AD7801 [ADI]

+2.7 V to +5.5 V, Parallel Input, Voltage Output 8-Bit DAC; +2.7 V至+5.5 V ,并行输入,电压输出8位DAC
AD7801
型号: AD7801
厂家: ADI    ADI
描述:

+2.7 V to +5.5 V, Parallel Input, Voltage Output 8-Bit DAC
+2.7 V至+5.5 V ,并行输入,电压输出8位DAC

文件: 总16页 (文件大小:221K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
+2.7 V to +5.5 V, Parallel Input,  
Voltage Output 8-Bit DAC  
a
AD7801  
FUNCTIO NAL BLO CK D IAGRAM  
FEATURES  
Single 8-Bit DAC  
20-Pin SOIC/ TSSOP Package  
+2.7 V to +5.5 V Operation  
Internal and External Reference Capability  
DAC Pow er-Dow n Function  
Parallel Interface  
On-Chip Output Buffer Rail-to-Rail Operation  
Low Pow er Operation 1.75 m A m ax @ 3.3 V  
Pow er-Dow n to 1 A m ax @ 25؇C  
D7  
INPUT  
REGISTER  
DAC  
REGISTER  
V
I DAC  
MUX  
I/V  
OUT  
D0  
POWER-ON  
RESET  
WR  
CS  
CONTROL  
LOGIC  
÷2  
AGND  
AD7801  
REFIN  
V
DGND  
PD  
CLR  
LDAC  
DD  
APPLICATIONS  
Portable Battery Pow ered Instrum ents  
Digital Gain and Offset Adjustm ent  
Program m able Voltage and Current Sources  
Program m able Attenuators  
GENERAL D ESCRIP TIO N  
P RO D UCT H IGH LIGH TS  
1. Low Power, Single Supply operation. T his part operates  
from a single +2.7 V to +5.5 V supply and consumes typically  
5 mW at 3 V, making it ideal for battery powered applications.  
T he AD7801 is a single, 8-bit, voltage out DAC that operates  
from a single +2.7 V to +5.5 V supply. Its on-chip precision output  
buffer allows the DAC output to swing rail to rail. T he AD7801  
has a parallel microprocessor and DSP compatible interface with  
high speed registers and double buffered interface logic. Data is  
loaded to the input register on the rising edge of CS or WR.  
2. T he on-chip output buffer amplifier allows the output of the  
DAC to swing rail to rail with a settling time of typically 1.2 µs.  
3. Internal or external reference capability.  
4. High speed parallel interface.  
Reference selection for the AD7801 can be either an internal  
reference derived from the VDD or an external reference applied  
at the REFIN pin. T he output of the DAC can be cleared by  
using the asynchronous CLR input.  
5. Power-down capability. When powered down the DAC  
consumes less than 1 µA at 25°C.  
6. Packaged in 20-lead SOIC and T SSOP packages.  
T he low power consumption of this part makes it ideally suited  
to portable battery operated equipment. T he power consump-  
tion is less than 5 mW at 3.3 V, reducing to less than 3 µW in  
power-down mode.  
T he AD7801 is available in a 20-lead SOIC and a 20-lead  
T SSOP package.  
REV. 0  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700  
Fax: 617/ 326-8703  
World Wide Web Site: http:/ / w w w .analog.com  
© Analog Devices, Inc., 1997  
(V = +2.7 V to +5.5 V, Internal Reference; C = 100 pF, R = 10 kto V and GND.  
DD  
L
L
DD  
All specifications TMIN to TMAX unless otherwise noted.)  
AD7801–SPECIFICATIONS  
P aram eter  
B Versions1  
Units  
Conditions/Com m ents  
ST AT IC PERFORMANCE  
Resolution  
8
Bits  
Relative Accuracy2  
Differential Nonlinearity  
Zero-Code Error @ +25°C  
Full-Scale Error  
±1  
±1  
3
–0.75  
100  
±1  
LSB max  
LSB max  
LSB typ  
LSB typ  
µV/°C typ  
% FSR typ  
Guaranteed Monotonic  
All Zeros Loaded to DAC Register  
All Ones Loaded to DAC Register  
Zero-Code Error Drift  
Gain Error3  
DAC REFERENCE INPUT  
REFIN Input Range  
REFIN Input Impedance  
1 to VDD/2  
10  
V min/V max  
Mtyp  
OUT PUT CHARACT ERIST ICS  
Output Voltage Range  
Output Voltage Settling T ime  
Slew Rate  
Digital-to-Analog Glitch Impulse  
Digital Feedthrough  
0 to VDD  
2
7.5  
1
0.2  
40  
V min/V max  
µs max  
V/µs typ  
nV-s typ  
nV-s typ  
typ  
T ypically 1.2 µs  
1 LSB Change Around Major Carry  
DC Output Impedance  
Short Circuit Current  
14  
0.0003  
mA typ  
%/% max  
Power Supply Rejection Ratio4  
VDD = ±10%  
LOGIC INPUT S  
Input Current  
±10  
0.8  
0.6  
2.4  
2.1  
7
µA max  
V max  
V max  
V min  
V min  
pF max  
VINL, Input Low Voltage  
VINL, Input Low Voltage  
VINH, Input High Voltage  
VINH, Input High Voltage  
Pin Capacitance  
VDD = +5 V  
VDD = +3 V  
VDD = +5 V  
VDD = +3 V  
POWER REQUIREMENT S  
VDD  
IDD (Normal Mode)  
VDD = 3.3 V  
@ 25°C  
T MIN to TMAX  
VDD = 5.5 V  
@ 25°C  
T MIN to TMAX  
IDD (Power-Down)  
@ 25°C  
2.7/5.5  
V min/V max  
DAC Active and Excluding Load Current  
VIH = VDD and VIL = GND  
See Figure 6  
1.55  
1.75  
mA max  
mA max  
2.35  
2.5  
mA max  
mA max  
1
2
µA max  
µA max  
VIH = VDD and VIL = GND  
See Figure 18  
T MIN to TMAX  
NOT ES  
1T emperature ranges are as follows: B Version: –40°C to +105°C  
2Relative Accuracy is calculated using a reduced code range of 15 to 245.  
