AD8000YCPZ-R2 [ADI]

1.5 GHz Ultrahigh Speed Op Amp; 1.5 GHz的超高速运算放大器
AD8000YCPZ-R2
型号: AD8000YCPZ-R2
厂家: ADI    ADI
描述:

1.5 GHz Ultrahigh Speed Op Amp
1.5 GHz的超高速运算放大器

运算放大器
文件: 总20页 (文件大小:666K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1.5 GHz Ultrahigh Speed Op Amp  
AD8000  
CONNECTION DIAGRAMS  
AD8000  
FEATURES  
High speed  
1.5 GHz, −3 dB bandwidth (G = +1)  
650 MHz, full power bandwidth (G = +2, VO = 2 V p-p)  
Slew rate: 4100 V/µs  
0.1% settling time: 12 ns  
Excellent video specifications  
0.1 dB flatness: 170 MHz  
POWER DOWN  
FEEDBACK  
–IN  
1
2
3
4
8
+V  
S
7
OUTPUT  
6 NC  
5 –V  
+IN  
S
Differential gain: 0.02%  
NC = NO CONNECT  
Differential phase: 0.01°  
Figure 1. 8-Lead AD8000, 3 mm × 3 mm LFCSP (CP-8-2)  
Output overdrive recovery: 22 ns  
Low noise: 1.6 nV/√Hz input voltage noise  
Low distortion over wide bandwidth  
75 dBc SFDR @ 20 MHz  
AD8000  
FEEDBACK  
–IN  
1
2
3
4
8
7
6
5
POWER DOWN  
+V  
S
62 dBc SFDR @ 50 MHz  
+IN  
OUTPUT  
NC  
Input offset voltage: 1 mV typ  
High output current: 100 mA  
Wide supply voltage range: 4.5 V to 12 V  
Supply current: 13.5 mA  
–V  
S
NC = NO CONNECT  
Power-down mode  
Figure 2. 8-Lead AD8000 SOIC/EP (RD-8-1)  
APPLICATIONS  
Professional video  
High speed instrumentation  
Video switching  
3
2
V
R
V
= ±5V  
= 150Ω  
S
L
= 2V p-p  
OUT  
1
IF/RF gain stage  
0
CCD imaging  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
GENERAL DESCRIPTION  
The AD8000 is an ultrahigh speed, high performance, current  
feedback amplifier. Using ADI’s proprietary eXtra Fast Com-  
plementary Bipolar (XFCB) process, the amplifier can achieve a  
small signal bandwidth of 1.5 GHz and a slew rate of 4100 V/µs.  
G = +2, R = 432Ω  
F
The AD8000 has low spurious-free dynamic range (SFDR) of  
75 dBc @ 20 MHz and input voltage noise of 1.6 nV/√Hz. The  
AD8000 can drive over 100 mA of load current with minimal  
distortion. The amplifier can operate on +5 V to 6 V. These  
specifications make the AD8000 ideal for a variety of applica-  
tions, including high speed instrumentation.  
1
10  
100  
1000  
FREQUENCY (MHz)  
Figure 3. Large Signal Frequency Response  
The AD8000 power-down mode reduces the supply current to  
1.3 mA. The amplifier is available in a tiny 8-lead LFCSP pack-  
age, as well as in an 8-lead SOIC package. The AD8000 is rated  
to work over the extended industrial temperature range (−40°C  
to +125°C). A triple version of the AD8000 (AD8003) is under-  
development.  
With a differential gain of 0.02%, differential phase of 0.01°, and  
0.1 dB flatness out to 170 MHz, the AD8000 has excellent video  
specifications, which ensure that even the most demanding  
video systems maintain excellent fidelity.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
AD8000  
TABLE OF CONTENTS  
Specifications with 5 V Supply ..................................................... 3  
Video Line Driver....................................................................... 14  
Low Distortion Pinout............................................................... 15  
Exposed Paddle........................................................................... 15  
Printed Circuit Board Layout ................................................... 15  
Signal Routing............................................................................. 15  
Power Supply Bypassing............................................................ 15  
Grounding................................................................................... 16  
Outline Dimensions....................................................................... 17  
Ordering Guide .......................................................................... 17  
Specifications with +5 V Supply ..................................................... 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Typical Performance Characteristics ............................................. 6  
Test Circuits ..................................................................................... 13  
Applications..................................................................................... 14  
Circuit Configurations............................................................... 14  
REVISION HISTORY  
1/05—Rev. 0: Initial Version  
Rev. 0 | Page 2 of 20  
AD8000  
SPECIFICATIONS WITH 5 ꢀ SUPPLY  
At TA = 25°C, VS = 5 V, RL = 150 Ω, Gain = +2, RF = RG = 432 Ω, unless otherwise noted. Exposed paddle should be connected to ground.  
Table 1.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
G = +1, VO = 0.2 V p-p, SOIC/LFCSP  
G = +2, VO = 2 V p-p, SOIC/LFCSP  
VO = 2 V p-p, SOIC/LFCSP  
G = +2, VO = 4 V step  
1580/1350  
650/610  
190/170  
4100  
MHz  
MHz  
MHz  
V/µs  
ns  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Settling Time to 0.1%  
NOISE/HARMONIC PERFORMANCE  
Second/Third Harmonic  
Second/Third Harmonic  
Input Voltage Noise  
G = +2, VO = 2 V step  
12  
VO = 2 V p-p, f = 5 MHz, LFCSP only  
VO = 2 V p-p, f = 20 MHz, LFCSP only  
f = 100 kHz  
f = 100 kHz, −IN  
f = 100 kHz, +IN  
86/89  
75/79  
1.6  
26  
3.4  
dBc  
dBc  
nV/√Hz  
pA/√Hz  
pA/√Hz  
%
Input Current Noise  
Differential Gain Error  
Differential Phase Error  
DC PERFORMANCE  
NTSC, G = +2  
NTSC, G = +2  
0.02  
0.01  
Degree  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current (Enabled)  
1
10  
mV  
µV/°C  
µA  
µA  
kΩ  
11  
−5  
−3  
890  
+IB  
−IB  
+4  
+45  
1600  
Transimpedance  
570  
−52  
INPUT CHARACTERISTICS  
Noninverting Input Impedance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
Overdrive Recovery  
2/3.6  
−3.5 to +3.5  
−54  
MΩ/pF  
V
dB  
ns  
VCM  
=
2.5 V  
−56  
G = +1, f = 1 MHz, triangle wave  
30  
POWER DOWN PIN  
Power-Down Input Voltage  
Power-down  
Enabled  
50% of power-down voltage to  
10% of VOUT final, VIN = 0.3 V p-p  
50% of power-down voltage to  
90% of VOUT final, VIN = 0.3 V p-p  
< +VS – 3.1  
> +VS – 1.9  
150  
V
V
ns  
Turn-Off Time  
Turn-On Time  
300  
ns  
Input Bias Current  
Enabled  
Power-Down  
−1.1  
−300  
+0.17  
−235  
+1.4  
−160  
µA  
µA  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
Output Voltage Swing  
Linear Output Current  
Overdrive Recovery  
RL = 100 Ω  
RL = 1 kΩ  
VO = 2 V p-p, second HD < −50 dBc  
G = + 2, f = 1 MHz, triangle wave  
G = +2, VIN = 2.5 V to 0 V step  
3.7  
3.9  
3.9  
4.1  
100  
45  
V
V
mA  
ns  
ns  
22  
POWER SUPPLY  
Operating Range  
4.5  
12  
V
Quiescent Current  
Quiescent Current (Power-Down)  
Power Supply Rejection Ratio  
12.7  
1.1  
−56/−61  
13.5  
1.3  
−59/−63  
14.3  
1.65  
mA  
mA  
dB  
−PSRR/+PSRR  
Rev. 0 | Page 3 of 20  
 
