AD7533TD/883B [ADI]

IC PARALLEL, WORD INPUT LOADING, 0.8 us SETTLING TIME, 10-BIT DAC, CDIP16, CERAMIC, DIP-16, Digital to Analog Converter;
AD7533TD/883B
型号: AD7533TD/883B
厂家: ADI    ADI
描述:

IC PARALLEL, WORD INPUT LOADING, 0.8 us SETTLING TIME, 10-BIT DAC, CDIP16, CERAMIC, DIP-16, Digital to Analog Converter

CD 输入元件 转换器
文件: 总12页 (文件大小:275K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CMOS Low Cost,  
10-Bit Multiplying DAC  
AD7533  
FEATURES  
GENERAL DESCRIPTION  
Low cost 10-bit DAC  
The AD7533 is a low cost, 10-bit, 4-quadrant multiplying DAC  
manufactured using an advanced thin-film-on-monolithic-  
CMOS wafer fabrication process.  
Low cost AD7520 replacement  
Linearity: ½ LSB, 1 LSB, or 2 LSB  
Low power dissipation  
Full 4-quadrant multiplying DAC  
CMOS/TTL direct interface  
Latch free (protection Schottky not required)  
Endpoint linearity  
Pin and function equivalent to the AD7520 industry standard,  
the AD7533 is recommended as a lower cost alternative for old  
AD7520 sockets or new 10-bit DAC designs.  
AD7533 application flexibility is demonstrated by its ability to  
interface to TTL or CMOS, operate on 5 V to 15 V power, and  
provide proper binary scaling for reference inputs of either  
positive or negative polarity.  
APPLICATIONS  
Digitally controlled attenuators  
Programmable gain amplifiers  
Function generation  
Linear automatic gain controls  
FUNCTIONAL BLOCK DIAGRAM  
10k  
10kΩ  
10kΩ  
V
REF  
20kΩ  
20kΩ  
20kΩ  
20kΩ  
20kΩ  
S1  
S2  
S3  
SN  
I
2
1
OUT  
I
OUT  
10kΩ  
R
FB  
BIT 1 (MSB)  
BIT 2  
BIT 3  
BIT 10 (LSB)  
DIGITAL INPUTS (DTL/TTL/CMOS COMPATIBLE)  
Figure 1.  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2007 Analog Devices, Inc. All rights reserved.  
 
AD7533  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Circuit Description............................................................................7  
General Circuit Information........................................................7  
Equivalent Circuit Analysis .........................................................7  
Operation............................................................................................8  
Unipolar Binary Code ..................................................................8  
Bipolar (Offset Binary) Code.......................................................8  
Applications........................................................................................9  
Outline Dimensions....................................................................... 10  
Ordering Guide .......................................................................... 12  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
ESD Caution.................................................................................. 4  
Terminology ...................................................................................... 5  
Pin Configurations and Function Descriptions ........................... 6  
REVISION HISTORY  
3/07—Rev. B to Rev. C  
3/04—Rev. 0 to Rev. A  
Changes to Table 1............................................................................ 3  
Changes to Table 2............................................................................ 4  
Changes to Figure 13, Figure 14, and Figure 17 ........................... 9  
Updated Outline Dimensions....................................................... 10  
Changes to Ordering Guide .......................................................... 12  
Changes to Specifications.................................................................2  
Changes to Absolute Maximum Ratings........................................3  
Changes to Ordering Guide.............................................................3  
Updated Outline Dimensions..........................................................7  
1/06—Rev. A to Rev. B  
Updated Format..................................................................Universal  
Changes to Absolute Maximum Ratings....................................... 4  
Added Pin Configurations  
and Function Descriptions Section................................................ 6  
Updated Outline Dimensions....................................................... 10  
Changes to Ordering Guide .......................................................... 12  
Rev. C | Page 2 of 12  
 