3Gain Error is specified between Codes 15 and 245. T he actual error at Code 15 is typically 3 LSB.  
4Guaranteed by characterization at product release, not production tested.  
Specifications subject to change without notice.  
t1  
t2  
CS  
t3  
WR  
t4  
t5  
D7-D0  
t6  
t7  
LDAC  
CLR  
t8  
Figure 1. Tim ing Diagram for Parallel Data Write  
–2–  
REV. 0  
AD7801  
(V = +2.7 V to +5.5 V; GND = 0 V; Internal V /2 Reference. All specifications T to T  
MAX  
unless otherwise noted.)  
DD  
DD  
MIN  
1, 2  
TIMING CHARACTERISTICS  
Lim it at TMIN, TMAX  
(B Version)  
P aram eter  
Units  
Conditions/Com m ents  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
0
0
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
Chip Select to Write Setup T ime  
Chip Select to Write Hold T ime  
Write Pulse Width  
Data Setup T ime  
Data Hold T ime  
Write to LDAC Setup T ime  
LDAC Pulse Width  
CLR Pulse Width  
20  
15  
4.5  
20  
20  
20  
NOT ES  
1Sample tested at +25°C to ensure compliance. All input signals are specified with tr = tf = 5 ns (10% to 90% of VDD) and timed from a voltage level of  
(VIL + VIH )/2. tr and tf should not exceed 1 µs on any digital input.  
2See Figure 1.  
ABSO LUTE MAXIMUM RATINGS*  
O RD ERING GUID E  
(T A = +25°C unless otherwise noted)  
Tem perature  
Range  
P ackage  
O ption*  
VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to +7 V  
Reference Input Voltage to AGND . . . . –0.3 V to VDD + 0.3 V  
Digital Input Voltage to DGND . . . . . . 0.3 V to VDD + 0.3 V  
AGND to DGND . . . . . . . . . . . . . . . . . . . . . 0.3 V to +0.3 V  
VOUT to AGND . . . . . . . . . . . . . . . . . . –0.3 V to VDD + 0.3 V  
Operating T emperature Range  
Model  
AD7801BR  
AD7801BRU  
–40°C to +105°C  
–40°C to +105°C  
R-20  
RU-20  
*R = Small Outline; RU = T hin Shrink Small Outline.  
Commercial (B Version) . . . . . . . . . . . . . –40°C to +105°C  
Storage T emperature Range . . . . . . . . . . . . –65°C to +150°C  
Junction T emperature . . . . . . . . . . . . . . . . . . . . . . . . . +150°C  
SSOP Package, Power Dissipation . . . . . . . . . . . . . . . 700 mW  
θJA T hermal Impedance . . . . . . . . . . . . . . . . . . . . 143°C/W  
Lead T emperature, Soldering  
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . . +215°C  
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . +220°C  
SOIC Package, Power Dissipation . . . . . . . . . . . . . . . 870 mW  
θJA T hermal Impedance . . . . . . . . . . . . . . . . . . . . . 74°C/W  
Lead T emperature, Soldering  
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . . +215°C  
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . +220°C  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. T his is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD7801 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. T herefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. 0  
–3–  
AD7801  
P IN CO NFIGURATIO N  
1
2
3
4
5
6
7
8
9
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
(MSB) DB7  
DB6  
DGND  
V
OUT  
DB5  
NC  
DB4  
AGND  
REFIN  
DB3  
AD7801  
TOP VIEW  
(Not to Scale)  
DB2  
V
DD  
DB1  
CLR  
(LSB) DB0  
CS  
LDAC  
PD  
WR 10  
DGND  
NC = NO CONNECT  
P IN FUNCTIO N D ESCRIP TIO NS  
P in  
No.  
Mnem onic  
Function  
1–8  
9
D7–D0  
CS  
Parallel Data Inputs. 8-bit data is loaded to the input register of the AD7801 under the control of CS and WR.  
Chip Select. Active low logic input.  
10  
11  
12  
13  
WR  
Write Input. WR is an active low logic input used in conjunction with CS to write data to the input register.  
Digital Ground  
DGND  
PD  
Active low input used to put the part into low power mode reducing current consumption to less than 1 µA.  
LDAC  
Load DAC Logic Input. When this logic input is taken low the DAC output is updated with the contents of  
its DAC register. If LDAC is permanently tied low the DAC is updated on the rising edge of WR.  