AD8000  
SPECIFICATIONS WITH +5 ꢀ SUPPLY  
At TA = 25°C, VS = +5 V, RL = 150 Ω, Gain = +2, RF = RG = 432 Ω, unless otherwise noted. Exposed paddle should be connected to ground.  
Table 2.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
G = +1, VO = 0.2 V p-p  
G = +2, VO = 2 V p-p  
G = +10, VO = 0.2 V p-p  
VO = 0.2 V p-p  
VO = 2 V p-p  
G = +2, VO = 2 V step  
G = +2, VO = 2 V step  
980  
477  
328  
136  
136  
2700  
16  
MHz  
MHz  
MHz  
MHz  
MHz  
V/µs  
ns  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Settling Time to 0.1%  
NOISE/HARMONIC PERFORMANCE  
Second/Third Harmonic  
Second/Third Harmonic  
Input Voltage Noise  
VO = 2 V p-p, 5 MHz, LFCSP only  
VO = 2 V p-p, 20 MHz, LFCSP only  
f = 100 kHz  
f = 100 kHz, −IN  
f = 100 kHz, +IN  
71/71  
60/62  
1.6  
26  
3.4  
dBc  
dBc  
nV/√Hz  
pA/√Hz  
pA/√Hz  
%
Input Current Noise  
Differential Gain Error  
Differential Phase Error  
DC PERFORMANCE  
NTSC, G = +2  
NTSC, G = +2  
0.01  
0.06  
Degree  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current (Enabled)  
1.3  
18  
−5  
−1  
800  
10  
mV  
µV/°C  
µA  
µA  
kΩ  
+IB  
−IB  
+3  
+45  
1500  
Transimpedance  
440  
−51  
INPUT CHARACTERISTICS  
Noninverting Input Impedance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
Overdrive Recovery  
2/3.6  
1.5 to 3.6  
−52  
MΩ/pF  
V
dB  
ns  
VCM  
=
2.5 V  
−54  
G = +1, f = 1 MHz, triangle wave  
60  
POWER DOWN PIN  
Power-Down Input Voltage  
Power-down  
Enable  
50% of power-down voltage to  
10% of VOUT final, VIN = 0.3 V p-p  
50% of power-down voltage to  
90% of VOUT final, VIN = 0.3 V p-p  
< +VS − 3.1  
> +VS − 1.9  
200  
V
V
ns  
Turn-Off Time  
Turn-On Time  
300  
ns  
Input Current  
Enabled  
Power-Down  
−1.1  
−50  
+0.17  
−40  
+1.4  
−30  
µA  
µA  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
RL = 100 Ω  
RL = 1 kΩ  
VO = 2 V p-p, second HD < −50 dBc  
G = +2, f = 100 kHz, triangle wave  
1.1 to 3.9  
1 to 3.1  
1.05 to 4.1  
0.85 to 4.15  
70  
V
V
mA  
ns  
Linear Output Current  
Overdrive Recovery  
65  
POWER SUPPLY  
Operating Range  
4.5  
12  
V
Quiescent Current  
Quiescent Current (Power-Down)  
Power Supply Rejection Ratio  
11  
0.7  
−55/−60  
12  
0.95  
−57/−62  
13  
1.25  
mA  
mA  
dB  
−PSRR/+PSRR  
Rev. 0 | Page 4 of 20  
 
