tested.  
Output Capacitance  
Capacitance from OUT A or OUT B to AGND.  
4Logic inputs are MOS Gates. Typical input current (+25°C) is less than 1 nA.  
5These characteristics are for design guidance only and are not subject to test.  
6Feedthrough can be further reduced by connecting the metal lid on the ceramic package  
(suffix D) to DGND.  
Digital to Analog Glitch lmpulse  
The amount of charge injected from the digital inputs to the  
analog output when the inputs change state. This is normally  
specified as the area of the glitch in either pA-secs or nV-secs  
depending upon whether the glitch is measured as a current or  
voltage signal. Glitch impulse is measured with VREF A,  
VREF B = AGND.  
Specifications subject to change without notice.  
ABSOLUTE MAXIMUM RATINGS  
(TA = +25°C unless otherwise noted)  
VDD to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 V, +17 V  
VDD to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 V, +17 V  
AGND to DGND . . . . . . . . . . . . . . . . . . . . . . . . VDD + 0.3 V  
DGND to AGND . . . . . . . . . . . . . . . . . . . . . . . . VDD + 0.3 V  
Digital Input Voltage to DGND . . . . . . . –0.3 V, VDD + 0.3 V  
VPIN2, VPIN20 to AGND . . . . . . . . . . . . . . –0.3 V, VDD + 0.3 V  
VREF A, VREF B to AGND . . . . . . . . . . . . . . . . . . . . . . . ±25 V  
VRFB A, VRFB B to AGND . . . . . . . . . . . . . . . . . . . . . . . ±25 V  
Power Dissipation (Any Package) to +75°C . . . . . . . 450 mW  
Derates above +75°C by . . . . . . . . . . . . . . . . . . . 6 mW/°C  
Operating Temperature Range  
Propagation Delay  
This is a measure of the internal delays of the circuit and is  
defined as the time from a digital input change to the analog  
output current reaching 90% of its final value.  
Channel-to-Channel Isolation  
The proportion of input signal from one DAC’s reference input  
which appears at the output of the other DAC, expressed as a  
ratio in dB.  
Commercial (J, K, L) Grades . . . . . . . . . . . –40°C to +85°C  
Industrial (A, B, C) Grades . . . . . . . . . . . . –40°C to +85°C  
Extended (S, T, U) Grades . . . . . . . . . . . –55°C to +125°C  
Storage Temperature . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature (Soldering, 10 secs) . . . . . . . . . . . .+300°C  
Digital Crosstalk  
The glitch energy transferred to the output of one converter due  
to a change in digital input code to the other converter. Speci-  
fied in nV secs.  
PIN CONFIGURATIONS  
PLCC  
CAUTION:  
1. ESD sensitive device. The digital control inputs are diode  
protected; however, permanent damage may occur on uncon-  
nected devices subjected to high energy electrostatic fields.  
Unused devices must be stored in conductive foam or shunts.  
3
2
1
20 19  
2. Do not insert this device into powered sockets. Remove  
power before insertion or removal.  
PIN 1  
IDENTIFIER  
4
5
6
7
8
18  
17  
16  
15  
14  
V
A
V
B
REF  
REF  
DGND  
V
DD  
AD7528  
TOP VIEW  
(Not to Scale)  
DAC A/DAC B  
(MSB) DB7  
DB6  
WR  
CS  
TERMINOLOGY  
Relative Accuracy  
DB0 (LSB)  
Relative accuracy or endpoint nonlinearity is a measure of the  
maximum deviation from a straight line passing through the  
endpoints of the DAC transfer function. It is measured after  
adjusting for zero and full scale and is normally expressed in  
LSBs or as a percentage of full scale reading.  
9
10 11 12 13  
DIP, SOIC  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
OUT B  
AGND  
OUT A  
R
B
FB  
Differential Nonlinearity  
3
R
A
A
V
V
B
FB  
REF  
DD  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LSB change between any two adjacent  
codes. A specified differential nonlinearity of ±1 LSB max over  
the operating temperature range ensures monotonicity.  
