AD8003 [ADI]

Triple, 1.5 GHz Op Amp; 三重, 1.5 GHz的运算放大器
AD8003
型号: AD8003
厂家: ADI    ADI
描述:

Triple, 1.5 GHz Op Amp
三重, 1.5 GHz的运算放大器

运算放大器
文件: 总16页 (文件大小:688K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Triple, 1.5 GHz Op Amp  
AD8003  
CONNECTION DIAGRAM  
FEATURES  
High speed  
1650 MHz (G = +1)  
730 MHz (G = +2, VO = 2 V p-p)  
4300 V/μs (G = +2, 4 V step)  
Settling time 12 ns to 0.1%, 2 V step  
Excellent for QXGA resolution video  
Gain flatness 0.1 dB to 190 MHz  
0.05% differential gain error, RL = 150 Ω  
0.01° differential phase error, RL = 150 Ω  
Low voltage offset: 0.7 mV (typical)  
Low input bias current: 7 μA (typical)  
Low noise: 1.8 nV/√Hz  
Low distortion over wide bandwidth: SFDR −73 dBc @ 20 MHz  
High output drive: 100 mA output load drive  
Supply operation: +5 V to 5 V voltage supply  
Supply current: 9.5 mA/amplifier  
24 23 22 21 20 19  
+V  
+V  
1
18  
17  
16  
15  
14  
13  
S1  
S3  
FEEDBACK 1  
–IN 1  
FEEDBACK 3  
–IN 3  
2
3
4
+IN 1  
+IN 3  
POWER DOWN 1  
POWER DOWN 3  
5
6
–V  
S1  
–V  
S3  
7
8
9
10 11 12  
Figure 1. 24-Lead, 4 mm × 4 mm LFCSP_VQ (CP-24)  
APPLICATIONS  
High resolution video graphics  
Professional video  
Consumer video  
High speed instrumentation  
The AD8003 operates on only 9.5 mA of supply current per  
amplifier. The independent power-down function of the  
AD8003 reduces the quiescent current even further to 1.6 mA.  
GENERAL DESCRIPTION  
The AD8003 is a triple ultrahigh speed current feedback  
amplifier. Using ADI’s proprietary eXtra Fast Complementary  
Bipolar (XFCB) process, the AD8003 achieves a bandwidth of  
1.5 GHz and a slew rate of 4300 V/μs. Additionally, the  
amplifier provides excellent dc precision with an input bias  
current of 50 μA maximum and a dc input voltage of 0.7 mV.  
The AD8003 amplifier is available in a compact 4 mm × 4 mm,  
24-lead LFCSP_VQ. The AD8003 is rated to work over the  
industrial temperature range of −40°C to +85°C.  
3
V
= ±5V  
S
G = +1, R = 432  
F
2
1
The AD8003 has excellent video specifications with a frequency  
response that remains flat out to 190 MHz and 0.1% settling within  
12 ns to ensure that even the most demanding video systems  
maintain excellent fidelity. For applications that use NTSC video,  
as well as high speed video, the amplifier provides a differential  
gain of 0.05% and a differential gain of 0.01°.  
G = +2, +5, R = 464Ω  
G = +1  
F
R
= 150Ω  
G = +2  
L
V
= 2V p-p  
OUT  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
G = +5  
The AD8003 has very low spurious-free dynamic range (SFDR)  
(−73 dBc @ 20 MHz) and noise (1.8 nV/√Hz). With a supply  
range between 5 V and 11 V and ability to source 100 mA of  
output current, the AD8003 is ideal for a variety of applications.  
1
10  
100  
1000  
FREQUENCY (MHz)  
Figure 2. Large Signal Frequency Response for Various Gains  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
AD8003  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Gain Configurations .................................................................. 12  
RGB Video Driver...................................................................... 12  
Printed Circuit Board Layout ....................................................... 13  
Low Distortion Pinout............................................................... 13  
Signal Routing............................................................................. 13  
Exposed Paddle........................................................................... 13  
Power Supply Bypassing............................................................ 13  
Grounding................................................................................... 14  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 15  
Applications....................................................................................... 1  
Connection Diagram ....................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications with 5 V Supply..................................................... 3  
Specifications with +5 V Supply..................................................... 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Typical Performance Characteristics ............................................. 6  
Applications..................................................................................... 12  
REVISION HISTORY  
2/06—Rev. 0 to Rev. A  
Changes to Figure 34...................................................................... 11  
10/05—Revision 0: Initial Version  
Rev. A | Page 2 of 16  
 
