AD7538JR [ADI]

LC2MOS uP-Compatible 14-Bit DAC; LC2MOS向上兼容的14位DAC
AD7538JR
型号: AD7538JR
厂家: ADI    ADI
描述:

LC2MOS uP-Compatible 14-Bit DAC
LC2MOS向上兼容的14位DAC

转换器 数模转换器 光电二极管 信息通信管理
文件: 总8页 (文件大小:150K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2
LC MOS  
P-Compatible 14-Bit DAC  
a
AD7538  
FUNCTIO NAL BLO CK D IAGRAM  
FEATURES  
All Grades 14-Bit Monotonic Over the Full Tem perature  
Range  
Low Cost 14-Bit Upgrade for 12-Bit System s  
14-Bit Parallel Load w ith Double Buffered Inputs  
Sm all 24-Pin, 0.3؆ DIP and SOIC  
Low Output Leakage (<20 nA) Over the Full  
Tem perature Range  
APPLICATIONS  
Microprocessor Based Control System s  
Digital Audio  
Precision Servo Control  
Control and Measurem ent in High Tem perature  
Environm ents  
P RO D UCT H IGH LIGH TS  
GENERAL D ESCRIP TIO N  
1. Guaranteed Monotonicity  
T he AD7538 is a 14-bit monolithic CMOS D/A converter  
which uses laser trimmed thin-film resistors to achieve excellent  
linearity.  
T he AD7538 is guaranteed monotonic to 14-bits over the  
full temperature range for all grades.  
2. Low Cost  
T he DAC is loaded by a single 14-bit wide word using standard  
Chip Select and Memory Write Logic. Double buffering, which  
is optional using LDAC, allows simultaneous update in a sys-  
tem containing multiple AD7538s.  
T he AD7538, with its 14-bit dynamic range, affords a low  
cost solution for 12-bit system upgrades.  
3. Small Package Size  
T he AD7538 is packaged in a small 24-pin, 0.3" DIP and a  
24-pin SOIC.  
A novel low leakage configuration (U.S. Patent No. 4,590,456)  
enables the AD7538 to exhibit excellent output leakage current  
characteristics over the specified temperature range.  
4. Low Output Leakage  
By tying VSS (Pin 24) to a negative voltage, it is possible to  
achieve a low output leakage current at high temperatures.  
T he AD7538 is manufactured using the Linear Compatible  
CMOS (LC2MOS) process. It is speed compatible with most  
microprocessors and accepts T T L or CMOS logic level inputs.  
5. Wide Power Supply T olerance  
T he device operates on a +12 V to +15 V VDD, with a ±5%  
tolerance on this nominal figure. All specifications are  
guaranteed over this range.  
REV. A  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700  
Fax: 617/ 326-8703  
2
(V = +11.4 V to +15.75 V , V = +10 V; VPIN3 = VPIN4 = 0 V,  
1
DD  
REF  
AD7538–SPECIFICATIONS  
V = –300 mV. All specifications TMIN to TMAX unless otherwise noted.)  
SS  
J, K  
A, B  
P aram eter  
Versions  
Versions  
S Version T Version  
Units  
Test Conditions/Com m ents  
ACCURACY  
Resolution  
14  
±2  
±1  
14  
±1  
±1  
14  
±2  
±1  
14  
±1  
±1  
Bits  
LSB max  
LSB max  
Relative Accuracy  
Differential Nonlinearity  
Full-Scale Error  
+25°C  
All Grades Guaranteed Monotonic  
Over T emperature.  
Measured Using Internal RFB DAC  
Registers Loaded with All 1s.  
±4  
±8  
±4  
±5  
±4  
±10  
±4  
±6  
LSB max  
LSB max  
T MIN to T MAX  
Gain T emperature Coefficient3;  
Gain/T emperature  
Output Leakage Current IOUT (Pin 3)  
+25°C  
T MIN to T MAX  
T MIN to T MAX  
±2  
±2  
±2  
±2  
ppm/°C typ  
±5  
±10  
±25  
±5  
±10  
±25  
±5  
±20  
±150  
±5  
±20  
±150  
nA max  
nA max  
nA max  
All Digital Inputs 0 V  
VSS = –300 mV  
VSS = 0 V  
REFERENCE INPUT  
Input Resistance, Pin 1  
3.5  
10  
3.5  
10  
3.5  
10  
3.5  
10  
kmin  
kmax  
T ypical Input Resistance = 6 kΩ  
DIGIT AL INPUT S  
VIH (Input High Voltage)  
VIL (Input Low Voltage)  
IIN (Input Current)  
+25°C  
2.4  
0.8  
2.4  
0.8  
2.4  
0.8  
2.4  
0.8  
V min  
V max  
±1  
±10  
7
±1  
±10  
7
±1  
±10  
7
±1  
±10  
7
µA max  
µA max  
pF max  
VIN = 0 V or VDD  
T MIN to T MAX  
CIN (Input Capacitance)3  
POWER SUPPLY  
VDD Range  
VSS Range  
IDD  
11.4/15.75  
–200/–500  
4