AD8000  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
The power dissipated in the package (PD) is the sum of the  
Parameter  
Rating  
quiescent power dissipation and the power dissipated in the die  
due to the AD8000 drive at the output. The quiescent power is  
the voltage between the supply pins (VS) times the quiescent  
current (IS).  
Supply Voltage  
12.6 V  
Power Dissipation  
See Figure 4  
−VS − 0.7 V to +VS + 0.7 V  
±VS  
Common-Mode Input Voltage  
Differential Input Voltage  
Exposed Paddle Voltage  
Storage Temperature  
Operating Temperature Range  
PD = Quiescent Power + (Total Drive Power Load Power)  
−VS  
−65°C to +125°C  
−40°C to +125°C  
300°C  
2
VS VOUT  
VOUT  
RL  
PD =  
(
VS × IS  
)
+
×
2
RL  
Lead Temperature Range  
(Soldering, 10 sec)  
RMS output voltages should be considered. If RL is referenced  
to −VS, as in single-supply operation, the total drive power is  
VS × IOUT. If the rms signal levels are indeterminate, consider  
the worst case, when VOUT = VS/4 for RL to midsupply.  
Junction Temperature  
150°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
2
(
VS /4  
RL  
)
PD =  
(
VS ×IS +  
)
In single-supply operation with RL referenced to −VS, worst case  
is VOUT = VS/2.  
THERMAL RESISTANCE  
Airflow increases heat dissipation, effectively reducing θJA.  
Also, more metal directly in contact with the package leads and  
exposed paddle from metal traces, through holes, ground, and  
power planes reduces θJA.  
θJA is specified for the worst-case conditions, that is, θJA is speci-  
fied for device soldered in the circuit board for surface-mount  
packages.  
Table 4. Thermal Resistance  
Package Type  
θJA  
80  
93  
θJC  
30  
35  
Unit  
°C/W  
°C/W  
Figure 4 shows the maximum safe power dissipation in the  
package vs. the ambient temperature for the exposed paddle  
SOIC (80°C/W) and the LFCSP (93°C/W) package on a JEDEC  
standard 4-layer board. θJA values are approximations.  
SOIC-8  
3 mm × 3 mm LFCSP  
3.0  
2.5  
2.0  
Maximum Power Dissipation  
The maximum safe power dissipation for the AD8000 is limited  
by the associated rise in junction temperature (TJ) on the die. At  
approximately 150°C, which is the glass transition temperature,  
the properties of the plastic change. Even temporarily exceeding  
this temperature limit can change the stresses that the package  
exerts on the die, permanently shifting the parametric perform-  
ance of the AD8000. Exceeding a junction temperature of  
175°C for an extended period of time can result in changes  
in silicon devices, potentially causing degradation or loss of  
functionality.  
SOIC  
1.5  
LFCSP  
1.0  
0.5  
0
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90 100 110 120  
AMBIENT TEMPERATURE (°C)  
Figure 4. Maximum Power Dissipation vs. Temperature for a 4-Layer Board  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate  
on the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy elec-  
trostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation  
and loss of functionality.  
Rev. 0 | Page 5 of 20  
 
 
AD8000  
TYPICAL PERFORMANCE CHARACTERISTICS  
9
6
3
3
V
R
V
= ±5V  
= 150Ω  
S
G = +1, R = 432Ω  
F
2
1
L
= 200mV p-p  
OUT  
R
= 392Ω  
F
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
G = +2, R = 432, R = 432Ω  
F
G
R
= 432Ω  
F
R
= 487Ω  
F
G = +10, R = 357, R = 40.2Ω  
F
G
V
= ±5V  
S
0
G = +2  
= 150Ω  
R
L
V
= 200mV p-p  
OUT  
LFCSP  
–3  
1
10  
100  
1000  
1
10  
100  
FREQUENCY (MHz)  
1000  
FREQUENCY (MHz)  
Figure 8. Small Signal Frequency Response vs. RF  
Figure 5. Small Signal Frequency Response vs. Various Gains  
3
9
6
3
V
R
V
= ±5V  
= 150Ω  
G = –1, R = R = 249Ω  
S
F
G
2
1
L
= 200mV p-p  
OUT  
R
= 392Ω  
F
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
R = 432Ω  
F
R
= 487Ω  
F
G = –10, R = 432, R = 43.2Ω  
F
G
V
= ±5V  
S
0
G = +2  
= 150Ω  
R
L
G = –2, R = 432, R = 215Ω  
F
G
V
= 2V p-p  
OUT  
LFCSP  
–3  
1
10  
100  
FREQUENCY (MHz)  
1000  
1
10  
100  
FREQUENCY (MHz)  
1000  
Figure 9. Large Signal Frequency Response vs. RF  
Figure 6. Small Signal Frequency Response vs. Various Gains  
1000  
100  
10  
3
200  
150  
V
R
V
= ±5V  
= 150Ω  
V
R
= ±5V  
S
G = +1, R = 432Ω  
S
F
2
1
= 100Ω  
L
L
= 2V p-p  
OUT  
0
100  
50  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
G = +4, R = 357, R = 121Ω  
F
G
PHASE  
G = +10, R = 357, R = 40.2Ω  
F
G
TZ  
G = +2, R = R = 432Ω  
F
G
1
50  
100  
0.1  
0.1  
1
10  
100  
1000  
10000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 10. Transimpedance and Phase vs. Frequency  
Figure 7. Large Signal Frequency Response vs. Various Gains  
Rev. 0 | Page 6 of 20  
 
 
AD8000  
9
6
3
3
2
R
= 1kΩ  
L
V
= +5V, R = 0Ω  
S
S
G = +1  
R
V
= 432Ω  
= 200mV p-p  
F
1
OUT  
LFCSP  
0
V
= ±5V, R = 0Ω  
S
S
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–40°C  
V
= +5V, R = 50Ω  
S
S
V
= ±5V  
0
S
G = +2  
= 150Ω  
OUT  
LFCSP  
R
V
L
V
= ±5V, R = 50Ω  
S
S
+125°C  
+25°C  
= 200mV p-p  
–3  
1
10  
100  
1000  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
FREQUENCY (MHz)  
Figure 14. Small Signal Frequency Response vs. Temperature  
Figure 11. Small Signal Frequency Response vs. Supply Voltage  
9
9
R
= 150Ω  
L
G = +1  
= 432Ω  
R
F
6
3
V
= 200mV p-p  
OUT  
6
LFCSP  
V
= ±5V  
S
+25°C  
–40°C  
3
0
V
= +5V  
S
–3  
–6  
–9  
V
= ±5V  
0
S
G = +2  
= 1kΩ  
+125°C  
R
L
V
= 200mV p-p  
OUT  
LFCSP  
–3  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 15. Small Signal Frequency Response vs. Temperature  
Figure 12. Small Signal Frequency Response vs. Supply Voltage  
9
6.5  
V
R
V
= ±5V  
= 150Ω  
S
6.4  
6.3  
6.2  
6.1  
6.0  
5.9  
5.8  
5.7  
5.6  
5.5  
L
= 2V p-p  
OUT  
G = +2  
= 432Ω  
6
R
F
SOIC  
3
–40°C  
LFCSP  
+25°C  
V
= ±5V  
0
S
G = +2  
= 150Ω  
OUT  
LFCSP  
R
V
L
+125°C  
= 2V p-p  
–3  
1
10  
100  
1000  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 16. Large Signal Frequency Response vs. Temperature  
Figure 13. 0.1 dB Flatness  
Rev. 0 | Page 7 of 20  
AD8000  
–40  
–50  
9
V
V
= ±5V  
OUT  
S
= 2V p-p  
V
= 1V p-p  
OUT  
G = +1  
= 1kΩ  
R
L
–60  
6
3
0
LFCSP  
–70  
SECOND HD  
–80  
V
= 2V p-p  
= 4V p-p  
OUT  
–90  
THIRD HD  
–100  
–110  
–120  
V
OUT  
V
= ±5V  
S
G = +2  
R
LFCSP  
= 150Ω  
L
–3  
1
10  
100  
1000  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 17. Large Signal Frequency Response vs. Various Outputs  
Figure 20. Harmonic Distortion vs. Frequency  
–40  
–20  
–30  
V
V
= ±5V  
OUT  
V
V
= ±5V  
S
OUT  
S
= 2V p-p  
= 4V p-p  
–50  
–60  
G = +1  
R
LFCSP  
G = +1  
R = 1kΩ  
L
= 150Ω  
L
–40 LFCSP  
SECOND HD  
–70  
–50  
–60  
–70  
–80  
–90  
THIRD HD  
SECOND HD  
THIRD HD  
–80  
–90  
–100  
–110  
–120  
–100  
1
10  
FREQUENCY (MHz)  
100  
1
10  
100  
FREQUENCY (MHz)  
Figure 18. Harmonic Distortion vs. Frequency  
Figure 21. Harmonic Distortion vs. Frequency  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–40  
–50  
V
= ±5V  
V
V
= ±5V  
= 2V p-p  
S
S
G = +10  
OUT  
G = +2  
= 150Ω  
V
= 2V p-p  
= 1kΩ  
OUT  
R
R
L
L
LFCSP  
–60  
LFCSP SECOND HD  
SOIC SECOND HD  
–70  
SECOND HD  
–80  
THIRD HD  
–90  
–100  
–110  
–120  
LFCSP THIRD HD  
SOIC THIRD HD  
1
10  
100  
1
10  
FREQUENCY (MHz)  
100  
FREQUENCY (MHz)  
Figure 22. Harmonic Distortion vs. Frequency  
Figure 19. Harmonic Distortion vs. Frequency  
Rev. 0 | Page 8 of 20  
 
AD8000  
–20  
–30  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
V
V
= ±2.5V  
V
V
= 5V  
S
S
= 2V p-p  
= 2V p-p  
OUT  
OUT  
G = –1  
= 150Ω  
G = +2  
= 150Ω  
R
–40  
R
L
L
LFCSP  
LFCSP  
SECOND HD  
–50  
–60  
THIRD HD  
THIRD HD  
–70  
SECOND HD  
–80  
–90  
–100  
–110  
–120  
1
10  
FREQUENCY (MHz)  
100  
1
1
1
10  
100  
100  
100  
FREQUENCY (MHz)  
Figure 23. Harmonic Distortion vs. Frequency  
Figure 26. Harmonic Distortion vs. Frequency  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–20  
–30  
V
V
= 5V  
V
V
= 5V  
S
S
= 2V p-p  
= 2V p-p  
OUT  
OUT  
G = –1  
= 1kΩ  
G = +2  
= 1kΩ  
R
R
–40  
L
L
LFCSP  
LFCSP  
–50  
THIRD HD  
THIRD HD  
–60  
–70  
SECOND HD  
–80  
SECOND HD  
–90  
–100  
–110  
–120  
10  
FREQUENCY (MHz)  
1
10  
FREQUENCY (MHz)  
100  
Figure 24. Harmonic Distortion vs. Frequency  
Figure 27. Harmonic Distortion vs. Frequency  
–20  
–30  
–40  
–50  
V
V
= ±5V  
V
V
= ±5V  
S
S
= 2V p-p  
= 2V p-p  
OUT  
OUT  
G = –1  
R = 150Ω  
L
G = +2  
= 1kΩ  
R
–40  
L
LFCSP  
LFCSP  
–60  
–50  
SECOND HD  
SECOND HD  
THIRD HD  
–60  
–70  
–70  
THIRD HD  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
1
10  
FREQUENCY (MHz)  
100  
10  
FREQUENCY (MHz)  
Figure 28. Harmonic Distortion vs. Frequency  
Figure 25. Harmonic Distortion vs. Frequency  
Rev. 0 | Page 9 of 20  
AD8000  
–40  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
V
V
= ±5V  
OUT  
S
V
V
R
= ±5V  
= 2V p-p  
= 100Ω  
S
= 2V p-p  
IN  
–50  
G = –1  
= 1kΩ  
L
R
L
G = +1  
LFCSP  
–60  
R
= 432Ω  
F
–PSRR  
SECOND HD  
–70  
–80  
+PSRR  
THIRD HD  
–90  
–100  
–110  
–120  
1
10  
100  
0.1  
1
10  
FREQUENCY (MHz)  
100  
FREQUENCY (MHz)  
Figure 29. Harmonic Distortion vs. Frequency  
Figure 32. Power Supply Rejection Ratio (PSRR) vs. Frequency  
1k  
100  
10  
–25  
V
V
R
= ±5V  
= 1V p-p  
= 100Ω  
V
V
R
= ±5V  
S
S
= 0.2V p-p  
= 432Ω  
IN  
IN  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
L
F
LFCSP  
LFCSP  
1
G = +1  
0.1  
OR G = +2  
0.01  
0.1  
0.1  
1
10  
100  
1000  
1
10  
FREQUENCY (MHz)  
100  
1000  
FREQUENCY (MHz)  
Figure 33. Common-Mode Rejection Ratio vs. Frequency  
Figure 30. Output Impedance vs. Frequency  
0.175  
2.65  
2.60  
2.55  
2.50  
2.45  
2.40  
0.150  
0.125  
0.100  
0.075  
0.050  
0.025  
0
G = +1  
G = +1  
G = +2  
G = +2  
–0.025  
–0.050  
–0.075  
–0.100  
–0.125  
V
= 5V  
S
V
= ±5V  
S
R
R
R
= 432Ω  
= 0Ω  
= 100Ω  
F
S
L
R
R
R
= 432Ω  
= 0Ω  
= 100Ω  
F
S
L
–0.150  
–0.175  
2.35  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
TIME (ns)  
TIME (ns)  
Figure 34. Small Signal Transient Response  
Figure 31. Small Signal Transient Response  
Rev. 0 | Page 10 of 20  
AD8000  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
5
4
V
= ±5V, V  
IN  
S
G = +1  
V
= ±5V, V  
OUT  
3
S
2
1
G = +2  
V
= ±2.5V, V  
OUT  
S
0
–0.25  
–0.50  
–0.75  
–1.00  
–1.25  
–1  
–2  
–3  
–4  
–5  
V
= ±2.5V, V  
S
IN  
V
= ±5V  
= 432Ω  
= 0Ω  
S
R
R
R
F
S
L
G = +1  
L
F
R
R
= 150Ω  
= 432Ω  
–1.50  
–1.75  
= 100Ω  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
200  
400  
600  
800  
1000  
TIME (ns)  
TIME (ns)  
Figure 35. Large Signal Transient Response  
Figure 38. Input Overdrive  
6
5
0.5  
0.4  
0.3  
0.2  
G = +2  
V
= ±5V, 2 × V  
IN  
S
V
IN  
V
= ±5V, V  
OUT  
S
4
3
1V  
2
0.1  
0
1
0
–1  
–2  
–3  
–4  
–5  
–6  
V
= ±2.5V, 2 × V  
IN  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
S
V
= ±2.5V, V  
S
OUT  
G = +2  
= 150Ω  
= 432Ω  
R
R
L
F
t
= 0s  
–3  
5ns/DIV  
2 3  
–5  
–4  
–2  
–1  
(V)  
0
1
0
200  
400  
600  
800  
1000  
TIME (ns)  
V
CM  
Figure 39. Output Overdrive  
Figure 36. Settling Time  
6k  
5k  
4k  
3k  
2k  
1k  
0
100  
10  
1
G = +2  
V
= ±5V  
S
SOIC, V = ±5V  
R
R
= 432Ω  
= 150Ω  
G = +10  
R
R
S
F
L
= 432Ω  
= 47.5Ω  
F
N
LFCSP, V = ±5V  
S
SOIC, V = +5V  
S
LFCSP, V = +5V  
S
0.1  
10  
0
1
2
3
4
5
6
7
100  
1k  
10k  
100k  
1M  
10M  
100M  
V
(V p-p)  
FREQUENCY (Hz)  
OUT  
Figure 40. Input Voltage Noise  
Figure 37. Slew Rate vs. Output Level  
Rev. 0 | Page 11 of 20  
AD8000  
1000  
0
–5  
V
= ±5V  
S
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
V
= ±5V  
S
V
= +5V  
100  
10  
1
S
INVERTING CURRENT NOISE, R = 1kΩ  
F
NONINVERTING CURRENT NOISE, R = 432Ω  
F
0.1  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
FREQUENCY (Hz)  
V
(V)  
CM  
Figure 41. Input Current Noise  
Figure 44. Input Bias Current vs. Common-Mode Voltage  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
20  
15  
10  
5
R
TERM = 50  
BACK  
= ±5V  
V
S
G = +2  
= –10dBm  
P
OUT  
SOIC  
V
= ±5V  
S
0
–5  
–10  
–15  
V
= +5V  
S
–20  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
10  
100  
1000  
V
(V)  
CM  
FREQUENCY (MHz)  
Figure 45. Output Voltage Standing Wave Ratio (S22)  
Figure 42. Input VOS vs. Common-Mode Voltage  
25  
20  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
G = +10  
G = +2  
15  
10  
5
G = +1  
0
V
= ±5V  
S
–5  
–10  
–15  
–20  
INPUT R = 0Ω  
S
V
= +5V  
S
V
P
= ±5V  
OUT  
S
= –10dBm  
SOIC  
–25  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
10  
100  
FREQUENCY (MHz)  
1000  
V
(V)  
OUT  
Figure 46. Input Voltage Standing Wave Ratio (S11)  
Figure 43. Input Bias Current vs. Output Voltage  
Rev. 0 | Page 12 of 20  
AD8000  
TEST CIRCUITS  
+V  
S
10µF  
0.1µF  
R
F
432Ω  
50Ω  
TRANSMISSION  
LINE  
50Ω  
TRANSMISSION  
LINE  
AD8000  
432Ω  
49.9Ω  
V
IN  
60.4Ω  
200Ω  
200Ω  
49.9Ω  
0.1µF  
10µF  
–V  
S
Figure 47. CMRR  
V
= V + V  
IN  
P
S
49.9Ω  
50Ω  
TRANSMISSION  
LINE  
AD8000  
50Ω  
TRANSMISSION  
LINE  
49.9Ω  
TERMINATION  
49.9Ω  
50Ω  
TERMINATION  
50Ω  
R
432Ω  
F
0.1µF  
R
G
432Ω  
10µF  
–V  
S
Figure 48. Positive PSRR  
+V  
S
10µF  
0.1µF  
50Ω  
AD8000  
50Ω  
TRANSMISSION  
LINE  
TRANSMISSION  
LINE  
49.9Ω  
TERMINATION  
50Ω  
49.9Ω  
TERMINATION  
50Ω  
R
F
432Ω  
R
G
432Ω  
49.9Ω  
= –V + V  
V
N
S
IN  
Figure 49. Negative PSRR  
Rev. 0 | Page 13 of 20  
 