AD8003  
SPECIFICATIONS WITH 5 ꢀ SꢁPPLY  
TA = 25°C, VS = 5 V, RL = 150 Ω, Gain = +2, RF = 464 Ω, unless otherwise noted.  
Table 1.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth  
G = +1, V = 0.2 V p-p, RF = 432 Ω  
1650  
730  
MHz  
MHz  
MHz  
MHz  
MHz  
V/μs  
ns  
o
G = +2, V = 2 V p-p  
o
G = +10, V = 0.2 V p-p  
290  
o
G = +5, V = 2 V p-p  
330  
o
Bandwidth for 0.1 dB Flatness  
Slew Rate  
V = 2 V p-p  
o
190  
G = +2, V = 2 V step, RL = 150 Ω  
3800  
12  
o
Settling Time to 0.1%  
G = +2, V = 2 V step  
o
Overload Recovery Input/Output  
NOISE/HARMONIC PERFORMANCE  
Second/Third Harmonic @ 5 MHz  
30/40  
ns  
G = +1, V = 2 V p-p  
76/97  
79/73  
dBc  
dBc  
o
Second/Third Harmonic @ 20 MHz  
G = +1, V = 2 V p-p  
o
Input Voltage Noise  
Input Current Noise (I/I+)  
Differential Gain Error  
Differential Phase Error  
DC PERFORMANCE  
f = 1 MHz  
f = 1 MHz  
NTSC, G = +2, RL = 150 Ω  
NTSC, G = +2, RL = 150 Ω  
1.8  
nV/√Hz  
pA/√Hz  
%
36/3  
0.05  
0.01  
Degree  
Input Offset Voltage  
−9.3  
+0.7  
1.08  
7.4  
+9.3  
mV  
mV  
μV/°C  
μA  
μA  
μA  
kΩ  
TMIN − TMAX  
Input Offset Voltage Drift  
Input Bias Current  
+IB/−IB  
TMIN − TMAX (+IB/−IB)  
−19/−40 −7/−7  
−3.8/+29.5  
14.2  
600  
+4/+50  
1100  
Input Offset Current  
Transimpedance  
V = 2.5 V  
o
400  
INPUT CHARACTERISTICS  
Noninverting Input Impedance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
1.6/3  
3.6  
−48  
MΩ/pF  
V
dB  
VCM = 2.5 V  
−51  
−46  
3.92  
RL = 150 Ω  
VO = 2 V p-p, second harmonic < −50 dBc  
40% over shoot  
3.85  
3.9  
100  
27  
V
mA  
pF  
Linear Output Current  
Capacitive Load Drive  
POWER DOWN PINS  
Power-Down Input Voltage  
Power down  
Enable  
50% of power-down voltage to  
10% of VOUT final, VIN = 0.5 V p-p  
50% of power-down voltage to  
90% of VOUT final, VIN = 0.5 V p-p  
<VS − 2.5  
>VS − 2.5  
40  
V
V
ns  
Turn-Off Time  
Turn-On Time  
130  
ns  
Input Current  
Enabled  
Power-Down  
0.1  
−235  
μA  
μA  
−365  
−85  
POWER SUPPLY  
Operating Range  
4.5  
8.1  
1.2  
10  
10.2  
1.6  
V
mA  
mA  
Quiescent Current per Amplifier  
Quiescent Current per Amplifier  
Power Supply Rejection Ratio (+PSRR/−PSRR)  
Enabled  
Power down  
9.5  
1.4  
−59/−57 −57/−53  
−55/−50 dB  
Rev. A | Page 3 of 16  
 