AD7533  
SPECIFICATIONS  
VDD = 15 V, VOUT1 = VOUT2 = 0 V, VREF = 10 V, unless otherwise noted.  
Table 1.  
Parameter  
TA = 25°C  
TA = Operating Range  
Test Conditions  
STATIC ACCURACY  
Resolution  
Relative Accuracy1  
10 Bits  
10 Bits  
AD7533JN, AD7533AQ,  
AD7533SQ, AD7533JP  
AD7533KN, AD7533BQ,  
AD7533KP, AD7533TE  
0.2ꢀ ꢁSR ꢂaꢃiꢂuꢂ  
0.1ꢀ ꢁSR ꢂaꢃiꢂuꢂ  
0.2ꢀ ꢁSR ꢂaꢃiꢂuꢂ  
0.1ꢀ ꢁSR ꢂaꢃiꢂuꢂ  
AD7533LN, AD7533CQ, AD7533UQ  
0.05ꢀ ꢁSR ꢂaꢃiꢂuꢂ  
1 LSB ꢂaꢃiꢂuꢂ  
1ꢀ ꢁS ꢂaꢃiꢂuꢂ  
0.05ꢀ ꢁSR ꢂaꢃiꢂuꢂ  
1 LSB ꢂaꢃiꢂuꢂ  
1ꢀ ꢁS ꢂaꢃiꢂuꢂ  
DNL  
Gain Error2, 3  
Digital input = VINH  
Supply Rejection4  
∆Gain/∆VDD  
0.001ꢀ/ꢀ ꢂaꢃiꢂuꢂ  
0.001ꢀ/ꢀ ꢂaꢃiꢂuꢂ  
Digital inputs = VINH, VDD = 14 V to 17 V  
Output Leakage Current  
IOUT  
IOUT  
1
2
5 nA ꢂaꢃiꢂuꢂ  
5 nA ꢂaꢃiꢂuꢂ  
200 nA ꢂaꢃiꢂuꢂ  
200 nA ꢂaꢃiꢂuꢂ  
Digital inputs = VINL, VREꢁ = 10 V  
Digital inputs = VINH, VREꢁ = 10 V  
DYNAMIC ACCURACY  
Output Current Settling Tiꢂe  
600 ns ꢂaꢃiꢂuꢂ4  
800 ns5  
To 0.05ꢀ ꢁSR; RLOAD = 100 Ω, digital  
inputs = VINH to VINL or VINL to VINH  
Digital inputs = VINL, VREꢁ = 10 V,  
100 kHz sine wave  
ꢁeedthrough Error  
0.05ꢀ ꢁSR ꢂaꢃiꢂuꢂ5  
0.1ꢀ ꢁSR ꢂaꢃiꢂuꢂ5  
Propagation Delay  
Glitch Iꢂpulse  
REꢁERENCE INPUT  
Input Resistance (VREꢁ)  
ANALOG OUTPUTS  
Output Capacitance  
CIOUT1  
100 ns typical  
100 nV-s typical  
100 ns typical  
100 nV-s typical  
5 kΩ ꢂin, 20 kΩ ꢂaꢃiꢂuꢂ 5 kΩ ꢂin, 20 kΩ ꢂaꢃiꢂuꢂ6 11 kΩ noꢂinal  
50 pꢁ ꢂaꢃiꢂuꢂ5  
20 pꢁ ꢂaꢃiꢂuꢂ5  
30 pꢁ ꢂaꢃiꢂuꢂ5  
50 pꢁ ꢂaꢃiꢂuꢂ5  
100 pꢁ ꢂaꢃiꢂuꢂ5  
35 pꢁ ꢂaꢃiꢂuꢂ5  
35 pꢁ ꢂaꢃiꢂuꢂ5  
100 pꢁ ꢂaꢃiꢂuꢂ5  
Digital inputs = VINH  
Digital inputs = VINL  
CIOUT2  
CIOUT1  
CIOUT2  
DIGITAL INPUTS  
Input High Voltage (VINH  
Input Low Voltage (VINL)  
Input Leakage Current (IIN)  
Input Capacitance (CIN)  
)
2.4 V ꢂiniꢂuꢂ  
0.8 V ꢂaꢃiꢂuꢂ  
1 ꢄA ꢂaꢃiꢂuꢂ  
8 pꢁ ꢂaꢃiꢂuꢂ5  
2.4 V ꢂiniꢂuꢂ  
0.8 V ꢂaꢃiꢂuꢂ  
1 ꢄA ꢂaꢃiꢂuꢂ  
8 pꢁ ꢂaꢃiꢂuꢂ5  
VIN = 0 V and VDD  
POWER REQUIREMENTS  
VDD  
VDD Ranges5  
15 V 10ꢀ  
5 V to 16 V  
15 V 10ꢀ  
5 V to 16 V  
Rated accuracy  
ꢁunctionality with degraded perforꢂance  
IDD  
2 ꢂA ꢂaꢃiꢂuꢂ  
25 ꢄA ꢂaꢃiꢂuꢂ  
2 ꢂA ꢂaꢃiꢂuꢂ  
50 ꢄA ꢂaꢃiꢂuꢂ  
Digital inputs = VINL or VINH  
Digital inputs over VIN  
D
1 ꢁSR = full-scale range.  
2 ꢁull scale (ꢁS) = VREꢁ  
.
3 Maꢃiꢂuꢂ gain change froꢂ TA = 25°C to TMIN or TMAX is 0.1ꢀ ꢁSR.  
4 AC paraꢂeter, saꢂple tested to ensure specification coꢂpliance.  
5 Guaranteed, not tested.  
6 Absolute teꢂperature coefficient is approꢃiꢂately −300 ppꢂ/°C.  
Rev. C | Page 3 of 12  
 