14  
CLR  
Asynchronous Clear Input (Active Low). When this input is taken low the DAC register is loaded with all  
zeroes and the DAC output is cleared to zero volts.  
15  
16  
VDD  
Power Supply Input. T his part can be operated from +2.7 V to +5.5 V and should be decoupled to GND.  
REFIN  
External Reference Input. T his can be used as the reference for the DAC. T he range on this reference input is  
1 V to VDD/2. If REFIN is tied directly to VDD the internal VDD/2 reference is selected.  
17  
18  
19  
20  
AGND  
NC  
Analog Ground reference point and return point for all analog current on the part.  
No Connect Pin.  
VOUT  
Analog Output Voltage from the DAC. T he output amplifier can swing rail to rail on its output.  
Digital Ground reference point and return point for all digital current on the part.  
DGND  
REV. 0  
–4–  
Typical Performance Characteristics–  
AD7801  
5
4.92  
4.84  
4.76  
4.68  
4.6  
800  
720  
640  
560  
480  
400  
320  
240  
160  
80  
3.5  
3.25  
3.0  
V
= 5V AND 3V  
DD  
INTERNAL REFERENCE  
= +2C  
T
A
DAC LOADED WITH 00HEX  
2.75  
2.5  
2.25  
2.0  
4.52  
4.44  
4.36  
4.28  
4.2  
V
= 5V  
DD  
V
= 3V  
DD  
1.75  
1.5  
INTERNAL REFERENCE  
DAC REGISTER LOADED  
WITH FFHEX  
INTERNAL REFERENCE  
DAC REGISTER LOADED  
WITH FFHex  
T
= +25°C  
A
1.25  
1.0  
T
= +25°C  
A
0
0
0
2
4
6
8
2
4
6
8
0
1
2
3
4
5
6
7
8
SOURCE CURRENT – mA  
SINK CURRENT – mA  
SOURCE CURRENT – mA  
Figure 2. Output Sink Current Capa-  
bility with VDD = 3 V and VDD = 5 V  
Figure 3. Output Source Current  
Capability with VDD = 5 V  
Figure 4. Output Source Current  
Capability with VDD = 3 V  
0.5  
4.0  
4.0  
INTERNAL REFERENCE  
DAC ACTIVE  
INTERNAL REFERENCE  
V
= 5V  
DD  
= +2C  
0.45  
0.4  
LOGIC INPUTS = V OR GND  
DD  
3.5  
3.0  
T
A
DAC ACTIVE  
T
= +25°C  
A
3.0  
LOGIC INPUTS = V OR V  
IH  
IL  
0.35  
0.3  
2.5  
2.0  
INL ERROR  
0.25  
0.2  
V
= 5.5V  
DD  
2.0  
1.0  
0
1.5  
1.0  
0.15  
0.1  
LOGIC INPUTS = V OR GND  
DD  
V
= 3.3V  
DD  
DNL ERROR  
0.5  
0
0.05  
0
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8  
REFERENCE VOLTAGE – Volts  
100  
–50  
–25  
0
25  
50  
75  
125  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
TEMPERATURE
C
V
– Volts  
DD  
Figure 5. Relative Accuracy vs.  
External Reference  
Figure 6. Typical Supply Current  
vs. Tem perature  
Figure 7. Typical Supply Current  
vs. Supply Voltage  
10  
5
WR  
T
0
1
2
–5  
PD  
2
–10  
–15  
–20  
–25  
V
OUT  
V
OUT  
V
= 3V  
V
DD  
OUT  
V
= 5V  
DD  
INTERNAL VOLTAGE  
REFERENCE  
FULL SCALE CODE  
CHANGE 00H-FFH  
1
–30  
–35  
–40  
EXTERNAL SINEWAVE REFERENCE  
DAC REGISTER LOADED WITH FFHEX  
AD7801 POWER-UP TIME  
V
= 5V  
DD  
T
= +25°C  
A
INTERNAL REFERENCE  
DAC IN POWER-DOWN INITIALLY  
3
T
= +25°C  
A
1
10  
100  
1k  
10k  
FREQUENCY – Hz  
CH1 = 2V/div, CH2 = 5V/Div,  
TIME BASE = 2 µs/Div  
CH1 5V, CH2 1V, CH3 20mV  
TIME BASE = 200 ns/Div  
Figure 10. Exiting Power-Down (Full  
Power-Down)  
Figure 9. Full-Scale Settling Tim e  
Figure 8. Large Scale Signal  
Frequency Response  
REV. 0  
–5–  
AD7801Typical Performance Characteristics  
10  
9
T
WR  
V
8
DD  
V
= 5V  
DD  
1
INTERNAL VOLTAGE  
REFERENCE  
10 LSB STEP CHANGE  
7
6
5
VDD = 2.7 TO 5.5V  
DAC LOADED WITH ALL ZEROES  
INTERNAL REFERENCE  
T
A
= +25؇C  
T
V
V
OUT  
OUT  
4
3
2
1
0
2
CH1 5.00V, CH2 50.0mV, M 250ns  
M20.0ms  
CH1  
5.00V CH2 5.00V  
CH1  
–50 –25  
0
25  
50  
75  
C
100 125  
TEMPERATURE
Figure 11. Power-On—Reset  
Figure 12. Zero Code Error vs.  