4
V
REF  
5
DGND  
WR  
CS  
AD7528  
TOP VIEW  
(Not to Scale)  
6
DAC A/DAC B  
(MSB) DB7  
DB6  
7
DB0 (LSB)  
DB1  
Gain Error  
8
Gain error or full-scale error is a measure of the output error  
between an ideal DAC and the actual device output. For the  
9
DB2  
DB5  
10  
DB4  
DB3  
REV. B  
–3–  
AD7528  
INTERFACE LOGIC INFORMATION  
DAC Selection:  
Both DAC latches share a common 8-bit input port. The con-  
trol input DAC A/DAC B selects which DAC can accept data  
from the input port.  
Figure 1. An inverted R-2R ladder structure is used, that is, bi-  
nary weighted currents are switched between the DAC output  
and AGND thus maintaining fixed currents in each ladder leg  
independent of switch state.  
EQUIVALENT CIRCUIT ANALYSIS  
Mode Selection:  
Inputs CS and WR control the operating mode of the selected  
DAC. See Mode Selection Table below.  
Figure 2 shows an approximate equivalent circuit for one of the  
AD7528’s D/A converters, in this case DAC A. A similar  
equivalent circuit can be drawn for DAC B. Note that AGND  
(Pin 1) is common for both DAC A and DAC B.  
Write Mode:  
When CS and WR are both low the selected DAC is in the write  
mode. The input data latches of the selected DAC are transpar-  
ent and its analog output responds to activity on DB0–DB7.  
The current source ILEAKAGE is composed of surface and junc-  
tion leakages and, as with most semiconductor devices, approxi-  
mately doubles every 10°C. The resistor RO as shown in Figure  
2 is the equivalent output resistance of the device which varies  
with input code (excluding all 0s code) from 0.8 R to 2 R. R is  
typically 11 k. COUT is the capacitance due to the N-channel  
switches and varies from about 50 pF to 120 pF depending  
upon the digital input. g(VREF A, N) is the Thevenin equivalent  
voltage generator due to the reference input voltage VREF A and  
the transfer function of the R-2R ladder.  
Hold Mode:  
The selected DAC latch retains the data which was present on  
DB0–DB7 just prior to CS or WR assuming a high state. Both  
analog outputs remain at the values corresponding to the data in  
their respective latches.  
Mode Selection Table  
DAC A/DAC B  
CS  
WR  
DAC A  
DAC B  
L
H
X
L
L
H
L
L
X
WRITE  
HOLD  
HOLD  
HOLD  
WRITE  
HOLD  
R
R
A
R
O
FB  
OUT A  
g(V  
A, N)  
C
OUT  
I
REF  
X
X
H
HOLD  
HOLD  
LKG  
AGND  
L = Low State; H = High State; X = Don’t Care.  
Figure 2. Equivalent Analog Output Circuit of DAC A  
WRITE CYCLE TIMING DIAGRAM  
CIRCUIT INFORMATION–DIGITAL SECTION  
tCH  
tCS  
V
The input buffers are simple CMOS inverters designed such  
that when the AD7528 is operated with VDD = 5 V, the buffer  
converts TTL input levels (2.4 V and 0.8 V) into CMOS logic  
levels. When VIN is in the region of 2.0 volts to 3.5 volts the  
input buffers operate in their linear region and pass a quiescent  
current, see Figure 3. To minimize power supply currents it is  
recommended that the digital input voltages be as close to the  
supply rails (VDD and DGND) as is practically possible.  
DD  
CHIP SELECT  
0
tAH  
V
tAS  
DD  
DAC A/DAC B  
0
tWR  
V
DD  
WRITE  
0
tDS  
tDH  
V
0
DD  
V
V
DATA IN  
(DB0 – DB7)  
IH  
DATA IN STABLE  
The AD7528 may be operated with any supply voltage in the  
range 5 VDD 15 volts. With VDD = +15 V the input logic  
levels are CMOS compatible only, i.e., 1.5 V and 13.5 V.  
IL  
NOTES:  
1. ALL INPUT SIGNAL RISE AND FALL TIMES MEASURED  
FROM 10% TO 90% OF V  
.