 
 
AD7533  
ABSOLUTE MAXIMUM RATINGS  
TA = 25 °C unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 2.  
Parameter  
VDD to GND  
RꢁB to GND  
VREꢁ to GND  
Digital Input Voltage Range  
IOUT1, IOUT2 to GND  
Rating  
−0.3 V, +17 V  
25 V  
25 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD  
Power Dissipation (Any Package)  
To 75°C  
450 ꢂW  
6 ꢂW/°C  
ESD CAUTION  
Derates above 75°C by  
Operating Teꢂperature Range  
Plastic (JN, JP, KN, KP, LN Versions)  
Herꢂetic (AQ, BQ, CQ Versions)  
Herꢂetic (SQ, TE, UQ Versions)  
Storage Teꢂperature Range  
Lead Teꢂperature (Soldering, 10 sec)  
−40°C to +85°C  
−40°C to +85°C  
−55°C to +125°C  
−65°C to +150°C  
300°C  
Rev. C | Page 4 of 12  
 
AD7533  
TERMINOLOGY  
Relative Accuracy  
Gain Error  
Relative accuracy or endpoint nonlinearity is a measure of the  
maximum deviation from a straight line passing through the  
endpoints of the DAC transfer function. It is measured after  
adjusting for ideal zero and full scale and is expressed in % of  
full-scale range or (sub) multiples of 1 LSB.  
Gain error is a measure of the output error between an ideal  
DAC and the actual device output. It is measured with all 1s in  
the DAC after offset error is adjusted out and is expressed in LSBs.  
Gain error is adjustable to zero with an external potentiometer.  
Feedthrough Error  
Resolution  
Error caused by capacitive coupling from VREF to output with all  
switches off.  
Value of the LSB. For example, a unipolar converter with n bits  
has a resolution of (2–n) (VREF). A bipolar converter of n bits has  
a resolution of [2–(n–1)] (VREF). Resolution in no way implies  
linearity.  
Output Capacitance  
Capacity from IOUT1 and IOUT2 terminals to ground.  
Output Leakage Current  
Current that appears on IOUT1 terminal with all digital inputs  
low or on IOUT2 terminal when all inputs are high.  
Settling Time  
Time required for the output function of the DAC to settle to  
within ½ LSB for a given digital input stimulus, that is, 0 to  
full scale.  
Rev. C | Page 5 of 12  
 