Tem perature  
Figure 13. Sm all-Scale Settling Tim e  
0.5  
0.5  
0.4  
0.3  
0.5  
0.4  
0.3  
0.2  
V
= 5V  
DD  
0.4  
INTERNAL REFERENCE  
5k100pF LOAD  
LIMITED CODE RANGE (15–245)  
0.3  
0.2  
0.1  
0
T
= +25°C  
A
0.2  
0.1  
V
= 5V  
DD  
INTERNAL REFERENCE  
V
= 5V  
0.1  
0
DD  
INTERNAL REFERENCE  
0
–0.1  
–0.2  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.3  
–0.4  
–0.5  
0
32  
64 96 128 160 192 224 256  
INPUT CODE (15 to 245)  
–60 –40 –20  
0
20 40 60 80 100 120 140  
–60 –40 –20  
0
20 40 60 80 100 120 140  
TEMPERATURE
C
TEMPERATURE C  
Figure 14. Integral Linearity Plot  
Figure 15. Typical INL vs. Tem perature  
Figure 16. Typical DNL vs. Temperature  
1000  
1.0  
V
= 5V  
DD  
LOGIC INPUTS = V  
900  
V
= 5V  
OR GND  
DD  
DD  
800  
700  
600  
500  
0.8  
0.6  
0.4  
400  
300  
200  
0.2  
0
100  
0
–50  
–25  
0
25  
50  
75  
100 150  
–60 –40 –20  
0
20 40 60 80 100 120 140  
TEMPERATURE
C
TEMPERATURE
C
Figure 17. Typical Internal Reference  
Error vs. Tem perature  
Figure 18. Power-Down Current vs.  
Tem perature  
REV. 0  
–6–  
AD7801  
TERMINO LO GY  
Integr al Nonlinear ity  
AD7801  
REFERENCE  
AMPLIFIER  
V
DD  
11.7k  
For the DAC, Relative Accuracy or End-Point nonlinearity is a  
measure of the maximum deviation, in LSBs, from a straight  
line passing through the endpoints of the DAC transfer  
function. A graphical representation of the transfer curve is  
shown in Figure 14.  
30kΩ  
30kΩ  
CURRENT  
DAC  
REFIN  
V
I/V  
OUT  
11.7kΩ  
D iffer ential Nonlinear ity  
Differential Nonlinearity is the difference between the mea-  
sured change and the ideal 1 LSB change between any two  
adjacent codes. A specified differential nonlinearity of ±1 LSB  
maximum ensures monotonicity.  
Figure 19. DAC Architecture  
T he DAC output is internally buffered and has rail-to-rail  
Zer o-Code Er r or  
output characteristics. T he output amplifier is capable of driving  
a load of 100 pF and 10 kto both VDD and ground. T he  
reference selection for the DAC can be either internally gener-  
ated from VDD or externally applied through the REFIN pin. A  
comparator on the REFIN pin detects whether the required  
reference is the internally generated reference or the externally  
applied voltage to the REFIN pin. If REFIN is connected to  
Zero-Code Error is the measured output voltage from VOUT of  
the DAC when zero code (all zeros) is loaded to the DAC  
latch. It is due to a combination of the offset errors in the DAC  
and output amplifier. Zero-code error is expressed in LSBs.  
Gain Er r or  
T his is a measure of the span error of the DAC. It is the  
deviation in slope of the DAC transfer characteristic from ideal  
expressed as a percent of the full-scale value. It includes full-  
scale errors but not offset errors.  
VDD, the reference selected is the internally generated VDD/2  
reference. When an externally applied voltage is more than one  
volt below VDD, the comparator selection switches to the externally  
applied voltage on the REFIN pin. T he range on the external  
reference input is from 1.0 V to VDD/2 V. T he output voltage  
from the DAC is given by:  
D igital-to-Analog Glitch Im pulse  
Digital-to-Analog Glitch Impulse is the impulse injected into  
the analog output when the digital inputs change state with  
the DAC selected and the LDAC used to update the DAC. It  
is normally specified as the area of the glitch in nV-secs and  
measured when the digital input code is changed by 1 LSB at  
the major carry transition.  
N
VO = 2VREF  
×
256  
where VREF is the voltage applied to the external REFIN pin or  
V
DD/2 when the internal reference is selected. N is the decimal  
D igital Feedthr ough  
equivalent of the code loaded to the DAC register and ranges  
from 0 to 255.  
Digital Feedthrough is a measure of the impulse injected into  
the analog output of a DAC from the digital inputs of the same  
DAC, but is measured when the DAC is not updated. It is  
specified in nV-secs and measured with a full-scale code change  
on the data bus, i.e., from all 0s to all 1s and vice versa.  
V
DD  
VTH  
PMOS  
P ower Supply Rejection Ratio (P SRR)  
T his specification indicates how the output of the DAC is affected  
by changes in the power supply voltage. Power supply rejection  
ratio is quoted in terms of % change in output per % change in  
VDD for full-scale output of the DAC. VDD is varied ±10%.  