DD  
V
V
= +5V, t = t = 20ns;  
= +15V, t = t = 40ns;  
DD  
DD  
r f  
r
f
V
+ V  
2
9
IH  
IL  
2. TIMING MEASUREMENT REFERENCE LEVEL IS  
V
= +15V  
800  
700  
600  
500  
400  
300  
200  
100  
8
7
6
5
4
3
2
1
T
= +25؇C  
DD  
A
ALL DIGITAL INPUTS  
TIED TOGETHER  
CIRCUIT INFORMATION—D/A SECTION  
The AD7528 contains two identical 8-bit multiplying D/A con-  
verters, DAC A and DAC B. Each DAC consists of a highly  
stable thin film R-2R ladder and eight N-channel current steer-  
ing switches. A simplified D/A circuit for DAC A is shown in  
V
= +5V  
DD  
R
R
R
V
A
REF  
2R  
S1  
2R  
S2  
2R  
S3  
2R  
S8  
2R  
0
1
2
3
4
5
6
V
7
8
9
10 11 12 13 14  
R
R
A
– Volts  
FB  
IN  
OUT A  
AGND  
Figure 3. Typical Plots of Supply Current, IDD vs. Logic  
Input Voltage VIN, for VDD = +5 V and +15 V  
DAC A DATA LATCHES  
AND DRIVERS  
Figure 1. Simplified Functional Circuit for DAC A  
–4–  
REV. B  
AD7528  
V
A
IN  
(± 10V)  
Table I. Unipolar Binary Code Table  
1
R1  
DAC Latch Contents Analog Output  
1
R2  
MSB  
LSB  
(DAC A or DAC B)  
V
DD  
2
R
A
C1  
FB  
255  
VIN  
DB0  
1 1 1 1 1 1 1 1  
1 0 0 0 0 0 0 1  
1 0 0 0 0 0 0 0  
0 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0  
INPUT  
BUFFER  
DATA  
INPUTS  
256  
V
A
DAC A  
OUTA  
AGND  
LATCH  
OUT  
DB7  
129  
VIN  
AGND  
256  
AD7528  
1
VIN  
2
128  
256  
R4  
DAC A/  
VIN  
VIN  
VIN  
VIN  
= −  
DAC B  
2
CONTROL  
LOGIC  
R
B
C2  
FB  
CS  
127  
256  
WR  
OUT B  
LATCH  
DAC B  
R3  
V
B
OUT  
DGND  
1
256  
AGND  
1
0
256  
= 0  
V
B
IN  
(± 10V)  
NOTES:  
1
R1, R2 AND R3, R4 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED.  
SEE TABLE III FOR RECOMMENDED VALUES.  
C1, C2 PHASE COMPENSATION (10pF–15pF) IS REQUIRED WHEN  
USING HIGH SPEED AMPLIFIERS TO PREVENT RINGING OR OSCILLATION.  
1
256  
28  
V
(
)
=
V
(
Note: 1 LSB =  
)
)
(
IN  
IN  
2
Figure 4. Dual DAC Unipolar Binary Operation  
(2 Quadrant Multiplication); See Table I  
V
A
IN  
Table II. Bipolar (Offset Binary) Code Table  
DAC Latch Contents Analog Output  
(± 10V)  
R5  
20k⍀  
2
R6  
1
R1  
20k⍀  
MSB  
LSB  
(DAC A or DAC B)  
2
R7  
V
A
A2  
OUT  
1
R2  
10k⍀  
127  
+VIN  
1 1 1 1 1 1 1 1  
1 0 0 0 0 0 0 1  
1 0 0 0 0 0 0 0  
0 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0  
V
3
DD  
128  
C1  
R
A
R11  
5k⍀  
FB  
DB0  
INPUT  
BUFFER  
DATA  
INPUTS  
A1  
AGND  
DAC A  
OUTA  
AGND  
LATCH  
DB7  
0
AGND  
AD7528  
1
R4  
B
DAC A/  
1
VIN  
DAC B  
3
CONTROL  
LOGIC  
R
C2  
FB  
CS  
128  
WR  
R8  
20k⍀  
LATCH  
DAC B  
R3  
OUT B  
AGND  
A3  
127  
VIN  
2
R9  
DGND  
128  
10k⍀  
128  
VIN  
2
A4  
V
B
R10  
OUT  
1
128  
20k⍀  
R12  
1
128  
27  
V
(
)
=
V
(
5k⍀  
V
B
Note: 1 LSB =  
)
)
(
IN  
IN  
IN  
AGND  
(± 10V)  
NOTES:  
1
R1, R2 AND R3, R4 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED.  