AD7533  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
I
I
1
2
1
2
3
4
5
6
7
8
16  
15  
14  
R
V
OUT  
OUT  
FB  
REF  
DD  
3
2
1
20 19  
GND  
AD7533  
TOP VIEW  
(Not to Scale)  
V
BIT 1 (MSB)  
BIT 2  
13 BIT 10 (LSB)  
12 BIT 9  
4
5
6
7
8
18  
17  
16  
15  
14  
GND  
BIT 1 (MSB)  
NC  
V
DD  
BIT 10 (LSB)  
NC  
AD7533  
TOP VIEW  
(Not to Scale)  
BIT 3  
11 BIT 8  
BIT 4  
10 BIT 7  
BIT 2  
BIT 9  
BIT 5  
9
BIT 6  
BIT 3  
BIT 8  
Figure 2. 16-Lead PDIP Pin Configuration  
9
10 11 12 13  
NC = NO CONNECT  
I
I
1
2
1
2
3
4
5
6
7
8
16  
15  
14  
R
FB  
OUT  
OUT  
Figure 5. 20-Terminal LCC Pin Configuration  
V
V
REF  
DD  
GND  
AD7533  
BIT 1 (MSB)  
BIT 2  
13 BIT 10 (LSB)  
12 BIT 9  
TOP VIEW  
(Not to Scale)  
3
2
1
20 19  
BIT 3  
11 BIT 8  
BIT 4  
10 BIT 7  
PIN 1  
4
5
6
7
8
18  
17  
GND  
BIT 1 (MSB)  
NC  
V
DD  
INDENTFIER  
BIT 5  
9
BIT 6  
BIT 10 (LSB)  
AD7533  
TOP VIEW  
(Not to scale)  
16 NC  
Figure 3. 16-Lead SOIC Pin Configuration  
BIT 2  
15 BIT 9  
14  
BIT 3  
BIT 8  
9
11 12 13  
10  
I
I
1
2
1
2
3
4
5
6
7
8
16  
15  
14  
R
FB  
OUT  
OUT  
V
V
REF  
DD  
GND  
AD7533  
TOP VIEW  
(Not to Scale)  
NC = NO CONNECT  
BIT 1 (MSB)  
BIT 2  
13 BIT 10 (LSB)  
12 BIT 9  
Figure 6. 20-Lead PLCC Pin Configuration  
BIT 3  
11 BIT 8  
BIT 4  
10 BIT 7  
BIT 5  
9 BIT 6  
Figure 4. 16-Lead CERDIP Pin Configuration  
Table 3. Pin Function Descriptions  
Pin Number  
16-Lead PDIP, SOIC, CERDIP 20-Lead LCC, PLCC  
Mnemonic  
Description  
1
2
2
3
IOUT  
IOUT  
1
2
DAC Current Output.  
DAC Analog Ground. This pin should norꢂally be tied to the  
analog ground of the systeꢂ.  
3
4
GND  
Ground.  
4 to 13  
14  
5, 7 to 10, 12 to 15, 17 BIT 1 to BIT 10 MSB to LSB.  
18  
VDD  
Positive Power Supply Input. These parts can be operated froꢂ  
a supply of 5 V to 16 V.  
15  
16  
19  
20  
VREꢁ  
RꢁB  
DAC Reference Voltage Input Terꢂinal.  
DAC ꢁeedback Resistor Pin. Establish voltage output for the DAC  
by connecting RꢁB to eꢃternal aꢂplifier output.  
NA  
1, 6, 11, 16  
NC  
No Connect.  
Rev. C | Page 6 of 12  
 