COMPARATOR  
INT REF  
REF  
IN  
EXT REF  
MUX  
INT  
REF  
GENERAL D ESCRIP TIO N  
D /A Section  
The AD7801 is an 8-bit voltage output digital-to-analog con-  
verter. T he architecture consists of a reference amplifier and a  
current source DAC followed by a current-to-voltage converter  
capable of generating rail-to-rail voltages on the output of the  
DAC. Figure 19 shows a block diagram of the basic DAC  
architecture.  
SELECTED REFERENCE  
OUTPUT  
Figure 20. Reference Selection Circuitry  
REV. 0  
–7–  
AD7801  
Autom atic Update Mode  
Refer ence  
In this mode of operation the LDAC signal is permanently tied  
low. T he state of the LDAC is sampled on the rising edge of  
WR. LDAC being low allows the DAC register to be automati-  
cally updated on the rising edge of WR. T he output update  
occurs on the rising edge of WR. Figure 23 shows the timing  
associated with the automatic update mode of operation and  
also the status of the various registers during this frame.  
T he AD7801 has the ability to use either an external reference  
applied through the REFIN pin or an internal reference generated  
from VDD. Figure 20 shows the reference input arrangement  
where either the internal VDD/2 or the externally applied reference  
can be selected.  
T he internal reference is selected by tying the REFIN pin to  
VDD. If an external reference is to be used, this can be directly  
applied to the REFIN pin and if this is 1 V below VDD, the  
internal circuitry will select this externally applied reference as  
the reference source for the DAC.  
CS  
WR  
D igital Inter face  
T he AD7801 contains a fast parallel interface allowing this  
DAC to interface to industry standard microprocessors,  
microcontrollers and DSP machines. T here are two modes in  
which this parallel interface can be configured to update the  
DAC output. T he synchronous update mode allows synchro-  
nous updating of the DAC output; the automatic update mode  
allows the DAC to be updated individually following a write  
cycle. Figure 21 shows the internal logic associated with the  
digital interface. T he PON ST RB signal is internally generated  
from the power-on reset circuitry and is low during the power-  
on reset phase of the power up procedure.  
D7-D0  
LDAC = 0  
TRACK  
HOLD  
I/P REG (MLE)  
HOLD  
HOLD  
DAC REG (SLE)  
TRACK  
TRACK  
V
OUT  
Figure 23. Tim ing and Register Arrangem ent for Auto-  
m atic Update Mode  
CLR  
Synchr onous Update Mode  
CLR  
In this mode of operation the LDAC signal is used to update the  
DAC output to synchronize with other updates in the system.  
T he state of the LDAC is sampled on the rising edge of WR. If  
LDAC is high, the automatic update mode is disabled and the  
DAC latch is updated at any time after the write by taking  
LDAC low. T he output update occurs on the falling edge of  
LDAC. LDAC must be taken back high again before the next  
data transfer takes place. Figure 24 shows the timing associated  
with the synchronous update mode of operation and also the  
status of the various registers during this frame.  
PON STRB  
MLE  
SLE  
CLEAR  
SET SLE  
LDAC  
LDAC  
DAC CONTROL  
LOGIC  
ENABLE  
CS  
WR  
Figure 21. Logic Interface  
T he AD7801 has a double buffered interface, which allows for  
synchronous updating of the DAC output. Figure 22 shows a  
block diagram of the register arrangement within the AD7801.  
CS  
WR  
4
15  
15  
30  
D7-D0  
DB7-DB0  
8
UPPER  
NIBBLE  
LDAC  
TRACK  
HOLD  
I/P REG (MLE)  
HOLD  
HOLD  
4
15  
15  
30  
DAC REG (SLE)  
TRACK  
HOLD  
LOWER  
NIBBLE  
V
OUT  
MLE  
SLE  
Figure 24. Tim ing and Register Arrangem ent for Synchro-  
nous Update Mode  
CS  
WR  
LDAC  
CLR  
CONTROL LOGIC  
Figure 22. Register Arrangem ent  
REV. 0  
–8–  
AD7801  
P O WER-O N RESET  
N
256  
VO = 2 ×VREF  
T he AD7801 has a power-on reset circuit designed to allow  
output stability during power up. T his circuit holds the DAC in  
a reset state until a write takes place to the DAC. In the reset  
state all zeros are latched into the input register of the DAC and  
the DAC register is in transparent mode thus the output of the  
DAC is held at ground potential until a write takes place to the  
DAC. T he power-on reset circuitry generates a PON ST RB  
signal which is a gating signal used within the logic to identify  
a power-on condition.  
UT  
where:  
N
is the decimal equivalent of the binary input  
code. N ranges from 0 to 255.  
VREF is the voltage applied to the external REFIN pin  
when the external reference is selected and is VDD/2  
if the internal reference is used.  
Table I. O utput Voltage for Selected Input Codes  
P O WER-D O WN FEATURES  
T he AD7801 has a power-down feature implemented by  
exercising the external PD pin. An active low signal puts the  
complete DAC into power-down mode. When in power-down,  
the current consumption of the device is reduced to less than  
1 µA max at +25°C or 2 µA max over temperature, making the  
device suitable for use in portable battery powered equipment.  