SEE TABLE III FOR RECOMMENDED VALUES.  
ADJUST R1 FOR V  
ADJUST R3 FOR V  
MATCHING AND TRACKING IS ESSENTIAL FOR RESISTOR PAIRS  
R6, R7 AND R9, R10.  
C1, C2 PHASE COMPENSATION (10pF–15pF) MAY BE REQUIRED  
IF A1/A3 IS A HIGH SPEED AMPLIFIER.  
A = 0V WITH CODE 10000000 IN DAC A LATCH.  
B = 0V WITH CODE 10000000 IN DAC B LATCH.  
OUT  
OUT  
2
3
Table III. Recommended Trim Resistor  
Values vs. Grade  
Trim  
Resistor  
Figure 5. Dual DAC Bipolar Operation  
(4 Quadrant Multiplication); See Table II  
J/A/S  
K/B/T  
L/C/U  
R1; R3  
R2; R4  
1 k  
330  
500  
150  
200  
82  
REV. B  
–5–  
AD7528  
APPLICATIONS INFORMATION  
Application Hints  
To ensure system performance consistent with AD7528 specifi-  
cations, careful attention must be given to the following points:  
ship between input frequency and channel to channel isolation.  
Figure 7 shows a printed circuit layout for the AD7528 and the  
AD644 dual op amp which minimizes feedthrough and crosstalk.  
SINGLE SUPPLY APPLICATIONS  
1. GENERAL GROUND MANAGEMENT: AC or transient  
voltages between the AD7528 AGND and DGND can cause  
noise injection into the analog output. The simplest method  
of ensuring that voltages at AGND and DGND are equal is  
to tie AGND and DGND together at the AD7528. In more  
complex systems where the AGND–DGND intertie is on the  
backplane, it is recommended that diodes be connected in  
inverse parallel between the AD7528 AGND and DGND  
pins (1N914 or equivalent).  
2. OUTPUT AMPLIFIER OFFSET: CMOS DACs exhibit a  
code-dependent output resistance which in turn causes a  
code-dependent amplifier noise gain. The effect is a code-  
dependent differential nonlinearity term at the amplifier  
output which depends on VOS (VOS is amplifier input offset  
voltage). This differential nonlinearity term adds to the R/2R  
differential nonlinearity. To maintain monotonic operation, it  
is recommended that amplifier VOS be no greater than 10% of  
1 LSB over the temperature range of interest.  
The AD7528 DAC R-2R ladder termination resistors are con-  
nected to AGND within the device. This arrangement is par-  
ticularly convenient for single supply operation because AGND  
may be biased at any voltage between DGND and VDD. Figure  
8 shows a circuit which provides two +5 V to +8 V analog out-  
puts by biasing AGND +5 V up from DGND. The two DAC  
reference inputs are tied together and a reference input voltage  
is obtained without a buffer amplifier by making use of the  
constant and matched impedances of the DAC A and DAC B  
reference inputs. Current flows through the two DAC R-2R  
ladders into R1 and R1 is adjusted until the VREF A and VREF  
B
inputs are at +2 V. The two analog output voltages range from  
+5 V to +8 V for DAC codes 00000000 to 11111111.  
V
= +15V  
DD  
DAC A  
V
A = +5V TO +8V  
B = +5V TO +8V  
OUT  
DB0  
DB7  
DATA  
INPUTS  
SUGGESTED  
OP AMP:  
AD644  
CS  
3. HIGH FREQUENCY CONSIDERATIONS: The output  
capacitance of a CMOS DAC works in conjunction with the  
amplifier feedback resistance to add a pole to the open loop  
response. This can cause ringing or oscillation. Stability can  
be restored by adding a phase compensation capacitor in  
parallel with the feedback resistor.  
AD7528  
DAC B  
WR  
DAC A/DAC B  
V
OUT  
2 VOLTS  
R1  
10k⍀  
AD584J  
V
R2  
1k⍀  
DD  
GND  
DYNAMIC PERFORMANCE  
The dynamic performance of the two DACs in the AD7528 will  
depend upon the gain and phase characteristics of the output  
amplifiers together with the optimum choice of the PC board  
layout and decoupling components. Figure 6 shows the relation  
Figure 8. AD7528 Single Supply Operation  
Figure 9 shows DAC A of the AD7528 connected in a positive  
reference, voltage switching mode. This configuration is useful  
in that VOUT is the same polarity as VIN allowing single supply  
operation. However, to retain specified linearity, VIN must be in  
the range 0 V to +2.5 V and the output buffered or loaded with  
a high impedance, see Figure 10. Note that the input voltage is  
connected to the DAC OUT A and the output voltage is taken  
from the DAC VREF A pin.  