AD7533  
CIRCUIT DESCRIPTION  
GENERAL CIRCUIT INFORMATION  
V+  
1
3
TO LADDER  
4
5
6
7
The AD7533 is a 10-bit multiplying DAC that consists of a  
highly stable thin-film R-2R ladder and ten CMOS current  
switches on a monolithic chip. Most applications require the  
addition of only an output operational amplifier and a voltage  
or current reference.  
DTL/TTL/  
CMOS  
INPUT  
250  
8
9
2
I
2
I
1
OUT  
OUT  
The simplified D/A circuit is shown in Figure 7. An inverted  
R- 2R ladder structure is used, that is, the binarily weighted  
currents are switched between the IOUT1 and IOUT2 bus lines,  
thus maintaining a constant current in each ladder leg  
independent of the switch state.  
Figure 8. CMOS Switch  
EQUIVALENT CIRCUIT ANALYSIS  
The equivalent circuits for all digital inputs high and digital  
inputs low are shown in Figure 9 and Figure 10. In Figure 9 with  
all digital inputs low, the reference current is switched to IOUT2.  
The current source ILEAKAGE is composed of surface and junction  
leakages to the substrate, while the I/1024 current source represents  
a constant 1-bit current drain through the termination resistor  
on the R-2R ladder. The on capacitance of the output N channel  
switch is 100 pF, as shown on the IOUT2 terminal. The off switch  
capacitance is 35 pF, as shown on the IOUT1 terminal. Analysis of  
the circuit for all digital inputs high, as shown in Figure 10, is  
similar to Figure 9; however, the on switches are now on  
10k  
10kΩ  
10kΩ  
V
REF  
20kΩ  
20kΩ  
20kΩ  
20kΩ  
20kΩ  
S1  
S2  
S3  
SN  
I
2
1
OUT  
I
OUT  
10kΩ  
R
FB  
BIT 1 (MSB)  
BIT 2  
BIT 3  
BIT 10 (LSB)  
DIGITAL INPUTS (DTL/TTL/CMOS COMPATIBLE)  
Terminal IOUT1. Therefore, there is the 100 pF at that terminal.  
Figure 7. Functional Diagram  
One of the CMOS current switches is shown in Figure 8. The  
R
FB  
geometries of Device 1, Device 2, and Device 3 are optimized to  
make the digital control inputs DTL/TTL/CMOS compatible  
over the full military temperature range. The input stage drives  
two inverters (Device 4, Device 5, Device 6, and Device 7),  
which in turn drive the two output N channels. The on  
resistances of the switches are binarily sealed so that the voltage  
drop across each switch is the same. For example, Switch 1 in  
Figure 8 is designed for an on resistance of 20 Ω, Switch 2 for  
40 Ω, and so on. For a 10 V reference input, the current through  
Switch 1 is 0.5 mA, the current through Switch 2 is 0.25 mA,  
and so on, thus maintaining a constant 10 mV drop across each  
switch. It is essential that each switch voltage drop be equal if  
the binarily weighted current division property of the ladder is  
to be maintained.  
R
I
1
2
OUT  
OUT  
R
10k  
I
I
35pF  
LEAKAGE  
I
REF  
V
I
REF  
R
I/1024  
100pF  
LEAKAGE  
Figure 9. Equivalent Circuit—All Digital Inputs Low  
R
FB  
R
10k  
I
R
REF  
V
I
I
1
2
REF  
OUT  
R
I/1024  
I
I
100pF  
LEAKAGE  
LEAKAGE  
OUT  
35pF  
Figure 10. Equivalent Circuit—All Digital Inputs High  
Rev. C | Page 7 of 12  
 
 
 
 
 
AD7533  
OPERATION  
UNIPOLAR BINARY CODE  
BIPOLAR (OFFSET BINARY) CODE  
Table 5. Unipolar Binary Operation  
(4-Quadrant Multiplication)  
Table 4. Unipolar Binary Operation  
(2-Quadrant Multiplication)  
Digital Input  
Digital Input  
Analog Output  
Analog Output  
MSB  
LSB  
(VOUT as shown in Figure 12)  
MSB  
LSB  
(VOUT as shown in Figure 11)  
1 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1 1  
1 0 0 0 0 0 0 0 0 1  
1 0 0 0 0 0 0 0 0 0  
0 1 1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0 0 0  
511  
1023  
+VREF  
+VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
512  
1024  
1 0 0 0 0 0 0 0 0 1  
1
513  
512  
1024  
1 0 0 0 0 0 0 0 0 0  
0 1 1 1 1 1 1 1 1 1  
0
512  
V
REF  
=
1
1024  
2
VREF  
VREF  
VREF  
512  
511  
0 0 0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0 0 0  
511  
512  
1024  
1
512  
512  
1024  
0
= 0  
1024  
Nominal LSB magnitude for the circuit of Figure 12 is given by  
Nominal LSB magnitude for the circuit of Figure 11 is given by  
1
512  
LSB = VREF  
1
LSB = VREF  
1024  
BIPOLAR  
ANALOG INPUT  
V
±10V  
DD  
BIPOLAR  
ANALOG INPUT  
±10V  
V
R1  
R4  
DD  
1k  
20kΩ  
R2  
R5  
20kΩ  
V
REF  
330Ω  
15  
14  
R1  
16  
MSB  
LSB  
C1  
I
1
1k  
R3  
10kΩ  
4
OUT  
R2  
1
2
BIPOLAR  
DIGITAL  
INPUT  
V
REF  
R
A1  
330Ω  
AD7533  
15  
14  
FB  
16  
A2  
V
OUT  
13  
MSB  
I
2
OUT  
C1  
I
I
1
4
OUT  
1
2
3
UNIPOLAR  
DIGITAL  
INPUT  
R6  
5kΩ  
V
AD7533  
OUT  
LSB  
13  
2
OUT  
GND  
3
NOTES  
1. R3, R4, AND R5 SELECTED FOR MATCHING AND TRACKING.  
2. R1 AND R2 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED.  
3. C1 PHASE COMPENSATION (5pF TO 15pF) MAY BE REQUIRED  
WHEN USING HIGH SPEED AMPLIFIERS.  
GND  
NOTES  
Figure 12. Bipolar Operation (4-Quadrant Multiplication)  
1. R1 AND R2 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED.  
2. C1 PHASE COMPENSATION (5pF TO 15pF) MAY BE REQUIRED  
WHEN USING HIGH SPEED AMPLIFIER.  
Figure 11. Unipolar Binary Operation (2-Quadrant Multiplication)  
Rev. C | Page 8 of 12  
 