11.4/15.75  
–200/–500  
4
11.4/15.75 11.4/15.75  
–200/–500 –200/–500  
V min/V max  
mV min/mV max T his Range  
mA max  
µA max  
Specification Guaranteed Over  
4
4
All Digital Inputs VIL or VIH  
All Digital Inputs 0 V or VDD  
500  
500  
500  
500  
These characteristics are included for Design Guidance only and are not sub-  
ject to test. (V = +11.4 V to +15.75 V, V = +10 V, VPIN3 = VPIN4 = O V, V =  
O V or –300 mV, Output Amplifier is AD711 except where noted.)  
DD  
REF  
SS  
AC PERFORMANCE CHARACTERISTICS  
P aram eter  
TA = +25؇C TA = TMIN, TMAX  
Units  
Test Conditions/Com m ents  
Output Current Settling T ime  
1.5  
µs max  
T o 0.003% of Full-Scale Range.  
IOUT Load= 100 , CEXT = 13 pF.  
DAC Register Alternately Loaded  
with All 1s and All 0s. T ypical Value  
of Settling T ime Is 0.8 µs.  
Digital to Analog Glitch Impulse  
Multiplying Feedthrough Error  
20  
nV-sec typ  
mV p-p typ  
Measured with VREF = 0 V. IOUT Load  
= 100 , CEXT = 13 pF. DAC Register  
Alternately Loaded with All 1s and All 0s.  
3
5
VREF = ±10 V, 10 kHz Sine Wave DAC  
Register Loaded with All 0s.  
Power Supply Rejection  
Gain/VDD  
±0.01  
±0.02  
% per % max VDD = ±5%  
Output Capacitance  
COUT (Pin 3)  
COUT (Pin 3)  
260  
130  
260  
130  
pF max  
pF max  
DAC Register Loaded with All 1s  
DAC Register Loaded with All 0s  
Output Noise Voltage Density  
(10 Hz–100 kHz)  
15  
nVHz typ  
Measured Between RFB and IOUT  
NOT ES  
T emperature range as follows: J, K Versions: 0°C to +70°C  
A, B Versions: –25°C to +85°C  
S, T Versions: –55°C to +125°C  
2Specifications are guaranteed for a VDD of +11.4 V to +15.75 V. At VDD = 5 V, the device is fully functional with degraded specifications.  
3Sample tested to ensure compliance.  
Specifications subject to change without notice.  
–2–  
REV. A  
AD7538  
(V = +11.4 V to +15.75 V, V = +10 V, VPIN3 = VPIN4 = 0 V, V = 0 V or –300 mV.  
All specifications TMIN to TMAX unless otherwise noted. See Figure 1 for Timing Diagram.)  
DD  
REF  
SS  
1
TIMING CHARACTERISTICS  
Lim it at  
Lim it at  
TA = +25؇C  
TA = 0؇C to +70؇C  
TA = –25؇C to +85؇C  
Lim it at  
TA = –55؇C to +125؇C  
P aram eter  
Units  
Test Conditions/Com m ents  
t1  
t2  
t3  
t4  
t5  
t6  
0
0
170  
170  
140  
20  
0
0
200  
200  
160  
20  
0
0
240  
240  
180  
30  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
CS to WR Setup T ime  
CS to WR Hold T ime  
LDAC Pulse Width  
Write Pulse Width  
Data Setup T ime  
Data Hold T ime  
NOT ES  
1T emperature range as follows: J, K Versions: 0°C to +70°C  
A, B Versions: –25°C to +85°C  
S, T Versions: –55°C to +125°C  
Specifications subject to change without notice.  
ABSO LUTE MAXIMUM RATINGS*  
(T A= +25°C unless otherwise stated)  
Operating T emperature Range  
Commercial (J, K Versions) . . . . . . . . . . . . . . 0°C to +70°C  
Industrial (A, B Versions) . . . . . . . . . . . . . . –25°C to +85°C  
Extended (S, T Versions) . . . . . . . . . . . . . –55°C to +125°C  
Storage T emperature . . . . . . . . . . . . . . . . –65°C to +150°C  
Lead T emperature (Soldering, 10 sec) . . . . . . . . . . . . +300°C  
VDD (Pin 23) to DGND . . . . . . . . . . . . . . . . . . . –0.3 V, +17 V  
VSS (Pin 24) to AGND . . . . . . . . . . . . . . . . . . . –15 V, +0.3 V  
VREF (Pin 1) to AGND . . . . . . . . . . . . . . . . . . . . . . . . . ±25 V  
VRFB (Pin 2) to AGND . . . . . . . . . . . . . . . . . . . . . . . . . ±25 V  
Digital Input Voltage (Pins 6–22)  
to DGND . . . . . . . . . . . . . . . . . . . . . . . 0.3 V, VDD +0.3 V  
VPIN3 to DGND . . . . . . . . . . . . . . . . . . . . 0.3 V, VDD +0.3 V  
AGND to DGND . . . . . . . . . . . . . . . . . . 0.3 V, VDD +0.3 V  
Power Dissipation (Any Package)  
*Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. T his is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in  
the operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
T o +75°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000 mW  
Derates Above +75°C . . . . . . . . . . . . . . . . . . . . 10 mW/°C  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD7538 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. T herefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
P IN CO NFIGURATIO N  
D IP , SO IC  
Figure 1. Tim ing Diagram  
REV. A  
–3–  
AD7538  
in Least Significant Bits. Gain error is adjustable to zero with an  
external potentiometer.  
TERMINO LO GY  
RELATIVE ACCURACY  
Relative accuracy or endpoint nonlinearity is a measure of the  
maximum deviation from a straight line passing through the  
endpoints of the DAC transfer function. It is measured after ad-  
justing for zero error and full-scale error and is normally ex-  
pressed in Least Significant Bits or as a percentage of full-scale  
reading.  
D IGITAL-TO -ANALO G GLITCH IMP ULSE  
T he amount of charge injected from the digital inputs to the  
analog output when the inputs change state is called Digital-  
to-Analog Glitch Impulse. T his is normally specified as the area  
of the glitch in either pA-secs or nV-secs depending upon  
whether the glitch is measured as a current or voltage. It is mea-  
sured with VREF = AGND.  
D IFFERENTIAL NO NLINEARITY  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LSB change between any two adjacent  
codes. A specified differential nonlinearity of ±1 LSB max over  
the operating temperature range ensures monotonicity.  
O UTP UT CAP ACITANCE  
T his is the capacitance from IOUT to AGND.  
O UTP UT LEAKAGE CURRENT  
Output Leakage Current is current which appears at IOUT with  
the DAC register loaded to all 0s.  
GAIN ERRO R  
Gain error is a measure of the output error between an ideal  
DAC and the actual device output. It is measured with all 1s in  
the DAC after offset error has been adjusted out and is expressed  
MULTIP LYING FEED TH RO UGH ERRO R  
T his is the ac error due to capacitive feedthrough from VREF  
terminal to IOUT with DAC register loaded to all zeros.  
O RD ERING GUID E  
Relative  
Tem perature  
Full-Scale P ackage  
Model  
Range  
Accuracy  
Error  
O ption*  
AD7538JN  
AD7538KN  
AD7538JR  
AD7538KR  
AD7538AQ  
AD7538BQ  
AD7538SQ  
AD7538T Q  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
–25°C to +85°C  
–25°C to +85°C  
–55°C to +125°C  
–55°C to +125°C  
±2 LSB  
±1 LSB  
±2 LSB  
±1 LSB  
±2 LSB  
±1 LSB  
±2 LSB  
±1 LSB  
±8 LSB  
±4 LSB  
±8 LSB  
±4 LSB  
±8 LSB  
±4 LSB  
±8 LSB  
±4 LSB  
N-24  
N-24  
R-24  
R-24  
Q-24  
Q-24  
Q-24  
Q-24  
*N = Plastic DIP; Q = Cerdip; R = SOIC.  
P IN FUNCTIO N D ESCRIP TIO N  
P in  
Mnem onic  
D escription  
11  
VREF  
Voltage Reference.  
12  
13  
RFB  
IOUT  
Feedback Resistor. Used to close the loop around an external op amp.  
Current Output T erminal.  
14  
15  
6–19  
20  
21  
AGND  
DGND  
DB13–DB0  
LDAC  
CS  
Analog Ground  
Digital Ground  
Data Inputs. Bit 13 (MSB) to Bit 0 (LSB).  
Chip Select Input. Active LOW.  
Asynchronous Load DAC Input. Active LOW.  
Write Input. Active LOW.  
22  
WR  
CS  
LDAC  
WR  
O P ERATIO N  
0
1
0
1
X
1
0
0
1
1
0
X
0
X
1
Load Input Register.  
Load DAC Register from Input Register.  
Input and DAC Registers are T ransparent.  
No Operation.  
No Operation.  
NOT E: X Dont Care.  
23  
24  
VDD  
VSS  
+12 V to +15 V supply input.  
Bias pin for High T emperature Low Leakage configuration. T o implement low leakage  
system, the pin should be at a negative voltage. See Figures 4 and 5 for recommended circuitry.  
–4–  
REV. A  
AD7538  
D /A SECTIO N  
T he R-2R ladder current is 1/8 of the total reference input cur-  
