AD8007AKS-REEL [ADI]

Ultralow Distortion High Speed Amplifiers; 超低失真高速放大器
AD8007AKS-REEL
型号: AD8007AKS-REEL
厂家: ADI    ADI
描述:

Ultralow Distortion High Speed Amplifiers
超低失真高速放大器

放大器
文件: 总20页 (文件大小:424K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultralow Distortion  
High Speed Amplifiers  
AD8007/AD8008  
FEATURES  
CONNECTION DIAGRAMS  
Extremely Low Distortion  
Second Harmonic  
SOIC (R)  
SC70 (KS-5)  
–88 dBc @ 5 MHz  
AD8007  
AD8007  
–83 dBc @ 20 MHz (AD8007)  
–77 dBc @ 20 MHz (AD8008)  
Third Harmonic  
V
5
+V  
S
1
2
3
OUT  
1
2
3
4
8
7
6
5
(Top View)  
NC  
–IN  
+IN  
(Top View)  
NC  
+V  
S
–V  
S
V
–101 dBc @ 5 MHz  
OUT  
4
+IN  
–IN  
–92 dBc @ 20 MHz (AD8007)  
–98 dBc @ 20 MHz (AD8008)  
High Speed  
–V  
S
NC  
NC = NO CONNECT  
650 MHz, –3 dB Bandwidth (G = +1)  
1000 V/s Slew Rate  
Low Noise  
SOIC (R) and MSOP (RM)  
2.7 nV/ Hz Input Voltage Noise  
AD8008  
(Top View)  
22.5 pA/ Hz Input Inverting Current Noise  
V
1
2
3
4
8
7
6
5
+V  
V
OUT1  
S
Low Power  
–IN1  
+IN1  
OUT2  
9 mA/Amplifier Typ Supply Current  
Wide Supply Voltage Range  
5 V to 12 V  
–IN2  
+IN2  
–V  
S
0.5 mV Typical Input Offset Voltage  
Small Packaging  
SOIC-8, MSOP, and SC70 Packages Available  
APPLICATIONS  
Instrumentation  
IF and Baseband Amplifiers  
Filters  
A/D Drivers  
DAC Buffers  
The AD8007 is available in a tiny SC70 package as well as a  
standard 8-lead SOIC. The dual AD8008 is available in both  
8-lead SOIC and 8-lead MSOP packages. These amplifiers are  
rated to work over the industrial temperature range of –40°C  
to +85°C.  
GENERAL DESCRIPTION  
–30  
The AD8007 (single) and AD8008 (dual) are high perfor-  
mance current feedback amplifiers with ultralow distortion  
and noise. Unlike other high performance amplifiers, the low  
price and low quiescent current allow these amplifiers to be  
used in a wide range of applications. ADI’s proprietary second  
generation eXtra-Fast Complementary Bipolar (XFCB)  
process enables such high performance amplifiers with low  
power consumption.  
G = +2  
R
V
= 150  
–40  
–50  
L
=
5V  
S
V
= 2V p-p  
OUT  
–60  
–70  
SECOND  
THIRD  
–80  
The AD8007/AD8008 have 650 MHz bandwidth, 2.7 nV/ Hz  
voltage noise, –83 dB SFDR @ 20 MHz (AD8007), and –77 dBc  
SFDR @ 20 MHz (AD8008).  
–90  
–100  
–110  
With the wide supply voltage range (5 V to 12 V) and wide band-  
width, the AD8007/AD8008 are designed to work in a variety of  
applications. The AD8007/AD8008 amplifiers have a low power  
supply current of 9 mA/amplifier.  
1
10  
FREQUENCY – MHz  
100  
Figure 1. AD8007 Second and Third Harmonic  
Distortion vs. Frequency  
REV. D  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
AD8007/AD8008–SPECIFICATIONS  
(@ TA = 25؇C, RS = 200 , RL = 150 , RF = 499 , Gain = +2, unless otherwise noted.)  
VS = ؎5 V  
AD8007/AD8008  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth  
G = +1, VO = 0.2 V p-p, RL = 1 kΩ  
G = +1, VO = 0.2 V p-p, RL = 150 Ω  
G = +2, VO = 0.2 V p-p, RL = 150 Ω  
G = +1, VO = 2 V p-p, RL = 1 kΩ  
VO = 0.2 V p-p, G = +2, RL = 150 Ω  
2.5 V Input Step, G = +2, RL = 1 kΩ  
G = +1, VO = 2 V Step  
540  
250  
180  
200  
50  
650  
500  
230  
235  
90  
30  
1000  
18  
MHz  
MHz  
MHz  
MHz  
MHz  
ns  
V/µs  
ns  
ns  
Bandwidth for 0.1 dB Flatness  
Overdrive Recovery Time  
Slew Rate  
Settling Time to 0.1%  
Settling Time to 0.01%  
900  
G = +2, VO = 2 V Step  
G = +2, VO = 2 V Step  
35  
NOISE/HARMONIC PERFORMANCE  
Second Harmonic  
fC = 5 MHz, VO = 2 V p-p  
fC = 20 MHz, VO = 2 V p-p  
fC = 5 MHz, VO = 2 V p-p  
fC = 20 MHz, VO = 2 V p-p  
fC = 19.5 MHz to 20.5 MHz, RL = 1 k,  
VO = 2 V p-p  
–88  
–83/–77  
–101  
dBc  
dBc  
dBc  
dBc  
Third Harmonic  
IMD  
–92/–98  
–77  
dBc  
Third Order Intercept  
fC = 5 MHz, RL = 1 kΩ  
fC = 20 MHz, RL = 1 kΩ  
f = 5 MHz, G = +2  
f = 100 kHz  
–Input, f = 100 kHz  
+Input, f = 100 kHz  
NTSC, G = +2, RL = 150 Ω  
NTSC, G = +2, RL = 150 Ω  
43.0/42.5  
42.5  
–68  
2.7  
22.5  
2
dBm  
dBm  
dB  
nV/Hz  
pA/Hz  
pA/Hz  
%
Crosstalk (AD8008)  
Input Voltage Noise  
Input Current Noise  
Differential Gain Error  
Differential Phase Error  
0.015  
0.010  
Degree  
DC PERFORMANCE  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
0.5  
3
4
0.4  
16  
9
1.5  
0.8  
4
mV  
µV/°C  
µA  
µA  
+Input  
–Input  
+Input  
–Input  
VO = 2.5 V, RL = 1 kΩ  
RL = 150 Ω  
8
6
Input Bias Current Drift  
Transimpedance  
nA/°C  
nA/°C  
MΩ  
1.0  
0.4  
MΩ  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
+Input  
+Input  
4
1
MΩ  
pF  
V
–3.9 to +3.9  
59  
VCM  
=
2.5 V  
56  
dB  
OUTPUT CHARACTERISTICS  