 
 
AD7533  
APPLICATIONS  
BIPOLAR  
ANALOG INPUT  
±10V  
V
DD  
V
REF  
R
10k  
1/2 AD7512DIJN  
10kΩ  
15  
14  
FB  
16  
MSB  
LSB  
I
I
1
2
4
OUT  
OUT  
1
2
MAGNITUDE  
BITS  
V
AD7533  
OUT  
5kΩ  
13  
OP97  
OP97  
DIGITAL  
INPUT  
3
GND  
SIGN BIT  
Figure 13. 10-Bit and Sign Multiplying DAC  
4.7k  
CALIBRATE  
10V  
1kΩ  
SQUARE  
WAVE  
OP97  
10kΩ  
1%  
6.8V  
(2)  
+15V  
DD  
10kΩ  
1%  
V
NC  
V
C
t
REF  
15  
14  
16  
MSB  
LSB  
I
1
4
OUT  
DIGITAL  
1
2
FREQUENCY  
AD7533  
CONTROL  
WORD  
I
2
OUT  
TRIANGULAR  
WAVE  
13  
OP97  
3
1
f = N (  
)
8
R C  
t t  
= 10kΩ  
0 < N (1 2  
R
t
GND  
10  
)
Figure 14. Programmable Function Generator  
+15V  
14  
TEST INPUT  
V
REF  
15  
(0 TO – V  
)
+15V  
14  
REF  
V
IN  
R
FB  
16  
MSB  
BIT 1  
AD790  
COMPARATOR  
16  
I
I
2
4
OUT  
MSB  
2
1
DIGITAL  
INPUT  
“D”  
I
1
4
OUT  
1
2
DIGITAL  
INPUT  
(TEST LIMIT)  
AD7533  
FAIL/PASS  
TEST  
LSB  
AD7533  
13  
LSB  
1
BIT 10  
OUT  
13  
I
2
OUT  
3
15  
–V  
V
IN  
3
REF  
V
=
OUT  
D
where:  
D =  
GND  
BIT 1  
BIT 2  
BIT 10  
GND  
V
+
+…  
OUT  
1
2
10  
2
2
2
Figure 17. Digitally Programmable Limit Detector  
1023  
1024  
0 < D  
Figure 15. Divider (Digitally Controlled Gain)  
V
REF  
.
+15V  
14  
R1  
–V  
V
OUT  
R
15  
FB  
16  
MSB  
LSB  
BIT 1  
I
1
2
OUT  
R2  
4
1
2
DIGITAL  
INPUT  
“D”  
AD7533  
REFD  
13  
I
BIT 10  
OUT  
3
R
R D  
1
2
V
= V  
=
OUT  
REF  
R
+ R  
R + R  
1 2  
1
2
GND  
where:  
D =  
BIT 1  
2
BIT 2  
2
BIT 10  
+
+…  
1
10  
2
2
1023  
1024  
0 < D  
Figure 16. Modified Scale Factor and Offset  
Rev. C | Page 9 of 12  
 