rent. 7/8 I flows in the parallel ladder structure. Switches A-G  
steer equally weighted currents between IOUT and AGND.  
Figure 2 shows a simplified circuit diagram for the AD7538  
D/A section. T he three MSBs of the 14-bit Data Word are de-  
coded to drive the seven switches A-G. T he 11 LSBs of the  
Data Word consist of an R-2R ladder operated in a current  
steering configuration.  
Since the input resistance at VREF is constant, it may be driven  
by a voltage source or a current source of positive or negative  
polarity.  
CIRCUIT INFO RMATIO N  
Figure 2. Sim plified Circuit Diagram for the AD7538 D/A Section  
EQ UIVALENT CIRCUIT ANALYSIS  
Figure 3 shows an equivalent circuit for the analog section of  
the AD7538 D/A converter. T he current source ILEAKAGE is  
composed of surface and junction leakages. T he resistor RO  
denotes the equivalent output resistance of the DAC which  
varies with input code. COUT is the capacitance due to the cur-  
rent steering switches and varies from about 90 pF to 180 pF  
(typical values) depending upon the digital input. g(VREF, N) is  
the T hevenin equivalent voltage generator due to the reference  
input voltage, VREF, and the transfer function of the DAC  
ladder, N.  
Figure 4. Unipolar Binary Operation  
Table I. Unipolar Binary Code Table for AD 7538  
Binary Num ber In  
Figure 3. AD7538 Equivalent Analog Output Circuit  
D AC Register  
Analog O utput, VO UT  
D IGITAL SECTIO N  
MSB  
LSB  
T he digital inputs are designed to be both T T L and 5 V CMOS  
compatible. All logic inputs are static protected MOS gates with  
typical input currents of less than 1 nA. T o minimize power  
supply currents, it is recommended that the digital input volt-  
ages be driven as close as possible to 0 V and 5 V logic levels.  
16383  
VIN  
11 1111 1111 1111  
16384  
8192  
16384  
VIN  
VIN  
= 1/2VIN  
10 0000 0000 0000  
UNIP O LAR BINARY O P ERATIO N (2-Q UAD RANT  
MULTIP LICATIO N)  
Figure 4 shows the circuit diagram for unipolar binary opera-  
tion. With an ac input, the circuit performs 2 quadrant multipli-  
cation. T he code table for Figure 4 is given in T able I.  
1
00 0000 0000 0001  
00 0000 0000 0000  
16384  
0 V  
Capacitor C1 provides phase compensation and helps prevent  
overshoot and ringing when high-speed op amps are used.  
REV. A  
–5–  
AD7538  
For zero offset adjustment, the DAC register is loaded with all  
0s and amplifier offset (VOS) adjusted so that VOUT is 0 V. Ad-  
justing VOUT to 0 V is not necessary in many applications, but it  
Table II. Bipolar Code Table for O ffset Binary Circuit of  
Figure 5.  
is recommended that VOS be no greater than (25 × 10–6) (VREF  
)
Binary Num ber In  
D AC Register  
Analog O utput VO UT  
to maintain specified DAC accuracy (see Applications Hints).  
MSB  
LSB  
Full-scale trimming is accomplished by loading the DAC register  
with all 1s and adjusting R1 so that VOUTA = –VIN (16383/16384).  
For high temperature operation, resistors and potentiometers  
should have a low T emperature Coefficient. In many applica-  
tions, because of the excellent Gain T .C. and Gain Error speci-  
fications of the AD7538, Gain Error trimming is not necessary.  
In fixed reference applications, full scale can also be adjusted  
by omitting R1 and R2 and trimming the reference voltage  
magnitude.  
8191  
+VIN  
11 1111 1111 1111  
8192  
1
+VIN  
10 0000 0000 0001  
10 0000 0000 0000  
01 1111 1111 1111  
8192  
0 V  
BIP O LAR O P ERATIO N  
(4-Q UAD RANT MULTIP LICATIO N)  
T he recommended circuit diagram for bipolar operation is  
shown in Figure 5. Offset binary coding is used. T he code table  
for Figure 5 is given in T able II.  
1
VIN  
8192  
8191  
VIN  
00 0000 0000 0000  
8192  
With the DAC loaded to 10 0000 0000 0000, adjust R1 for  