Output Saturation Voltage  
Short Circuit Current, Source  
Short Circuit Current, Sink  
Capacitive Load Drive  
VCC – VOH, VOL – VEE, RL = 1 kΩ  
1.1  
130  
90  
8
1.2  
V
mA  
mA  
pF  
30% Overshoot  
POWER SUPPLY  
Operating Range  
Quiescent Current per Amplifier  
Power Supply Rejection Ratio  
+PSRR  
5
12  
10.2  
V
mA  
9
59  
59  
64  
65  
dB  
dB  
–PSRR  
–2–  
REV. D  
AD8007/AD8008  
(@ TA = 25؇C, RS = 200 , RL = 150 , RF = 499 , Gain = +2, unless otherwise noted.)  
VS = 5 V  
AD8007/AD8008  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth  
G = +1, VO = 0.2 V p-p, RL = 1 kΩ  
G = +1, VO = 0.2 V p-p, RL = 150 Ω  
G = +2, VO = 0.2 V p-p, RL = 150 Ω  
G = +1, VO = 1 V p-p, RL = 1 kΩ  
Vo = 0.2 V p-p, G = +2, RL = 150 Ω  
2.5 V Input Step, G = +2, RL = 1 kΩ  
G = +1, VO = 2 V Step  
520  
350  
190  
270  
72  
580  
490  
260  
320  
120  
30  
740  
18  
35  
MHz  
MHz  
MHz  
MHz  
MHz  
ns  
V/µs  
ns  
ns  
Bandwidth for 0.1 dB Flatness  
Overdrive Recovery Time  
Slew Rate  
Settling Time to 0.1%  
Settling Time to 0.01%  
665  
G = +2, VO = 2 V Step  
G = +2, VO = 2 V Step  
NOISE/HARMONIC PERFORMANCE  
Second Harmonic  
fC = 5 MHz, VO = 1 V p-p  
fC = 20 MHz, VO = 1 V p-p  
fC = 5 MHz, VO = 1 V p-p  
fC = 20 MHz, VO = 1 V p-p  
fC = 19.5 MHz to 20.5 MHz, RL = 1 k,  
VO = 1 V p-p  
–96/–95  
–83/–80  
–100  
–85/–88  
–89/–87  
dBc  
dBc  
dBc  
dBc  
dBc  
Third Harmonic  
IMD  
Third Order Intercept  
fC = 5 MHz, RL = 1 kΩ  
fC = 20 MHz, RL = 1 kΩ  
Output to Output f = 5 MHz, G = +2  
f = 100 kHz  
–Input, f = 100 kHz  
+Input, f = 100 kHz  
43.0  
42.5/41.5  
–68  
2.7  
22.5  
2
dBm  
dBm  
dB  
nV/Hz  
pA/Hz  
pA/Hz  
Crosstalk (AD8008)  
Input Voltage Noise  
Input Current Noise  
DC PERFORMANCE  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
0.5  
3
4
0.7  
15  
8
1.3  
0.6  
4
mV  
µV/°C  
+Input  
–Input  
+Input  
–Input  
8
6
µA  
µA  
Input Bias Current Drift  
Transimpedance  
nA/°C  
nA/°C  
MΩ  
VO = 1.5 V to 3.5 V, RL = 1 kΩ  
RL = 150 Ω  
0.5  
0.4  
MΩ  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
+Input  
+Input  
4
1
MΩ  
pF  
V
1.1 to 3.9  
56  
VCM = 1.75 V to 3.25 V  
54  
dB  
OUTPUT CHARACTERISTICS  
Output Saturation Voltage  
Short Circuit Current, Source  
Short Circuit Current, Sink  
Capacitive Load Drive  
VCC – VOH, VOL – VEE, RL = 1 kΩ  
1.05  
70  
50  
8
1.15  
V
mA  
mA  
pF  
30% Overshoot  
POWER SUPPLY  
Operating Range  
Quiescent Current per Amplifier  
Power Supply Rejection Ratio  
+PSRR  
5
12  
9
V
mA  
8.1  
59  
59  
62  
63  
dB  
dB  
–PSRR  
REV. D  
–3–  
AD8007/AD8008  
ABSOLUTE MAXIMUM RATINGS*  
RMS output voltages should be considered. If RL is referenced  
to VS, as in single-supply operation, then the total drive power  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.6 V  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . See Figure 2  
Common-Mode Input Voltage . . . . . . . . . . . . . . . . . . . . . VS  
is VS ϫ IOUT  
.
If the rms signal levels are indeterminate, then consider the  
worst case, when VOUT = VS/4 for RL to midsupply:  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . .  
1.0 V  
Output Short Circuit Duration . . . . . . . . . . . . . . See Figure 2  
Storage Temperature . . . . . . . . . . . . . . . . . . –65°C to +125°C  
Operating Temperature Range . . . . . . . . . . . –40°C to +85°C  
Lead Temperature Range (soldering 10 sec) . . . . . . . . . 300°C  
V 2  
S   
4
PD = V × I  
+
(
)
S
S
RL  
In single-supply operation, with RL referenced to VS, worst case is  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
VS  
2
VOUT  
=
Airflow will increase heat dissipation, effectively reducing θJA.  
Also, more metal directly in contact with the package leads from  
metal traces, through holes, ground, and power planes will  
reduce the θJA. Care must be taken to minimize parasitic capaci-  
tances at the input leads of high speed op amps as discussed in  
the board layout section.  
MAXIMUM POWER DISSIPATION  
The maximum safe power dissipation in the AD8007/AD8008  
packages is limited by the associated rise in junction temperature  
(TJ) on the die. The plastic encapsulating the die will locally reach  
the junction temperature. At approximately 150°C, which is the  
glass transition temperature, the plastic will change its proper-  
ties. Even temporarily exceeding this temperature limit may  
change the stresses that the package exerts on the die, perma-  
nently shifting the parametric performance of the AD8007/  
AD8008. Exceeding a junction temperature of 175°C for an  
extended period of time can result in changes in the silicon  
