AD7846APZ [ADI]

LC2MOS 16-Bit Voltage Output DAC; LC2MOS 16位电压输出DAC
AD7846APZ
型号: AD7846APZ
厂家: ADI    ADI
描述:

LC2MOS 16-Bit Voltage Output DAC
LC2MOS 16位电压输出DAC

转换器
文件: 总24页 (文件大小:451K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LC2MOS  
16-Bit Voltage Output DAC  
AD7846  
FUNCTIONAꢀ BꢀOCK DIAGRAM  
FEATURES  
V
V
CC  
DD  
16-bit monotonicity over temperature  
2 ꢀSBs integral linearity error  
Microprocessor compatible with readback capability  
Unipolar or bipolar output  
Multiplying capability  
ꢀow power (100 mW typical)  
21  
4
V
REF+  
7
AD7846  
R
R
R
R
R
6
5
R
IN  
A2  
A1  
16  
SEGMENT  
SWITCH  
MATRIX  
V
A3  
OUT  
12-BIT DAC  
12  
23  
CS  
V
REF–  
8
DAC LATCH  
12  
22  
25  
24  
4
R/W  
CONTROL  
LOGIC  
LDAC  
CLR  
I/O LATCH  
9
10  
3
20  
V
DB15 DB0  
DGND  
SS  
Figure 1.  
GENERAꢀ DESCRIPTION  
The AD7846 is a 16-bit DAC constructed with the Analog Devices,  
Inc., LC2MOS process. It has VREF+ and VREF− reference inputs  
and an on-chip output amplifier. These can be configured to  
give a unipolar output range (0 V to +5 V, 0 V to +10 V) or  
bipolar output ranges ( 5 V, 10 V).  
W
to 00…000 or 10…000 depending on the state of R/ . This  
means that the DAC output can be reset to 0 V in both the  
unipolar and bipolar configurations.  
The AD7846 is available in 28-lead plastic, ceramic, and PLCC  
packages.  
The DAC uses a segmented architecture. The four MSBs in the  
DAC latch select one of the segments in a 16-resistor string.  
Both taps of the segment are buffered by amplifiers and fed to a  
12-bit DAC, which provides a further 12 bits of resolution. This  
architecture ensures 16-bit monotonicity. Excellent integral  
linearity results from tight matching between the input offset  
voltages of the two buffer amplifiers.  
PRODUCT HIGHꢀIGHTS  
1. 16-Bit Monotonicity  
The guaranteed 16-bit monotonicity over temperature  
makes the AD7846 ideal for closed-loop applications.  
2. Readback  
The ability to read back the DAC register contents  
minimizes software routines when the AD7846 is used in  
ATE systems.  
In addition to the excellent accuracy specifications, the AD7846  
also offers a comprehensive microprocessor interface. There are  
3. Power Dissipation  
CS W LDAC  
CLR  
16 data I/O pins, plus control lines ( , R/  
,
and  
allow writing to and reading from the I/O latch.  
This is the readback function, which is useful in ATE applications.  
).  
Power dissipation of 100 mW makes the AD7846 the  
lowest power, high accuracy DAC on the market.  
W
CS  
R/ and  
LDAC  
allows simultaneous updating of DACs in a multi-DAC  
CLR  
system and the  
line will reset the contents of the DAC latch  
Rev. G  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2000–2010 Analog Devices, Inc. All rights reserved.  
 
AD7846  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Output Stage................................................................................ 12  
Unipolar Binary Operation........................................................... 13  
Bipolar Operation........................................................................... 14  
Multiplying Operation............................................................... 14  
Position Measurement Application.............................................. 15  
Microprocessor Interfacing........................................................... 16  
AD7846-to-8086 Interface........................................................ 16  
AD7846-to-MC68000 Interface ............................................... 16  
Digital Feedthrough....................................................................... 17  
Application Hints ........................................................................... 18  
Noise ............................................................................................ 18  
Grounding................................................................................... 18  
Printed Circuit Board Layout ................................................... 18  
Outline Dimensions....................................................................... 20  
Ordering Guide .......................................................................... 22  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AC Performance Characteristics................................................ 4  
Timing Characteristics ................................................................ 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configurations and Function Descriptions ........................... 7  
Typical Performance Characteristics ............................................. 8  
Terminology .................................................................................... 10  
Circuit Description......................................................................... 11  
Digital Section............................................................................. 11  
Digital-to-Analog Conversion.................................................. 11  
REVISION HISTORY  
4/10—Rev. F to Rev. G  
Change to Figure 1 ........................................................................... 1  
12/09—Rev. E to Rev. F  
Updated Format..................................................................Universal  
Changes to Table 4............................................................................ 6  
Deleted Other Output Voltage Ranges Section ............................ 9  
Deleted Figure 20 and Table 5; Renumbered Sequentially ......... 9  
Deleted Test Application Section and Figure 21 ........................ 10  
Deleted Figure 29 to Figure 31...................................................... 14  
Changes to Printed Circuit Board Layout Section..................... 18  
Updated Outline Dimensions....................................................... 20  
Changes to Ordering Guide .......................................................... 22  
Rev. G | Page 2 of 24  
 