T he internal reference resistors, the reference bias servo loop,  
the output amplifier and associated linear circuitry are all shut  
down when the power-down is activated. T he output terminal  
sees a load of 23 kto GND when in power-down mode as  
shown in Figure 25. T he contents of the data register are  
unaffected when in power-down mode. T he device typically  
comes out of power-down in 13 µs (see Figure 10).  
D igital  
MSB . . . LSB  
Analog O utput  
255  
256  
1111 1111  
1111 1110  
2 ×  
2 ×  
2 ×  
×VREF  
×VREF  
×VREF  
V
V
V
254  
256  
129  
256  
1000 0001  
1000 0000  
VREF  
V
127  
256  
0111 1111  
2 ×  
2 ×  
×VREF  
V
11.7k  
VREF  
V
0000 0001  
0000 0000  
V
DD  
256  
0 V  
I
DAC  
2V  
REF  
11.7kΩ  
V
REF  
V
REF  
Figure 25. Output Stage During Power-Down  
Analog O utputs  
The AD7801 contains a voltage output DAC with 8-bit resolution  
and rail-to-rail operation. T he output buffer provides a gain of  
two at the output. Figures 2, 3 and 4 show the source and sink  
capabilities of the output amplifier. T he slew rate of the output  
amplifier is typically 7.5 V/µs and has a full-scale settling to  
eight bits with a 100 pF capacitive load in typically 1.2 µs.  
0
DAC INPUT CODE 00 01  
7F 80 81  
FE FF  
T he input coding to the DAC is straight binary. T able I shows  
the binary transfer function for the AD7801. Figure 26 shows  
the DAC transfer function for binary coding. Any DAC output  
voltage can be expressed as:  
Figure 26. DAC Transfer Function  
REV. 0  
–9–  
AD7801  
MICRO P RO CESSO R INTERFACING  
AD 7801–AD SP -2101/AD SP -2103 Inter face  
Figure 29 shows an interface between the AD7801 and the ADSP-  
2101/ADSP-2103. T he fast interface timing associated with the  
AD7801 allows easy interface to the ADSP-2101/ADSP-2103.  
Figure 27 shows a typical setup for the AD7801 when using its  
internal reference. T he internal reference is selected by tying the  
REFIN pin to VDD. Internally in the reference section there is a  
reference detect circuit that will select the internal VDD/2 based  
on the voltage connected to the REFIN pin. If REFIN is within  
a threshold voltage of a PMOS device (approximately 1 V) of  
VDD the internal reference is selected. When the REFIN voltage  
is more than 1 V below VDD, the externally applied voltage at  
this pin is used as the reference for the DAC. T he internal  
reference on the AD7801 is VDD/2, the output current to  
voltage converter within the AD7801 provides a gain of two.  
T hus the output range of the DAC is from 0 V to VDD, based on  
T able I.  
LDAC is permanently tied low in this circuit so the DAC  
output is updated on the rising edge of the WR signal.  
Data is loaded to the AD7801 input register using the following  
ADSP-21xx instruction.  
DM(DAC) = MR0  
MR0 = ADSP-21xx MR0 Register.  
DAC = Decoded DAC Address.  
V
= 3V TO 5V  
DD  
DMA14  
ADDRESS BUS  
0.1F  
10F  
DMA0  
AD7801*  
ADDR  
DECODE  
DMS  
EN  
V
AGND DGND  
CS  
DD  
REF IN  
ADSP-2101*/  
ADSP-2103*  
V
OUT  
LDAC  
AD7801  
V
OUT  
CLR  
PD  
WR  
WR  
CS WR LDAC  
D7-D0  
DB7  
DB0  
V
DD  
DATA BUS  
CONTROL  
INPUTS  
DMD15  
DMD0  
DATA BUS  
Figure 27. Typical Configuration Selecting the Internal  
Reference  
*ADDITIONAL CIRCUITRY OMITTED FOR CLARITY.  
Figure 29. AD7801–ADSP-2101/ADSP-2103 Interface  
Figure 28 shows a typical setup for the AD7801 when using an  
external reference. T he reference range for the AD7801 is from  
1 V to VDD/2 V. Higher values of reference can be incorporated  
but will saturate the output at both the top and bottom end of  
the transfer function. There is a gain of two from input to output  
on the AD7801. Suitable references for 5 V operation are the  
AD780 and REF192. For 3 V operation a suitable external  
reference would be the AD589 a 1.23 V bandgap reference.  
AD 7801–TMS320C20 Inter face  
Figure 30 shows an interface between the AD7801 and the  
T MS320C20. Data is loaded to the AD7801 using the following  
instruction:  
OUT DAC, D  
DAC = Decoded DAC Address.  
D = Data Memory Address.  
V
= 3V TO 5V  
DD  
A15  
ADDRESS BUS  
0.1F  
0.1F  
10F  
A0  
V
IN  
AD7801*  
V
AGND DGND  
DD  
EXT REF  
GND  
V
ADDR  
DECODE  
OUT  
REF IN  
EN  
IS  
CS  
V
OUT  
TMS320C20  
AD7801  
V
OUT  
CLR  
PD  
LDAC  
STRB  
AD780/REF192 WITH V = 5V  
DD  
WR  
CS  
LDAC  
WR  
D7-D0  
OR  
V
DD  
R/W  
AD589 WITH V = 3V  
DB7  
DB0  
DD  
DATA BUS  
CONTROL  
INPUTS  
D15  
D0  
DATA BUS  
Figure 28. Typical Configuration Using An External  
Reference  
*
ADDITIONAL CIRCUITRY OMITTED FOR CLARITY.  