VO = 0 V. Alternatively, one can omit R1 and R2 and adjust the  
ratio of R5 and R6 for VO = 0 V. Full-scale trimming can be  
accomplished by adjusting the amplitude of VIN or by varying  
the value of R7.  
VSS should be tied to a voltage of approximately –0.3 V as in  
Figures 4 and 5. A simple resistor divider (R3, R4) produces ap-  
proximately –300 mV from –15 V. T he capacitor C2 in parallel  
with R3 is an integral part of the low leakage configuration and  
must be 4.7 µF or greater. Figure 6 is a plot of leakage current  
versus temperature for both conditions. It clearly shows the im-  
provement gained by using the low leakage configuration.  
T he values given for R1, R2 are the minimum necessary to cali-  
brate the system for resistors, R5, R6, R7 ratio matched to 0.1%.  
System linearity error is independent of resistor ratio matching  
and is affected by DAC linearity error only.  
When operating over a wide temperature range, it is important  
that the resistors be of the same type so that their temperature  
coefficients match.  
For further information sec “CMOS DAC Application Guide”,  
3rd Edition, Publication Number G872b-8-1/89 available from  
Analog Devices.  
Figure 6. Graph of Typical Leakage Current vs.  
Tem perature for AD7538  
P RO GRAMMABLE GAIN AMP LIFIER  
T he circuit shown in Figure 7 provides a programmable gain  
amplifier (PGA). In it the DAC behaves as a programmable  
resistance and thus allows the circuit gain to be digitally  
controlled.  
Figure 5. Bipolar Operation  
LO W LEAKAGE CO NFIGURATIO N  
For CMOS Multiplying D/A converters, as the device is oper-  
ated at higher temperatures, the output leakage current in-  
creases. For a 14-bit resolution system, this can be a significant  
source of error. T he AD7538 features a leakage reduction con-  
figuration (U.S. Patent No. 4,590,456) to keep the leakage cur-  
rent low over an extended temperature range. One may operate  
the device with or without this configuration. If VSS (Pin 24) is  
tied to AGND then the DAC will exhibit normal output leakage  
current at high temperatures. T o use the low leakage facility,  
Figure 7. Program m able Gain Am plifier (PGA)  
–6–  
REV. A  
AD7538  
T he transfer function of Figure 7 is:  
MICRO P RO CESSO R INTERFACING  
T he AD7538 is designed for easy interfacing to 16-bit micro-  
processors and can be treated as a memory mapped peripheral.  
T his reduces the amount of external logic needed for interfacing  
to a minimal.  
REQ  
RFB  
VOUT  
VIN  
Gain =  
= –  
(1)  
REQ is the equivalent transfer impedance of the DAC from the  
VREF pin to the IOUT pin and can be expressed as  
AD 7538-8086 INTERFACE  
Figure 8 shows the 8086 processor interface to a single device.  
In this setup the double buffering feature (using LDAC) of the  
DAC is not used. T he 14-bit word is written to the DAC in one  
MOV instruction and the analog output responds immediately.  
2n RIN  
N
REQ  
=
(2)  
Where: n is the resolution of the DAC  
Where: N is the DAC input code in decimal  
Where: RIN is the constant input impedance  
Where: of the DAC (RIN = RLAD  
)
Substituting this expression into Equation 1 and assuming zero  
gain error for the DAC (RIN = RFB) the transfer function simpli-  
fies to  
VOUT  
VIN  
2n  
N
= –  
(3)  
T he ratio N/2n is commonly represented by the term D and, as  
such, is the fractional representation of the digital input word.  
Figure 8. AD7538-8086 Interface Circuit  
In a multiple DAC system the double buffering of the AD7538  
allows the user to simultaneously update all DACs. In Figure 9,  
a 14-bit word is loaded to the Input Registers of each of the  
DACs in sequence. T hen, with one instruction to the appropri-  
ate address, CS4 (i.e., LDAC) is brought low, updating all the  
DACs simultaneously.  
VOUT  
VIN  
–2n –1  
= –  
=
(4)  
N
D
Equation 4 indicates that the gain of the circuit can be varied  
from 16,384 down to unity (actually 16,384/16,383) in 16,383  
steps. T he all 0s code is never applied. T his avoids an open-  
loop condition thereby saturating the amplifier. With the all 0s  
code excluded there remains 2n – 1 possible input codes allow-  
ing a choice of 2n – 1 output levels. In dB terms the dynamic  
range is  
VOUT  
VIN  
20 log10  
= 20 log10 (2n –1) = 84 dB.  
AP P LICATIO N H INTS  
O utput O ffset: CMOS D/A converters in circuits such as Fig-  
ures 4 and 5 exhibit a code dependent output resistance which  
in turn can cause a code dependent error voltage at the output  
of the amplifier. T he maximum amplitude of this error, which  
adds to the D/A converter nonlinearity, depends on VOS, where  
VOS is the amplifier input offset voltage. T o maintain specified  
accuracy with VREF at 10 V, it is recommended that VOS be no  
greater than 0.25 mV, or (25 × 10–6) (VREF), over the tempera-  
ture range of operation. T he AD711 is a suitable op amp. T he  
op amp has a wide bandwidth and high slew rate and is recom-  
mended for ac and other applications requiring fast settling.  
Gener al Gr ound Managem ent: Since the AD7538 is speci-  
fied for high accuracy, it is important to use a proper grounding  
technique. AC or transient voltages between AGND and  
DGND can cause noise injection into the analog output. T he  
simplest method of ensuring that voltages at AGND and  
DGND are equal is to tie AGND and DGND together at the  
AD7538. In more complex systems where the AGND and  
DGND intertie is on the backplane, it is recommended that two  
diodes be connected in inverse parallel between the AD7538  
AGND and DGND pins (1N914 or equivalent).  
Figure 9. AD7538-8086 Interface: Multiple DAC System  
REV. A  
–7–  
AD7538  
AD 7538-MC68000 INTERFACE  
microprocessor bus in the preceding interface configurations.  
T hese inputs will be constantly changing even when the device  
is not selected. T he high frequency logic activity on the bus can  
feed through the DAC package capacitance to show up as noise  
on the analog output. T o minimize this Digital Feedthrough  
isolate the DAC from the noise source. Figure 11 shows an in-  
terface circuit which uses this technique. All data inputs are  
latched from the bus by the CS signal. One may also use other  
means, such as peripheral interface devices, to reduce the Digi-  
tal Feedthrough.  
Figure 10 shows the MC68000 processor interface to a single  
device. In this setup the double buffering feature of the DAC is  
not used and the appropriate data is written into the DAC in  
one MOVE instruction.  
Figure 10. AD7538-MC68000 Interface  
D IGITAL FEED TH RO UGH  
T he digital inputs to the AD7538 are directly connected to the  
Figure 11. AD7538 Interface Circuit Using Latches to  
Minim ize Digital Feedthrough  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
24-P in P lastic Suffix (N)  
24-P in Cerdip (Suffix Q)  
–8–  
REV. A  

相关型号:

AD7538JR-REEL

LC2MOS Microprocessor-Compatible 14-Bit DAC
ADI

AD7538JRZ

LC2MOS Microprocessor-Compatible 14-Bit DAC
ADI

AD7538JRZ-REEL

LC2MOS Microprocessor-Compatible 14-Bit DAC
ADI

AD7538JRZ-REEL1

LC2MOS Microprocessor-Compatible 14-Bit DAC
ADI

AD7538JRZ1

LC2MOS Microprocessor-Compatible 14-Bit DAC
ADI

AD7538KN

LC2MOS uP-Compatible 14-Bit DAC
ADI

AD7538KNZ

LC2MOS Microprocessor-Compatible 14-Bit DAC
ADI

AD7538KNZ1

LC2MOS Microprocessor-Compatible 14-Bit DAC
ADI

AD7538KR

LC2MOS uP-Compatible 14-Bit DAC
ADI

AD7538KR-REEL

LC2MOS Microprocessor-Compatible 14-Bit DAC
ADI

AD7538KRZ

LC2MOS Microprocessor-Compatible 14-Bit DAC
ADI

AD7538KRZ-REEL

LC2MOS Microprocessor-Compatible 14-Bit DAC
ADI