AD7533  
OUTLINE DIMENSIONS  
0.800 (20.32)  
0.790 (20.07)  
0.780 (19.81)  
16  
1
9
8
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001-AB  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 18. 16-Lead Plastic Dual In-Line Package [PDIP]  
(N-16)  
Dimensions shown in inches and (millimeters)  
10.50 (0.4134)  
10.10 (0.3976)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
0.25 (0.  
0098)  
1.27 (0.0500)  
BSC  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 19. 16-Lead Standard Small Outline Package [SOIC_W]  
Wide Body (RW-16)  
Dimensions shown in millimeters and (inches)  
Rev. C | Page 10 of 12  
 
AD7533  
0.098 (2.49) MAX  
9
0.005 (0.13) MIN  
16  
0.310 (7.87)  
0.220 (5.59)  
1
8
PIN 1  
0.100 (2.54) BSC  
0.320 (8.13)  
0.290 (7.37)  
0.840 (21.34) MAX  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
MAX  
0.150  
(3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
PLANE  
15°  
0°  
0.070 (1.78)  
0.030 (0.76)  
0.023 (0.58)  
0.014 (0.36)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 20. 16-Lead Ceramic Dual In-Line Package [CERDIP]  
(Q-16)  
Dimensions shown in inches and (millimeters)  
0.200 (5.08)  
0.075 (1.91)  
REF  
REF  
0.100 (2.54)  
0.064 (1.63)  
0.100 (2.54) REF  
0.095 (2.41)  
0.015 (0.38)  
MIN  
0.075 (1.90)  
3
19  
18  
20  
4
8
0.028 (0.71)  
0.022 (0.56)  
1
0.358 (9.09)  
0.342 (8.69)  
SQ  
0.358  
0.011 (0.28)  
0.007 (0.18)  
R TYP  
(9.09)  
MAX  
SQ  
BOTTOM  
VIEW  
0.050 (1.27)  
BSC  
14  
0.075 (1.91)  
13  
9
REF  
45° TYP  
0.088 (2.24)  
0.054 (1.37)  
0.055 (1.40)  
0.045 (1.14)  
0.150 (3.81)  
BSC  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 21. 20-Terminal Ceramic Leadless Chip Carrier [LCC]  
(E-20-1)  
Dimensions shown in inches and (millimeters)  
0.180 (4.57)  
0.048 (1.22 )  
0.042 (1.07)  
0.165 (4.19)  
0.056 (1.42)  
0.042 (1.07)  
0.20 (0.51)  
MIN  
0.020 (0.50)  
R
3
4
19  
0.021 (0.53)  
0.013 (0.33)  
0.048 (1.22)  
0.042 (1.07)  
18  
14  
PIN 1  
0.050  
(1.27)  
BSC  
IDENTIFIER  
BOTTOM  
VIEW  
(PINS UP)  
0.330 (8.38)  
0.290 (7.37)  
TOP VIEW  
(PINS DOWN)  
0.032 (0.81)  
0.026 (0.66)  
8
9
13  
0.020  
(0.51)  
R
0.045 (1.14)  
0.025 (0.64)  
R
0.356 (9.04)  
0.350 (8.89)  
SQ  
0.120 (3.04)  
0.090 (2.29)  
0.395 (10.03)  
0.385 (9.78)  
SQ  
COMPLIANT TO JEDEC STANDARDS MO-047-AA  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 22. 20-Lead Plastic Leaded Chip Carrier [PLCC]  
(P-20)  
Dimensions shown in inches and (millimeters)  
Rev. C | Page 11 of 12  
AD7533  
ORDERING GUIDE  
Nonlinearity  
(% FSR max)  
Model  
Temperature Range  
Package Description  
Package Option  
DIE  
N-16  
N-16  
N-16  
N-16  
N-16  
N-16  
P-20  
P-20  