devices, potentially causing failure.  
Figure 2 shows the maximum safe power dissipation in the pack-  
age versus ambient temperature for the SOIC-8 (125°C/W),  
MSOP (150°C/W), and SC70 (210°C/W) packages on a JEDEC  
standard 4-layer board. θJA values are approximations.  
2.0  
The still-air thermal properties of the package and PCB (θJA),  
ambient temperature (TA), and the total power dissipated in the  
package (PD) determine the junction temperature of the die.  
The junction temperature can be calculated as follows:  
1.5  
MSOP-8  
SOIC-8  
1.0  
T = T + P × θ  
(
)
J
A
D
JA  
SC70-5  
The power dissipated in the package (PD) is the sum of the quies-  
cent power dissipation and the power dissipated in the package  
due to the load drive for all outputs. The quiescent power is the  
voltage between the supply pins (VS) times the quiescent current  
(IS). Assuming the load (RL ) is referenced to midsupply, the  
total drive power is VS/2 ϫ IOUT, some of which is dissipated in the  
package and some in the load (VOUT ϫ IOUT). The difference  
between the total drive power and the load power is the drive  
power dissipated in the package.  
0.5  
0
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
AMBIENTTEMPERATURE – ؇C  
Figure 2. Maximum Power Dissipation vs.  
Temperature for a 4-Layer Board  
PD = quiescent power + (total drive power – load power):  
OUTPUT SHORT CIRCUIT  
Shorting the output to ground or drawing excessive current for  
the AD8007/AD8008 will likely cause catastrophic failure.  
2
VS VOUT  
VOUT  
RL  
PD = V × I  
+
×
(
)
S
S
2
RL  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
AD8007/AD8008 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
–4–  
REV. D  
AD8007/AD8008  
ORDERING GUIDE  
Package  
Description  
Model  
Temperature Range  
Package Outline  
Branding  
AD8007AR  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
5-Lead SC70  
5-Lead SC70  
5-Lead SC70  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
R-8  
R-8  
R-8  
KS-5  
KS-5  
KS-5  
R-8  
R-8  
R-8  
AD8007AR-REEL  
AD8007AR-REEL7  
AD8007AKS-R2  
AD8007AKS-REEL  
AD8007AKS-REEL7  
AD8008AR  
AD8008AR-REEL7  
AD8008AR-REEL  
AD8008ARM  
HTA  
HTA  
HTA  
RM-8  
RM-8  
RM-8  
H2B  
H2B  
H2B  
AD8008ARM-REEL  
AD8008ARM-REEL7  
REV. D  
–5–  
AD8007/AD8008–Typical Performance Characteristics  
(VS = ؎5 V, RL = 150 , RS = 200 , RF = 499 , unless otherwise noted.)  
3
2
6.4  
6.3  
G = +2  
G = +1  
1
0
6.2  
6.1  
6.0  
5.9  
5.8  
5.7  
5.6  
5.5  
G = +2  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
V
= +5V  
S
V
= ؎5V  
S
G = +10  
G = –1  
5.4  
1
10  
100  
1000  
10  
100  
FREQUENCY – MHz  
1000  
FREQUENCY – MHz  
TPC 1. Small Signal Frequency Response for Various Gains  
TPC 4. 0.1 dB Gain Flatness; VS = +5, 5 V  
3
9
G = +1  
2
G = +2  
8
7
1
R
= 1k, V = ؎5V  
S
L
R
= 1k, V = +5V  
S
L
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
6
5
R
V
= 150⍀  
= +5V  
L
S
R
= 150, V = ؎5V  
S
L
4
3
R
= 150, V = ؎5V  
S
L
2
R
= 150, V = +5V  
R
= 1k, V = ؎5V  
L
S
1
L
S
0
–1  
10  
100  
1000  
10  
100  
1000  
FREQUENCY – MHz  
FREQUENCY – MHz  
TPC 2. Small Signal Frequency Response for VS and RLOAD  
TPC 5. Small Signal Frequency Response for VS and RLOAD  
3
9
G = +2  
G = +1  
2
R
= R = 324⍀  
G
8
7
F
R
= 1k  
L
1
0
R
= 200⍀  
R
= R = 249⍀  
G
S
F
6
5
4
–1  
–2  
–3  
–4  
–5  
–6  
R
= 301⍀  
S
R
= R = 499⍀  
G
F
3
R
= 249⍀  
S
2
1
R
= R = 649⍀  
F
G
0
–7  
–1  
10  
100  
FREQUENCY – MHz  
1000  
10  
100  
1000  
FREQUENCY – MHz  
TPC 3. Small Signal Frequency Response for  
Various RS Values  
TPC 6. Small Signal Frequency Response for Various  
Feedback Resistors, RF = RG  
–6–  
REV. D  
AD8007/AD8008  
10  
9
10M  
1M  
90  
G = +2  
20pF  
20pF AND  
10SNUB  
30  
20pF AND  
20SNUB  
TRANSIMPEDANCE  
8
7
6
5
4
3
2
1
0
0
100k  
10k  
1k  
–30  
PHASE  
–90  
499⍀  
–150  
–180  
499⍀  
200⍀  
0pF  
R
SNUB  
–210  
–270  
–330  
100  
C
LOAD  
49.9⍀  
10  
1
1
10  
100  
1000  
10k  
100k  
1M  
10M  
100M  
1G 2G  
FREQUENCY – MHz  
FREQUENCY – Hz  
TPC 7. Small Signal Frequency Response for Capacitive  
Load and Snub Resistor  
TPC 10. Transimpedance and Phase vs. Frequency  
9
3
V
= +5V, +85؇C  
= ؎5V, +85؇C  
S
G = +2  
G = +1  
8
2
1
V
S
7
6
V = +5V, +85؇C  
S
0
V
= ؎5V, +85؇C  
S
5
–1  
V
= +5V, 40؇C  
V
= +5V, 40؇C  
S
S
4
–2  
V
= ؎5V, 40؇C  
S
3
–3  
–4  
–5  
V
= ؎5V, 40؇C  
S
2
1
0
–6  
–7  
–1  
10  
100  
1000  
10  
100  
FREQUENCY – MHz  
1000  
FREQUENCY – MHz  
TPC 11. Small Signal Frequency Response over  
Temperature, VS = +5 V, 5 V  
TPC 8. Small Signal Frequency Response over  
Temperature, VS = +5 V, 5 V  
9
3
V
= 2V p-p  
G = +2  
OUT  
8
2
1
G = +2  
G = +1  
7
6
5
4
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
G = +10  
G = –1  
R
= 150, V = ؎5V,V = 2V p-p  
S O  
L
3
2
R
= 1k, V = ؎5V,V = 2V p-p  
S O  
L
R
= 150, V = +5V,V = 1V p-p  
S O  
L
1
R
= 1k, V = +5V,V = 1V p-p  
S O  
L
0
–1  
10  
100  
FREQUENCY – MHz  
1000  
1
10  
100  
1000  
FREQUENCY – MHz  
TPC 9. Large Signal Frequency Response for Various Gains  
TPC 12. Large Signal Frequency Response for VS and RLOAD  
REV. D  
–7–  
AD8007/AD8008  
–40  
–40  
–50  
G = ؉2  
G = ؉1  
V
V
= 5V  
S
HD2, R = 150⍀  
L
V
V
= 5V  
S
= 1V p-p  
–50  
–60  
O
= 1V p-p  
O
HD3, R = 150⍀  
L
HD2, R = 1k⍀  
L
–60  
HD2, R = 1k⍀  
L
–70  
–80  
HD2, R = 150⍀  
–70  
L
HD3, R = 1k⍀  
L
–80  
–90  
–90  
HD3, R = 150⍀  
L
–100  
–110  
–100  
HD3, R = 1k⍀  
L
–110  
1
10  
100  
1
10  
FREQUENCY – MHz  
100  
FREQUENCY – MHz  
TPC 13. AD8007 Second and Third Harmonic Distortion  
vs. Frequency and RL  
TPC 16. AD8007 Second and Third Harmonic Distortion  
vs. Frequency and RL  
–40  
–40  
G = ؉1  
G = ؉2  
V
V
= ؎5V  
V
V
= ؎5V  
S
S
–50  
–60  
–50  
–60  
= 2V p-p  
= 2V p-p  
O
O
HD2, R = 1k⍀  
L
HD2, R = 150⍀  
L
–70  
–70  
HD2, R = 150⍀  
L
–80  
HD2, R = 1k⍀  
L
–80  
HD3, R = 150⍀  
L
–90  
–90  
HD3, R = 150⍀  
L
HD3, R = 1k⍀  
L
–100  
–100  
HD3, R = 1k⍀  
L
–110  
–110  
1
10  
FREQUENCY – MHz  
100  
1
10  
FREQUENCY – MHz  
100  
TPC 14. AD8007 Second and Third Harmonic Distortion  
vs. Frequency and RL  
TPC 17. AD8007 Second and Third Harmonic Distortion  
vs. Frequency and RL  
–30  
–30  
V
V
R
= ؎5V  
= 2V p-p  
= 150⍀  
G = +2  
S
V
=
5V  
= 150  
L
S
O
–40  
–50  
–60  
–70  
–40  
–50  
R
L
HD2, G = ؉10  
HD3, V = 4V p-p  
O
HD2, V = 4V p-p  
–60  
–70  
–80  
O
HD3, G = ؉10  
HD2, V = 2V p-p  
O
–80  
HD3, G = ؉1  
HD2, G = ؉1  
–90  
–100  
–110  
–90  
–100  
–110  
HD3, V = 2V p-p  
O
1
10  
FREQUENCY – MHz  
100  
1
10  
FREQUENCY – MHz  
100  
TPC 15. AD8007 Second and Third Harmonic Distortion  
vs. Frequency and Gain  
TPC 18. AD8007 Second and Third Harmonic Distortion  
vs. Frequency and VOUT  
–8–  
REV. D  
AD8007/AD8008  
(VS = ؎5 V, RS = 200 , RF = 499 , RL = 150 , @ 25°C, unless otherwise noted.)  
–40  
–50  
–40  
–50  
G = 1  
G = 2  
V
V
= 5V  
V
V
= 5V  
S
S
= 1V p-p  
= 1V p-p  
O
O
–60  
–60  
–70  
HD2, R = 150⍀  
HD2, R = 150  
L
L
–70  
HD2, R = 1k⍀  
HD2, R = 1k⍀  
L
L
–80  
–80  
–90  
–90  
HD3, R = 1k⍀  
HD3, R = 1k⍀  
L
L
–100  
–110  
–100  
–110  
HD3, R = 150⍀  
HD3, R = 150⍀  
L
L
1
1
10  
100  
10  
100  
FREQUENCY – MHz  
FREQUENCY – MHz  
TPC 19. AD8008 Second and Third Harmonic  
Distortion vs. Frequency and RL  
TPC 22. AD8008 Second and Third Harmonic  
Distortion vs. Frequency and RL  
–40  
–40  
G = 1  
V
V
= 5V  
S
=
5V  
–50  
–60  
= 1V p-p  
–50  
–60  
O
HD2, R = 1k⍀  
L
–70  
–70  
HD2, R = 150  
L
HD2, R = 150⍀  
L
–80  
–80  
HD2, R = 1k⍀  
L
–90  
–90  
HD3, R = 1k⍀  
L
–100  
–110  
–100  
–110  
HD3, R = 1k⍀  
L
HD3, R = 150⍀  
HD3, R = 150⍀  
L
L
1
10  
FREQUENCY – MHz  
100  
1
10  
FREQUENCY – MHz  
100  
TPC 20. AD8008 Second and Third Harmonic  
Distortion vs. Frequency and RL  
TPC 23. AD8008 Second and Third Harmonic  
Distortion vs. Frequency and RL  
–30  
–30  
V
V
R
= 5V  
= 2V p-p  
= 150⍀  
S
G = 2  
R
V
= 150⍀  
–40  
–50  
O
L
–40  
–50  
=
5V  
L
S
HD2, G = 10  
–60  
–60  
HD2, V = 4V p-p  
O
–70  
–70  
HD2, V = 2V p-p  
O
–80  
–80  
HD2, G = 1  
–90  
–90  
HD3, V = 4V p-p  
O
–100  
–110  
–100  
–110  
HD3, G = 10  
HD3, G = 1  
HD3, V = 2V p-p  
O
1
10  
FREQUENCY – MHz  
100  
1
10  
100  
FREQUENCY – MHz  
TPC 21. AD8008 Second and Third Harmonic  
Distortion vs. Frequency and Gain  
TPC 24. AD8008 Second and Third Harmonic  
Distortion vs. Frequency and VOUT  
REV. D  
–9–  
AD8007/AD8008  
–60  
–65  
–70  
–75  
–80  
G = ؉2  
S
G = ؉2  
S
HD3, R = 1k⍀  
V
= 5V  
HD3, R = 1k⍀  
L
L
V
= ؎5V  
F
= 20MHz  
O
F
= 20MHz  
O
–65  
–70  
–75  
HD2, R = 150⍀  
HD2, R = 1k⍀  
L
L
–85  
–90  
HD3, R = 150⍀  
L
HD2, R = 1k⍀  
L
HD3, R = 150⍀  
L
–80  
–85  
–90  
–95  
–100  
–105  
–110  
HD2, R = 150⍀  
L
1
1.5  
2
2.5  
1
2
3
4
5
6
V
–V p-p  
V
–V p-p  
OUT  
OUT  
TPC 28. AD8007 Second and Third Harmonic  
Distortion vs. VOUT and RL  
TPC 25. AD8007 Second and Third Harmonic  
Distortion vs. VOUT and RL  
44  
44  
G = ؉2  
G = +2  
43  
42  
41  
40  
V
V
= 5V  
43  
42  
41  
40  
39  
V
V
R
= ؎5V  
S
S
= 2V p-p  
= 2V p-p  
= 1k⍀  
O
O
R
= 1k⍀  
L
L
39  
38  
38  
37  
37  
36  
35  
36  
35  
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
FREQUENCY – MHz  