AD8003  
SPECIFICATIONS WITH +5 ꢀ SꢁPPLY  
TA = 25°C, VS = 5 V, RL = 150 Ω, Gain = +2, RF = 464 Ω, unless otherwise noted.  
Table 2.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth  
G = +1, V = 0.2 V p-p, RF = 432 Ω  
1050  
590  
290  
310  
83  
MHz  
MHz  
MHz  
MHz  
MHz  
V/μs  
ns  
o
G = +2, V = 2 V p-p  
o
G = +10, V = 0.2 V p-p  
o
G = +5, V = 2 V p-p  
o
Bandwidth for 0.1 dB Flatness  
Slew Rate  
V = 2 V p-p  
o
G = +2, V = 2 V step, RL = 150 Ω  
2860  
12  
o
Settling Time to 0.1%  
G = +2, V = 2 V step  
o
Overload Recovery Input/Output  
NOISE/HARMONIC PERFORMANCE  
Second/Third Harmonic @ 5 MHz  
40/60  
ns  
G = +1, V = 2 V p-p  
75/78  
66/61  
dBc  
dBc  
o
Second/Third Harmonic @ 20 MHz  
G = +1, V = 2 V p-p  
o
Input Voltage Noise  
Input Current Noise (I/I+)  
Differential Gain Error  
Differential Phase Error  
DC PERFORMANCE  
f = 1 MHz  
f = 1 MHz  
NTSC, G = +2, RL = 150 Ω  
NTSC, G = +2, RL = 150 Ω  
1.8  
nV/√Hz  
pA/√Hz  
%
36/3  
0.04  
0.01  
Degree  
Input Offset Voltage  
−6.5  
+2.7  
2.06  
14.2  
+11  
mV  
mV  
μV/°C  
μA  
TMIN − TMAX  
Input Offset Voltage Drift  
Input Bias Current (+IB/−IB)  
−21/−50 −7.7/−2.3 +5/+48  
TMIN − TMAX (+IB/−IB)  
−4/−27.8  
5.4  
μA  
μA  
Input Offset Current  
Transimpedance  
300  
530  
1500  
kΩ  
INPUT CHARACTERISTICS  
Noninverting Input Impedance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
1.6/3  
1.3 to 3.7  
−48  
MΩ/pF  
V
dB  
−50  
−45  
1.62  
RL = 150 Ω  
VO = 2 V p-p, second harmonic < −50 dBc  
45% over shoot  
1.52  
1.57  
70  
27  
V
mA  
pF  
Linear Output Current  
Capacitive Load Drive  
POWER DOWN PINS  
Power-Down Input Voltage  
Power down  
Enable  
50% of power-down voltage to  
10% of VOUT final, VIN = 0.5 V p-p  
50% of power-down voltage to  
90% of VOUT final, VIN = 0.5 V p-p  
<VS − 2.5  
>VS − 2.5  
125  
V
V
ns  
Turn-Off Time  
Turn-On Time  
80  
ns  
Input Current  
Enabled  
Power-Down  
0.1  
−43  
μA  
μA  
−160  
+80  
POWER SUPPLY  
Operating Range  
4.5  
6.3  
0.8  
10  
9.4  
1.1  
V
mA  
mA  
Quiescent Current per Amplifier  
Quiescent Current per Amplifier  
Power Supply Rejection Ratio (+PSRR/−PSRR)  
Enabled  
Power down  
7.9  
0.9  
−59/−56 −57/−53  
−55/−50 dB  
Rev. A | Page 4 of 16  
 
AD8003  
ABSOLꢁTE MAXIMꢁM RATINGS  
Table 3.  
The power dissipated in the package (PD) is the sum of the  
Parameter  
Rating  
quiescent power dissipation and the power dissipated in the die  
due to the AD8003 drive at the output. The quiescent power is  
the voltage between the supply pins (VS) times the quiescent  
current (IS).  
Supply Voltage  
11 V  
Power Dissipation  
See Figure 3  
−VS − 0.7 V to +VS + 0.7 V  
±VS  
Common-Mode Input Voltage  
Differential Input Voltage  
Exposed Paddle Voltage  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature (Soldering 10 sec)  
Junction Temperature  
PD = Quiescent Power + (Total Drive Power Load Power)  
−VS  
2
VS VOUT  
VOUT  
RL  
−65°C to +125°C  
−40°C to +85°C  
300°C  
PD =  
(
VS × IS  
)
+
×
2
RL  
RMS output voltages should be considered. If RL is referenced to  
−VS, as in single-supply operation, the total drive power is VS ×  
IOUT. If the rms signal levels are indeterminate, consider the  
worst case, when VOUT = VS/4 for RL to midsupply.  
150°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
2
(
VS /4  
RL  
)
PD =  
(
VS ×IS +  
)
In single-supply operation with RL referenced to −VS, worst case  
is VOUT = VS/2.  
THERMAL RESISTANCE  
Airflow increases heat dissipation, effectively reducing θJA.  
In addition, more metal directly in contact with the package  
leads and exposed paddle from metal traces, through holes,  
ground, and power planes reduce θJA.  
θJA is specified for the worst-case conditions, that is, θJA is specified  
for device soldered in circuit board for surface-mount packages.  
Table 4. Thermal Resistance  
Package Type  
θJA  
Unit  
Figure 3 shows the maximum safe power dissipation in the  
package vs. the ambient temperature for the exposed paddle,  
4 mm × 4 mm LFCSP_VQ (70°C/W) package on a JEDEC  
standard 4-layer board. θJA values are approximations.  
24-Lead LFCSP_VQ  
70  
°C/W  
Maximum Power Dissipation  
The maximum safe power dissipation for the AD8003 is limited  
by the associated rise in junction temperature (TJ) on the die. At  
approximately 150°C, which is the glass transition temperature,  
the plastic changes its properties. Even temporarily exceeding  
this temperature limit may change the stresses that the package  
exerts on the die, permanently shifting the parametric performance  
of the AD8003. Exceeding a junction temperature of 175°C for  
an extended period can result in changes in silicon devices,  
potentially causing degradation or loss of functionality.  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
AMBIENT TEMPERATURE (°C)  
Figure 3. Maximum Power Dissipation vs. Temperature for a 4-Layer Board  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate  
on the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation and loss of functionality.  
Rev. A | Page 5 of 16  
 