–100  
T
= +25؇C  
A
V
V
= +15V  
–90  
–80  
–70  
–60  
–50  
DD  
= 20V PEAK TO PEAK  
IN  
V
OUT  
V
(0V TO +2.5V)  
IN  
V
A
REF  
V
DD  
DAC A  
OUT A  
+15V  
AD7528  
20k  
50k  
100k  
200k  
500k  
1M  
INPUT FREQUENCY – Hz  
Figure 9. AD7528 in Single Supply, Voltage Switching Mode  
Figure 6. Channel-to-Channel Isolation  
3
PIN 8 OF TO-5 CAN (AD644)  
AD644  
V+  
T
= +25؇C  
A
V
= +15V  
DD  
2
1
V–  
NONLINEARITY  
AGND  
AD7528 PIN 1  
C1 LOCATION  
V
*NOTE  
INPUT SCREENS  
TO REDUCE  
FEEDTHROUGH.  
LAYOUT SHOWS  
COPPER SIDE  
C2 LOCATION  
A*  
B*  
REF  
V
DIFFERENTIAL  
NONLINEARITY  
V
DD  
REF  
WR  
CS  
DGND  
DAC A/DAC B  
MSB  
AD7528  
(i.e., BOTTOM VIEW).  
LSB  
2.5  
3
3.5  
4
4.5  
V
5
5.5  
6
6.5  
7
7.5  
A – Volts  
IN  
Figure 7. Suggested PC Board Layout for AD7528 with  
AD644 Dual Op Amp  
Figure 10. Typical AD7528 Performance in Single Supply  
Voltage Switching Mode (K/B/T, L/C/U Grades)  
–6–  
REV. B  
AD7528  
MICROPROCESSOR INTERFACE  
ADDRESS BUS  
A8–A15  
A**  
ADDRESS BUS  
A0–A15  
DAC A/DAC B  
ADDRESS  
DECODE  
LOGIC  
CPU  
8085  
CS  
A**  
DAC A  
DAC A/DAC B  
ADDRESS  
DECODE  
LOGIC  
A + 1**  
V
MA  
WR  
WR  
DB0  
DB7  
AD7528*  
CS  
DAC A  
CPU  
6800  
LATCH  
8212  
A + 1**  
DAC B  
ALE  
AD7528*  
WR  
2  
DB0  
DB7  
DAC B  
ADDR/DATA BUS  
AD0–AD7  
*ANALOG CIRCUITRY HAS BEEN OMITTED FOR CLARITY  
**A = DECODED 7528 ADDR DAC A  
A + 1 = DECODED 7528 ADDR DAC B  
D0–D7  
DATA BUS  
*ANALOG CIRCUITRY HAS BEEN OMITTED FOR CLARITY  
**A = DECODED 7528 ADDR DAC A  
A + 1 = DECODED 7528 ADDR DAC B  
NOTE:  
8085 INSTRUCTION SHLD (STORE H & L DIRECT) CAN UPDATE  
BOTH DACs WITH DATA FROM H AND L REGISTERS  
Figure 11. AD7528 Dual DAC to 6800 CPU Interface  
Figure 12. AD7528 Dual DAC to 8085 CPU Interface  
PROGRAMMABLE WINDOW COMPARATOR  
In the circuit of Figure 13 the AD7528 is used to implement a  
programmable window comparator. DACs A and B are loaded  
with the required upper and lower voltage limits for the test,  
respectively. If the test input is not within the programmed  
limits, the pass/fail output will indicate a fail (logic zero).  
V
DD  
TEST INPUT  
V
0 TO –V  
CC  
REF  
R
A
FB  
1k⍀  
OUT A  
V
A
3
2
REF  
7
DAC A  
DB0  
DB7  
DATA  
INPUTS  
AD311  
COMPARATOR  
CS  
AD7528  
PASS/ FAIL  
OUTPUT  
WR  
OUT B  
2
3
DAC A/DAC B  
7
DAC B  
+V  
REF  
V
B
REF  
AD311  
COMPARATOR  
R
B
FB  
Figure 13. Digitally Programmable Window Comparator  
(Upper and Lower Limit Detector)  
PROGRAMMABLE STATE VARIABLE FILTER  
In this state variable or universal filter configuration (Figure 14)  
DACs A1 and B1 control the gain and Q of the filter character-  
istic while DACs A2 and B2 control the cutoff frequency, fC.  
DACs A2 and B2 must track accurately for the simple expres-  
sion for fC to hold. This is readily accomplished by the AD7528.  
Op amps are 2 × AD644. C3 compensates for the effects of op  
amp gain bandwidth limitations.  
The filter provides low pass, high pass and band pass outputs  
and is ideally suited for applications where microprocessor  
control of filter parameters is required, e.g., equalizer, tone  
controls, etc.  
Programmable range for component values shown is fC = 0 kHz  
to 15 kHz and Q = 0.3 to 4.5.  
R5  
30k⍀  
CIRCUIT EQUATIONS  
C1= C2,R1= R2, R4 = R5  
C1  
1000pF  
C2  
1000pF  
R4  
30k⍀  
C3  
47pF  
R3  
10k⍀  
1
HIGH  
A1  
fC =  
LOW  
A2  
PASS  
A3  
A4  
PASS  
2 π R1C1  
OUTPUT  
OUTPUT  
BAND  
R3 RF  
PASS  
Q =  
×
V
OUTPUT  
V
DD  
DD  
R4 RFBB1  
AD7528  
DAC A1  
RF  
RS  
AO = –  
DAC B1  
DAC A2  
R1  
DAC B2  
R2  
V
IN  
AD7528  
R
R
S
F
NOTE  
DAC Equivalent Resistance  
Equals  
DB0–DB7  
DATA 1  
DB0–DB7  
DATA 2  
CS WR DAC A/DAC B  
CS WR DAC A/DAC B  
R
256 ×(DAC Ladder esistance)  
DAC Digital Code  
Figure 14. Digitally Controlled State Variable Filter  
–7–  
REV. B  
AD7528  
DIGITALLY CONTROLLED DUAL TELEPHONE  
ATTENUATOR  
In this configuration the AD7528 functions as a 2-channel digi-  
tally controlled attenuator. Ideal for stereo audio and telephone  
signal level control applications. Table IV gives input codes vs.  
attenuation for a 0 dB to 15.5 dB range.  
Table IV. Attenuation vs. DAC A, DAC B Code for the Circuit  
of Figure 15  
Attn. DAC Input  
Code In Attn. DAC Input  
Decimal dB Code  
Code In  
Decimal  
dB  
Code  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
1 1 1 1 1 1 1 1  
1 1 1 1 0 0 1 0  
1 1 1 0 0 1 0 0  
1 1 0 1 0 1 1 1  
1 1 0 0 1 0 1 1  
1 1 0 0 0 0 0 0  
1 0 1 1 0 1 0 1  
1 0 1 0 1 0 1 1  
1 0 1 0 0 0 1 0  
1 0 0 1 1 0 0 0  
1 0 0 1 0 0 0 0  
1 0 0 0 1 0 0 0  
1 0 0 0 0 0 0 0  
0 1 1 1 1 0 0 1  
0 1 1 1 0 0 1 0  
0 1 1 0 1 1 0 0  
255  
242  
228  
215  
203  
192  
181  
171  
162  
152  
144  
136  
128  
121  
114  
108  
88.0 0 1 1 0 0 1 1 0  
88.5 0 1 1 0 0 0 0 0  
89.0 0 1 0 1 1 0 1 1  
89.5 0 1 0 1 0 1 1 0  
10.0 0 1 0 1 0 0 0 1  
10.5 0 1 0 0 1 1 0 0  
11.0 0 1 0 0 1 0 0 0  
11.5 0 1 0 0 0 1 0 0  
12.0 0 1 0 0 0 0 0 0  
12.5 0 0 1 1 1 1 0 1  
13.0 0 0 1 1 1 0 0 1  
13.5 0 0 1 1 0 1 1 0  
14.0 0 0 1 1 0 0 1 1  
14.5 0 0 1 1 0 0 0 0  
15.0 0 0 1 0 1 1 1 0  
15.5 0 0 1 0 1 0 1 1  
102  
96  
91  
86  
81  
76  
72  
68  
64  
61  
57  
54  
51  
48  
46  
43  
Attenuation, dB  
Input Code = 256 ϫ 10 exp  
20  
V
DD  
V
A
IN  
DAC A  
A1  
V
A
OUT  
DB0  
DB7  
DATA BUS  
CS  
WR  
DAC A/DAC B  
AD7528  
V
B
IN  
DAC B  
A2  
V
B
OUT  
SUGGESTED  
OP AMP: AD644  
For further applications information the reader is referred to  
Analog Devices Application Note on the AD7528.  