AD7846  
SPECIFICATIONS  
VDD = +14.25 V to +15.75 V; VSS = −14.25 V to –15.75 V; VCC = +4.75 V to +5.25 V. VOUT loaded with 2 kΩ, 1000 pF to 0 V; VREF+ = +5 V;  
IN connected to 0 V. All specifications TMIN to TMAX, unless otherwise noted.  
R
Table 1.  
Parameter1  
J, A Versions  
K, B Versions  
Unit  
Test Conditions/Comments  
RESOLUTION  
16  
16  
Bits  
UNIPOLAR OUTPUT  
Relative Accuracy at +25°C  
TMIN to TMAX  
Differential Nonlinearity Error  
Gain Error at +25°C  
TMIN to TMAX  
Offset Error at +25°C  
TMIN to TMAX  
Gain TC2  
Offset TC2  
VREF− = 0 V, VOUT = 0 V to +10 V  
1 LSB = 153 μV  
±12  
±16  
±1  
±12  
±16  
±12  
±16  
±1  
±4  
±±  
±0.5  
±6  
±16  
±6  
±16  
±1  
±1  
LSB typ  
LSB max  
LSB max  
LSB typ  
LSB max  
LSB typ  
LSB max  
ppm FSR/°C typ  
ppm FSR/°C typ  
All grades guaranteed monotonic  
VOUT load = 10 MΩ  
±1  
BIPOLAR OUTPUT  
Relative Accuracy at +25°C  
TMIN to TMAX  
VREF− = –5 V, VOUT = −10 V to +10 V  
1 LSB = 305 μV  
±6  
±±  
±2  
±4  
LSB typ  
LSB max  
Differential Nonlinearity Error  
Gain Error at +25°C  
TMIN to TMAX  
Offset Error at +25°C  
TMIN to TMAX  
Bipolar Zero Error at +25°C  
TMIN to TMAX  
Gain TC2  
Offset TC2  
Bipolar Zero TC2  
±1  
±6  
±16  
±6  
±16  
±6  
±12  
±1  
±1  
±0.5  
±4  
±16  
±4  
±12  
±4  
±±  
±1  
±1  
±1  
LSB max  
LSB typ  
LSB max  
LSB typ  
LSB max  
LSB typ  
LSB max  
ppm FSR/°Ctyp  
ppm FSR/°Ctyp  
ppm FSR/°Ctyp  
All grades guaranteed monotonic  
VOUT load = 10 MΩ  
VOUT load = 10 MΩ  
±1  
REFERENCE INPUT  
Input Resistance  
20  
40  
VSS + 6 to  
VDD − 6  
VSS + 6 to  
VDD − 6  
20  
40  
VSS + 6 to  
VDD − 6  
VSS + 6 to  
VDD − 6  
kΩ min  
kΩ max  
V min to  
V max  
V min to  
V max  
Resistance from VREF+ to VREF−  
Typically 30 kΩ  
VREF+ Range  
VREF− Range  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
V max  
V
V
2
1000  
0.3  
SS + 4 to  
DD − 3  
VSS + 4 to  
VDD − 3  
2
1000  
0.3  
Resistive Load  
Capacitive Load  
Output Resistance  
Short Circuit Current  
DIGITAL INPUTS  
kΩ min  
pF max  
Ω typ  
To 0 V  
To 0 V  
±25  
±25  
mA typ  
To 0 V or any power supply  
VIH (Input High Voltage)  
VIL (Input Low Voltage)  
IIN (Input Current)  
2.4  
0.±  
±10  
10  
2.4  
0.±  
±10  
10  
V min  
V max  
μA max  
pF max  
CIN (Input Capacitance)2  
Rev. G | Page 3 of 24  
 
AD7846  
Parameter1  
J, A Versions  
K, B Versions  
Unit  
Test Conditions/Comments  
DIGITAL OUTPUTS  
VOL (Output Low Voltage)  
VOH (Output High Voltage)  
Floating State Leakage Current  
Floating State Output Capacitance2  
0.4  
4.0  
±10  
10  
0.4  
4.0  
±10  
10  
V max  
V min  
μA max  
pF max  
ISINK = 1.6 mA  
ISOURCE = 400 μA  
DB0 to DB15 = 0 to VCC  
POWER REQUIREMENTS3  
VDD  
VSS  
VCC  
IDD  
+11.4/+15.75  
−11.4/−15.75  
+4.75/+5.25  
5
+11.4/+15.75  
−11.4/−15.75  
+4.75/+5.25  
5
V min/V max  
V min/V max  
V min/V max  
mA max  
VOUT unloaded  
VOUT unloaded  
ISS  
5
5
mA max  
ICC  
1
1.5  
100  
1
1.5  
100  
mA max  
LSB/V max  
mW typ  
Power Supply Sensitivity4  
Power Dissipation  
VOUT unloaded  
1 Temperature ranges as follows: J, K versions: 0°C to +70°C; A, B versions: −40°C to +±5°C.  
2 Guaranteed by design and characterization, not production tested.  
3 The AD7±46 is functional with power supplies of ±12 V. See the Typical Performance Characteristics section.  
4 Sensitivity of gain error, offset error, and bipolar zero error to VDD, VSS variations.  
AC PERFORMANCE CHARACTERISTICS  
These characteristics are included for design guidance and are not subject to test. VREF+ = +5 V; VDD = +14.25 V to +15.75 V; VSS = −14.25 V  
to −15.75 V; VCC = +4.75 V to +5.25 V; RIN connected to 0 V, unless otherwise noted.  
Table 2.  
Parameter  
ꢀimit at TMIN to TMAX (All Versions)  
Unit  
Test Conditions/Comments  
Output Settling Time1  
6
9
7
μs max  
μs max  
V/μs typ  
To 0.006% FSR, VOUT loaded, VREF− = 0 V, typically 3.5 μs  
To 0.003% FSR, VOUT loaded, VREF− = –5 V, typically 6.5 μs  
Slew Rate  
Digital-to-Analog Glitch  
Impulse  
70  
nV-sec typ  
DAC alternately loaded with 10…0000 and 01…1111,  
V
OUT unloaded  
AC Feedthrough  
0.5  
mV p-p typ VREF− = 0 V, VREF+ = 1 V rms, 10 kHz sine wave, DAC loaded  
with all 0s  
Digital Feedthrough  
10  
50  
nV-sec typ  
nV/√Hz typ Measured at VOUT, DAC loaded with 0111011…11,  
REF+ = VREF− = 0 V  
DAC alternately loaded with all 1s and all 0s. CS high  
Output Noise Voltage  
Density, 1 kHz to 100 kHz  
V
1 LDAC  
= 0. Settling time does not include deglitching time of 2.5 μs (typ).  
Rev. G | Page 4 of 24  
 
 
 
 
 