 
AD8003  
TYPICAL PERFORMANCE CHARACTERISTICS  
3
2
3
V
= ±5V  
V
= ±5V  
S
S
F
L
G = +1, R = 432Ω  
G = +2, +10, R = 464Ω  
R
R
R
= 464  
= 150Ω  
F
2
1
F
G = +2  
V
= 200mV p-p  
OUT  
= 150Ω  
= 200mV p-p  
L
1
V
OUT  
G = +1  
0
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
G = +10  
G = –1  
G = –2  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 7. Small Signal Frequency Response for Various Gains  
Figure 4. Small Signal Frequency Response for Various Gains  
3
3
G = +2  
G = +2  
V = ±5V  
R
= 150  
S
L
L
2
1
2
1
R
= 150Ω  
= 200mV p-p  
V
= 200mV p-p  
OUT  
V
OUT  
T = +105°C  
0
0
V
= ±5V  
S
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
T = +25°C  
T = –40°C  
V
= +5V  
S
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 8. Small Signal Frequency Response for Various Temperatures  
Figure 5. Small Signal Frequency Response for Various Supplies  
3
3
G = +2  
G = +2  
V
= ±5V  
V
= ±5V  
S
L
S
L
2
1
2
1
R
V
= 150Ω  
= 2V p-p  
R
V
= 150  
= 200mV p-p  
R
= 392Ω  
R = 357Ω  
F
OUT  
R
= 392Ω  
R
= 357Ω  
F
OUT  
F
F
F
0
0
R
= 432Ω  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–1  
–2  
–3  
–4  
R
= 432Ω  
F
R
= 464Ω  
F
R = 464Ω  
F
–5  
–6  
–7  
1
10  
100  
FREQUENCY (MHz)  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
Figure 9. Large Signal Feedback Resistor (RF) Optimization  
Figure 6. Small Signal Feedback Resistor (RF) Optimization  
Rev. A | Page 6 of 16  
 
AD8003  
6
3
0.3  
0.2  
G = +1  
G = +2  
V
= ±5V  
R
= 150Ω  
R
= 0Ω  
S
L
L
S
V
= +5V  
S
R
V
= 150Ω  
= 200mV p-p  
V
= 2V p-p  
OUT  
0.1  
OUT  
R
= 25Ω  
S
0
V
= ±5V  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
–0.8  
–0.9  
S
R
= 50Ω  
S
–3  
–6  
–9  
–12  
1
10  
100  
FREQUENCY (MHz)  
1000  
10000  
1
10  
100  
1000  
FREQUENCY (MHz)  
Figure 13. 0.1 dB Flatness Response  
Figure 10. G = +1 Series Resistor (RS) Optimization  
3
2
3
2
V
= ±5V  
V
= ±5V  
S
S
G = +1, R = 432Ω  
G = +2, +5, R = 464Ω  
R
G = +2  
R
V
F
G = +1  
= 150Ω  
F
L
T = +105°C  
T = –40°C  
= 150Ω  
= 2V p-p  
G = +2  
= 2V p-p  
L
OUT  
1
1
V
OUT  
0
0
T = +25°C  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–1  
–2  
–3  
–4  
–5  
–6  
G = +5  
–7  
1
1
10  
100  
1000  
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 11. Large Signal Frequency Response for Various Gains  
Figure 14. Large Signal Frequency Response for Various Temperatures  
–30  
–30  
G = +1  
G = +2  
V
V
= ±5V  
= +5V  
V
V
= ±5V  
= +5V  
S
S
S
S
R
= 100  
R
= 150Ω  
L
L
–40  
–50  
–40  
–50  
V
= 2V p-p  
V
= 2V p-p  
OUT  
OUT  
–60  
–60  
SECOND  
THIRD  
SECOND  
–70  
–70  
–80  
–80  
–90  
–90  
THIRD  
–100  
–110  
–120  
–100  
–110  
–120  
0.1  
1
10  
100  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 12. Harmonic Distortion vs. Frequency for Various Supplies  
Figure 15. Harmonic Distortion vs. Frequency for Various Supplies  
Rev. A | Page 7 of 16  
AD8003  
–10  
0.20  
0.15  
0.10  
0.05  
0
2.70  
2.65  
2.60  
2.55  
2.50  
2.45  
2.40  
2.35  
2.30  
G = +2  
= 150  
OUT  
G = +2  
= 2V p-p  
fC = 5MHz  
V
V
= ±5V  
= +5V  
S
S
R
V
L
V
OUT  
= 200mV p-p  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
V
= +5V  
= ±5V  
S
V
SECOND  
S
–0.05  
–0.10  
–0.15  
–0.20  
THIRD  
10  
12  
14  
16  
18  
20  
()  
22  
24  
26  
28  
30  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
R
TIME (ns)  
L
Figure 16. Harmonic Distortion vs. RL  
Figure 19. Small Signal Pulse Response for Various Supplies  
4.5  
2.0  
1.5  
G = +2  
0.3  
0.2  
0.1  
R
V
= 150Ω  
L
= 2V p-p  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
OUT  
V
= +5V  
S
1.0  
V
= ±5V  
S
0.5  
C
= 15pF  
0
L
0
–0.1  
–0.2  
–0.3  
C
= 0pF  
L
–0.5  
–1.0  
–1.5  
–2.0  
G = +2  
R
= 150Ω  
= ±5V  
L
S
C
= 27pF  
L
V
V
= 200mV p-p  
OUT  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
TIME (ns)  
0
5
10  
15  
20  
25  
30  
35  
TIME (ns)  
Figure 17. Large Signal Pulse Response for Various Supplies  
Figure 20. Small Signal Pulse Response for Various Capacitive Loads  
2.8  
2.7  
2.6  
1.5  
1.0  
0.3  
0.2  
0.1  
0
G = +2  
V
OUT  
V
= ±5V  
S
R
= 150Ω  
L
V
IN  
0.5  
C
= 15pF  
L
2.5  
2.4  
2.3  
2.2  
0
C
= 0pF  
L
V
SETTLE  
–0.5  
–1.0  
–1.5  
–0.1  
–0.2  
–0.3  
G = +2  
C = 27pF  
L
R
= 150Ω  
= 5V  
L
S
V
V
= 200mV p-p  
OUT  
0
5
10  
15  
20  
25  
30  
35  
TIME (ns)  
–5  
0
5
10  
15  
20  
TIME (ns)  
25  
30  
35  
40  
45  
Figure 18. Small Signal Pulse Response for Various Capacitive Loads  
Figure 21. Short-Term 0.1% Settling Time  
Rev. A | Page 8 of 16  
AD8003  
5
4
6000  
5000  
4000  
3000  
2000  
1000  
0
G = +2  
= 150Ω  
G = +1  
INPUT  
RISE  
FALL  
R
V
= ±5V  
L
S
V
= ±5V  
S
R
= 150Ω  
L
3
OUTPUT  
2
1
0
–1  
–2  
–3  
–4  
–5  
V
= +5V  
S
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0
1
2
3
4
(V)  
5
6
7
TIME (µs)  
V
OUT p-p  
Figure 25. Input Overdrive Recovery  
Figure 22. Slew Rate vs. Output Voltage  
1000  
100  
10  
5
4
G = +1/+2  
= ±5V  
G = +2  
= ±5V  
INPUT × 2  
V
V
S
S
R
= 150Ω  
L
3
OUTPUT  
2
1
0
–1  
–2  
–3  
–4  
–5  
1
0.1  
0.1  
1
10  
100  
1000  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
FREQUENCY (MHz)  
TIME (µs)  
Figure 23. Output Overdrive Recovery  
Figure 26. Output Impedance vs. Frequency  
0
–10  
–20  
–30  
–40  
–50  
–60  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
G = 0  
= ±5V  
L
G = +2  
V
V
= ±5V  
S
S
R
= 150Ω  
R
= 150Ω  
L
PSR–  
PSR+  
0.1  
1
10  
100  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
FREQUENCY (MHz)  
Figure 24. Common-Mode Rejection vs. Frequency  
Figure 27. Power Supply Rejection vs. Frequency  
Rev. A | Page 9 of 16  
AD8003  
80  
20  
15  
60  
V
= ±5V  
S
V
= +5V  
S
V
= ±5V  
V
= +5V  
S
S
10  
40  
5
20  
0
0
–5  
–20  
–40  
–10  
–15  
–20  
–60  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
V
(V)  
V
(V)  
CM  
CM  
Figure 28. Offset Voltage vs. Input Common-Mode Range  
Figure 31. Noninverting Input Bias Current vs. Common-Mode Range  
10  
8
6
V
= +5V  
G = +2  
S
V
DIS (VS = ±5V)  
R
= 150Ω  
L
V
= 0.5V dc  
IN  
6
5
4
3
2
1
0
V
= ±5V  
S
4
2
0
V
DIS (VS = +5V)  
–2  
–4  
–6  
–8  
–10  
V
OUT (VS = +5V)  
V
OUT (VS = ±5V)  
V
OUT (VS = +5V)  
V
OUT (VS = ±5V)  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
V
(V)  
OUT  
TIME (µs)  
Figure 29. Inverting Input Bias Current Linearity  
Figure 32. Disable Switching Time for Various Supplies  
10  
9
8
7
6
5
4
3
2
1
0
200  
150  
100  
50  
10  
9
8
7
6
5
4
3
2
1
0
40  
G = +2  
G = +2  
R
V
= 150Ω  
R
V
= 150Ω  
L
S
L
S
30  
= ±5V  
= 5V  
20  
10  
I
DIS  
I
CC  
0
0
I
DIS  
–50  
–100  
–150  
–200  
–250  
–300  
–10  
–20  
–30  
–40  
–50  
–60  
I
CC  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
POWER DOWN PIN VOLTAGE (V  
(V))  
POWER DOWN PIN VOLTAGE (V  
(V))  
DIS  
DIS  
Figure 30. POWER DOWN Pin Current and Supply Current vs.  
POWER DOWN Pin Voltage  
Figure 33. POWER DOWN Pin Current and Supply Current vs.  
POWER DOWN Pin Voltage  
Rev. A | Page 10 of 16  
AD8003  
10000  
1000  
100  
10  
1000  
100  
V
= ±5V  
= 1k  
S
F
V
= ±5V  
S
R
I–  
I+  
10  
1
10  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 34. Input Voltage Noise vs. Frequency  
Figure 36. Input Current Noise vs. Frequency  
200  
180  
160  
140  
120  
100  
80  
1M  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
G = +2  
= 150Ω  
DRIVING: CH1 AND CH3  
RECEIVING: CH2  
R
V = ±5V  
S
L
100k  
10k  
1k  
V
= +5V  
S
60  
40  
20  
100  
1k  
0
10k  
100k  
1M  
10M  
100M  
1G  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
Figure 35. Worst-Case Crosstalk  
Figure 37. Transimpedance  
Rev. A | Page 11 of 16  
AD8003  
APPLICATIONS  
GAIN CONFIGURATIONS  
RGB VIDEO DRIVER  
Unlike conventional voltage feedback amplifiers, the feedback  
resistor has a direct impact on the closed-loop bandwidth and  
stability of the current feedback op amp circuit. Reducing the  
resistance below the recommended value can make the amplifier  
response peak and can even become unstable. Increasing the  
size of the feedback resistor reduces the closed-loop bandwidth.  
Figure 40 shows a typical RGB driver application using  
bipolar supplies. The gain of the amplifier is set at +2 , where  
RF = RG = 464 Ω. The amplifier inputs are terminated with  
shunt 75 Ω resistors, and the outputs have series 75 Ω resistors  
for proper video matching. In Figure 40, the POWER DOWN  
pins are not shown connected to any signal source for simplicity. If  
the power-down function is not used, it is recommended that  
the POWER DOWN pins be tied to the positive supply and not  
be left floating (not connected).  
Table 5 provides a convenient reference for quickly determining  
the feedback and gain set resistor values, and the small and  
large signal bandwidths for common gain configurations. The  
feedback resistors in Table 5 have been optimized for 0.1 dB  
flatness frequency response.  
In applications that require a fixed gain of +2, as previously  
mentioned, the designer may consider the ADA4862-3.  
The ADA4862-3 is another high performance triple current  
feedback amplifier. The ADA4862-3 has integrated feedback  
and gain set resistors that reduce board area and simplify designs.  
Table 5. Recommended Values and Frequency Response1  
Large Large  
−3 dB Signal Signal  
SS BW −3 dB 0.1 dB  
PD3  
PD2  
PD1  
Gain RF (Ω) RG (Ω) RS (Ω) (MHz) BW  
BW  
−1  
+1  
+2  
+5  
+10  
300  
432  
464  
300  
300  
300  
N/A  
464  
75  
0
24.9  
0
734  
1650  
761  
567  
446  
668  
822  
730  
558  
422  
--  
--  
190  
165  
170  
+V  
S
14  
23  
5
10µF  
1
0.1µF  
0
4
3
R
75Ω  
IN  
75Ω  
R
33.2  
0
R
OUT  
G
–V  
S
1Conditions: VS = 5 V, TA = 25°C, RL = 150 Ω.  
10µF  
464Ω  
6
R
F
464Ω  
0.1µF  
Figure 38 and Figure 39 show the typical noninverting and inverting  
configurations and recommended bypass capacitor values.  
2
+V  
S
+V  
S
10µF  
10µF  
19  
R
AD8003  
F
0.1µF  
0.1µF  
22  
21  
FB  
G
75Ω  
IN  
R
G
G
OUT  
+V  
75Ω  
–V  
S
AD8003  
V
R
G
O
10µF  
R
S
V
O
R
V
+
L
IN  
464Ω  
–V  
0.1µF  
0.1µF  
10µF  
R
F
464Ω  
20  
+V  
S
10µF  
18  
13  
–V  
S
0.1µF  
15  
16  
B
75Ω  
IN  
Figure 38. Noninverting Gain  
B
OUT  
75Ω  
–V  
S
R
G
+V  
S
10µF  
10µF  
464Ω  
0.1µF  
R
F
R
F
464Ω  
0.1µF  
+V  
17  
FB  
R
G
V
IN  
Figure 40. RGB Video Driver  
AD8003  
+
V
O
V
O
R
L
–V  
0.1µF  
10µF  
–V  
S
Figure 39. Inverting Gain  
Rev. A | Page 12 of 16  
 
 
 
 
 
AD8003  
PRINTED CIRCꢁIT BOARD LAYOꢁT  
Printed circuit board (PCB) layout is usually one of the last  
steps in the design process and often proves to be one of the  
most critical. A high performance design can be rendered  
mediocre due to poor or sloppy layout. Because the AD8003  
can operate into the RF frequency spectrum, high frequency  
board layout considerations must be taken into account. The  
PCB layout, signal routing, power supply bypassing, and  
grounding must all be addressed to ensure optimal  
performance.  
POWER SUPPLY BYPASSING  
Power supply bypassing is a critical aspect of the PCB design  
process. For best performance, the AD8003 power supply pins  
need to be properly bypassed.  
Each amplifier has its own supply pins brought out for the  
utmost flexibility. Supply pins can be commoned together or  
routed to a dedicated power plane. Commoned supply connections  
can also reduce the need for bypass capacitors on each supply  
line. The exact number and values of the bypass capacitors are  
dictated by the design specifications of the actual circuit.  
LOW DISTORTION PINOUT  
The AD8003 LFCSP features ADIs low distortion pinout. The  
pinout lowers the second harmonic distortion and simplifies the  
circuit layout. The close proximity of the noninverting input  
and the negative supply pin creates a source of second harmonic  
distortion. Physical separation of the noninverting input pin  
and the negative power supply pin reduces this distortion.  
A parallel combination of different value capacitors from each  
of the power supply pins to ground tends to work the best.  
Paralleling different values and sizes of capacitors helps to  
ensure that the power supply pins see a low ac impedance across  
a wide band of frequencies. This is important for minimizing  
the coupling of noise into the amplifier. Starting directly at the  
power supply pins, the smallest value and physical-sized  
component should be placed on the same side of the board as  
the amplifier, and as close as possible to the amplifier, and  
connected to the ground plane. This process should be repeated  
for the next largest capacitor value. It is recommended that a  
0.1 μF ceramic 0508 case be used for the AD8003. The 0508  
offers low series inductance and excellent high frequency  
performance. The 0.1 μF case provides low impedance at high  
frequencies. A 10 μF electrolytic capacitor should be placed in  
parallel with the 0.1 μF. The 10 μF capacitor provides low ac  
impedance at low frequencies. Smaller values of electrolytic  
capacitors can be used depending on the circuit requirements.  
Additional smaller value capacitors help provide a low impedance  
path for unwanted noise out to higher frequencies but are not  
always necessary.  
By providing an additional output pin, the feedback resistor  
can be connected directly between the feedback pin and the  
inverting input. This greatly simplifies the routing of the  
feedback resistor and allows a more compact circuit layout,  
which reduces its size and helps to minimize parasitics and  
increase stability.  
SIGNAL ROUTING  
To minimize parasitic inductances, ground planes should be  
used under high frequency signal traces. However, the ground  
plane should be removed from under the input and output pins  
to minimize the formation of parasitic capacitors, which  
degrades phase margin. Signals that are susceptible to noise  
pickup should be run on the internal layers of the PCB, which  
can provide maximum shielding.  
EXPOSED PADDLE  
Placement of the capacitor returns (grounds), where the  
capacitors enter into the ground plane, is also important.  
Returning the capacitor grounds close to the amplifier load is  
critical for distortion performance. Keeping the capacitors  
distance short, but equal from the load, is optimal for  
performance.  
The AD8003 features an exposed paddle, which lowers the  
thermal resistance by approximately 40% compared to a  
standard SOIC plastic package. The paddle can be soldered  
directly to the ground plane of the board. Thermal vias or heat  
pipes can also be incorporated into the design of the mounting  
pad for the exposed paddle. These additional vias improve the  
thermal transfer from the package to the PCB. Using a heavier  
weight copper also reduces the overall thermal resistance path  
to ground.  
In some cases, bypassing between the two supplies can help  
improve PSRR and maintain distortion performance in  
crowded or difficult layouts. Designers should note this as  
another option for improving performance.  
Rev. A | Page 13 of 16  
 
AD8003  
GROUNDING  
Minimizing the trace length and widening the trace from the  
capacitors to the amplifier reduces the trace inductance. A  
series inductance with the parallel capacitance can form a tank  
circuit, which can introduce high frequency ringing at the  
output. This additional inductance can also contribute to  
increased distortion due to high frequency compression at the  
output. The use of vias should be minimized in the direct path  
to the amplifier power supply pins because vias can introduce  
parasitic inductance, which can lead to instability. When  
required, use multiple large diameter vias because this lowers  
the equivalent parasitic inductance.  
The use of ground and power planes is encouraged as a method  
of proving low impedance returns for power supply and signal  
currents. Ground and power planes can also help to reduce  
stray trace inductance and provide a low thermal path for the  
amplifier. Ground and power planes should not be used under  
any of the pins of the AD8003. The mounting pads and the  
ground or power planes can form a parasitic capacitance at the  
amplifiers input. Stray capacitance on the inverting input and  
the feedback resistor form a pole, which degrades the phase  
margin, leading to instability. Excessive stray capacitance on the  
output also forms a pole, which degrades phase margin.  
Rev. A | Page 14 of 16  
 
AD8003  
OꢁTLINE DIMENSIONS  
0.60 MAX  
4.00  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
1
24  
19  
18  
PIN 1  
INDICATOR  
0.50  
BSC  
2.25  
TOP  
VIEW  
3.75  
BSC SQ  
EXPOSED  
2.10 SQ  
1.95  
PAD  
(BOTTOM VIEW)  
0.50  
0.40  
0.30  
6
13  
7
12  
0.25 MIN  
0.80 MAX  
0.65TYP  
2.50 REF  
1.00  
0.85  
0.80  
12° MAX  
0.05 MAX  
0.02 NOM  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-2  
Figure 41. 24-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
4 mm × 4 mm Body, Very Thin Quad  
(CP-24-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD8003ACPZ-R21  
AD8003ACPZ-REEL1  
AD8003ACPZ-REEL71  
Temperature Range  
Package Description  
24-Lead LFCSP_VQ  
24-Lead LFCSP_VQ  
24-Lead LFCSP_VQ  
Package Option  
Ordering Quantity  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
CP-24-1  
CP-24-1  
CP-24-1  
250  
5,000  
1,500  
1 Z = Pb-free part.  
Rev. A | Page 15 of 16  
 
 
AD8003  
NOTES  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05721-0-2/06(A)  
Rev. A | Page 16 of 16  

相关型号:

AD8003ACHIPS

Triple, 1.5 GHz Op Amp
ADI

AD8003ACPZ-EBZ

Triple, 1.5 GHz Op Amp
ADI

AD8003ACPZ-R2

Triple, 1.5 GHz Op Amp
ADI

AD8003ACPZ-REEL

Triple, 1.5 GHz Op Amp
ADI

AD8003ACPZ-REEL7

Triple, 1.5 GHz Op Amp
ADI

AD8003_16

Triple, 1.5 GHz Op Amp
ADI

AD8004

Quad 3000 V/us, 35 mW Current Feedback Amplifier
ADI

AD8004AN

Quad 3000 V/us, 35 mW Current Feedback Amplifier
ADI

AD8004AN

VIDEO AMPLIFIER, PDIP14, PLASTIC, DIP-14
ROCHESTER

AD8004ANZ

Quad 3000 V/mu s, 35 mW Current Feedback Amplifier
ADI

AD8004ANZ

QUAD OP-AMP, 5000 uV OFFSET-MAX, PDIP14, ROHS COMPLIANT, PLASTIC, DIP-14
ROCHESTER

AD8004AR

Quad 3000 V/s, 35 mW Current Feedback Amplifier
ADI