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
FREQUENCY – MHz  
TPC 29. AD8008 Third Order Intercept vs. Frequency  
TPC 26. AD8007 Third Order Intercept vs. Frequency  
–65  
–65  
G = ؉2  
HD2, R = 1k⍀  
L
V
F
= 5V  
S
–70  
–75  
= 20MHz  
HD2, R = 150⍀  
O
L
HD2, R = 150⍀  
L
–70  
–75  
–80  
–85  
–90  
HD2, R = 1k⍀  
L
–80  
–85  
HD3, R = 150⍀  
L
HD3, R = 1k⍀  
L
–90  
HD3, R = 150⍀  
L
–95  
HD3, R = 1k⍀  
L
–100  
–105  
G = ؉2  
V
= 5V  
S
F
= 20MHz  
O
–110  
1
2
3
4
5
6
1
1.5  
2
2.5  
V
–V p-p  
V
–V p-p  
OUT  
OUT  
TPC 30. AD8008 Second and Third Harmonic  
Distortion vs. VOUT and RL  
TPC 27. AD8008 Second and Third Harmonic  
Distortion vs. VOUT and RL  
–10–  
REV. D  
AD8007/AD8008  
(VS = ؎5 V, RL = 150 , RS = 200 , RF = 499 , unless otherwise noted.)  
100  
1000  
100  
10  
INVERTING CURRENT NOISE 22.5pA/ Hz  
10  
2.7nV/ Hz  
NONINVERTING CURRENT NOISE 2.0pA/ Hz  
100 1k 10k 100k  
FREQUENCY – Hz  
1
1
10  
100  
1k  
10k  
100k  
1M  
1G  
1G  
10  
1M  
10M  
FREQUENCY – Hz  
TPC 31. Input Voltage Noise vs. Frequency  
TPC 34. Input Current Noise vs. Frequency  
1000  
–20  
G = ؉2  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
G = ؉2  
R = 150⍀  
100  
10  
V
= ؎5V  
S
V
= 1V p-p  
M
SIDE B DRIVEN  
1
SIDE A DRIVEN  
0.1  
0.01  
100k  
1M  
10M  
100M  
100k  
10M  
100M  
1G  
1M  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 35. AD8008 Crosstalk vs. Frequency (Output to Output)  
TPC 32. Output Impedance vs. Frequency  
20  
10  
0
V
= ؎5V, ؉5V  
S
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
+PSRR  
–40  
–50  
–60  
–70  
–80  
–PSRR  
10k  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 36. PSRR vs. Frequency  
TPC 33. CMRR vs. Frequency  
REV. D  
–11–  
AD8007/AD8008  
G = +2  
R
= 150, V = ؉5V AND ؎5V  
S
R
= 150, V = +5V AND 5V  
S
G = ؉1  
L
L
R
= 1k, V = +5V AND 5V  
S
L
R
= 1k, V = ؉5V AND ؎5V  
S
L
50mV/DIV  
50mV/DIV  
20  
0
10  
20  
30  
TIME – ns  
40  
50  
30  
TIME – ns  
40  
50  
0
10  
TPC 40. Small Signal Transient Response for  
TPC 37. Small Signal Transient Response for  
RL = 150 , 1 kand VS = +5 V, 5 V  
RL = 150 , 1 kand VS = +5 V, 5 V  
G = –1  
G = +1  
R
= 150⍀  
L
INPUT  
R
= 1k⍀  
L
OUTPUT  
1V/DIV  
1V/DIV  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
TIME – ns  
TIME – ns  
TPC 41. Large Signal Transient Response, G = –1,  
RL = 150 Ω  
TPC 38. Large Signal Transient Response for  
RL = 150 , 1 kΩ  
G = ؉2  
C
= 0pF  
C
= 0pF  
L
G = ؉2  
LOAD  
C
= 20pF  
L
C
= 10pF  
= 20pF  
C
= 20pF  
LOAD  
L
R
= 10⍀  
SNUB  
C
LOAD  
499  
499⍀  
200⍀  
RSNUB  
CLOAD  
+
49.9⍀  
50mV/DIV  
10  
1V/DIV  
10  
0
20  
30  
TIME – ns  
40  
50  
0
20  
30  
40  
50  
TIME – ns  
TPC 42. Small Signal Transient Response: Effect of  
Series Snub Resistor when Driving Capacitive Load  
TPC 39. Large Signal Transient Response  
for Capacitive Load = 0 pF, 10 pF, and 20 pF  
–12–  
REV. D  
AD8007/AD8008  
4
3
G = +10  
V
=
5V  
G = ؉2  
S
V
=
0.75V  
IN  
؉V  
S
2
R
= 1k⍀  
L
1
R
= 150⍀  
L
0
–1  
–2  
OUTPUT (2V/DIV)  
INPUT (1V/DIV)  
؊V  
S
–3  
–4  
0
100  
200  
300  
400  
500  
0
200  
400  
600  
800  
1000  
TIME – ns  
R
⍀  
L
TPC 43. Output Overdrive Recovery, RL = 1 k,  
TPC 45. VOUT Swing vs. RLOAD, VS = 5 V, G = +10,  
VIN 0.75 V  
150 , VIN  
=
2.5 V  
=
0.5  
0.4  
G = +2  
0.3  
0.2  
0.1  
0
؊0.1  
18ns  
؊0.2  
؊0.3  
؊0.4  
؊0.5  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
TIME – ns  
TPC 44. 0.1% Settling Time, 2 V Step  
REV. D  
–13–  
AD8007/AD8008  
THEORY OF OPERATION  
USING THE AD8007/AD8008  
The AD8007 (single) and AD8008 (dual) are current feedback  
amplifiers optimized for low distortion performance. A simplified  
conceptual diagram of the AD8007 is shown in Figure 3. It closely  
resembles a classic current feedback amplifier comprised of a  
complementary emitter-follower input stage, a pair of signal mir-  
rors, and a diamond output stage. However, in the case of the  
AD8007/AD8008, several modifications have been made to greatly  
improve the distortion performance over that of a classic current  
feedback topology.  
Supply Decoupling for Low Distortion  
Decoupling for low distortion performance requires careful  
consideration. The commonly adopted practice of returning the  
high frequency supply decoupling capacitors to physically sepa-  
rate (and possibly distant) grounds can lead to degraded  
even-order harmonic performance. This situation is shown in  
Figure 4 using the AD8007 as an example. Note that for a sinu-  
soidal input, each decoupling capacitor returns to its ground a  
quasi-rectified current carrying high even-order harmonics.  
R
499  
F
+V  
S
M1  
GND 1  
I
3
I
1
10F  
0.1F  
+V  
C 1  
+
Q5  
J
S
R
499⍀  
G
+V  
S
Q1  
IN–  
Q3  
D1  
D2  
I
HiZ  
DO  
IN+  
I
DI  
R
200⍀  
S
OUT  
OUT  
AD8007  
IN  
Q2  
Q4  
–V  
S
–V  
S
C 2  
Q6  
J
10F  
0.1F  
+
I
2
I
4
GND 2  
M2  
–V  
S
Figure 4. High Frequency Capacitors Returned  
to Physically Separate Grounds (Not Recommended)  
R
F
R
G
The decoupling scheme shown in Figure 5 is preferable. Here,  
the two high frequency decoupling capacitors are first tied  
together at a common node, and are then returned to the  
ground plane through a single connection. By first adding the  
two currents flowing through each high frequency decoupling  
capacitor, one is ensuring that the current returned into the  
ground plane is only at the fundamental frequency.  
Figure 3. Simplified Schematic of AD8007  
The signal mirrors have been replaced with low distortion, high  
precision mirrors. They are shown as “M1” and “M2” in Figure 3.  
Their primary function from a distortion standpoint is to greatly  
reduce the effect of highly nonlinear distortion caused by capaci-  
tances CJ1 and CJ2. These capacitors represent the collector-to-base  
capacitances of the mirrors’ output devices.  
R
F
499⍀  
A voltage imbalance arises across the output stage, as measured  
from the high impedance node “HiZ” to the output node  
“Out.” This imbalance is a result of delivering high output  
currents and is the primary cause of output distortion. Circuitry  
is included to sense this output voltage imbalance and generate  
a compensating current “IDO.” When injected into the circuit,  
IDO reduces the distortion that would be generated at the output  
stage. Similarly, the nonlinear voltage imbalance across the  
input stage (measured from the noninverting to the inverting  
input) is sensed, and a current “IDI” is injected to compensate  
for input-generated distortion.  
10F  
+
+V  
S
R
499⍀  
G
0.1F  
R
S
OUT  
AD8007  
200⍀  
IN  
0.1F  
–V  
S
10F  
+
The design and layout are strictly top-to-bottom symmetric in  
order to minimize the presence of even-order harmonics.  
Figure 5. High Frequency Capacitors Returned  
to Ground at a Single Point (Recommended)  
Whenever physical layout considerations prevent the decoupling  
scheme shown in Figure 5, the user can connect one of the high  
frequency decoupling capacitors directly across the supplies and  
connect the other high frequency decoupling capacitor to ground.  
This is shown in Figure 6.  
–14–  
REV. D  
AD8007/AD8008  
R
499⍀  
F
Output Capacitance  
To a lesser extent, parasitic capacitances on the output can cause  
peaking of the frequency response. There are two methods to  
effectively minimize its effect:  
10F  
+
+V  
S
C1  
0.1F  
1. Put a small value resistor in series with the output to isolate  
the load capacitance from the amplifier’s output stage.  
(See TPC 7.)  
R
G
499⍀  
2. Increase the phase margin by (a) increasing the amplifier’s  
gain or (b) adding a pole by placing a capacitor in parallel  
with the feedback resistor.  
R
200⍀  
S
OUT  
AD8007  
C2  
IN  
0.1F  
–V  
S
Input-to-Output Coupling  
10F  
To minimize capacitive coupling, the input and output signal  
traces should not be parallel. This helps reduce unwanted posi-  
tive feedback.  
+
Figure 6. High Frequency Capacitors Connected  
across the Supplies (Recommended)  
External Components and Stability  
The AD8007 and AD8008 are current feedback amplifiers and,  
to a first order, the feedback resistor determines the bandwidth  
and stability. The gain, load impedance, supply voltage, and  
input impedances also have an effect.  
Layout Considerations  
The standard noninverting configuration with recommended power  
supply bypassing is shown in Figure 6. The 0.1 µF high fre-  
quency decoupling capacitors should be X7R or NPO chip  
components. Connect C2 from the +VS pin to the –VS pin. Con-  
nect C1 from the +VS pin to signal ground.  
TPC 6 shows the effect of changing RF on bandwidth and peaking  
for a gain of +2. Increasing RF will reduce peaking but also  
reduce the bandwidth. TPC 1 shows that for a given RF, increasing  
the gain will also reduce peaking and bandwidth. Table I shows  
the recommended RF and RG values that optimize bandwidth with  
minimal peaking.  
The length of the high frequency bypass capacitor leads is critical.  
Parasitic inductance due to long leads will work against the low  
impedance created by the bypass capacitor. The ground for the  
load impedance should be at the same physical location as the  
bypass capacitor grounds. For the larger value capacitors, which  
are intended to be effective at lower frequencies, the current  
return path distance is less critical.  
Table I. Recommended Component Values  
Gain  
RF()  
RG()  
RS ()  
–1  
499  
499  
499  
499  
499  
499  
NA  
499  
124  
54.9  
200  
200  
200  
200  
200  
LAYOUT AND GROUNDING CONSIDERATIONS  
Grounding  
+1  
+2  
+5  
+10  
A ground plane layer is important in densely packed PC boards  
to minimize parasitic inductances. However, an understanding of  
where the current flows in a circuit is critical to implementing  
effective high speed circuit design. The length of the current path  
is directly proportional to the magnitude of parasitic induc-  
tances and thus the high frequency impedance of the path. High  
speed currents in an inductive ground return will create an  
unwanted voltage noise. Broad ground plane areas will reduce  
the parasitic inductance.  
The load resistor will also affect bandwidth as shown in TPCs 2  
and 5. A comparison between TPCs 2 and 5 also demonstrates  
the effect of gain and supply voltage.  
When driving loads with a capacitive component, stability is  
improved by using a series snub resistor RSNUB at the output.  
The frequency and pulse responses for various capacitive loads  
are illustrated in TPCs 7 and 42, respectively.  
Input Capacitance  
Along with bypassing and ground, high speed amplifiers can be  
sensitive to parasitic capacitance between the inputs and ground.  
Even 1 pF or 2 pF of capacitance will reduce the input imped-  
ance at high frequencies, in turn increasing the amplifier’s gain,  
causing peaking of the frequency response or even oscillations  
if severe enough. It is recommended that the external passive com-  
ponents that are connected to the input pins be placed as close as  
possible to the inputs to avoid parasitic capacitance. The ground  
and power planes must be kept at a distance of at least 0.05 mm  
from the input pins on all layers of the board.  
For noninverting configurations, a resistor in series with the input,  
RS, is needed to optimize stability for Gain = +1, as illustrated  
in TPC 3. For larger noninverting gains, the effect of a series  
resistor is reduced.  
REV. D  
–15–  
AD8007/AD8008  
OUTLINE DIMENSIONS  
8-Lead Standard Small Outline Package [SOIC]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
؋
 45؇  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8؇  
0.51 (0.0201)  
0.31 (0.0122)  
0؇ 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
3.00  
BSC  
8
5
4
4.90  
BSC  
3.00  
BSC  
1
PIN 1  
0.65 BSC  
1.10 MAX  
0.15  
0.00  
0.80  
0.60  
0.40  
8؇  
0؇  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187AA  
5-Lead Thin Shrink Small Outline Transistor Package [SC70]  
(KS-5)  
Dimensions shown in millimeters  
2.00 BSC  
5
1
4
3
1.25 BSC  
PIN 1  
2.10 BSC  
2
0.65 BSC  
1.10 MAX  
1.00  
0.90  
0.70  
0.22  
0.08  
0.46  
0.36  
0.26  
0.30  
0.15  
0.10 MAX  
SEATING  
PLANE  
0.10 COPLANARITY  
COMPLIANT TO JEDEC STANDARDS MO-203AA  
–16–  
REV. D  
AD8007/AD8008  
Revision History  
Location  
Page  
6/03—Data Sheet changed from REV. C to REV. D  
Change to Layout Considerations section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Deleted Figure 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Deleted EVALUATION BOARD section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
10/02—Data Sheet changed from REV. B to REV. C  
CONNECTION DIAGRAMS captions updated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
ORDERING GUIDE updated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 5 edited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
9/02—Data Sheet changed from REV. A to REV. B.  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
8/02—Data Sheet changed from REV. 0 to REV. A.  
Added AD8008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Universal  
Added SOIC-8 (RN) and MSOP-8 (RM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Changes to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Changes to GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Changes to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Edits to MAXIMUM POWER DISSIPATION SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
New Figure 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
New TPCs 19–24 and TPCs 27, 29, 30, and 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Changes to EVALUATION BOARD section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
MSOP-8 (RM) added . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
REV. D  
–17–  
–18–  
–19–  
–20–  

相关型号:

AD8007AKS-REEL7

Ultralow Distortion High Speed Amplifiers
ADI

AD8007AKS-REEL7

OP-AMP, 4000 uV OFFSET-MAX, PDSO5, MO-203AA, SC-70, 5 PIN
ROCHESTER

AD8007AKS-RL

IC OP-AMP, 4000 uV OFFSET-MAX, PDSO5, SC-70, 5 PIN, Operational Amplifier
ADI

AD8007AKS-RL7

IC OP-AMP, 4000 uV OFFSET-MAX, PDSO5, SC-70, 5 PIN, Operational Amplifier
ADI

AD8007AKSZ-R2

OP-AMP, 4000 uV OFFSET-MAX, PDSO5, ROHS COMPLIANT, MO-203AA, SC70-5
ROCHESTER

AD8007AKSZ-R2

Ultralow Distortion, High Speed Amplifiers
ADI

AD8007AKSZ-R21

Ultralow Distortion,High Speed Amplifiers
ADI

AD8007AKSZ-REEL

OP-AMP, 4000uV OFFSET-MAX, PDSO5, ROHS COMPLIANT, MO-203AA, SC70-5
ADI

AD8007AKSZ-REEL1

Ultralow Distortion,High Speed Amplifiers
ADI

AD8007AKSZ-REEL7

OP-AMP, 4000 uV OFFSET-MAX, PDSO5, ROHS COMPLIANT, MO-203AA, SC70-5
ROCHESTER

AD8007AKSZ-REEL7

Ultralow Distortion, High Speed Amplifiers
ADI

AD8007AKSZ-REEL71

Ultralow Distortion,High Speed Amplifiers
ADI