AD8000  
APPLICATIONS  
+V  
S
All current feedback amplifier operational amplifiers are  
affected by stray capacitance at the inverting input pin. As a  
practical consideration, the higher the stray capacitance on  
the inverting input to ground, the higher RF needs to be to  
minimize peaking and ringing.  
10µF  
+
R
F
0.1µF  
FB  
R
G
V
+V  
IN  
AD8000  
V
O
V
O
R
+
L
CIRCUIT CONFIGURATIONS  
–V  
0.1µF  
Figure 50 and Figure 51 show typical schematics for non-  
inverting and inverting configurations. For current feedback  
amplifiers, the value of feedback resistance determines the  
stability and bandwidth of the amplifier. The optimum  
performance values are shown in Table 5 and should not be  
deviated from by more than 10% to ensure stable operation.  
Figure 8 shows the influence varying RF has on bandwidth. In  
noninverting unity-gain configurations, it is recommended that  
an RS of 50 Ω be used, as shown in Figure 50.  
10µF  
+
–V  
S
Figure 51. Inverting Configuration  
VIDEO LINE DRIVER  
The AD8000 is designed to offer outstanding performance as a  
video line driver. The important specifications of differential  
gain (0.02%), differential phase (0.01°), and 650 MHz band-  
width at 2 V p-p meet the most exacting video demands. Figure 52  
shows a typical noninverting video driver with a gain of +2.  
Table 5 provides a quick reference for the circuit values, gain,  
and output voltage noise.  
+V  
S
10µF  
+
R
432  
432Ω  
F
+V  
4.7µF  
S
0.1µF  
FB  
+
R
G
+V  
0.1µF  
FB  
75Ω  
CABLE  
V
AD8000  
+
O
R
S
V
O
75Ω  
R
V
L
IN  
V
OUT  
AD8000  
+
–V  
0.1µF  
75Ω  
0.1µF  
75Ω  
CABLE  
10µF  
+
4.7µF  
V
IN  
+
–V  
S
75Ω  
–V  
S
NONINVERTING  
Figure 52. Video Line Driver  
Figure 50. Noninverting Configuration  
Table 5. Typical Values (LFCSP/SOIC)  
−3 dB SS  
Bandwidth  
(MHz)  
−3 dB LS  
Bandwidth  
(MHz)  
Total Output  
Noise Including  
Resistors (nV/√Hz)  
Component  
Values (Ω)  
Slew Rate  
(V/µsec)  
Output Noise  
(nV/√Hz)  
Gain  
RF  
RG  
LFCSP  
1380  
600  
550  
350  
SOIC  
1580  
650  
550  
365  
LFCSP  
550  
610  
350  
370  
SOIC  
600  
650  
350  
370  
1
2
4
10  
432  
432  
357  
357  
---  
2200  
3700  
3800  
3200  
10.9  
11.3  
10  
11.2  
11.9  
12  
432  
120  
40  
18.4  
19.9  
Rev. 0 | Page 14 of 20  
 
 
 
 
 
 
AD8000  
LOW DISTORTION PINOUT  
PRINTED CIRCUIT BOARD LAYOUT  
The AD8000 LFCSP features ADIs new low distortion pinout.  
The new pinout lowers the second harmonic distortion and  
simplifies the circuit layout. The close proximity of the non-  
inverting input and the negative supply pin creates a source of  
second harmonic distortion. Physical separation of the non-  
inverting input pin and the negative power supply pin reduces  
this distortion significantly, as seen in Figure 22.  
Laying out the printed circuit board (PCB) is usually the last  
step in the design process and often proves to be one of the  
most critical. A brilliant design can be rendered useless because  
of a poor or sloppy layout. Since the AD8000 can operate into  
the RF frequency spectrum, high frequency board layout con-  
siderations must be taken into account. The PCB layout, signal  
routing, power supply bypassing, and grounding all must be  
addressed to ensure optimal performance.  
By providing an additional output pin, the feedback resistor  
can be connected directly across Pin 2 and Pin 3. This greatly  
simplifies the routing of the feedback resistor and allows a more  
compact circuit layout, which reduces its size and helps to  
minimize parasitics and increase stability.  
SIGNAL ROUTING  
The AD8000 LFCSP features the new low distortion pinout  
with a dedicated feedback pin and allows a compact layout. The  
dedicated feedback pin reduces the distance from the output to  
the inverting input, which greatly simplifies the routing of the  
feedback network.  
The SOIC also features a dedicated feedback pin. The feedback  
pin is brought out on Pin 1, which is typically a No Connect on  
standard SOIC pinouts.  
To minimize parasitic inductances, ground planes should be  
used under high frequency signal traces. However, the ground  
plane should be removed from under the input and output pins  
to minimize the formation of parasitic capacitors, which  
degrades phase margin. Signals that are susceptible to noise  
pickup should be run on the internal layers of the PCB, which  
can provide maximum shielding.  
Existing applications that use the standard SOIC pinout can  
take full advantage of the performance offered by the AD8000.  
For drop-in replacements, ensure that Pin 1 is not connected to  
ground or to any other potential because this pin is connected  
internally to the output of the amplifier. For existing designs,  
Pin 6 can still be used for the feedback resistor.  
POWER SUPPLY BYPASSING  
EXPOSED PADDLE  
Power supply bypassing is a critical aspect of the PCB design  
process. For best performance, the AD8000 power supply pins  
need to be properly bypassed.  
The AD8000 features an exposed paddle, which can lower the  
thermal resistance by 25% compared to a standard SOIC plastic  
package. The paddle can be soldered directly to the ground plane  
of the board. Figure 53 shows a typical pad geometry for the  
LFCSP, the same type of pad geometry can be applied to the  
SOIC package.  
A parallel connection of capacitors from each of the power  
supply pins to ground works best. Paralleling different values  
and sizes of capacitors helps to ensure that the power supply  
pins “see” a low ac impedance across a wide band of frequencies.  
This is important for minimizing the coupling of noise into the  
amplifier. Starting directly at the power supply pins, the smallest  
value and sized component should be placed on the same side  
of the board as the amplifier, and as close as possible to the  
amplifier, and connected to the ground plane. This process  
should be repeated for the next larger value capacitor. It is  
recommended for the AD8000 that a 0.1 µF ceramic 0508 case  
be used. The 0508 offers low series inductance and excellent  
high frequency performance. The 0.1 µF case provides low  
impedance at high frequencies. A 10 µF electrolytic capacitor  
should be placed in parallel with the 0.1 µF. The 10 µf capacitor  
provides low ac impedance at low frequencies. Smaller values  
of electrolytic capacitors can be used, depending on the circuit  
requirements. Additional smaller value capacitors help to  
provide a low impedance path for unwanted noise out to higher  
frequencies but are not always necessary.  
Thermal vias or “heat pipes” can also be incorporated into the  
design of the mounting pad for the exposed paddle. These addi-  
tional vias improve the thermal transfer from the package to  
the PCB. Using a heavier weight copper on the surface to which  
the amplifiers exposed paddle is soldered also reduces the over-  
all thermal resistance “seen” by the AD8000.  
Figure 53. LFCSP Exposed Paddle Layout  
Rev. 0 | Page 15 of 20  
 
 
AD8000  
Placement of the capacitor returns (grounds), where the capaci-  
tors enter into the ground plane, is also important. Returning  
the capacitors grounds close to the amplifier load is critical for  
distortion performance. Keeping the capacitors distance short,  
but equal from the load, is optimal for performance.  
GROUNDING  
The use of ground and power planes is encouraged as a method  
of proving low impedance returns for power supply and signal  
currents. Ground and power planes can also help to reduce stray  
trace inductance and to provide a low thermal path for the  
amplifier. Ground and power planes should not be used under  
any of the pins of the AD8000. The mounting pads and the  
ground or power planes can form a parasitic capacitance at the  
amplifiers input. Stray capacitance on the inverting input and  
the feedback resistor form a pole, which degrades the phase  
margin, leading to instability. Excessive stray capacitance on the  
output also forms a pole, which degrades phase margin.  
In some cases, bypassing between the two supplies can help to  
improve PSRR and to maintain distortion performance in  
crowded or difficult layouts. This is as another option to  
improve performance.  
Minimizing the trace length and widening the trace from the  
capacitors to the amplifier reduce the trace inductance. A series  
inductance with the parallel capacitance can form a tank circuit,  
which can introduce high frequency ringing at the output. This  
additional inductance can also contribute to increased distor-  
tion due to high frequency compression at the output. The use  
of vias should be minimized in the direct path to the amplifier  
power supply pins since vias can introduce parasitic inductance,  
which can lead to instability. When required, use multiple large  
diameter vias because this lowers the equivalent parasitic  
inductance.  
Rev. 0 | Page 16 of 20  
 
AD8000  
OUTLINE DIMENSIONS  
5.00 (0.197)  
4.90 (0.193)  
4.80 (0.189)  
BOTTOM VIEW  
(PINS UP)  
2.29 (0.092)  
4.00 (0.157)  
3.90 (0.154)  
3.80 (0.150)  
8
5
2.29 (0.092)  
6.20 (0.244)  
6.00 (0.236)  
5.80 (0.228)  
TOP VIEW  
1
4
1.27 (0.05)  
BSC  
0.50 (0.020)  
0.25 (0.010)  
× 45°  
1.75 (0.069)  
1.35 (0.053)  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
1.27 (0.050)  
0.40 (0.016)  
0.51 (0.020)  
0.31 (0.012)  
0.25 (0.0098)  
0.17 (0.0068)  
COPLANARITY  
0.10  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 54. 8-Lead Standard Small Outline Package, with Exposed Pad [SOIC_N_EP]  
Narrow Body (RD-8-1)  
Dimensions shown in millimeters and (inches)  
0.50  
0.40  
0.30  
3.00  
BSC SQ  
0.60 MAX  
8
PIN 1  
INDICATOR  
0.45  
1
PIN 1  
INDICATOR  
1.90  
1.75  
1.60  
2.75  
BSC SQ  
TOP  
VIEW  
1.50  
REF  
EXPOSED  
PAD  
0.50  
BSC  
(BOTTOM VIEW)  
4
5
0.25  
MIN  
1.60  
1.45  
1.30  
0.80 MAX  
0.65TYP  
0.90  
0.85  
0.80  
12° MAX  
0.05 MAX  
0.02 NOM  
SEATING  
PLANE  
0.30  
0.23  
0.18  
0.20 REF  
Figure 55. 8-Lead Lead Frame Chip Scale Package [LFCSP]  
3 mm × 3 mm Body (CP-8-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD8000YRDZ1  
AD8000YRDZ-REEL1  
AD8000YRDZ-REEL71  
AD8000YCPZ-R21  
AD8000YCPZ-REEL1  
AD8000YCPZ-REEL71  
Minimum Ordering Quantity  
Temperature Range  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
Package Description  
8-Lead SOIC/EP  
8-Lead SOIC/EP  
8-Lead SOIC/EP  
8-Lead LFCSP  
Branding Package Option  
1
RD-8-1  
RD-8-1  
RD-8-1  
2,500  
1,000  
250  
5,000  
1,500  
HNB  
HNB  
HNB  
CP-8-2  
CP-8-2  
CP-8-2  
8-Lead LFCSP  
8-Lead LFCSP  
1 Z = Pb-free part.  
Rev. 0 | Page 17 of 20  
 
 
 
AD8000  
NOTES  
Rev. 0 | Page 18 of 20  
AD8000  
NOTES  
Rev. 0 | Page 19 of 20  
AD8000  
NOTES  
©
2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05321–0–1/05(0)  
Rev. 0 | Page 20 of 20  

相关型号:

AD8000YCPZ-REEL

1.5 GHz Ultrahigh Speed Op Amp
ADI

AD8000YCPZ-REEL7

1.5 GHz Ultrahigh Speed Op Amp
ADI

AD8000YRDZ

1.5 GHz Ultrahigh Speed Op Amp
ADI

AD8000YRDZ-REEL

1.5 GHz Ultrahigh Speed Op Amp
ADI

AD8000YRDZ-REEL7

1.5 GHz Ultrahigh Speed Op Amp
ADI

AD8001

800 MHz, 50 mW Current Feedback Amplifier
ADI

AD8001ACHIPS

800 MHz, 50 mW Current Feedback Amplifier
ADI

AD8001AN

800 MHz, 50 mW Current Feedback Amplifier
ADI

AD8001ANZ

800 MHz, 50 mW Current Feedback Amplifier
ADI

AD8001AQ

800 MHz, 50 mW Current Feedback Amplifier
ADI

AD8001AR

800 MHz, 50 mW Current Feedback Amplifier
ADI

AD8001AR-REEL

800 MHz, 50 mW Current Feedback Amplifier
ADI