AD7846  
TIMING CHARACTERISTICS  
VDD = +14.25 V to +15.75 V, VSS = −14.25 V to −15.75 V, VCC = +4.75 V to +5.25 V, unless otherwise noted.  
Table 3.  
Parameter1  
ꢀimit at TMIN to TMAX (All Versions)  
Unit  
Test Conditions/Comments  
R/W to CS setup time  
CS pulse width (write cycle)  
R/W to CS hold time  
Data setup time  
Data hold time  
Data access time  
0
ns min  
ns min  
ns min  
ns min  
ns min  
ns max  
ns min  
ns max  
ns min  
ns min  
ns min  
ns min  
ns min  
t1  
t2  
t3  
t4  
t5  
60  
0
60  
0
120  
10  
60  
0
2
t6  
t7  
3
Bus relinquish time  
CLR setup time  
t±  
70  
0
CLR pulse width  
t9  
CLR hold time  
t10  
t11  
t12  
70  
130  
LDAC pulse width  
CS pulse width (read cycle)  
1 Timing specifications are sample tested at +25°C to ensure compliance. All input control signals are specified with tR = tF = 5 ns (10% to 90% of +5 V) and timed from a  
voltage level of 1.6 V.  
2 t6 is measured with the load circuits of Figure 3 and Figure 4 and defined as the time required for an output to cross 0.± V or 2.4 V.  
3 t7 is defined as the time required for an output to change 0.5 V when loaded with the circuits of Figure 5 and Figure 6.  
t1  
t3  
t1  
t3  
5V  
0V  
5V  
0V  
5V  
0V  
5V  
0V  
5V  
0V  
R/W  
CS  
t12  
t2  
t5  
t7  
t6  
t4  
DB0  
TO  
DB15  
DATA VALID  
DATA VALID  
t9  
t10  
t8  
t9  
t10  
t8  
CLR  
t11  
LDAC  
Figure 2. Timing Diagram  
DBn  
DBn  
100pF  
10pF  
3k  
DGND  
3kΩ  
DGND  
Figure 3. Load Circuit for Access Time (t6)—High Z to VOH  
Figure 5. Load Circuit for Access Time (t7)—High Z to VOH  
5V  
5V  
3k  
3k  
DBn  
DBn  
10pF  
100pF  
DGND  
DGND  
Figure 6. Load Circuits for Bus Relinquish Time (t7)—High Z to VOL  
Figure 4. Load Circuits for Bus Relinquish Time (t6)—High Z to VOL  
Rev. G | Page 5 of 24  
 
 
AD7846  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
VDD to DGND  
VCC to DGND  
Rating  
−0.4 V to +17 V  
−0.4 V, VDD + 0.4 V, or +7 V  
(whichever is lower)  
+0.4 V to −17 V  
VSS to DGND  
VREF+ to DGND  
VREF− to DGND  
VOUT to DGND1  
VDD + 0.4 V, VSS − 0.4 V  
VDD + 0.4 V, VSS − 0.4 V  
VDD + 0.4 V, VSS − 0.4 V, or ±10 V  
(whichever is lower)  
VDD + 0.4 V, VSS − 0.4 V  
−0.4 V to VCC + 0.4 V  
ESD CAUTION  
RIN to DGND  
Digital Input Voltage to DGND  
Digital Output Voltage to DGND −0.4 V to VCC + 0.4 V  
Power Dissipation (Any Package)  
To +75°C  
1000 mW  
10 mW/°C  
Derates above +75°C  
Operating Temperature Range  
J, K Versions  
A, B Versions  
Storage Temperature Range  
Lead Temperature (Soldering)  
0°C to +70°C  
−40°C to +±5°C  
−65°C to +150°C  
+300°C  
1 VOUT can be shorted to DGND, VDD, VSS, or VCC provided that the power  
dissipation of the package is not exceeded.  
Rev. G | Page 6 of 24  
 
 
AD7846  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
DB2  
DB1  
DB0  
DB3  
DB4  
DB5  
1
28  
27  
26  
25  
24  
23  
22  
21  
4
3
2
1
28 27 26  
2
PIN 1  
IDENTIFIER  
3
V
5
6
7
8
9
25  
24  
23  
22  
21  
LDAC  
CLR  
CS  
OUT  
R
V
4
IN  
LDAC  
CLR  
CS  
DD  
V
V
5
REF+  
REF–  
V
OUT  
AD7846  
TOP VIEW  
(Not to Scale)  
R/W  
6
R
IN  
AD7846  
TOP VIEW  
(Not to Scale)  
V
V
SS  
CC  
7
V
V
R/W  
REF+  
DB15 10  
DB14 11  
20 DGND  
19 DB6  
8
V
REF–  
CC  
9
V
20 DGND  
SS  
10  
11  
12  
13  
14  
19  
DB15  
DB14  
DB13  
DB12  
DB11  
DB6  
12 13 14 15 16 17 18  
18  
DB7  
17  
DB8  
16  
DB9  
15  
DB10  
Figure 7. PDIP Pin Configuration  
Figure 8. CERDIP Pin Configuration  
Table 5. Pin Function Descriptions  
Pin  
Mnemonic  
DB2 to DB0  
VDD  
VOUT  
RIN  
Description  
1 to 3  
Data I/Os. DB0 is LSB.  
Positive Supply for Analog Circuitry. This is +15 V nominal.  
DAC Output Voltage.  
Input to Summing Resistor of DAC Output Amplifier. This is used to select output voltage ranges. See Table 6.  
VREF+ Input. The DAC is specified for VREF+ = +5 V.  
VREF− Input. For unipolar operation connect VREF− to 0 V, and for bipolar operation connect it to −5 V. The device is  
specified for both conditions.  
4
5
6
7
±
VREF+  
VREF−  
9
VSS  
Negative Supply for the Analog Circuitry. This is −15 V nominal.  
10 to 19 DB15 to DB6 Data I/Os. DB15 is MSB.  
20  
21  
22  
23  
24  
25  
DGND  
VCC  
R/W  
CS  
Ground for Digital Circuitry.  
Positive Supply for Digital Circuitry. This is +5 V nominal.  
R/W Input. This pin can be used to load data to the DAC or to read back the DAC latch contents.  
Chip Select Input. This pin selects the device.  
Clear Input. The DAC can be cleared to 000…000 or 100…000. See Table 7.  
Asynchronous Load Input to DAC.  
CLR  
LDAC  
26 to 2± DB5 to DB3  
Data I/Os.  
Table 6. Output Voltage Ranges  
Output Range  
0 V to +5 V  
0 V to +10 V  
+5 V to −5 V  
VREF+  
+5 V  
+5 V  
+5 V  
+5 V  
+5 V  
VREF−  
0 V  
0 V  
−5 V  
0 V  
−5 V  
RIN  
VOUT  
0 V  
VOUT  
+5 V  
0 V  
+5 V to −5 V  
+10 V to −10 V  
Rev. G | Page 7 of 24  
 
 
AD7846  
TYPICAL PERFORMANCE CHARACTERISTICS  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
A1 –0.40V  
V
= V = 0V  
REF–  
REF+  
GAIN = +1  
DAC LOADED WITH ALL 1s  
1V 2mV  
20µs  
0
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
Figure 12. Noise Spectral Density  
Figure 9. AC Feedthrough, VREF+ = 1 V rms, 10 kHz Sine Wave  
8
V
V
V
V
= +15V  
= –15V  
DD  
7
6
5
4
3
2
1
0
SS  
+
= +1V rms  
= 0V  
REF  
REF  
50mV/DIV  
V
OUT  
5V/DIV  
DATA  
0.5µs/DIV  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 10. AC Feedthrough to VOUT vs. Frequency  
Figure 13. Digital-to-Analog Glitch Impulse Without Internal Deglitcher  
(10…000 to 011…111 Transition)  
30  
25  
20  
15  
10  
5
V
V
V
V
= +15V  
= –15V  
DD  
SS  
= ±5V SINE WAVE  
= 0V  
REF+  
REF–  
50mV/DIV  
V
OUT  
GAIN = +2  
5V/DIV  
5V/DIV  
LDAC  
DATA  
0
10  
1µs/DIV  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 14. Digital-to-Analog Glitch Impulse with Internal Deglitcher  
(10…000 to 011…111 Transition)  
Figure 11. Large Signal Frequency Response  
Rev. G | Page ± of 24  
 
 
 
 
 
AD7846  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
A1  
0V  
T
V
V
= +25°C  
A
= +5V  
= 0V  
REF+  
REF–  
V
+, ±5V  
REF  
GAIN = +1  
V
+, ±10V  
2µs  
OUT  
10V  
5V  
11  
12  
13  
14  
, V (V)  
15  
16  
V
DD SS  
Figure 18. Typical Integral Nonlinearity vs. VDD/VSS  
Figure 15. Pulse Response (Large Signal)  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
A1 0.025V  
T = +25°C  
A
V
V
= +5V  
= 0V  
REF+  
REF–  
V
+, ±50mV  
REF  
GAIN = +1  
V
+, ±100mV  
OUT  
100mV 50mV  
1µs  
11  
12  
13  
14  
, V (V)  
15  
16  
V
DD SS  
Figure 19. Typical Differential Nonlinearity vs. VDD/VSS  
Figure 16. Pulse Response (Small Signal)  
REF 2.24V  
10dB/DIV  
MARKER 442.0Hz  
RANGE 3.98V  
1.70V  
START 100.0Hz  
RBW 3Hz  
STOP 2000.0Hz  
ST 422 SEC  
VBW 10Hz  
Figure 17. Spectral Response of Digitally Constructed Sine Wave  
Rev. G | Page 9 of 24  
AD7846  
TERMINOLOGY  
Offset Error  
Least Significant Bit  
This is the error present at the device output with all 0s loaded  
in the DAC. It is due to op amp input offset voltage and bias  
current and the DAC leakage current.  
This is the analog weighting of 1 bit of the digital word in a  
DAC. For the AD7846, 1 LSB = (VREF+ − VREF−)/216.  
Relative Accuracy  
Bipolar Zero Error  
Relative accuracy or endpoint nonlinearity is a measure of the  
maximum deviation from a straight line passing through the  
endpoints of the DAC transfer function. It is measured after  
adjusting for both endpoints (that is, offset and gain errors are  
adjusted out) and is normally expressed in least significant bits  
or as a percentage of full-scale range.  
When the AD7846 is connected for bipolar output and 10…000  
is loaded to the DAC, the deviation of the analog output from  
the ideal midscale of 0 V is called the bipolar zero error.  
Digital-to-Analog Glitch Impulse  
This is the amount of charge injected from the digital inputs to  
the analog output when the inputs change state. This is normally  
specified as the area of the glitch in either pA-sec or nV-sec  
depending upon whether the glitch is measured as a current or  
a voltage.  
Differential Nonlinearity  
Differential nonlinearity is the difference between the measured  
change and the ideal change between any two adjacent codes. A  
specified differential nonlinearity of 1 LSB over the operating  
temperature range ensures monotonicity.  
Multiplying Feedthrough Error  
This is an ac error due to capacitive feedthrough from either of  
the VREF terminals to VOUT when the DAC is loaded with all 0s.  
Gain Error  
Gain error is a measure of the output error between an ideal  
DAC and the actual device output with all 1s loaded after offset  
error has been adjusted out. Gain error is adjustable to zero  
with an external potentiometer.  
Digital Feedthrough  
CS  
When the DAC is not selected (that is,  
is held high), high  
frequency logic activity on the digital inputs is capacitively  
coupled through the device to show up as noise on the VOUT pin.  
This noise is digital feedthrough.  
Rev. G | Page 10 of 24  
 
AD7846  
CIRCUIT DESCRIPTION  
DIGITAꢀ SECTION  
Table 7. Control Logic Truth Table  
CS R/W ꢀDAC CꢀR  
Function  
Figure 20 shows the digital control logic and on-chip data latches  
in the AD7846. Table 7 is the associated truth table. The digital-  
to-analog converter (DAC) has two latches that are controlled  
1
0
X
0
X
X
X
X
3-state DAC I/O latch in high-Z state  
DAC I/O latch loaded with DB15  
to DB0  
CS W LDAC  
CLR  
by four signals: , R/  
,
, and  
. The input latch is  
0
1
X
0
X
1
Contents of DAC I/O latch available  
on DB15 to DB0  
Contents of DAC I/O latch transferred  
to DAC latch  
connected to the data bus (DB15 to DB0). A word is written to  
CS  
W
the input latch by bringing  
of the input latch can be read back by bringing  
low and R/ low. The contents  
CS  
X
X
W
low and R/  
high. This feature is called readback and is used in system  
diagnostic and calibration routines.  
X
X
0
1
X
X
0
0
DAC latch loaded with 000…000  
DAC latch loaded with 100…000  
Data is transferred from the input latch to the DAC latch with  
LDAC  
DIGITAꢀ-TO-ANAꢀOG CONVERSION  
the  
contents appears at the DAC output. The  
DAC latch contents to 000…000 or 100…000, depending on the  
CLR CLR  
strobe. The equivalent analog value of the DAC latch  
Figure 21 shows the digital-to-analog section of the AD7846.  
There are three DACs, each of which has its own buffer  
amplifiers. DAC1 and DAC2 are 4-bit DACs. They share a  
16-resistor string but have their own analog multiplexers. The  
voltage reference is applied to the resistor string. DAC3 is a  
12-bit voltage mode DAC with its own output stage.  
CLR  
pin resets the  
W
state of R/ . Writing a  
loads 100…000. To reset a DAC to 0 V in a unipolar system, the  
CLR  
loads 000…000 and reading a  
W
while R/ is low; to reset to 0 V in a  
user should assert  
CLR  
W
bipolar system, assert the  
while R/ is high.  
The four MSBs of the 16-bit digital code drive DAC1 and DAC2,  
and the 12 LSBs control DAC3. Using DAC1 and DAC2, the  
MSBs select a pair of adjacent nodes on the resistor string and  
present that voltage to the positive and negative inputs of  
DAC3. This DAC interpolates between these two voltages to  
produce the analog output voltage.  
R/W  
CLR  
DAC  
16  
To prevent nonmonotonicity in the DAC due to amplifier offset  
voltages, DAC1 and DAC2 leap along the resistor string. For  
example, when switching from Segment 1 to Segment 2, DAC1  
switches from the bottom of Segment 1 to the top of Segment 2  
while DAC2 stays connected to the top of Segment 1. The code  
driving DAC3 is automatically complemented to compensate  
for the inversion of its inputs. This means that any linearity  
effects due to amplifier offset voltages remain unchanged when  
switching from one segment to the next and 16-bit monotonicity is  
ensured if DAC3 is monotonic. Thus, 12-bit resistor matching  
in DAC3 guarantees overall 16-bit monotonicity. This is much  
more achievable than 16-bit matching, which a conventional  
R-2R structure needs.  
DB15 RST  
DB15 SET  
LDAC  
DB15 TO DB0  
LATCHES  
DB14 TO DB0  
RST  
16  
3-STATE I/O  
LATCH  
CS  
16  
DB15  
DB0  
Figure 20. Input Control Logic  
Rev. G | Page 11 of 24  
 
 
 
AD7846  
V
REF+  
SEGMENT 16  
R
R
DAC1  
DAC2  
R
V
IN  
S1  
S3  
S2  
S4  
DAC3  
A1  
A2  
A3  
OUT  
12-BIT DAC  
S15  
S17  
S14  
S16  
DB11 TO DB0  
DB15 TO DB12  
DB15 TO DB12  
SEGMENT 1  
V
REF–  
Figure 21. Digital-to-Analog Conversion  
operation. Figure 13 and Figure 14 show the outputs of the  
AD7846 without and with the deglitcher.  
OUTPUT STAGE  
The output stage of the AD7846 is shown in Figure 22. It is capable  
of driving a 2 kΩ/1000 pF load. It also has a resistor feedback  
network that allows the user to configure it for gains of 1 or 2.  
Table 6 shows the different output ranges that are possible.  
R
IN  
10k  
10kΩ  
C1  
An additional feature is that the output buffer is configured as a  
track-and-hold amplifier. Although normally tracking its input,  
this amplifier is placed in a hold mode for approximately 2.5 μs  
V
OUT  
DAC3  
LDAC  
after the leading edge of  
. This short state keeps the DAC  
ONE  
SHOT  
output at its previous voltage while the AD7846 is internally  
changing to its new value. Thus, any glitches that occur in the  
transition are not seen at the output. In systems where the  
LDAC  
LDAC  
is tied permanently low, the deglitching is not in  
Figure 22. Output Stage  
Rev. G | Page 12 of 24  
 
 
 
AD7846  
UNIPOLAR BINARY OPERATION  
Figure 23 shows the AD7846 in the unipolar binary circuit  
configuration. The DAC is driven by the AD586 +5 V reference.  
Because RIN is tied to 0 V, the output amplifier has a gain of 2  
and the output range is 0 V to +10 V. If a 0 V to +5 V range is  
required, RIN should be tied to VOUT, configuring the output  
stage for a gain of 1. Table 8 gives the code table for the circuit  
of Figure 23.  
Table 8. Code Table for Figure 23  
Binary Number in DAC ꢀatch  
MSB  
ꢀSB1  
Analog Output (VOUT  
)
1111 1111 1111 1111  
1000 0000 0000 0000  
0000 0000 0000 0001  
0000 0000 0000 0000  
+10 (65,535/65,536) V  
+10 (32,76±/65,536) V  
+10 (1/65,536) V  
0 V  
+15V  
+5V  
1 LSB = 10 V/216 = 10 V/65,536 = 152 ꢀV.  
4
21  
Offset and gain can be adjusted in Figure 23 as follows:  
2
V
V
DD  
CC  
To adjust offset, disconnect the VREF− input from 0 V, load  
the DAC with all 0s, and adjust the VREF− voltage until VOUT  
= 0 V.  
For gain adjustment, the AD7846 should be loaded with all  
1s and R1 adjusted until VOUT = 10 (65,535)/(65,536) =  
9.999847 V. If a simple resistor divider is used to vary the  
V
OUT  
(0V TO +10V)  
5
V
6
5
7
8
V
OUT  
REF+  
AD586  
8
R1  
10k  
AD7846*  
C1  
R
6
IN  
1µF  
4
V
REF–  
20  
DGND  
V
SS  
SIGNAL  
GROUND  
VREF− voltage, it is important that the temperature  
coefficients of these resistors match that of the DAC input  
resistance (−300 ppm/°C). Otherwise, extra offset errors are  
introduced over temperature. Many circuits do not require  
these offset and gain adjustments. In these circuits, R1 can  
be omitted. Pin 5 of the AD586 can be left open circuit and  
Pin 8 (VREF−) of the AD7846 tied to 0 V.  
*ADDITIONAL PINS  
OMITTED FOR CLARITY  
–15V  
Figure 23. Unipolar Binary Operation  
Rev. G | Page 13 of 24  
 
 
 
AD7846  
BIPOLAR OPERATION  
Figure 24 shows the AD7846 set up for 10 V bipolar operation.  
The AD588 provides precision 5 V tracking outputs that are  
fed to the VREF+ and VREF− inputs of the AD7846. The code table  
for Figure 24 is shown in Table 9.  
Full-scale and bipolar zero adjustment are provided by varying  
the gain and balance on the AD588. R2 varies the gain on the  
AD588 while R3 adjusts the +5 V and −5 V outputs together  
with respect to ground.  
+15V  
+15V  
+5V  
For bipolar zero adjustment on the AD7846, load the DAC with  
100…000 and adjust R3 until VOUT = 0 V. Full scale is adjusted  
R1  
39kΩ  
4
21  
4
6
by loading the DAC with all 1s and adjusting R2 until VOUT  
=
V
V
CC  
DD  
+15V  
2
3
1
7
9
9.999694 V.  
C1  
V
V
V
V
5
7
8
OUT  
REF+  
OUT  
1µF  
(–10V TO +10V)  
When bipolar zero and full-scale adjustment are not needed, R2  
and R3 can be omitted, Pin 12 on the AD588 should be connected  
to Pin 11, and Pin 5 should be left floating. If a user wants a 5 V  
output range, there are two choices. By tying Pin 6 (RIN) of the  
AD7846 to VOUT (Pin 5), the output stage gain is reduced to  
unity and the output range is 5 V. If only a positive 5 V reference  
is available, bipolar 5 V operation is still possible. Tie VREF− to  
0 V and connect RIN to VREF+. This also gives a 5 V output  
range. However, the linearity, gain, and offset error specifications  
are the same as the unipolar 0 V to 5 V range.  
AD588  
AD7846*  
R2  
10kΩ  
5
R
6
IN  
14  
15  
16  
10  
11  
REF–  
20  
DGND  
–15V  
SIGNAL  
GROUND  
V
SS  
12  
8
13  
9
R3  
100kΩ  
–15V  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 24. Bipolar 10 V Operation  
Table 9. Offset Binary Code Table for Figure 24  
Binary Number in DAC ꢀatch  
MUꢀTIPꢀYING OPERATION  
The AD7846 is a full multiplying DAC. To obtain four-quadrant  
multiplication, tie VREF− to 0 V, apply the ac input to VREF+, and  
tie RIN to VREF+. Figure 11 shows the large signal frequency  
response when the DAC is used in this fashion.  
ꢀSB1  
Analog Output (VOUT  
)
MSB  
1111 1111 1111 1111  
1000 0000 0000 0001  
1000 0000 0000 0000  
0111 1111 1111 1111  
0000 0000 0000 0000  
+10 (32,767/32,76±) V  
+10 (1/32,76±) V  
0 V  
−10 (1/32,76±) V  
−10 (32,76±/32,76±) V  
1 LSB = 10 V/215 = 10 V/32,76± = 305 μV.  
Rev. G | Page 14 of 24  
 
 
 
 
AD7846  
POSITION MEASUREMENT APPLICATION  
Figure 25 shows the AD7846 in a position measurement applica-  
tion using an linear variable displacement transducer (LVDT),  
an AD630 synchronous demodulator and a comparator to make  
a 16-bit LVDT-to-digital converter. The LVDT is excited with a  
fixed frequency and fixed amplitude sine wave (usually 2.5 kHz,  
2 V p-p). The outputs of the secondary coil are in antiphase and  
their relative amplitudes depend on the position of the core in the  
LVDT. The AD7846 output interpolates between these two inputs  
in response to the DAC input code. The AD630 is set up so that  
it rectifies the DAC output signal. Thus, if the output of the DAC is  
in phase with the VREF+ input, the inverting input to the compara-  
tor is positive, and if it is in phase with VREF−, the output is nega-  
tive. By turning on each bit of the DAC in succession starting  
with the MSB and deciding to leave it on or turn it off based on  
the comparator output, a 16-bit measurement of the core position  
is obtained.  
ASIN ω t  
LVDT  
x ASIN ω t  
V
5
6
OUT  
V
7
REF+  
R
IN  
AD7846*  
8
V
REF–  
DGND  
20  
–(1–x) ASIN ω t  
DB15 DB0  
10  
SIGNAL  
GROUND  
3
PROCESSOR DATA BUS  
9
16  
R1  
100kΩ  
10  
13  
AD630*  
TO  
C1  
1µF  
PROCESSOR PORT  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 25. AD7846 in Position Measurement Application  
Rev. G | Page 15 of 24  
 
 
AD7846  
MICROPROCESSOR INTERFACING  
AD7846-TO-8086 INTERFACE  
AD7846-TO-MC68000 INTERFACE  
Figure 26 shows the 8086 16-bit processor interfacing to the  
AD7846. The double buffering feature of the DAC is not used in  
Interfacing between the AD7846 and MC68000 is accomplished  
using the circuit of Figure 28. The following routine writes data  
to the DAC latches and then outputs the data via the DAC latch.  
LDAC  
this circuit because  
is permanently tied to 0 V. AD0 to  
AD15 (the 16-bit data bus) are connected to the DAC data bus  
(DB0 to DB15). The 16-bit word is written to the DAC in one  
MOV instruction and the analog output responds immediately.  
In this example, the DAC address is 0xD000.  
1000 MOVE.W  
#W,  
D0  
The desired DAC data,  
W, is loaded into  
Data Register 0. W  
may be any value  
ADDRESS BUS  
between 0 and 65535  
(decimal) or 0 and  
FFFF (hexadecimal).  
ADDRESS  
CS  
DECODE  
16-BIT  
LATCH  
LDAC  
ALE  
8086  
MOVE.W  
D0,  
The data, W, is  
$E000 transferred between  
D0 and the DAC  
+5V  
CLR  
DEN  
RD  
AD7846*  
register.  
R/W  
WR  
MOVE.W  
TRAP  
#228, Control is returned  
DATA BUS  
AD0 TO AD15  
DB0 TO DB15  
D7  
to the System Monitor  
using these two  
instructions.  
#14  
*LINEAR CIRCUITRY OMITTED FOR CLARITY  
Figure 26. AD7846-to-8086 Interface Circuit  
In a multiple DAC system, the double buffering of the AD7846  
allows the user to simultaneously update all DACs. In Figure 27,  
a 16-bit word is loaded to the input latches of each of the DACs  
in sequence. Then, with one instruction to the appropriate  
A1 TO A23  
ADDRESS BUS  
MC68000  
DS  
ADDRESS  
DECODE  
CS  
+5V  
CLR  
DTACK  
LDAC  
CS4  
LDAC  
address,  
(that is,  
) is brought low, updating all the  
AD7846*  
R/W  
DACs simultaneously.  
R/W  
ADDRESS BUS  
DATA BUS  
D0 TO D15  
DB0 TO DB15  
ADDRESS  
CS  
*LINEAR CIRCUITRY OMITTED FOR CLARITY  
DECODE  
16-BIT  
LATCH  
ALE  
Figure 28. AD7846-to-MC68000 Interface  
8086  
LDAC  
DEN  
RD  
AD7846*  
R/W  
WR  
CLR  
+5V  
AD0 TO AD15  
DATA BUS  
DB0 TO DB15  
CS  
AD7846*  
LDAC  
R/W  
CLR  
+5V  
DB0 TO DB15  
CS  
AD7846*  
LDAC  
R/W  
CLR  
+5V  
DB0 TO DB15  
*LINEAR CIRCUITRY OMITTED FOR CLARITY  
Figure 27. AD7846-to-8086 Interface: Multiple DAC System  
Rev. G | Page 16 of 24  
 
 
 
 
AD7846  
DIGITAL FEEDTHROUGH  
In the preceding interface configurations, most digital inputs to  
the AD7846 are directly connected to the microprocessor bus.  
Even when the device is not selected, these inputs are constantly  
changing. The high frequency logic activity on the bus can feed  
through the DAC package capacitance to show up as noise on  
the analog output. To minimize this digital feedthrough, isolate  
the DAC from the noise source. Figure 29 shows an interface  
circuit that isolates the DAC from the bus.  
Note that to make use of the AD7846 readback feature using  
the isolation technique of Figure 29, the latch needs to be  
bidirectional.  
A1 TO A15  
ADDRESS BUS  
ADDRESS  
DECODE  
CS  
MICRO-  
PROCESSOR  
+5V  
CLR  
LDAC  
R/W  
R/W  
DIR  
G
AD7846*  
DATA BUS  
B BUS A BUS  
D0 TO D15  
DB0 TO DB15  
2×  
74LS245  
*LINEAR CIRCUITRY OMITTED FOR CLARITY  
Figure 29. AD7846 Interface Circuit Using Latches to Minimize Digital Feedthrough  
Rev. G | Page 17 of 24  
 
 
AD7846  
APPLICATION HINTS  
R1 to R5 represent lead and track resistances on the printed  
circuit board. R1 is the resistance between the analog power  
supply ground and the signal ground. Because current flowing  
in R1 is very low (bias current of AD588 sense amplifier), the  
effect of R1 is negligible. R2 and R3 represent track resistance  
between the AD588 outputs and the AD7846 reference inputs.  
Because of the force and sense outputs on the AD588, these  
resistances will also have a negligible effect on accuracy.  
NOISE  
In high resolution systems, noise is often the limiting factor.  
With a 10 V span, a 16-bit LSB is 152 ꢀV (–96 dB). Thus, the  
noise floor must stay below −96 dB in the frequency range of  
interest. Figure 12 shows the noise spectral density for the  
AD7846.  
GROUNDING  
As well as noise, the other prime consideration in high resolution  
DAC systems is grounding. With an LSB size of 152 ꢀV and a  
load current of 5 mA, 1 LSB of error can be introduced by series  
resistance of only 0.03 ꢁ.  
R4 is the resistance between the DAC output and the load. If RL  
is constant, then R4 introduces a gain error only that can be  
trimmed out in the calibration cycle. R5 is the resistance  
between the load and the analog common. If the output voltage  
is sensed across the load, R5 introduces a further gain error,  
which can be trimmed out. If, on the other hand, the output  
voltage is sensed at the analog supply common, R5 appears as  
part of the load and therefore introduces no errors.  
Figure 30 shows recommended grounding for the AD7846 in a  
typical application.  
ANALOG SUPPLY  
+15V 0V –15V  
DIGITAL SUPPLY  
+5V DGND  
PRINTED CIRCUIT BOARD ꢀAYOUT  
Figure 31 shows the AD7846 in a typical application with the  
AD588 reference, producing an output analog voltage in the  
10 V range. Full-scale and bipolar zero adjustment are  
provided by Potentiometer R2 and Potentiometer R3. Latches  
(2 × 74LS245) isolate the DAC digital inputs from the active  
microprocessor bus and minimize digital feedthrough.  
R1  
SIGNAL  
GROUND  
2
9
16  
4
9
21  
20  
R2  
R3  
1
3
7
8
6
5
AD588*  
AD7846*  
R4  
V
OUT  
(+5V TO –5V)  
15  
14  
R
L
R5  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 30. AD7846 Grounding  
Rev. G | Page 1± of 24  
 
 
AD7846  
+15V  
4
J1  
C5  
10µF  
C6  
0.1µF  
+5V  
C1  
10µF  
21  
C31/A31  
C7  
0.1µF  
R1  
DB15 10  
DB14 11  
39k  
20  
C2  
0.1µF  
2
3
4
18  
17  
16  
C4/A4  
C5/A5  
C6/A6  
DB13  
12  
4
6
2
5
6
7
8
9
15  
14  
13  
12  
11  
C12  
1µF  
74LS245  
DB12 13  
DB11 14  
C7/A7  
C8/A8  
C9/A9  
7
5
7
3
1
V
REF+  
C10/A10  
C11/A11  
15  
DB10  
DB9 16  
17  
AD7846  
1
19  
20  
10  
AD588  
14  
15  
DB8  
DB7 18  
19  
R2  
100kΩ  
+5V  
8
9
V
V
REF–  
SS  
10  
11  
2
3
4
18  
17  
16  
–15V  
C12/A12  
C13/A13  
C14/A14  
DB6  
DB5 26  
16  
C4  
0.1µF  
C3  
10µF  
5
6
7
8
9
15  
14  
13  
12  
11  
27  
28  
1
74LS245  
DB4  
DB3  
DB2  
DB1  
DB0  
C15/A15  
C16/A16  
12  
C17/A17  
C18/A18  
C19/A19  
C20/A20  
8
13  
9
2
10  
20  
6
DGND  
1
19  
R3  
100kΩ  
C21/A21  
C22/A22  
C23/A23  
C32/A32  
3
R
IN  
22  
23  
R/W  
CS  
V
OUT  
(+10V TO –10V)  
V
CLR 24  
25  
5
OUT  
LDAC  
Figure 31. Schematic for AD7846 Board  
Rev. G | Page 19 of 24  
 
AD7846  
OUTLINE DIMENSIONS  
0.100 (2.54)  
MAX  
0.005 (0.13)  
MIN  
28  
15  
14  
0.610 (15.49)  
0.500 (12.70)  
1
PIN 1  
0.620 (15.75)  
0.590 (14.99)  
0.015 (0.38)  
MIN  
0.225(5.72)  
MAX  
1.490 (37.85) MAX  
0.150 (3.81)  
MIN  
0.018 (0.46)  
0.008 (0.20)  
15°  
0°  
0.200 (5.08)  
0.125 (3.18)  
0.100  
(2.54)  
BSC  
SEATING  
PLANE  
0.070 (1.78)  
0.030 (0.76)  
0.026 (0.66)  
0.014 (0.36)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 32. 28-Lead Ceramic Dual In-Line Package [CERDIP]  
(Q-28-2)  
Dimensions shown in inches and (millimeters)  
1.565 (39.75)  
1.380 (35.05)  
28  
1
15  
0.580 (14.73)  
0.485 (12.31)  
14  
0.625 (15.88)  
0.600 (15.24)  
0.100 (2.54)  
BSC  
0.195 (4.95)  
0.125 (3.17)  
0.250 (6.35)  
MAX  
0.015 (0.38)  
GAUGE  
PLANE  
0.015  
(0.38)  
MIN  
0.200 (5.08)  
0.115 (2.92)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
PLANE  
0.700 (17.78)  
MAX  
0.022 (0.56)  
0.014 (0.36)  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.050 (1.27)  
COMPLIANT TO JEDEC STANDARDS MS-011  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE LEADS.  
Figure 33. 28-Lead Plastic Dual In-Line Package [PDIP]  
Wide Body  
(N-28-2)  
Dimensions shown in inches and (millimeters)  
Rev. G | Page 20 of 24  
 
AD7846  
0.300 (7.62)  
REF  
0.100 (2.54)  
0.064 (1.63)  
0.075  
(1.91)  
REF  
0.020 (0.51)  
MIN  
19  
25  
0.028 (0.71)  
0.022 (0.56)  
18  
26  
28  
0.05 (1.27)  
0.458  
BOTTON  
VIEW  
0.458 (11.63)  
0.442 (11.23)  
(11.63)  
MAX  
SQ  
1
SQ  
0.15 (3.81)  
REF  
0.075 (1.91)  
REF  
12  
4
11  
5
0.095 (2.41)  
0.075 (1.90)  
0.055 (1.40)  
0.045 (1.14)  
0.088 (2.24)  
0.054 (1.37)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 34. 28-Terminal Ceramic Leadless Chip Carrier [LCC]  
(E-28-1)  
Dimensions shown in inches and (millimeters)  
0.180 (4.57)  
0.165 (4.19)  
0.048 (1.22)  
0.042 (1.07)  
0.056 (1.42)  
0.020 (0.51)  
MIN  
0.042 (1.07)  
4
26  
25  
0.048 (1.22)  
0.042 (1.07)  
5
0.021 (0.53)  
0.013 (0.33)  
PIN 1  
IDENTIFIER  
BOTTOM  
VIEW  
(PINS UP)  
0.050  
(1.27)  
BSC  
0.430 (10.92)  
0.390 (9.91)  
TOP VIEW  
(PINS DOWN)  
0.032 (0.81)  
0.026 (0.66)  
11  
19  
18  
12  
0.045 (1.14)  
0.025 (0.64)  
R
0.456 (11.582)  
0.450 (11.430)  
SQ  
0.120 (3.04)  
0.090 (2.29)  
0.495 (12.57)  
SQ  
0.485 (12.32)  
COMPLIANT TO JEDEC STANDARDS MO-047-AB  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 35. 28-Lead Plastic Leaded Chip Carrier [PLCC]  
(P-28)  
Dimensions shown in inches and (millimeters)  
Rev. G | Page 21 of 24  
AD7846  
ORDERING GUIDE  
Model1  
Temperature Range  
Relative Accuracy  
±16 LSB  
±16 LSB  
±16 LSB  
±16 LSB  
±± LSB  
Package Description  
Package Option  
5962-±9697013A  
5962-±969701XA  
AD7±46JN  
AD7±46JNZ  
AD7±46KN  
AD7±46KNZ  
AD7±46JP  
AD7±46JP-REEL  
AD7±46JPZ  
AD7±46JPZ-REEL  
AD7±46KP  
AD7±46KP-REEL  
AD7±46KPZ  
AD7±46KPZ-REEL  
AD7±46AP  
AD7±46APZ  
AD7±46AQ  
AD7±46BP  
−55°C to +125°C  
−55°C to +125°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
−40°C to +±5°C  
−40°C to +±5°C  
−40°C to +±5°C  
−40°C to +±5°C  
−40°C to +±5°C  
−40°C to +±5°C  
2±-Terminal Ceramic Leadless Chip Carrier [LCC] E-2±-1  
2±-Lead Ceramic Dual In-Line Package [CERDIP] Q-2±-2  
2±-Lead Plastic Dual In-Line Package [PDIP]  
2±-Lead Plastic Dual In-Line Package [PDIP]  
2±-Lead Plastic Dual In-Line Package [PDIP]  
2±-Lead Plastic Dual In-Line Package [PDIP]  
2±-Lead Plastic Leaded Chip Carrier [PLCC]  
2±-Lead Plastic Leaded Chip Carrier [PLCC]  
2±-Lead Plastic Leaded Chip Carrier [PLCC]  
2±-Lead Plastic Leaded Chip Carrier [PLCC]  
2±-Lead Plastic Leaded Chip Carrier [PLCC]  
2±-Lead Plastic Leaded Chip Carrier [PLCC]  
2±-Lead Plastic Leaded Chip Carrier [PLCC]  
2±-Lead Plastic Leaded Chip Carrier [PLCC]  
2±-Lead Plastic Leaded Chip Carrier [PLCC]  
2±-Lead Plastic Leaded Chip Carrier [PLCC]  
N-2±-2  
N-2±-2  
N-2±-2  
N-2±-2  
P-2±  
P-2±  
P-2±  
P-2±  
P-2±  
P-2±  
P-2±  
P-2±  
P-2±  
±± LSB  
±16 LSB  
±16 LSB  
±16 LSB  
±16 LSB  
±± LSB  
±± LSB  
±± LSB  
±± LSB  
±16 LSB  
±16 LSB  
±16 LSB  
±± LSB  
±± LSB  
±16 LSB  
P-2±  
2±-Lead Ceramic Dual In-Line Package [CERDIP] Q-2±-2  
2±-Lead Plastic Leaded Chip Carrier [PLCC]  
2±-Lead Plastic Leaded Chip Carrier [PLCC]  
P-2±  
P-2±  
DIE  
AD7±46BPZ  
AD7±46ACHIPS  
1 Z = RoHS Compliant Part.  
Rev. G | Page 22 of 24  
 
 
AD7846  
NOTES  
Rev. G | Page 23 of 24  
AD7846  
NOTES  
©2000–2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08490-0-4/10(G)  
Rev. G | Page 24 of 24  

相关型号:

AD7846AQ

LC2MOS 16-Bit Voltage Output DAC
ADI

AD7846BD

IC PARALLEL, WORD INPUT LOADING, 16-BIT DAC, CDIP28, HERMETIC SEALED, SIDE BRAZED, CERAMIC, DIP-28, Digital to Analog Converter
ADI

AD7846BP

LC2MOS 16-Bit Voltage Output DAC
ADI

AD7846BPZ

LC2MOS 16-Bit Voltage Output DAC
ADI

AD7846BQ

16-Bit Digital-to-Analog Converter
ETC

AD7846JN

LC2MOS 16-Bit Voltage Output DAC
ADI

AD7846JNZ

LC2MOS 16-Bit Voltage Output DAC
ADI

AD7846JP

LC2MOS 16-Bit Voltage Output DAC
ADI

AD7846JP-REEL

LC2MOS 16-Bit Voltage Output DAC
ADI

AD7846JPZ

LC2MOS 16-Bit Voltage Output DAC
ADI

AD7846JPZ-REEL

LC2MOS 16-Bit Voltage Output DAC
ADI

AD7846KN

LC2MOS 16-Bit Voltage Output DAC
ADI