P-20  
P-20  
P-20  
P-20  
P-20  
P-20  
RW-16  
RW-16  
RW-16  
RW-16  
Q-16  
Q-16  
Q-16  
Q-16  
Q-16  
AD7533ACHIPS  
AD7533JN  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
16-Lead Plastic Dual In-Line Package [PDIP]  
16-Lead Plastic Dual In-Line Package [PDIP]  
16-Lead Plastic Dual In-Line Package [PDIP]  
16-Lead Plastic Dual In-Line Package [PDIP]  
16-Lead Plastic Dual In-Line Package [PDIP]  
16-Lead Plastic Dual In-Line Package [PDIP]  
20-Lead Plastic Leaded Chip Carrier [PLCC]  
20-Lead Plastic Leaded Chip Carrier [PLCC]  
20-Lead Plastic Leaded Chip Carrier [PLCC]  
20-Lead Plastic Leaded Chip Carrier [PLCC]  
20-Lead Plastic Leaded Chip Carrier [PLCC]  
20-Lead Plastic Leaded Chip Carrier [PLCC]  
20-Lead Plastic Leaded Chip Carrier [PLCC]  
20-Lead Plastic Leaded Chip Carrier [PLCC]  
16-Lead Standard Sꢂall Outline Package [SOIC_W]  
16-Lead Standard Sꢂall Outline Package [SOIC_W]  
16-Lead Standard Sꢂall Outline Package [SOIC_W]  
16-Lead Standard Sꢂall Outline Package [SOIC_W]  
16-Lead Ceraꢂic Dual In-Line Package [CERDIP]  
16-Lead Ceraꢂic Dual In-Line Package [CERDIP]  
16-Lead Ceraꢂic Dual In-Line Package [CERDIP]  
16-Lead Ceraꢂic Dual In-Line Package [CERDIP]  
16-Lead Ceraꢂic Dual In-Line Package [CERDIP]  
16-Lead Ceraꢂic Dual In-Line Package [CERDIP]  
20-Terꢂinal Ceraꢂic Leadless Chip Carrier [LCC]  
0.2  
0.2  
0.1  
0.1  
0.05  
0.05  
0.2  
0.2  
0.2  
0.2  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.2  
0.1  
0.05  
0.2  
0.05  
0.05  
0.1  
AD7533JNZ1  
AD7533KN  
AD7533KNZ1  
AD7533LN  
AD7533LNZ1  
AD7533JP  
AD7533JP-REEL  
AD7533JPZ1  
AD7533JPZ-REEL1  
AD7533KP  
AD7533KP-REEL  
AD7533KPZ1  
AD7533KPZ-REEL1  
AD7533KR  
AD7533KR-REEL  
AD7533KRZ1  
AD7533KRZ-REEL1  
AD7533AQ  
AD7533BQ  
AD7533CQ  
AD7533SQ  
AD7533UQ  
AD7533UQ/883B  
AD7533TE/883B  
Q-16  
E-20-1  
1Z = RoHS coꢂpliant part.  
©2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C01134-0-3/07(C)  
Rev. C | Page 12 of 12  
 
 
 

相关型号:

AD7533TE

CMOS LOW COST 10-BIT MULTIPLYING DAC
ADI

AD7533TE/883B

CMOS Low Cost, 10-Bit Multiplying DAC
ADI

AD7533TQ

CMOS LOW COST 10-BIT MULTIPLYING DAC
ADI

AD7533TQ/883B

10-Bit Digital-to-Analog Converter
ETC

AD7533UD

Data Acquisition
INTERSIL

AD7533UE

CMOS LOW COST 10-BIT MULTIPLYING DAC
ADI

AD7533UE/883B

10-Bit Digital-to-Analog Converter
ETC

AD7533UQ

CMOS LOW COST 10-BIT MULTIPLYING DAC
ADI

AD7533UQ/883B

CMOS Low Cost, 10-Bit Multiplying DAC
ADI

AD7534

LC2MOS uP-COMPATIBLE 14-BIT DAC
ADI

AD7534ACHIPS

IC IC,D/A CONVERTER,SINGLE,14-BIT,BICMOS,DIE, Digital to Analog Converter
ADI

AD7534AD

PARALLEL, WORD INPUT LOADING, 0.8us SETTLING TIME, 14-BIT DAC, CDIP20, 0.300 INCH, CERAMIC, DIP-20
ADI