Figure 15. Digitally Controlled Dual Telephone Attenuator  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
20-Lead Cerdip (Q-20)  
20-Lead Plastic DIP (N-20)  
11  
1.07 (27.18) MAX  
20  
1
0.28 (7.11)  
20  
11  
PIN 1  
0.255 (6.477)  
0.24 (6.1)  
10  
0.245 (6.223)  
10  
1
0.32 (8.128)  
0.30 (7.62)  
0.32 (8.128)  
0.29 (7.366)  
0.97 (24.64)  
0.935 (23.75)  
0.14 (3.56)  
PIN 1  
0.135 (3.429)  
0.125 (3.17)  
0.145 (3.683)  
MIN  
0.20 (5.0)  
0.14 (3.56)  
0.125 (3.17)  
0.125 (3.175)  
MIN  
0.15 (3.8)  
0.125 (3.18)  
SEATING  
PLANE  
SEATING  
PLANE  
0.011 (0.28)  
0.009 (0.23)  
0.011 (0.28)  
0.009 (0.23)  
0.11 (2.79)  
0.09 (2.28)  
0.065 (1.66)  
0.045 (1.15)  
0.021 (0.533)  
0.015 (0.381)  
15؇  
0؇  
0.07 (1.78) 0.02 (0.5) 0.11 (2.79)  
0.05 (1.27) 0.016 (0.41) 0.09 (2.28)  
LEAD NO. 1 IDENTIFIED BY DOT OR NOTCH  
15؇  
0؇  
LEAD NO. 1 IDENTIFIED BY DOT OR NOTCH  
LEADS ARE SOLDER OR TIN-PLATED KOVAR OR ALLOY 42  
LEADS ARE SOLDER OR TIN-PLATED KOVAR OR ALLOY 42  
20-Lead SOIC (R-20)  
20-Lead Plastic Leaded Chip Carrier (P-20A)  
0.5118 (13.00)  
0.4961 (12.60)  
0.180 (4.47)  
0.165 (4.19)  
0.395 (10.02)  
0.385 (9.78)  
SQ  
0.12 (3.05)  
0.09 (2.29)  
0.020 (0.51) MIN  
20  
11  
10  
0.356 (9.04)  
0.350 (8.89)  
SQ  
19  
0.2992 (7.60)  
0.2914 (7.40)  
0.048 (1.21)  
0.042 (1.07)  
3
0.021 (0.53)  
0.013 (0.33)  
PIN 1  
IDENTIFIER  
18  
4
8
0.4193 (10.65)  
0.3937 (10.00)  
0.050  
(1.27)  
BSC  
1
TOP VIEW  
(PINS DOWN)  
0.032 (0.81)  
0.026 (0.66)  
14  
0.02  
(0.51)  
MAX  
PIN 1  
9
13  
0.1043 (2.65)  
0.0926 (2.35)  
0.0291 (0.74)  
0.0098 (0.25)  
؋
 45؇  
0.025 (0.64)  
MIN  
0.02 (0.51)  
MAX  
0.060 (1.53)  
MIN  
8؇  
0؇  
0.0500 0.0192 (0.49)  
0.0118 (0.30)  
0.0040 (0.10)  
0.0500 (1.27)  
0.0157 (0.40)  
SEATING  
PLANE  
0.0125 (0.32)  
0.0091 (0.23)  
(1.27)  
BSC  
0.0138 (0.35)  
–8–  
REV. B  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY