AD797 [ADI]

Ultralow Distortion, Ultralow Noise Op Amp; 超低失真,超低噪声运算放大器
AD797
型号: AD797
厂家: ADI    ADI
描述:

Ultralow Distortion, Ultralow Noise Op Amp
超低失真,超低噪声运算放大器

运算放大器
文件: 总16页 (文件大小:408K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultralow Distortion,  
Ultralow Noise Op Amp  
a
AD797*  
FEATURES  
Low Noise  
CO NNECTIO N D IAGRAM  
8-P in P lastic Mini-D IP (N),  
Cerdip (Q) and SO IC (R) P ackages  
0.9 nV/ Hz typ (1.2 nV/ Hz m ax) Input Voltage  
Noise at 1 kHz  
50 nV p-p Input Voltage Noise, 0.1 Hz to 10 Hz  
Low Distortion  
DECOMPENSATION &  
DISTORTION  
NEUTRALIZATION  
–120 dB Total Harm onic Distortion at 20 kHz  
Excellent AC Characteristics  
800 ns Settling Tim e to 16 Bits (10 V Step)  
110 MHz Gain Bandw idth (G = 1000)  
8 MHz Bandw idth (G = 10)  
1
2
3
4
8
7
6
5
OFFSET NULL  
AD797  
+V  
S
–IN  
+IN  
OUTPUT  
–V  
S
OFFSET NULL  
280 kHz Full Pow er Bandw idth at 20 V p-p  
20 V/ s Slew Rate  
TOP VIEW  
Excellent DC Precision  
80 V m ax Input Offset Voltage  
1.0 V/ ؇C VOS Drift  
Specified for ؎5 V and ؎15 V Pow er Supplies  
High Output Drive Current of 50 m A  
necessary for preamps in microphones and mixing consoles.  
Furthermore, the AD797s excellent slew rate of 20 V/µs and  
110 MHz gain bandwidth make it highly suitable for low fre-  
quency ultrasound applications.  
APPLICATIONS  
Professional Audio Pream plifiers  
IR, CCD, and Sonar Im aging System s  
Spectrum Analyzers  
Ultrasound Pream plifiers  
Seism ic Detectors  
⌺⌬ ADC/ DAC Buffers  
T he AD797 is also useful in IR and Sonar Imaging applications  
where the widest dynamic range is necessary. T he low distor-  
tion and 16-bit settling time of the AD797 make it ideal for  
buffering the inputs to Σ∆ ADCs or the outputs of high resolu-  
tion DACs especially when they are used in critical applications  
such as seismic detection and spectrum analyzers. Key features  
such as a 50 mA output current drive and the specified power  
supply voltage range of ±5 to ±15 volts make the AD797 an  
excellent general purpose amplifier.  
P RO D UCT D ESCRIP TIO N  
T he AD797 is a very low noise, low distortion operational  
amplifier ideal for use as a preamplifier. T he low noise of  
0.9 nV/Hz and low total harmonic distortion of –120 dB at  
audio bandwidths give the AD797 the wide dynamic range  
5
4
3
2
1
0
–90  
–100  
–110  
–120  
0.001  
0.0003  
0.0001  
MEASUREMENT  
LIMIT  
–130  
10  
100  
1k  
10k  
100k  
1M  
10M  
100  
300  
1k  
3k  
10k  
30k  
100k  
300k  
FREQUENCY – Hz  
FREQUENCY – Hz  
THD vs. Frequency  
AD797 Voltage Noise Spectral Density  
*P atent pending.  
REV. C  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700 Fax: 617/ 326-8703  
(@ T = +25؇C and V = ؎15 V dc, unless otherwise noted)  
AD797–SPECIFICATIONS  
A
S
AD 797A/S1  
AD 797B  
Typ Max Units  
Model  
Conditions  
VS  
Min  
Typ  
Max  
Min  
INPUT OFFSET VOLT AGE  
±5 V, ±15 V  
25  
50  
0.2  
80  
125/180  
1.0  
10  
30  
0.2  
40  
60  
0.6  
µV  
µV  
µV/°C  
T MIN to T MAX  
Offset Voltage Drift  
±5 V, ±15 V  
±5 V, ±15 V  
INPUT BIAS CURRENT  
0.25 1.5  
0.5  
0.25 0.9  
0.25 2.0  
µA  
µA  
T MIN to T MAX  
3.0  
INPUT OFFSET CURRENT  
OPEN-LOOP GAIN  
±5 V, ±15 V  
±15 V  
100  
120  
400  
600/700  
80  
200  
nA  
nA  
T MIN to T MAX  
120 300  
VOUT = ±10 V  
RLOAD = 2 kΩ  
T MIN to T MAX  
RLOAD = 600 Ω  
T MIN to T MAX  
@ 20 kHz2  
1
1
1
1
20  
6
15  
5
2
2
2
2
20  
10  
15  
7
V/µV  
V/µV  
V/µV  
V/µV  
V/V  
14000  
20000  
14000 20000  
DYNAMIC PERFORMANCE  
Gain Bandwidth Product  
G = 1000  
±15 V  
±15 V  
±15 V  
110  
450  
8
110  
450  
8
MHz  
MHz  
MHz  
G = 10002  
G = 10  
–3 dB Bandwidth  
Full Power Bandwidth3  
VO = 20 V p-p,  
RLOAD = 1 kΩ  
RLOAD = 1 kΩ  
10 V Step  
±15 V  
±15 V  
±15 V  
280  
20  
800  
280  
12.5 20  
kHz  
V/µs  
Slew Rate  
Settling T ime to 0.0015%  
12.5  
1200  
800 1200 ns  
COMMON-MODE REJECT ION  
POWER SUPPLY REJECT ION  
INPUT VOLT AGE NOISE  
VCM = CMVR  
T MIN to T MAX  
±5 V, ±15 V  
114  
110  
130  
120  
120  
114  
130  
120  
dB  
dB  
VS = ±5 V to ±18 V  
T MIN to T MAX  
114  
110  
130  
120  
120  
114  
130  
120  
dB  
dB  
f = 0. 1 Hz to 10 Hz  
f = 10 Hz  
f = 1 kHz  
±15 V  
±15 V  
±15 V  
±15 V  
50  
50  
nV p-p  
nV/Hz  
nV/Hz  
µV rms  
1.7  
0.9  
1.0  
1.7  
0.9  
1.0  
2.5  
1.2  
1.2  
1.2  
1.3  
f = 10 Hz–1 MHz  
INPUT CURRENT NOISE  
f = 1 kHz  
±15 V  
2.0  
2.0  
pA/Hz  
INPUT COMMON-MODE  
VOLT AGE RANGE  
±15 V  
±5 V  
±11  
±2.5  
±12  
±3  
±11  
±2.5 ±3  
±12  
V
V
OUT PUT VOLT AGE SWING  
RLOAD = 2 kΩ  
RLOAD = 600 Ω  
RLOAD = 600 Ω  
±15 V  
±15 V  
±5 V  
±12  
±11  
±2.5  
±13  
±13  
±3  
±12  
±11  
±2.5 ±3  
±13  
±13  
V
V
V
Short-Circuit Current  
Output Current4  
±5 V, ±15 V  
±5 V, ±15 V  
80  
50  
80  
50  
mA  
mA  
30  
30  
TOTAL HARMONIC DISTORTION  
RLOAD = 1 k, CN = 50 pF ±15 V  
–98  
–90  
–98 –90  
dB  
f = 250 kHz, 3 V rms  
RLOAD = 1 kΩ  
±15 V  
–120 –110  
–120 –110 dB  
f = 20 kHz, 3 V rms  
INPUT CHARACT ERIST ICS  
Input Resistance (Differential)  
Input Resistance (Common Mode)  
Input Capacitance (Differential)5  
Input Capacitance (Common Mode)  
7.5  
100  
20  
5
7.5  
100  
20  
5
kΩ  
MΩ  
pF  
pF  
OUT PUT RESIST ANCE  
AV = +1, f = 1 kHz  
3
3
mΩ  
POWER SUPPLY  
Operating Range  
Quiescent Current  
±5  
±18  
10.5  
±5  
±18  
10.5 mA  
V
±5 V, ±15 V  
8.2  
8.2  
NOT ES  
1See standard military drawing for 883B specifications.  
2Specified using external decompensation capacitor, see Applications section.  
3Full Power Bandwidth = Slew Rate/2 π VPEAK  
.
4Output Current for | VS – VOUT| >4 V, AOL > 200 k.  
5Differential input capacitance consists of 1.5 pF package capacitance and 18.5 pF from the input differential pair.  
Specifications subject to change without notice.  
–2–  
REV. C  
AD797  
ABSO LUTE MAXIMUM RATINGS 1  
3T he AD797s inputs are protected by back-to-back diodes. T o achieve low noise,  
internal current limiting resistors are not incorporated into the design of this  
amplifier. If the differential input voltage exceeds ±0.7 V, the input current should  
be limited to less than 25 mA by series protection resistors. Note, however, that this  
will degrade the low noise performance of the device.  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
Internal Power Dissipation @ +25°C2  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±VS  
Differential Input Voltage3 . . . . . . . . . . . . . . . . . . . . . . ±0.7 V  
Output Short Circuit Duration . . . . . . . Indefinite Within max  
Internal Power Dissipation  
Storage Temperature Range (Cerdip) . . . . . . –65°C to +150°C  
Storage Temperature Range (N, R Suffix) . . –65°C to +125°C  
Operating T emperature Range  
AD797A/B . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
AD797S . . . . . . . . . . . . . . . . . . . . . . . . . . –55°C to +125°C  
Lead T emperature Range (Soldering 60 sec) . . . . . . . +300°C  
ESD SUSCEP TIBILITY  
ESD (electrostatic discharge) sensitive device. Electrostatic  
charges as high as 4000 volts, which readily accumulate on the  
human body and on test equipment, can discharge without  
detection. Although the AD797 features proprietary ESD pro-  
tection circuitry, permanent damage may still occur on these  
devices if they are subjected to high energy electrostatic dis-  
charges. T herefore, proper ESD precautions are recommended  
to avoid any performance degradation or loss of functionality.  
NOT ES  
1Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. T his is a stress rating only, and functional  
operation of the device at these or any other conditions above those indicated in the  
operational section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2Internal Power Dissipation:  
O RD ERING GUID E  
Tem perature  
Range  
P ackage  
D escription  
P ackage  
O ption  
Model  
8-Pin SOIC = 0.9 Watts (T A–25°C)/θJA  
8-Pin Plastic DIP and Cerdip = 1.3 Watts – (T A–25°C)/θJA  
T hermal Characteristics  
8-Pin Plastic DIP Package: θJA = 95°C/W  
8-Pin Cerdip Package: θJA = 110°C/W  
AD797AN  
AD797BN  
AD797BR  
AD797BR-REEL  
AD797BR-REEL7  
AD797AR  
AD797AR-REEL  
AD797AR-REEL7  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
8-Pin Plastic DIP  
8-Pin Plastic DIP  
8-Pin Plastic SOIC  
8-Pin Plastic SOIC  
8-Pin Plastic SOIC  
8-Pin Plastic SOIC  
8-Pin Plastic SOIC  
8-Pin Plastic SOIC  
8-Pin Cerdip  
N-8  
N-8  
SO-8  
SO-8  
SO-8  
SO-8  
SO-8  
SO-8  
Q-8  
8-Pin Small Outline Package: θJA = 155°C/W  
5962-9313301MPA –55°C to +125°C  
METALIZATIO N P H O TO  
Contact factory for latest dimensions.  
D imensions shown in inches and (mm).  
NOT E  
T he AD797 has double layer metal. Only one layer is shown here for clarity.  
REV. C  
–3–  
AD797–Typical Characteristics  
20  
15  
10  
5
0
0
5
10  
15  
20  
HORIZONTAL SCALE – 5 sec/DIV  
SUPPLY VOLTAGE – ±Volts  
Figure 4. 0.1 Hz to 10 Hz Noise  
Figure 1. Com m on-Mode Voltage Range vs. Supply  
0.0  
20  
15  
10  
–0.5  
–1.0  
+V  
OUT  
–V  
OUT  
5
0
–1.5  
–2.0  
0
5
10  
SUPPLY VOLTAGE – ±Volts  
15  
20  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE – °C  
Figure 5. Input Bias Current vs. Tem perature  
Figure 2. Output Voltage Swing vs. Supply  
140  
30  
20  
10  
0
V
= ±15V  
S
120  
100  
80  
SOURCE CURRENT  
SINK CURRENT  
V
= ±5V  
S
60  
40  
–60 –40 –20  
0
20  
40  
60  
100 120 140  
80  
10  
100  
1k  
10k  
TEMPERATURE – °C  
LOAD RESISTANCE –  
Figure 6. Short Circuit Current vs. Tem perature  
Figure 3. Output Voltage Swing vs. Load Resistance  
REV. C  
–4–  
AD797  
11  
10  
9
140  
120  
100  
+125°C  
PSR  
+SUPPLY  
PSR  
–SUPPLY  
150  
125  
100  
75  
80  
60  
+25°C  
–55°C  
8
CMR  
7
40  
20  
6
0
50  
1M  
5
15  
20  
10  
SUPPLY VOLTAGE – ±Volts  
1
10  
100  
1k  
10k  
100k  
FREQUENCY – Hz  
Figure 10. Power Supply and Com m on-Mode Rejection  
vs. Frequency  
Figure 7. Quiescent Supply Current vs. Supply Voltage  
–60  
12  
R
= 600  
L
FREQ = 1kHz  
G = +10  
FREQ = 10kHz  
NOISE BW = 100kHz  
R
= 600Ω  
L
G = +10  
9
6
3
0
–80  
–100  
–120  
V
= ±5V  
S
V
= ±15V  
S
0.01  
0.1  
1.0  
10  
0
±5  
±10  
±15  
±20  
OUTPUT LEVEL – Volts  
SUPPLY VOLTAGE – Volts  
Figure 11. Total Harm onic Distortion (THD) + Noise vs.  
Output Level  
Figure 8. Output Voltage vs. Supply for 0.01% Distortion  
30  
1.0  
0.8  
±15V SUPPLIES  
RL = 600Ω  
0.0015%  
20  
0.6  
0.01%  
0.4  
10  
±5V SUPPLIES  
0.2  
0.0  
0
0
2
4
6
8
10  
10k  
100k  
1M  
10M  
STEP SIZE – Volts  
Figure 12. Large Signal Frequency Response  
Figure 9. Settling Tim e vs. Step Size (±)  
REV. C  
–5–  
AD797–Typical Characteristics  
5
120  
110  
100  
35  
GAIN/BANDWIDTH PRODUCT  
4
3
2
1
30  
25  
SLEW RATE  
RISING EDGE  
SLEW RATE  
FALLING EDGE  
20  
15  
90  
80  
0
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
10  
100  
1k  
10k  
100k  
1M  
10M  
TEMPERATURE – °C  
FREQUENCY – Hz  
Figure 13. Input Voltage Noise Spectral Density  
Figure 16. Slew Rate & Gain/Bandwidth Product vs.  
Tem perature  
120  
+100  
160  
140  
120  
100  
PHASE MARGIN  
100  
80  
60  
40  
20  
0
+80  
+60  
WITHOUT  
R *  
S
WITH R *  
S
+40  
+20  
GAIN  
WITHOUT  
*R = 100  
S
R *  
S
0
SEE FIGURE 22  
WITH R *  
S
100  
10k  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
FREQUENCY – Hz  
LOAD RESISTANCE – Ohms  
Figure 17. Open-Loop Gain vs. Resistive Load  
Figure 14. Open-Loop Gain & Phase vs. Frequency  
100  
300  
OVER COMPENSATED  
150  
10  
* SEE FIGURE 29  
1
0
WITHOUT C  
*
N
0.1  
–150  
UNDER COMPENSATED  
WITH C  
100k  
*
N
0.01  
–300  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
10  
100  
1k  
10k  
1M  
TEMPERATURE – °C  
FREQUENCY – Hz  
Figure 15. Input Offset Current vs. Tem perature  
Figure 18. Magnitude of Output Im pedance vs. Frequency  
REV. C  
–6–  
AD797  
20pF  
50mV  
100ns  
1µs  
1k  
100  
90  
100  
90  
+V  
S
**  
1kΩ  
V
2
3
7
IN  
V
6
OUT  
AD797  
10  
10  
4
**  
0%  
0%  
5V  
–V  
S
** SEE FIGURE 32  
Figure 21. Inverter Sm all Signal  
Pulse Response  
Figure 19. Inverter  
Connection  
Figure 20. Inverter Large Signal  
Pulse Response  
100Ω  
1µs  
5V  
50mV  
100ns  
+V  
S
100  
90  
100  
90  
**  
2
3
7
V
OUT  
6
AD797  
R
S
*
V
600Ω  
IN  
4
**  
10  
10  
0%  
0%  
–V  
S
* VALUE OF SOURCE RESISTANCE –  
SEE TEXT  
** SEE FIGURE 32  
Figure 23. Follower Large Signal  
Pulse Response  
Figure 22. Follower  
Connection  
Figure 24. Follower Sm all Signal  
Pulse Response  
5mV  
500ns  
5mV  
500ns  
100  
90  
100  
90  
See Figure 40 for settling time  
test circuit.  
10  
10  
0%  
0%  
Figure 25. 16-Bit Settling Tim e  
Positive Input Pulse  
Figure 26. 16-Bit Settling Tim e  
Negative Input Pulse  
REV. C  
–7–  
AD797  
TH EO RY O F O P ERATIO N  
T his matching benefits not just dc precision but since it holds  
up dynamically, both distortion and settling time are also  
reduced. T his single stage has a voltage gain of >5 × 106 and  
VOS <80 µV, while at the same time providing T HD + noise of  
less than –120 dB and true 16 bit settling in less than 800 ns.  
T he elimination of second stage noise effects has the additional  
benefit of making the low noise of the AD797 (<0.9 nV/Hz)  
extend to beyond 1 MHz. T his means new levels of perfor-  
mance for sampled data and imaging systems. All of this perfor-  
mance as well as load drive in excess of 30 mA are made  
possible by Analog Devices’ advanced Complementary Bipolar  
(CB) process.  
T he new architecture of the AD797 was developed to overcome  
inherent limitations in previous amplifier designs. Previous pre-  
cision amplifiers used three stages to ensure high open-loop  
gain, Figure 27b, at the expense of additional frequency com-  
pensation components. Slew rate and settling performance are  
usually compromised, and dynamic performance is not ad-  
equate beyond audio frequencies. As can be seen in Figure 27b,  
the first stage gain is rolled off at high frequencies by the com-  
pensation network. Second stage noise and distortion will then  
appear at the input and degrade performance. T he AD797 on  
the other hand, uses a single ultrahigh gain stage to achieve dc  
as well as dynamic precision. As shown in the simplified sche-  
matic (Figure 28), nodes A, B, and C all track in voltage forcing  
the operating points of all pairs of devices in the signal path to  
match. By exploiting the inherent matching of devices fabricated  
on the same IC chip, high open-loop gain, CMRR, PSRR, and  
low VOS are all guaranteed by pairwise device matching (i.e.,  
NPN to NPN & PNP to PNP), and not absolute parameters  
such as beta and early voltage.  
Another unique feature of this circuit is that the addition of a  
single capacitor, CN (Figure 28), enables cancellation of distor-  
tion due to the output stage. T his can best be explained by  
referring to a simplified representation of the AD797 using ide-  
alized blocks for the different circuit elements (Figure 29).  
A single equation yields the open-loop transfer function of this  
amplifier, solving it (at Node B) yields:  
VO  
VIN  
gm  
=
CN  
A
CC  
A
gm  
BUFFER  
V
OUT  
jω CN jω –  
jω  
R
R1  
C1  
L
gm = the transconductance of Q1 and Q2  
A = the gain of the output stage, (~1)  
VO = voltage at the output  
6
GAIN = gmR1 5 x 10  
VIN = differential input voltage  
a.  
When CN is equal to CC this gives the ideal single pole op amp  
C2  
A3  
response:  
VO  
gm  
=
VIN  
jωC  
gm  
A2  
C1  
V
OUT  
BUFFER  
T he terms in A, which include the properties of the output  
stage such as output impedance and distortion, cancel by  
simple subtraction, and therefore the distortion cancellation  
does not affect the stability or frequency response of the ampli-  
fier. With only 500 µA of output stage bias the AD797 delivers  
a 1 kHz sine wave into 600 at 7 V rms with only 1 ppm of  
distortion.  
R1  
R
L
R2  
GAIN = gmR1 *A2 *A3  
b.  
Figure 27. Model of AD797 vs. That of a Typical  
Three-Stage Am plifier  
VCC  
I1  
I2  
C
N
R2  
R3  
CN  
R1  
I5  
Q4  
B
A
OUT  
Q10  
Q11  
Q3  
Q7  
A
A
B
OUT  
–IN  
+IN  
C
C
Q9  
CURRENT  
MIRROR  
Q2  
I3  
Q1  
–IN  
+IN  
Q8  
Q12  
Q1 Q2  
Q5  
C
Q6  
CC  
1
I4  
C
I6  
I1  
I7  
I4  
VSS  
Figure 29. AD797 Block Diagram  
Figure 28. AD797 Sim plified Schem atic  
–8–  
REV. C  
AD797  
NO ISE AND SO URCE IMP ED ANCE CO NSID ERATIO NS  
T he AD797s ultralow voltage noise of 0.9 nV/Hz is achieved  
with special input transistors running at nearly 1 mA of collector  
current. It is important then to consider the total input referred  
noise (eNtotal), which includes contributions from voltage noise  
(eN), current noise (iN), and resistor noise (4 kTrS).  
2
LO W FREQ UENCY NO ISE  
Analog Devices specifies low frequency noise as a peak to peak  
(p-p) quantity in a 0.1 Hz to 10 Hz bandwidth. Several tech-  
niques can be used to make this measurement. T he usual tech-  
nique involves amplifying, filtering, and measuring the amplifiers  
noise for a predetermined test time. T he noise bandwidth of the  
filter is corrected for and the test time is carefully controlled  
since the measurement time acts as an additional low frequency  
roll-off.  
eNtotal = [eN + 4 kTrS + 4 (iNrS)2]l/2  
Equation 1  
where rS = total input source resistance.  
T his equation is plotted for the AD797 in Figure 30. Since opti-  
mum dc performance is obtained with matched source resis-  
tances, this case is considered even though it is clear from  
Equation 1 that eliminating the balancing source resistance will  
lower the total noise by reducing the total rS by a factor of two.  
T he plot in Figure 4 was made using a slightly different tech-  
nique. Here an FFT based instrument (Figure 31) is used to  
generate a 10 Hz “brickwall” filter. A low frequency pole at  
0.1 Hz is generated with an external ac coupling capacitor, the  
instrument being dc coupled.  
At very low source resistance (rS <50 ), the amplifiers’ voltage  
noise dominates. As source resistance increases the Johnson  
noise of rS dominates until at higher resistances (rS >2 k) the  
current noise component is larger than the resistor noise.  
Several precautions are necessary to get optimum low frequency  
noise performance:  
1. Care must be used to account for the effects of rS, even a  
10 resistor has 0.4 nV/Hz of noise (an error of 9% when  
root sum squared with 0.9 nV/Hz).  
100  
2. T he test set up must be fully warmed up to prevent eOS drift  
from erroneously contributing to input noise.  
3. Circuitry must be shielded from air currents. Heat flow out  
of the package through its leads creates the opportunity for a  
thermoelectric potential at every junction of different metals.  
Selective heating and cooling of these by random air currents  
will appear as 1/f noise and obscure the true device noise.  
TOTAL NOISE  
10  
RESISTOR  
NOISE  
ONLY  
1
4. T he results must be interpreted using valid statistical  
techniques.  
100kΩ  
0.1  
+VS  
10  
100  
1000  
10000  
**  
SOURCE RESISTANCE – Ω  
1Ω  
Figure 30. Noise vs. Source Resistance  
2
3
7
HP 3465  
1.5µF  
DYNAMIC SIGNAL  
ANALYZER  
(10Hz)  
T he AD797 is the optimum choice for low noise performance  
provided the source resistance is kept <1 k. At higher values of  
source resistance, optimum performance with respect to noise  
alone is obtained with other amplifiers from Analog Devices (see  
T able I).  
6
AD797  
VOUT  
4
**  
–VS  
** USE POWER SUPPLY BYPASSING SHOWN IN FIGURE 32.  
Figure 31. Test Setup for Measuring 0.1 Hz to 10 Hz Noise  
Table I. Recom m ended Am plifiers for D ifferent Source  
Im pedances  
WID EBAND NO ISE  
rS, ohm s  
Recom m ended Am plifier  
T he AD797, due to its single stage design, has the property that  
its noise is flat over frequencies from less than 10 Hz to beyond  
1 MHz. T his is not true of most dc precision amplifiers where  
second stage noise contributes to input referred noise beyond  
the audio frequency range. T he AD797 offers new levels of per-  
formance in wideband imaging applications. In sampled data  
systems, where aliasing of out of band noise into the signal band  
is a problem, the AD797 will out perform all previously avail-  
able IC op amps.  
0 to <1 k  
AD797  
1 k to <10 k  
10 k to <100 k  
>100 k  
AD707, AD743/AD745, OP27/OP37, OP07  
AD705, AD743/AD745, OP07  
AD548, AD549, AD645, AD711, AD743/  
AD745  
REV. C  
–9–  
AD797  
follower. Operation on 5 volt supplies allows the use of a 100 Ω  
or less feedback network (R1 + R2). Since the AD797 shows  
no unusual behavior when operating near its maximum rated  
current, it is suitable for driving the AD600/AD602 (Figure 47)  
while preserving their low noise performance.  
BYP ASSING CO NSID ERATIO NS  
T o take full advantage of the very wide bandwidth and dynamic  
range capabilities of the AD797 requires some precautions.  
First, multiple bypassing is recommended in any precision  
application. A 1.0 µF4.7 µF tantalum in parallel with 0.1 µF  
ceramic bypass capacitors are sufficient in most applications.  
When driving heavy loads a larger demand is placed on the sup-  
ply bypassing. In this case selective use of larger values of tanta-  
lum capacitors and damping of their lead inductance with small  
value (1.1 to 4.7 ) carbon resistors can be an improvement.  
Figure 32 summarizes bypassing recommendations. T he symbol  
(**) is used throughout this data sheet to represent the parallel  
combination of a 0.1 µF and a 4.7 µF capacitor.  
Optimum flatness and stability at noise gains >1 sometimes  
requires a small capacitor (CL) connected across the feedback  
resistor (R1, Figure 35). T able II includes recommended values  
of CL for several gains. In general, when R2 is greater than  
100 and CL is greater than 33 pF, a 100 resistor should  
be placed in series with CL. Source resistance matching is  
assumed, and the AD797 should never be operated with unbal-  
anced source resistance >200 k/G.  
V
S
V
S
C
L
0.1µF  
4.7 – 22.0µF  
OR  
100  
4.7µF  
0.1µF  
1.1 – 4.7Ω  
+V  
S
KELVIN RETURN  
KELVIN RETURN  
**  
USE SHORT  
LEAD RETURNS  
(<5mm)  
USE SHORT  
LEAD LENGTHS  
(<5mm)  
2
3
7
LOAD  
CURRENT  
LOAD  
CURRENT  
6
V
OUT  
AD797  
R
*
S
V
IN  
4
**  
600  
Figure 32. Recom m ended Power Supply Bypassing  
C
*
S
–V  
S
TH E NO NINVERTING CO NFIGURATIO N  
* SEE TEXT  
** USE POWER SUPPLY BYPASSING SHOWN IN FIGURE 32.  
Ultralow noise requires very low values of rBB’ (the internal  
parasitic resistance) for the input transistors (6 ). T his im-  
plies very little damping of input and output reactive interac-  
tions. With the AD797, additional input series damping is  
required for stability with direct input to output feedback. A  
100 resistor in the inverting input (Figure 33) is sufficient;  
the 100 balancing resistor (R2) is recommended, but is not  
required for stability. T he noise penalty is minimal (eNtotal  
2.1 nV/Hz), which is usually insignificant. Best response  
flatness is obtained with the addition of a small capacitor  
(CL < 33 pF) in parallel with the 100 resistor (Figure 34).  
T he input source resistance and capacitance will also affect the  
response slightly and experimentation may be necessary for best  
results.  
Figure 34. Alternative Voltage Follower Connection  
C
L
R2  
+V  
S
**  
R1  
7
2
3
V
6
AD797  
OUT  
V
4
IN  
R
**  
L
R1  
100  
–V  
S
** USE POWER SUPPLY BYPASSING SHOWN IN FIGURE 32.  
+VS  
**  
Figure 35. Low Noise Pream plifier  
2
3
7
Table II. Values for Follower With Gain Circuit  
Noise  
R2  
100Ω  
6
VOUT  
AD797  
VIN  
RL  
4
**  
600Ω  
Gain  
R1  
R2  
CL  
(Excluding rS)  
–VS  
2
2
10  
20  
>35  
1 kΩ  
1 kΩ  
300 Ω  
300 Ω  
316 Ω  
20 pF  
10 pF  
5 pF  
3.0 nV/Hz  
1.8 nV/Hz  
1.2 nV/Hz  
1.0 nV/Hz  
0.98 nV/Hz  
300 Ω  
33.2 Ω  
16.5 Ω  
10 Ω  
** USE POWER SUPPLY BYPASSING SHOWN IN FIGURE 32.  
Figure 33. Voltage Follower Connection  
Low noise preamplification is usually done in the noninverting  
mode (Figure 35). For lowest noise the equivalent resistance of  
the feedback network should be as low as possible. T he 30 mA  
minimum drive current of the AD797 makes it easier to achieve  
this. T he feedback resistors can be made as low as possible with  
due consideration to load drive and power consumption. T able  
II gives some representative values for the AD797 as a low noise  
(G–1) • 10 Ω  
T he I-to-V converter is a special case of the follower configura-  
tion. When the AD797 is used in an I-to-V converter, for in-  
stance as a DAC buffer, the circuit of Figure 36 should be used.  
The value of CL depends on the DAC and again, if CL is  
–10–  
REV. C  
AD797  
20–120pF  
D RIVING CAP ACITIVE LO AD S  
100  
T he capacitive load driving capabilities of the AD797 are dis-  
played in Figure 38. At gains over 10 usually no special precau-  
tions are necessary. If more drive is desirable the circuit in  
Figure 39 should be used. Here a 5000 pF load can be driven  
R1  
+V  
S
**  
I
IN  
cleanly at any noise gain  
2.  
2
3
7
V
6
100nF  
AD797  
OUT  
4
600  
**  
C
*
R
*
S
S
10nF  
1nF  
–V  
S
* SEE TEXT  
** USE POWER SUPPLY BYPASSING SHOWN IN FIGURE 32.  
Figure 36. I-to-V Converter Connection  
100pF  
10pF  
greater than 33 pF a 100 series resistor is required. A by-  
passed balancing resistor (RS and CS) can be included to mini-  
mize dc errors.  
1pF  
1
TH E INVERTING CO NFIGURATIO N  
10  
100  
1k  
T he inverting configuration (Figure 37) presents a low input  
impedance, R1, to the source. For this reason, the goals of both  
low noise and input buffering are at odds with one another.  
Nonetheless, the excellent dynamics of the AD797 will make it  
the preferred choice in many inverting applications, and with care-  
ful selection of feedback resistors the noise penalties will be mini-  
mal. Some examples are presented in T able II and Figure 37.  
CLOSED-LOOP GAIN  
Figure 38. Capacitive Load Drive Capability vs. Closed  
Loop Gain  
20pF  
1k  
200pF  
100  
C
L
+V  
S
R2  
**  
1k  
2
+V  
S
7
**  
V
33Ω  
IN  
V
6
AD797  
OUT  
R1  
2
7
C1  
3
4
**  
V
IN  
6
V
OUT  
AD797  
–V  
S
4
3
R
**  
L
** USE POWER SUPPLY BYPASSING SHOWN IN FIGURE 32.  
R
*
S
–V  
S
Figure 39. Recom m ended Circuit for Driving a High  
Capacitance Load  
* SEE TEXT  
** USE POWER SUPPLY BYPASSING SHOWN IN FIGURE 32.  
SETTLING TIME  
Figure 37. Inverting Am plifier Connection  
T he AD797 is unique among ultralow noise amplifiers in that it  
settles to 16 bits (<150 µV) in less than 800 ns. Measuring this  
performance presents a challenge. A special test setup (Figure  
40) was developed for this purpose. T he input signal was ob-  
tained from a resonant reed switch pulse generator, available  
from T ektronix as calibration Fixture No. 067-0608-00. When  
open, the switch is simply 50 to ground and settling is purely  
a passive pulse decay and inherently flat. T he low repetition rate  
signal was captured on a digital oscilloscope after being ampli-  
fied and clamped twice. T he selection of plug-in for the oscillo-  
scope was made for minimum overload recovery.  
Table III. Values for Inverting Circuit  
Noise  
Gain  
R1  
R2  
C L  
(Excluding rS)  
–1  
–1  
–10  
1 kΩ  
300 Ω  
150 Ω  
1 kΩ  
300 Ω  
1500 Ω  
20 pF  
10 pF  
5 pF  
3.0 nV/Hz  
1.8 nV/Hz  
1.8 nV/Hz  
REV. C  
–11–  
AD797  
R1  
TO TEKTRONIX  
7A26  
1MΩ  
20pF  
OSCILLOSCOPE  
PREAMP INPUT  
SECTION  
50pF  
R2  
226  
4.26kΩ  
2
3
8
(VIA LESS THAN 1FT  
50 COAXIAL CABLE)  
6
AD797  
2
3
V
X 5  
250Ω  
A2  
AD829  
V
IN  
ERROR  
6
7
2x  
HP2835  
4
a.  
2x  
HP2835  
0.47µF  
0.47µF  
R1  
+V  
S
C2  
C1  
–V  
S
1k  
1k  
R2  
NOTE:  
USE CIRCUIT  
BOARD  
WITH GROUND  
PLANE  
100  
1k  
2
3
8
TEKTRONIX  
CALIBRATION  
FIXTURE  
6
AD797  
V
IN  
20pF  
6
V
IN  
1kΩ  
2
3
C1, SEE TABLE  
C2 = 50pF – C1  
A1  
AD797  
51pF  
7
b.  
4
Figure 41. Recom m ended Connections for Distortion  
Cancellation and Bandwidth Enhancem ent  
0.1µF  
1µF  
0.1µF  
–V  
1µF  
+V  
S
S
Table IV. Recom m ended External Com pensation  
Figure 40. Settling Tim e Test Circuit  
D ISTO RTIO N RED UCTIO N  
The AD797 has distortion performance (T H D < –120 dB, @  
20 kH z, 3 V rms, RL = 600 ) unequaled by most voltage  
feedback amplifiers.  
A/B  
R1 R2 C1 C2 3 dB  
(pF) BW  
A
B
C1 C2 3 dB  
(pF) BW  
G = 10  
909 100  
G = 100 1 k 10  
G = 1000 10 k 10  
0
0
0
50 6 MHz  
50 1 MHz  
50 110 kHz 33 15 450 kHz  
0
50 6 MHz  
15 33 1.5 MHz  
At higher gains and higher frequencies T HD will increase due  
to reduction in loop gain. However in contrast to most conven-  
tional voltage feedback amplifiers the AD797 provides two effec-  
tive means of reducing distortion, as gain and frequency are  
increased; cancellation of the output stage’s distortion and gain  
bandwidth enhancement by decompensation. By applying these  
techniques gain bandwidth can be increased to 450 MH z at  
G = 1000 and distortion can be held to –100 dB at 20 kHz for  
G = 100.  
0.01  
–80  
–90  
G=1000  
R =600Ω  
L
0.003  
NOISE LIMIT, G=1000  
NOISE LIMIT, G=100  
G=1000  
R =10kΩ  
L
0.001  
–100  
–110  
–120  
G=100  
R =600Ω  
T he unique design of the AD797 provides for cancellation of the  
output stage’s distortion (patent pending). T o achieve this a ca-  
pacitance equal to the effective compensation capacitance, usu-  
ally 50 pF, is connected between Pin 8 and the output (C2 in  
Figure 41). Use of this feature will improve distortion perfor-  
mance when the closed loop gain is more than 10 or when fre-  
quencies of interest are greater than 30 kHz.  
L
0.0003  
0.0001  
G=10  
R =600Ω  
L
100  
300  
1k  
3k  
10k  
30k  
100k  
300k  
Bandwidth enhancement via decompensation is achieved by  
connecting a capacitor from Pin 8 to ground (C1 in Figure 41)  
effectively subtracting from the value of the internal compensa-  
tion capacitance (50 pF), yielding a smaller effective compensa-  
tion capacitance and, therefore, a larger bandwidth. T he  
benefits of this begin at closed loop gains of 100 and up. A  
maximum value of 33 pF at gains of 1000 and up is recom-  
mended. At a gain of 1000 the bandwidth is 450 kHz.  
FREQUENCY – Hz  
Figure 42. Total Harm onic Distortion (THD) vs. Frequency  
@ 3 V rm s for Figure 41b  
T able IV and Figure 42 summarize the performance of the  
AD797 with distortion cancellation and decompensation.  
–12–  
REV. C  
AD797  
D iffer ential Line Receiver  
A Gener al P ur pose ATE/Instr um entation Input/O utput  
T he differential receiver circuit of Figure 43 is useful for many  
applications from audio to MRI imaging. It allows extraction of  
a low level signal in the presence of common-mode noise. As  
shown in Figure 44, the AD797 provides this function with only  
9 nV/Hz noise at the output. Figure 45 shows the AD797’s  
20-bit T HD performance over the audio band and 16-bit accu-  
racy to 250 kHz.  
D r iver  
T he ultralow noise and distortion of the AD797 may be com-  
bined with the wide bandwidth, slew rate, and load drive of a  
current feedback amplifier to yield a very wide dynamic range  
general purpose driver. T he circuit of Figure 46 combines the  
AD797 with the AD811 in just such an application. Using the  
–90  
–100  
–110  
–120  
–130  
0.003  
20pF  
WITHOUT  
OPTIONAL  
1kΩ  
1kΩ  
0.001  
50pF C  
N
+VS  
**  
50pF*  
6
DIFFERENTIAL  
INPUT  
7
0.0003  
0.0001  
MEASUREMENT  
LIMIT  
2
3
8
AD797  
OUTPUT  
4
WITH  
OPTIONAL  
50C  
*OPTIONAL  
**  
–VS  
N
USE POWER SUPPLY  
BYPASSING SHOWN IN  
FIGURE 32.  
**  
1kΩ  
1kΩ  
100  
300  
1k  
3k  
10k  
30k  
100k  
300k  
FREQUENCY – Hz  
Figure 45. Total Harm onic Distortion (THD) vs. Frequency  
for Differential Line Receiver  
20pF  
Figure 43. Differential Line Receiver  
component values shown, this circuit is capable of better than  
–90 dB T HD with a ±5 V, 500 kHz output signal. T he circuit is  
therefore suitable for driving high resolution A/D converters and  
as an output driver in automatic test equipment (AT E) systems.  
Using a 100 kHz sine wave, the circuit will drive a 600 load to  
a level of 7 V rms with less than –109 dB T HD, and a 10 kΩ  
load at less than –117 dB T HD.  
16  
14  
12  
10  
8
22pF  
R2  
+V  
S
2kΩ  
**  
+V  
S
**  
2
3
7
3
6
7
AD797  
6
1kΩ  
10  
100  
1k  
10k  
100k  
1M  
10M  
4
6
AD811  
FREQUENCY — Hz  
**  
INPUT  
OUTPUT  
2
4
**  
Figure 44. Output Voltage Noise Spectral Density for  
Differential Line Receiver  
–V  
S
–V  
649Ω  
S
USE POWER SUPPLY  
**  
BYPASSING SHOWN IN  
FIGURE 32.  
649Ω  
Figure 46. A General Purpose ATE/lnstrum entation Input/  
Output Driver  
REV. C  
–13–  
AD797  
Ultr asound/Sonar Im aging P r eam p  
–30  
–40  
–50  
–60  
–70  
–80  
100  
80  
60  
40  
20  
0
T he AD600 variable gain amplifier provides the time controlled  
gain (T CG) function necessary for very wide dynamic range so-  
nar and low frequency ultrasound applications. Under some cir-  
cumstances, it is necessary to buffer the input of the AD600 to  
preserve its low noise performance. T o optimize dynamic range  
this buffer should have at most 6 dB of gain. T he combination  
of low noise and low gain is difficult to achieve. T he input  
buffer circuit shown in Figure 47 provides 1 nV/Hz noise per-  
formance at a gain of two (dc to 1 MHz) by using 26.1 resistors  
in its feedback path. Distortion is only –50 dBc @ 1 MHz at a  
2 volt p-p output level and drops rapidly to better than  
–70 dBc at an output level of 200 mV p-p.  
V
OUT  
NOISE  
26.1Ω  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY – Hz  
**  
+V  
S
Figure 49. Total Integrated Voltage Noise & VOUT of  
Am orphous Detector Pream p  
**  
26.1  
7
AD797  
4
2
3
P r ofessional Audio Signal P r ocessing—D AC Buffer s  
6
AD600  
V
T he low noise and low distortion of the AD797 make it an ideal  
choice for professional audio signal processing. An ideal I-to-V  
converter for a current output DAC would simply be a resistor  
to ground, were it not for the fact that most DACs do not oper-  
ate linearly with voltage on their output. Standard practice is to  
operate an op amp as an I-to-V converter creating a virtual  
ground at its inverting input. Normally, clock energy and cur-  
rent steps must be absorbed by the op amp’s output stage.  
However, in the configuration of Figure 50, Capacitor CF  
shunts high frequency energy to ground, while correctly repro-  
ducing the desired output with extremely low T HD and IMD.  
INPUT  
OUT  
**  
**  
–V  
S
V
= ±6Vdc  
* USE POWER SUPPLY  
** BYPASSING SHOWN IN FIGURE 32.  
S
Figure 47. An Ultrasound Pream plifier Circuit  
Am or phous (P hotodiode) D etector  
Large area photodiodes CS 500 pF and certain image detec-  
tors (amorphous Si), have optimum performance when used in  
conjunction with amplifiers with very low voltage rather than  
very low current noise. Figure 48 shows the AD797 used with  
an amorphous Si (CS = 1000 pF) detector. T he response is ad-  
justed for flatness using capacitor CL, while the noise is domi-  
nated by voltage noise amplified by the ac noise gain. T he 797’s  
excellent input noise performance gives 27 µV rms total noise in  
a 1 MHz bandwidth, as shown by Figure 49.  
C
F
82pF  
100Ω  
3kΩ  
+V  
S
**  
C
L
50pF  
100Ω  
AD1862  
DAC  
2
3
7
C1  
2000pF  
6
10kΩ  
AD797  
4
**  
+V  
S
**  
–V  
S
** USE POWER SUPPLY BYPASSING SHOWN IN FIGURE 32.  
2
3
7
6
Figure 50. A Professional Audio DAC Buffer  
C
AD797  
S
I
S
1000pF  
4
**  
–V  
S
** USE POWER SUPPLY BYPASSING SHOWN IN FIGURE 32.  
Figure 48. Am orphous Detector Pream p  
Figure 51. Offset Null Configuration  
–14–  
REV. C  
AD797  
OPERATIONAL AMPLIFIERS  
LOW NOISE  
LOW CURRENT NOISE – I  
LOW VO LTAG E N O ISE – V  
N
N
(V  
10 n V/ H z @ 1 k H z)  
LOW INPUT BIAS CURRENT – I  
N
BIAS  
100 pA)  
BIAS  
(I  
10 fA/ Hz @ 1 kHz, I  
N
AUDIO  
AMPLIFIERS  
FET INPUT  
PRECISION  
LOW  
POWER  
LOW VN  
ELECTROMETER  
AD797  
AD OP27  
AD OP37  
OP27  
AD645  
AD743  
AD795  
AD796 (Dual)  
AD797  
OP275  
AD645  
AD795  
AD796 (Dual)  
AD548  
AD795  
OP80  
SSM2015  
SSM2016  
SSM2017  
SSM2134  
SSM2139  
OP37  
AD648 (Dual)  
AD796 (Dual)  
OP227 (Dual)  
OP270 (Dual)  
OP271 (Dual)  
OP275 (Dual)  
OP467 (Quad)  
OP470 (Quad)  
OP471 (Quad)  
Fast  
Lower V  
N
AD743  
AD745  
Faster  
Faster  
(Slew Rate  
8 V/µs)  
AD745  
OP282 (Dual)  
OP482 (Quad)  
Low  
FAST  
Power  
(Slew Rate 45 V/µs)  
High Output  
Current  
OP80  
PRECISION  
FAST  
OP61  
OP467 (Quad)  
AD797  
OP50  
AD548  
AD795  
AD820  
AD648 (Dual)  
AD796 (Dual)  
AD822 (Dual)  
AD711  
General  
Purpose  
AD712 (Dual)  
OP249 (Dual)  
AD713 (Quad)  
Faster  
AD515A  
AD545A  
AD546  
(Slew Rate 230 V/µs)  
AD829  
Faster  
AD840  
AD844  
AD846  
AD848  
AD849  
AD5539  
ULTRALOW V  
0.9 nV/ Hz  
N
Ultrafast  
Lowest I BIA S  
60 fA Max  
AD744  
OP42  
OP44  
(Slew Rate  
1000 V/µs)  
AD797  
AD810  
AD549  
AD811  
AD844  
AD9610  
AD9617  
AD9618  
AD746 (Dual)  
REV. C  
–15–  
AD797  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
Cerdip (Q) P ackage*  
0.055 (1.4) MAX  
5
0.005 (0.13) MIN  
8
0.310 (7.87)  
0.220 (5.59)  
1
4
0.070 (1.78)  
0.030 (0.76)  
0.320 (8.13)  
0.290 (7.37)  
0.405 (10.29) MAX  
0.200  
0.060 (1.52)  
0.015 (0.38)  
(5.08)  
MAX  
0.150  
(3.81)  
MIN  
0.015 (0.38)  
0.008 (0.20)  
0.200 (5.08)  
0.125 (3.18)  
0.023 (0.58)  
0.014 (0.36)  
0.100 (2.54)  
BSC  
0
- 15  
SEATING PLANE  
P lastic Mini-D IP  
(N) P ackage  
5
8
0.25  
0.31  
(6.35) (7.87)  
1
4
0.30 (7.62)  
0.39 (9.91)  
MAX  
REF  
0.035 ± 0.01  
(0.89 ± 0.25)  
0.165 ± 0.01  
(4.19 ± 0.25)  
SEATING PLANE  
0.011 ± 0.003  
(4.57 ± 0.76)  
0.125 (3.18)  
MIN  
0.18 ± 0.03  
(4.57 ± 0.76)  
0.10  
0.018 ± 0.003  
(0.46 ± 0.08)  
0
- 15  
(2.54)  
TYP  
0.033  
(0.84)  
NOM  
8-P in SO IC (R) P ackage  
0.198 (5.03)  
0.188 (4.77)  
5
8
0.158 (4.00)  
0.150 (3.80)  
0.244 (6.200)  
0.228 (5.80)  
4
1
0.018 (0.46)  
0.014 (0.36)  
0.050 (1.27)  
TYP  
0.205 (5.20)  
0.181 (4.60)  
0.069 (1.75)  
0.053 (1.35)  
0.010 (0.25)  
0.004 (0.10)  
0.015 (0.38)  
0.007 (0.18)  
0.045 (1.15)  
0.020 (0.50)  
*See m ilitar y data sheet for 883B specifications.  
–16–  
REV. C  

相关型号:

AD797*

Ultralow Distortion. Ultralow Noise Op Amp
ETC

AD797ACHIPS

IC OP-AMP, 125 uV OFFSET-MAX, 110 MHz BAND WIDTH, UUC8, DIE-8, Operational Amplifier
ADI

AD797AN

Ultralow Distortion, Ultralow Noise Op Amp
ADI

AD797ANZ

Ultralow Distortion, Ultralow Noise Op Amp
ADI

AD797AR

Ultralow Distortion, Ultralow Noise Op Amp
ADI

AD797AR-REEL

Ultralow Distortion, Ultralow Noise Op Amp
ADI

AD797AR-REEL7

Ultralow Distortion, Ultralow Noise Op Amp
ADI

AD797ARZ

Ultralow Distortion, Ultralow Noise Op Amp
ADI

AD797ARZ-REEL

Ultralow Distortion, Ultralow Noise Op Amp
ADI

AD797ARZ-REEL7

Ultralow Distortion, Ultralow Noise Op Amp
ADI

AD797BN

Ultralow Distortion, Ultralow Noise Op Amp
ADI

AD797BR

Ultralow Distortion, Ultralow Noise Op Amp
ADI