Figure 30. AD7801–TMS320C20 Interface  
REV. 0  
–10–  
AD7801  
In the circuit shown the LDAC is hardwired low thus the DAC  
output is updated on the rising edge of WR. Some applications  
may require synchronous updating of the DAC in the AD7801.  
In this case the LDAC signal can be driven from an external  
timer or can be controlled by the microprocessor. One option  
for synchronous updating is to decode the LDAC from the ad-  
dress bus so a write operation at this address will synchronously  
update the DAC output. A simple OR gate with one input  
driven from the decoded address and the second input from the  
WR signal will implement this function.  
V
= 3V TO 5V  
DD  
R4  
20k  
0.1F  
10F  
R3  
10kΩ  
+5V  
V
IN  
AD820/  
OP295  
V
AGND DGND  
DD  
EXT REF  
GND  
±5V  
V
OUT  
REF IN  
V
OUT  
0.1F  
–5V  
AD7801  
CLR  
PD  
R1  
10kΩ  
AD780/REF192  
WITH V = 5V  
CS  
WR LDAC  
D7-D0  
DD  
R2  
20kΩ  
V
DD  
OR  
AD589 WITH V = 3V  
AD 7801–8051/8088 Inter face  
DD  
Figure 31 shows a serial interface between the AD7801 and the  
8051/8088 processors.  
DATA  
BUS  
CONTROL  
INPUTS  
Figure 32. Bipolar Operation Using the AD7801  
A15  
D ecoding Multiple AD 7801s in a System  
ADDRESS BUS  
T he CS pin on the AD7801 can be used in applications to  
A8  
decode a number of DACs. In this application, all DACs in the  
system receive the same input data, but only the CS to one of  
the DACs will be active at any one time allowing access to one  
channel in the system. T he 74HC139 is used as a two-to-four  
line decoder to address any of the DACs in the system. T o  
prevent timing errors from occurring, the Enable input on the  
74HC139 should be brought to its inactive state while the  
Coded Address inputs are changing state. Figure 33 shows a  
diagram of a typical setup for decoding multiple AD7801  
devices in a system. T he built-in power-on reset circuit on the  
AD7801 ensures that the outputs of all DACs in the system  
power up with zero volts on their outputs.  
AD7801*  
ADDR  
DECODE  
EN  
PSEN OR DEN  
CS  
WR  
8051/8088*  
ALE  
WR  
LDAC  
OCTAL  
LATCH  
DB7  
DB0  
AD7  
AD0  
DATA BUS  
*
ADDITIONAL CIRCUITRY OMITTED FOR CLARITY.  
Figure 31. AD7801–8051/8088 Interface  
DATA BUS  
AD7801  
AP P LICATIO NS  
CS  
V
OUT  
WR  
Bipolar O per ation Using the AD 7801  
WR  
D0  
D7  
T he AD7801 has been designed for unipolar operation but  
bipolar operation is possible using the circuit in Figure 32. T he  
circuit shown is configured for an output voltage range of –5 V  
to +5 V. Rail-to-rail operation at the amplifier output is achievable  
by using an AD820 or OP295 as the output amplifier.  
LDAC  
V
DD  
V
CC  
1G  
AD7801  
1Y0  
ENABLE  
1A  
1B  
CS  
V
OUT  
1Y1  
1Y2  
WR  
T he output voltage for any input code can be calculated as  
follows:  
CODED  
ADDRESS  
D0  
D7  
74HC139  
LDAC  
1Y3  
DGND  
R4  
R3  
2VREF  
D
R4  
R3  
VO = R2 1+  
/ R1+ R2 ×  
VREF  
(
)
256  
AD7801  
CS  
V
OUT  
Where D is the decimal equivalent of the code loaded to the  
DAC and VREF is the reference voltage input.  
WR  
D0  
D7  
LDAC  
With VREF = 2.5 V, R1 = R3 = 10 kand R2 = R4 = 20 kand  
VDD = 5 V.  
AD7801  
10D  
256  
VO  
=
–5  
CS  
V
OUT  
WR  
D0  
D7  
LDAC  
Figure 33. Decoding Multiple AD7801s  
REV. 0  
–11–  
AD7801  
AD 7801 as a D igitally P r ogr am m able Indicator  
V
= 5V  
DD  
A digitally programmable upper limit detector using the DAC is  
shown in Figure 34. T he upper limit for the test is loaded to the  
DAC, which in turn sets the limit for the CMP04. If a signal at  
the VIN input is not below the programmed value, an LED will  
indicate the Fail condition.  
V
SOURCE  
0.1µF  
10µF  
LOAD  
+5V  
V
IN  
V
DD  
EXT REF  
GND  
V
OUT  
REF IN  
V
OUT  
0.1µF  
2N3904/  
BC107  
AD820/  
OP295  
AD7801  
+5V  
AD780/ REF192  
AGND DGND  
1
F
0
F
V
WITH V = 5V  
IN  
DD  
1k  
1kΩ  
FAIL  
PASS  
4.7kΩ  
V
REFIN  
DD  
470Ω  
AD7801  
V
OUT  
D7  
D0  
PASS/  
Figure 35. Program m able Current Source  
Coar se and Fine Adjustm ent using two AD 7801s  
T he two DACs can be paired together to form a coarse and fine  
adjustment function for a setpoint as shown in Figure 36. In this  
circuit, the first DAC is used to provide the coarse adjustment  
and the second DAC is used to provide the fine adjustment.  
Varying the ratio of R1 and R2 will vary the relative effect of the  
coarse and fine tune elements in the circuit. For the resistor  
values shown, the second DAC has a resolution of 148 µV  
giving a fine tune range of 38 mV (approximately 2 LSB) for  
operation with a VDD of 5 V and a reference of 2.5 V. T he  
amplifier shown allows a rail-to-rail output voltage to be  
achieved on the output. A typical application for the circuit  
would be in a setpoint controller.  
1/4  
CMP-04  
1/6  
74HC05  
DV  
DD  
DGND  
AGND  
Figure 34. Digitally Program m able Indicator  
P r ogr am m able Cur r ent Sour ce  
Figure 35 shows the AD7801 used as the control element of a  
programmable current source. In this circuit the full-scale  
current is set to 1 mA. T he output voltage from the DAC is  
applied across the current setting resistor of 4.7 kin series with  
the full-scale setting resistor of 470 . Suitable transistors to  
place in the feedback loop of the amplifier include the BC107  
and the 2N3904, which enable the current source to operate  
from a minimum VSOURCE of 6 V. T he operating range is  
determined by the operating characteristics of the transistor.  
Suitable amplifiers include the AD820 and the OP295, both of  
which have rail-to-rail operation on their outputs. T he current  
for any digital input code can be calculated as follows:  
V
= 5V  
DD  
R4  
390Ω  
R3  
51.2kΩ  
0.1µF  
10µF  
+5V  
V
V
IN  
O
R1  
390Ω  
AD820/  
OP295  
V
DD  
EXT REF  
GND  
V
OUT  
REF IN  
V
OUT  
0.1µF  
AD7801  
AGND DGND  
AD780/ REF192  
WITH V = 5V  
DD  
OR  
AD589 WITH V  
= 3V  
DD  
2 V  
D
(
)
REF  
V
DD  
I =  
REF IN  
V
256 (5 k)  
OUT  
(
)
0.1µF  
AD7801  
R2  
51.2kΩ  
AGND DGND  
Figure 36. Coarse and Fine Adjustm ent  
REV. 0  
–12–  
AD7801  
P ower Supply Bypassing and Gr ounding  
T he power supply lines of the AD7801 should use as large a  
trace as possible to provide low impedance paths and reduce the  
effects of glitches on the supply line. Fast switching signals like  
clocks should be shielded with digital ground to avoid radiating  
noise to other parts of the board and should never be run near  
reference inputs. Avoid crossover of digital and analog signals.  
T races on opposite sides of the board should run at right angles  
to each other. T his reduces the effect of feedthrough through  
the board. A microstrip technique is by far the best, but not  
always possible with a double-sided board. In this technique, the  
component side of the board is dedicated to the ground plane  
while signal traces are placed on the solder side.  
In any circuit where accuracy is important, careful consideration  
of the power supply and ground return layout helps to ensure  
the rated performance. T he printed circuit board on which the  
AD7801 is mounted should be designed so that the analog and  
digital sections are separated and confined to certain areas of the  
board. If the AD7801 is in a system where multiple devices  
require an AGND to DGND connection, the connection should  
be made at one point only, a star ground point which should be  
established as closely as possible to the AD7801. T he AD7801  
should have ample supply bypassing of 10 µF in parallel with  
0.1 µF located as close to the package as possible, ideally right  
up against the device. T he 10 µF capacitors are the tantalum  
bead type. T he 0.1 µF capacitors should have low Effective  
Series Resistance (ESR) and Effective Series Inductance (ESI),  
such as the common ceramic types, which provide a low  
impedance path to ground at high frequencies to handle  
transient currents due to internal logic switching.  
REV. 0  
–13–  
AD7801  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
20-Lead Wide Body SO IC  
(R-20)  
0.5118 (13.00)  
0.4961 (12.60)  
20  
11  
1
10  
PIN 1  
0.1043 (2.65)  
0.0926 (2.35)  
0.0291 (0.74)  
0.0098 (0.25)  
x 45°  
0.0500 (1.27)  
0.0157 (0.40)  
8°  
0°  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0118 (0.30)  
0.0040 (0.10)  
SEATING  
PLANE  
0.0125 (0.32)  
0.0091 (0.23)  
0.0138 (0.35)  
20-Lead TSSO P  
(RU-20)  
0.260 (6.60)  
0.252 (6.40)  
20  
11  
10  
1
0.006 (0.15)  
0.002 (0.05)  
PIN 1  
0.0433  
(1.10)  
MAX  
0.028 (0.70)  
0.020 (0.50)  
8°  
0°  
0.0118 (0.30)  
0.0075 (0.19)  
0.0256 (0.65)  
BSC  
SEATING  
PLANE  
0.0079 (0.20)  
0.0035 (0.090)  
REV. 0  
–14–  
–15–  
–16–  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY