AD8021ARM-REEL7 [ADI]

Low Noise, High Speed Amplifier for 16-Bit Systems; 低噪声,高速放大器,用于16位系统
AD8021ARM-REEL7
型号: AD8021ARM-REEL7
厂家: ADI    ADI
描述:

Low Noise, High Speed Amplifier for 16-Bit Systems
低噪声,高速放大器,用于16位系统

消费电路 商用集成电路 音频放大器 视频放大器 光电二极管
文件: 总20页 (文件大小:427K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Noise, High Speed Amplifier  
for 16-Bit Systems  
AD8021  
FEATURES  
CONNECTION DIAGRAM  
Low Noise  
SOIC-8 (R-8)  
MSOP-8 (RM-8)  
2.1 nV/Hz Input Voltage Noise  
2.1 pA/Hz Input Current Noise  
Custom Compensation  
Constant Bandwidth from G = –1 to G = –10  
High Speed  
200 MHz (G = –1)  
190 MHz (G = –10)  
Low Power  
AD8021  
LOGIC  
1
2
3
4
8
7
6
5
DISABLE  
REFERENCE  
+V  
S
–IN  
V
+IN  
OUT  
–V  
S
C
COMP  
34 mW or 6.7 mA Typ for 5 V Supply  
Output Disable Feature, 1.3 mA  
Low Distortion  
–93 dB Second Harmonic, fC = 1 MHz  
–108 dB Third Harmonic, fC = 1 MHz  
DC Precision  
1 mV Max Input Offset Voltage  
0.5 V/C Input Offset Voltage Drift  
Wide Supply Range, 5 V to 24 V  
Low Price  
The AD8021 allows the user to choose the gain bandwidth  
product that best suits the application. With a single capacitor,  
the user can compensate the AD8021 for the desired gain with  
little trade-off in bandwidth. The AD8021 is a very well behaved  
amplifier that settles to 0.01% in 23 ns for a 1 V step. It has a fast  
overload recovery of 50 ns.  
Small Packaging  
Available in SOIC-8 and MSOP-8  
The AD8021 is stable over temperature with low input offset  
voltage drift and input bias current drift, 0.5 µV/°C and 10 nA/°C,  
respectively. The AD8021 is also capable of driving a 75 line  
with 3 V video signals.  
APPLICATIONS  
ADC Preamp and Driver  
Instrumentation Preamp  
Active Filters  
Portable Instrumentation  
Line Receivers  
Precision Instruments  
Ultrasound Signal Processing  
High Gain Circuits  
The AD8021 is not only technically superior, but also priced  
considerably less than comparable amps drawing much higher  
quiescent current. The AD8021 is a high speed, general-purpose  
amplifier, ideal for a wide variety of gain configurations, and can  
be used throughout a signal processing chain and in control loops.  
The AD8021 is available in both standard 8-lead SOIC and MSOP  
packages in the industrial temperature range of –40°C to +85°C.  
24  
V
= 50mV p-p  
OUT  
21  
18  
15  
12  
9
PRODUCT DESCRIPTION  
G = –10, R = 1k, R = 100,  
F
G
The AD8021 is a very high performance, high speed voltage  
feedback amplifier that can be used in 16-bit resolution systems.  
It is designed to have low voltage and current noise (2.1 nV/Hz  
typ and 2.1 pA/Hz typ) while operating at the lowest quiescent  
supply current (7 mA @ 5 V) among today’s high speed, low  
noise op amps. The AD8021 operates over a wide range of  
supply voltages from 2.5 V to 12 V, as well as from single  
5 V supplies, making it ideal for high speed, low power instru-  
ments. An output disable pin allows further reduction of the  
quiescent supply current to 1.3 mA.  
R
= 100, C = 0pF  
IN  
C
G = –5, R = 1k, R = 200,  
F
G
R
= 66.5, C = 1.5pF  
IN  
C
6
G = –2, R = 499, R = 249,  
F
G
R
= 63.4, C = 4pF  
3
IN  
C
0
G = –1, R = 499, R = 499,  
F
G
R
= 56.2, C = 7pF  
–3  
–6  
IN  
C
0.1M  
1M  
10M  
FREQUENCY – Hz  
100M  
1G  
Figure 1. Small Signal Frequency Response  
REV. D  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
AD8021–SPECIFICATIONS  
(@ TA = 25C, VS = 5 V, RL = 1 k, Gain = +2, unless otherwise noted.)  
VS = 5 V  
AD8021AR/AD8021ARM  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
–3 dB Small Signal Bandwidth  
G = +1, CC = 10 pF, VO = 0.05 V p-p  
G = +2, CC = 7 pF, VO = 0.05 V p-p  
G = +5, CC = 2 pF, VO = 0.05 V p-p  
G = +10, CC = 0 pF, VO = 0.05 V p-p  
G = +1, CC = 10 pF  
G = +2, CC = 7 pF  
G = +5, CC = 2 pF  
G = +10, CC = 0 pF  
355  
160  
150  
110  
95  
120  
250  
380  
490  
205  
185  
150  
120  
150  
300  
420  
23  
MHz  
MHz  
MHz  
MHz  
V/µs  
V/µs  
V/µs  
V/µs  
ns  
Slew Rate, 1 V Step  
Settling Time to 0.01%  
Overload Recovery (50%)  
VO = 1 V Step, RL = 500 Ω  
2.5 V Input Step, G = +2  
50  
ns  
DISTORTION/NOISE PERFORMANCE  
f = 1 MHz  
HD2  
HD3  
VO = 2 V p-p  
VO = 2 V p-p  
–93  
–108  
dBc  
dBc  
f = 5 MHz  
HD2  
HD3  
VO = 2 V p-p  
VO = 2 V p-p  
f = 50 kHz  
f = 50 kHz  
NTSC, RL = 150 Ω  
NTSC, RL = 150 Ω  
–70  
–80  
2.1  
2.1  
0.03  
dBc  
dBc  
nV/Hz  
pA/Hz  
%
Input Voltage Noise  
Input Current Noise  
Differential Gain Error  
Differential Phase Error  
2.6  
0.04  
Degrees  
DC PERFORMANCE  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
Input Bias Current Drift  
Input Offset Current  
Open-Loop Gain  
0.4  
0.5  
7.5  
10  
0.1  
86  
1.0  
mV  
TMIN to TMAX  
+Input or –Input  
µV/°C  
10.5  
0.5  
µA  
nA/°C  
µA  
82  
dB  
INPUT CHARACTERISTICS  
Input Resistance  
Common-Mode Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
10  
1
MΩ  
pF  
V
–4.1 to +4.6  
–98  
VCM  
=
4 V  
–86  
dB  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
–3.5 to +3.2 –3.8 to +3.4  
V
Linear Output Current  
Short-Circuit Current  
Capacitive Load Drive for 30% Overshoot VO = 50 mV p-p/1 V p-p  
60  
75  
15/120  
mA  
mA  
pF  
DISABLE CHARACTERISTICS  
Off Isolation  
Turn-On Time  
Turn-Off Time  
DISABLE Voltage—Off/On  
Enabled Leakage Current  
f = 10 MHz  
–40  
45  
50  
1.75/1.90  
70  
2
30  
33  
dB  
ns  
ns  
VO = 0 V to 2 V, 50% Logic to 50% Output  
VO = 0 V to 2 V, 50% Logic to 50% Output  
VDISABLE – VLOGIC REFERENCE  
Logic Ref = 0.4 V  
DISABLE = 4.0 V  
Logic Ref = 0.4 V  
V
µA  
µA  
µA  
µA  
Disabled Leakage Current  
DISABLE = 0.4 V  
POWER SUPPLY  
Operating Range  
Quiescent Current  
2.25  
5
12.0  
7.7  
1.6  
V
Output Enabled  
Output Disabled  
VCC = +4 V to +6 V, VEE = –5 V  
VCC = +5 V, VEE = –6 V to –4 V  
7.0  
1.3  
–95  
–95  
mA  
mA  
dB  
dB  
+Power Supply Rejection Ratio  
–Power Supply Rejection Ratio  
–86  
–86  
Specifications subject to change without notice.  
–2–  
REV. D  
AD8021  
(@ T = 25؇C, R = 1 k, Gain = +2, unless otherwise noted.)  
VS = ؎12 V  
A
L
AD8021AR/AD8021ARM  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
DYNAMIC PERFORMANCE  
–3 dB Small Signal Bandwidth  
G = +1, CC = 10 pF, VO = 0.05 V p-p  
G = +2, CC = 7 pF, VO = 0.05 V p-p  
G = +5, CC = 2 pF, VO = 0.05 V p-p  
G = +10, CC = 0 pF, VO = 0.05 V p-p  
G = +1, CC = 10 pF  
G = +2, CC = 7 pF  
G = +5, CC = 2 pF  
G = +10, CC = 0 pF  
520  
175  
170  
125  
105  
140  
265  
400  
560  
220  
200  
165  
130  
170  
340  
460  
21  
MHz  
MHz  
MHz  
MHz  
V/µs  
V/µs  
V/µs  
V/µs  
ns  
Slew Rate, 1 V Step  
Settling Time to 0.01%  
Overload Recovery (50%)  
VO = 1 V Step, RL = 500 Ω  
6 V Input Step, G = +2  
90  
ns  
DISTORTION/NOISE PERFORMANCE  
f = 1 MHz  
HD2  
HD3  
VO = 2 V p-p  
VO = 2 V p-p  
–95  
–116  
dBc  
dBc  
f = 5 MHz  
HD2  
HD3  
VO = 2 V p-p  
VO = 2 V p-p  
f = 50 kHz  
f = 50 kHz  
NTSC, RL = 150 Ω  
NTSC, RL = 150 Ω  
–71  
–83  
2.1  
2.1  
0.03  
0.04  
dBc  
dBc  
Input Voltage Noise  
Input Current Noise  
Differential Gain Error  
Differential Phase Error  
2.6  
nV/Hz  
pA/Hz  
%
Degrees  
DC PERFORMANCE  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
Input Bias Current Drift  
Input Offset Current  
Open-Loop Gain  
0.4  
0.2  
8
10  
0.1  
88  
1.0  
mV  
TMIN to TMAX  
+Input or –Input  
µV/°C  
11.3  
0.5  
µA  
nA/°C  
µA  
84  
dB  
INPUT CHARACTERISTICS  
Input Resistance  
Common-Mode Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
10  
1
MΩ  
pF  
V
–11.1 to +11.6  
–96  
VCM  
=
10 V  
–86  
dB  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
–10.2 to +9.8 –10.6 to +10.2  
V
Linear Output Current  
Short-Circuit Current  
Capacitive Load Drive for 30% Overshoot VO = 50 mV p-p/1 V p-p  
70  
115  
15/120  
mA  
mA  
pF  
DISABLE CHARACTERISTICS  
Off Isolation  
Turn-On Time  
Turn-Off Time  
DISABLE Voltage—Off/On  
Enabled Leakage Current  
f = 10 MHz  
–40  
45  
50  
1.80/1.95  
70  
2
30  
33  
dB  
ns  
ns  
VO = 0 V to 2 V, 50% Logic to 50% Output  
VO = 0 V to 2 V, 50% Logic to 50% Output  
VDISABLE – VLOGIC REFERENCE  
Logic Ref = 0.4 V  
DISABLE = 4.0 V  
Logic Ref = 0.4 V  
V
µA  
µA  
µA  
µA  
Disabled Leakage Current  
DISABLE= 0.4 V  
POWER SUPPLY  
Operating Range  
Quiescent Current  
2.25  
5
7.8  
1.7  
–96  
12.0  
8.6  
2.0  
V
Output Enabled  
Output Disabled  
VCC = +11 V to +13 V, VEE = –12 V  
VCC = +12 V, VEE = –13 V to –11 V  
mA  
mA  
dB  
dB  
+Power Supply Rejection Ratio  
–Power Supply Rejection Ratio  
–86  
–86  
–100  
Specifications subject to change without notice.  
REV. D  
–3–  
AD8021  
(@ TA = 25C, RL = 1 k, Gain = +2, unless otherwise noted.)  
VS = 5 V  
AD8021AR/AD8021ARM  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
DYNAMIC PERFORMANCE  
–3 dB Small Signal Bandwidth  
G = +1, CC = 10 pF, VO = 0.05 V p-p  
G = +2, CC = 7 pF, VO = 0.05 V p-p  
G = +5, CC = 2 pF, VO = 0.05 V p-p  
G = +10, CC = 0 pF, VO = 0.05 V p-p  
G = +1, CC = 10 pF  
G = +2, CC = 7 pF  
G = +5, CC = 2 pF  
G = +10, CC = 0 pF  
270  
155  
135  
95  
305  
190  
165  
130  
110  
140  
280  
390  
28  
MHz  
MHz  
MHz  
MHz  
V/µs  
V/µs  
V/µs  
V/µs  
ns  
Slew Rate, 1 V Step  
80  
110  
210  
290  
Settling Time to 0.01%  
Overload Recovery (50%)  
VO = 1 V Step, RL = 500 Ω  
0 V to 2.5 V Input Step, G = +2  
40  
ns  
DISTORTION/NOISE PERFORMANCE  
f = 1 MHz  
HD2  
HD3  
VO = 2 V p-p  
VO = 2 V p-p  
–84  
–91  
dBc  
dBc  
f = 5 MHz  
HD2  
HD3  
Input Voltage Noise  
Input Current Noise  
VO = 2 V p-p  
VO = 2 V p-p  
f = 50 kHz  
–68  
–81  
2.1  
2.1  
dBc  
dBc  
nV/Hz  
pA/Hz  
2.6  
f = 50 kHz  
DC PERFORMANCE  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
Input Bias Current Drift  
Input Offset Current  
Open-Loop Gain  
0.4  
0.8  
7.5  
10  
0.1  
76  
1.0  
mV  
TMIN to TMAX  
+Input or –Input  
µV/°C  
10.3  
0.5  
µA  
nA/°C  
µA  
72  
dB  
INPUT CHARACTERISTICS  
Input Resistance  
Common-Mode Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
10  
1
0.9 to 4.6  
–98  
MΩ  
pF  
V
1.5 V to 3.5 V  
–84  
dB  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
1.25 to 3.38  
1.10 to 3.60  
V
Linear Output Current  
Short-Circuit Current  
Capacitive Load Drive for 30% Overshoot VO = 50 mV p-p/1 V p-p  
30  
50  
10/120  
mA  
mA  
pF  
DISABLE CHARACTERISTICS  
Off Isolation  
Turn-On Time  
Turn-Off Time  
DISABLE Voltage—Off/On  
Enabled Leakage Current  
f = 10 MHz  
–40  
45  
50  
1.55/1.70  
70  
2
30  
33  
dB  
ns  
ns  
VO = 0 V to 1 V, 50% Logic to 50% Output  
VO = 0 V to 1 V, 50% Logic to 50% Output  
VDISABLE – VLOGIC REFERENCE  
Logic Ref = 0.4 V  
DISABLE = 4.0 V  
Logic Ref = 0.4 V  
V
µA  
µA  
µA  
µA  
Disabled Leakage Current  
DISABLE = 0.4 V  
POWER SUPPLY  
Operating Range  
Quiescent Current  
2.25  
5
12.0  
7.5  
1.5  
V
Output Enabled  
Output Disabled  
VCC = 4.5 V to 5.5 V, VEE = 0 V  
VCC = +5 V, VEE = –0.5 V to +0.5 V  
6.7  
1.2  
–82  
–84  
mA  
mA  
dB  
dB  
+Power Supply Rejection Ratio  
–Power Supply Rejection Ratio  
–74  
–76  
Specifications subject to change without notice.  
–4–  
REV. 0  
AD8021  
ABSOLUTE MAXIMUM RATINGS1  
2.0  
1.5  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.4 V  
Power Dissipation . . . . . . . . Observed Power Derating Curves  
Input Voltage (Common-Mode) . . . . . . . . . . . . . . . ±VS ± 1 V  
Differential Input Voltage2 . . . . . . . . . . . . . . . . . . . . . . ±0.8 V  
Differential Input Current . . . . . . . . . . . . . . . . . . . . . ±10 mA  
Output Short-Circuit Duration  
8-LEAD SOIC  
1.0  
. . . . . . . . . . . . . . . . . . . . . . Observed Power Derating Curves  
Storage Temperature . . . . . . . . . . . . . . . . . . –65C to +125C  
Operating Temperature Range . . . . . . . . . . . –40C to +85C  
Lead Temperature Range (Soldering, 10 sec) . . . . . . . . 300C  
8-LEAD MSOP  
0.5  
NOTES  
1 Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only and functional operation of  
the device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2 The AD8021 inputs are protected by diodes. Current-limiting resistors are not  
used in order to preserve the low noise. If a differential input exceeds ±0.8 V, the  
input current should be limited to ±10 mA.  
0.01  
–55 –45 –35 –25 –15 –5  
5 15 25 35 45 55 65 75 85  
AMBIENT TEMPERATURE (؇C)  
Figure 2. Maximum Power Dissipation vs. Temperature*  
*Specification is for device in free air:  
8-Lead SOIC: JA = 125C/W  
8-Lead MSOP: JA = 145C/W  
MAXIMUM POWER DISSIPATION  
The maximum power that can be safely dissipated by the AD8021  
is limited by the associated rise in junction temperature. The maxi-  
mum safe junction temperature for plastic encapsulated devices  
is determined by the glass transition temperature of the plastic,  
approximately 150C. Temporarily exceeding this limit may cause  
a shift in parametric performance due to a change in the stresses  
exerted on the die by the package. Exceeding a junction tempera-  
ture of 175C for an extended period can result in device failure.  
PIN FUNCTION DESCRIPTIONS  
Pin No. Mnemonic  
Function  
1
LOGIC REFERENCE Reference for Pin 8* Voltage  
Level. Connect to logic low  
supply.  
2
3
4
5
–IN  
+IN  
–VS  
Inverting Input  
Noninverting Input  
Negative Supply Voltage  
Compensation Capacitor. Tie  
to –VS. (See the Applications  
section for value.)  
While the AD8021 is internally short-circuit protected, this may  
not be sufficient to guarantee that the maximum junction tem-  
perature (150C) is not exceeded under all conditions. To ensure  
proper operation, it is necessary to observe the maximum power  
derating curves.  
CCOMP  
6
7
8
VOUT  
Output  
Positive Supply Voltage  
Disable, Active Low*  
+VS  
DISABLE  
PIN CONFIGURATION  
*When Pin 8 (DISABLE) is about 2 V or more higher than Pin 1 (LOGIC  
REFERENCE), the part is enabled. When Pin 8 is brought down to within about  
1.5 V of Pin 1, the part is disabled. (See the Specification tables for exact disable and  
enable voltage levels.) If the disable feature is not going to be used, Pin 8 can be tied  
to +VS or a logic high source, and Pin 1 can be tied to ground or logic low. Alterna-  
tively, if Pin 1 and Pin 8 are not connected, the part will be in an enabled state.  
AD8021  
LOGIC  
1
2
3
4
8
7
6
5
DISABLE  
REFERENCE  
+V  
S
–IN  
V
+IN  
OUT  
C
–V  
S
COMP  
ORDERING GUIDE  
Model  
AD8021AR  
AD8021AR-REEL  
AD8021AR-REEL7  
AD8021ARM  
AD8021ARM-REEL  
AD8021ARM-REEL7  
AD8021ARZ*  
AD8021ARZ-REEL*  
AD8021ARZ-REEL7*  
Temperature Range  
Package Description  
Package Outline  
Branding  
–40C to +85C  
–40C to +85C  
–40C to +85C  
–40C to +85C  
–40C to +85C  
–40C to +85C  
–40C to +85C  
–40C to +85C  
–40C to +85C  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
R-8  
R-8  
R-8  
RM-8  
RM-8  
RM-8  
R-8  
HNA  
HNA  
HNA  
R-8  
R-8  
*Z = Lead Free  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
AD8021 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended  
to avoid performance degradation or loss of functionality.  
REV. D  
–5–  
AD8021–Typical Performance Characteristics  
(TA = 25ЊC, VS = 5 V, RL = 1 k, G = +2, RF = RG = 499 , RS = 49.9 , RO = 976 , RD = 53.6 , CC = 7 pF, CL = 0, CF = 0, VOUT = 2 V p-p,  
Freq = 1 MHz, unless otherwise noted.)  
24  
21  
18  
15  
12  
9
9
8
G = 2  
G = 10, R = 1k, R = 110, C = 0pF  
V
= 2.5V  
F
G
C
S
5V  
7
G = 5, R = 1k, R = 249, C = 2pF  
F
G
C
6
5
4
G = 2, R = R = 499, C = 7pF  
F
G
C
12V  
6
3
3
2
V
= 2.5V  
G = 1, R = 75, C = 10pF  
S
F
C
0
1
–3  
0
–6  
0.1M  
–1  
1M  
10M  
100M  
1G  
1M  
10M  
FREQUENCY – Hz  
100M  
1G  
FREQUENCY – Hz  
TPC 4. Small Signal Frequency Response vs.  
Frequency and Supply, VOUT = 50 mV p-p,  
Noninverting. See Test Circuit 1.  
TPC 1. Small Signal Frequency Response vs.  
Frequency and Gain, VOUT = 50 mV p-p,  
Noninverting. See Test Circuit 1.  
24  
3
G = –1  
V
= 2.5V  
S
21  
2
1
G = –10, R = 1k, R = 100,  
5V  
F
G
18  
15  
12  
9
R
= 100, C = 0pF  
IN  
C
0
V
= 12V  
G = –5, R = 1k, R = 200,  
S
F
G
–1  
–2  
–3  
–4  
–5  
–6  
–7  
R
= 66.5, C = 1.5pF  
IN  
C
6
G = –2, R = 499, R = 249,  
F
G
R
= 63.4, C = 4pF  
3
IN  
C
0
G = –1, R = 499, R = 499,  
V
= 2.5V  
F
G
S
R
= 56.2, C = 7pF  
–3  
–6  
IN  
C
1M  
10M  
100M  
1G  
0.1M  
1M  
10M  
FREQUENCY – Hz  
100M  
1G  
FREQUENCY – Hz  
TPC 5. Small Signal Frequency Response vs.  
Frequency and Supply, VOUT = 50 mV p-p,  
Inverting. See Test Circuit 3.  
TPC 2. Small Signal Frequency Response  
vs. Frequency and Gain, VOUT = 50 mV p-p,  
Inverting. See Test Circuit 1.  
9
9
G = 2  
8
C
= 5pF  
G = 2  
C
8
7
6
5
4
3
2
1
0
7
V
= 0.1V AND 50mV p-p  
7pF  
OUT  
6
5
9pF  
4
V
= 4V p-p  
1V p-p  
OUT  
3
2
7pF  
9pF  
1
0
–1  
–1  
1M  
10M  
100M  
1G  
0.1M  
1M  
10M  
100M  
1G  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 6. Frequency Response vs. Frequency  
and VOUT, Noninverting. See Test Circuit 1.  
TPC 3. Small Signal Frequency Response vs.  
Frequency and Compensation Capacitor,  
VOUT = 50 mV p-p. See Test Circuit 1.  
–6–  
REV. D  
AD8021  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
R
= 1kꢂ  
G = 2  
= R  
G = 2  
F
R
F
G
R
= 499ꢂ  
F
R
= 250ꢂ  
F
1kꢂ  
R
= 150ꢂ  
F
R
= 100ꢂ  
L
R
= 75ꢂ  
F
R
= 1kAND C = 2.2pF  
F
F
0.1M  
1M  
10M  
100M  
1G  
1M  
10M  
FREQUENCY – Hz  
100M  
1G  
0.1M  
FREQUENCY – Hz  
TPC 7. Large Signal Frequency Response vs.  
Frequency and Load, Noninverting. See Test  
Circuit 2.  
TPC 10. Small Signal Frequency Response vs.  
Frequency and RF, Noninverting, VOUT = 50 mV p-p.  
See Test Circuit 1.  
9
15  
+85C  
G = 2  
G = 2  
12  
8
+25C  
7
9
6
3
6
–40C  
5
4
3
2
1
0
V
=
OUT  
R
= 49.9ꢂ  
+85C  
50mV p-p  
S
0
–3  
V
=
OUT  
2V p-p  
R
= 100ꢂ  
–6  
S
+25C  
–40C  
–9  
R
= 249ꢂ  
S
–12  
–1  
–15  
0.1M  
1M  
10M  
100M  
1G  
1M  
10M  
FREQUENCY – Hz  
100M  
1G  
FREQUENCY – Hz  
TPC 8. Frequency Response vs. Frequency,  
Temperature and VOUT, Noninverting.  
See Test Circuit 1.  
TPC 11. Small Signal Frequency Response vs.  
Frequency and RS, Noninverting, VOUT = 50 mV p-p.  
See Test Circuit 1.  
100  
90  
18  
50pF  
G = 2  
15  
12  
9
30pF  
80  
20pF  
10pF  
70  
60  
50  
40  
30  
20  
10  
0
180  
135  
90  
6
3
0pF  
45  
0
0
–3  
–6  
–9  
–12  
–45  
–90  
–135  
1M  
10M  
100M  
1G  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 9. Small Signal Frequency Response vs.  
Frequency and Capacitive Load, Noninverting,  
VOUT = 50 mV p-p. See Test Circuit 2 and Figure 16.  
TPC 12. Open-Loop Gain and Phase vs.  
Frequency, RG =100 , RF = 1 k, RO = 976 ,  
RD = 53.6 , CC = 0 pF. See Test Circuit 3.  
REV. D  
–7–  
AD8021  
–20  
–30  
6.4  
G = 2  
–40  
6.2  
6.0  
5.8  
5.6  
5.4  
V
= 2.5V  
f1  
f2  
S
–50  
f = 0.2MHz  
P
OUT  
–60  
976ꢂ  
–70  
5V  
53.6ꢂ  
50ꢂ  
–80  
12V  
–90  
–100  
–110  
–120  
1M  
10M  
FREQUENCY – Hz  
100M  
9.5  
9.7  
10.0  
FREQUENCY – MHz  
10.3  
10.5  
TPC 13. 0.1 dB Flatness vs. Frequency and  
TPC 16. Intermodulation Distortion vs. Frequency  
Supply, VOUT = 1 V p-p, RL = 150 , Noninverting.  
See Test Circuit 2.  
–20  
–30  
–40  
50  
45  
40  
SECOND  
–50  
–60  
–70  
V
= 5V  
S
35  
30  
25  
20  
R
= 100ꢂ  
L
–80  
V
= 2.5V  
S
R
= 1kꢂ  
L
–90  
–100  
–110  
–120  
–130  
THIRD  
0.1M  
1M  
FREQUENCY – Hz  
10M  
20M  
0
5
10  
FREQUENCY – MHz  
15  
20  
TPC 14. Second and Third Harmonic Distortion  
vs. Frequency and RL  
TPC 17. Third-Order Intercept vs. Frequency and  
Supply Voltage  
–30  
–40  
–50  
–60  
–50  
–60  
–70  
SECOND  
–70  
–80  
THIRD  
–80  
–90  
R
= 100ꢂ  
L
SECOND  
V
= 2.5V  
S
THIRD  
–90  
SECOND  
SECOND  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
V
= 5V  
R
= 1kꢂ  
S
L
V
= 12V  
S
SECOND  
THIRD  
THIRD  
100k  
1M  
FREQUENCY – Hz  
10M  
20M  
1
2
3
V
4
5
6
–V p-p  
OUT  
TPC 15. Second and Third Harmonic Distortion  
vs. Frequency and VS  
TPC 18. Second and Third Harmonic Distortion  
vs. VOUT and RL  
REV. D  
–8–  
AD8021  
–50  
–60  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
–3.1  
–3.2  
–3.3  
–3.4  
–3.5  
–3.6  
–3.7  
–3.8  
POSITIVE OUTPUT  
SECOND  
fC = 5MHz  
–70  
–80  
THIRD  
–90  
SECOND  
fC = 1MHz  
–100  
–110  
–120  
NEGATIVE OUTPUT  
THIRD  
2
1
3
4
5
6
0
400  
800  
1200  
1600  
2000  
V
–V p-p  
LOAD ꢂ  
OUT  
TPC 22. DC Output Voltage vs. Load. See Test  
Circuit 1.  
TPC 19. Second and Third Harmonic Distortion  
vs. VOUT and Fundamental Frequency (fC), G = +2  
120  
–40  
V
= 12  
–50  
S
100  
80  
fC = 5MHz  
–60  
SECOND  
V
= 5.0  
= 2.5  
S
–70  
60  
THIRD  
V
S
–80  
SECOND  
40  
20  
0
–90  
fC = 1MHz  
THIRD  
–100  
–110  
–50  
–30  
–10  
10  
30  
50  
70  
90  
110  
1
2
3
4
5
6
TEMPERATURE – C  
V
–V p-p  
OUT  
TPC 23. Short-Circuit Current to Ground vs.  
Temperature  
TPC 20. Second and Third Harmonic Distortion  
vs. VOUT and Fundamental Frequency (fC), G = +10  
50  
–70  
G = 2  
40  
fC = 1MHz  
R
= 1kꢂ  
L
R
= 1k, 150ꢂ  
L
30  
20  
10  
–80  
–90  
SECOND  
THIRD  
600  
–10  
–20  
–30  
–40  
–50  
–100  
–110  
–120  
0
200  
400  
800  
1000  
0
40  
80  
120  
TIME – ns  
160  
200  
FEEDBACK RESISTANCE ꢂ  
TPC 21. Second and Third Harmonic Distortion  
vs. Feedback Resistor (RF)  
TPC 24. Small Signal Transient Response vs. RL,  
VO = 50 mV p-p. See Test Circuit 2, Noninverting.  
REV. D  
–9–  
AD8021  
V
G = 2  
= 4V p-p  
V
G = 2  
= 2V p-p  
O
O
2.0  
2.0  
1.0  
R
= 1kꢂ  
L
1.0  
R
= 150ꢂ  
V
= 2.5V  
L
S
–1.0  
–1.0  
–2.0  
V
= 5V  
S
–2.0  
0
0
40  
80  
120  
TIME – ns  
160  
200  
40  
80  
120  
TIME – ns  
160  
200  
TPC 28. Large Signal Transient Response vs. VS.  
See Test Circuit 1.  
TPC 25. Large Signal Transient Response vs. RL.  
See Test Circuit 2, Noninverting.  
5
V
= 3V  
IN  
G = +2  
V
= 4V p-p  
O
G = –1  
4
3
2
1
V
R = 1kꢂ  
L
V
V
= 1V/DIV  
= 2V/DIV  
OUT,  
IN  
OUT  
V
IN  
R
= 150ꢂ  
L
–1  
–2  
–3  
–4  
–5  
V
OUT  
V
IN  
0
100  
200  
300  
400  
500  
0
50  
100  
150  
200  
250  
TIME – ns  
TIME – ns  
TPC 29. Overdrive Recovery vs. RL. See Test Circuit 2.  
TPC 26. Large Signal Transient Response.  
See Test Circuit 3, Inverting.  
C
G = 2  
= 50pF  
V
= 4V p-p  
L
O
G = 2  
2.0  
1.0  
C
= 10pF, 0pF  
L
+0.01%  
–0.01%  
25ns  
–1.0  
–2.0  
VERT = 0.2mV/DIV  
HOR = 5ns/DIV  
0
40  
80  
120  
TIME – ns  
160  
200  
TPC 30. 0.01% Settling Time, 2 V Step  
TPC 27. Large Signal Transient Response vs. CL.  
See Test Circuit 1.  
REV. D  
–10–  
AD8021  
100  
80  
100  
60  
40  
PULSEWIDTH = 120ns  
20  
0
10  
–20  
–40  
–60  
–80  
–100  
PULSEWIDTH = 300s  
5V  
0V  
t1  
1
10  
0
4
8
12  
16  
20  
24  
28  
32  
100  
1k  
10k  
100k  
1M  
10M  
TIME – s  
FREQUENCY – Hz  
TPC 31. Long-Term Settling, 0 V to 5 V, VS = 12 V, G = +13  
TPC 34. Input Current Noise vs. Frequency  
50  
0.48  
G = 1  
40  
0.44  
0.40  
0.36  
0.32  
0.28  
0.24  
30  
20  
10  
–10  
–20  
–30  
–40  
–50  
–50  
–25  
0
25  
50  
75  
100  
0
40  
80  
120  
TIME – ns  
160  
200  
TEMPERATURE – C  
TPC 32. Small Signal Transient Response,  
VO = 50 mV p-p. G = +1. See Test Circuit 1.  
TPC 35. VOS vs. Temperature  
100  
8.4  
8.0  
7.6  
7.2  
6.8  
6.4  
6.0  
10  
2.1nV/ Hz  
1
10  
100  
1k  
10k  
100k  
FREQUENCY – Hz  
1M  
10M  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE – C  
TPC 33. Input Voltage Noise vs. Frequency  
TPC 36. Input Bias Current vs. Temperature  
REV. D  
–11–  
AD8021  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–120  
10k  
–100  
0.1M  
100k  
1M  
10M  
100M  
1M  
10M  
100M  
1G  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 37. CMRR vs. Frequency. See Test Circuit 4.  
TPC 40. Input to Output Isolation, Chip Disabled.  
See Test Circuit 7.  
300  
100  
30  
300k  
100k  
30k  
10k  
3k  
10  
3
1k  
1
300  
100  
30  
0.3  
0.1  
0.03  
0.01  
0.003  
10  
3
10k  
100k  
1M  
10M  
100M  
1G  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 38. Output Impedance vs. Frequency, Chip  
Enabled. See Test Circuit 5.  
TPC 41. Output Impedance vs. Frequency, Chip  
Disabled. See Test Circuit 8.  
0
DISABLE  
4V  
–10  
2V  
–PSRR  
–20  
–30  
–40  
V
OUTPUT  
V
= 2.5V  
+PSRR  
= 12V  
S
2V  
–50  
–60  
V
S
tEN = 45ns  
1V  
–70  
tDIS = 50ns  
V
= 5V  
S
–80  
–90  
–100  
0
100  
200  
300  
400  
500  
10k  
100k  
1M  
10M  
100M  
500M  
TIME – ns  
FREQUENCY – Hz  
TPC 39. Enable (tEN)/Disable (tDIS) Time vs. VOUT  
See Test Circuit 6.  
.
TPC 42. PSRR vs. Frequency and Supply Voltage.  
See Test Circuits 9 and 10.  
REV. D  
–12–  
AD8021  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE – C  
TPC 43. Quiescent Supply Current vs. Temperature  
HP8753D  
Test Circuits  
NETWORK  
ANALYZER  
50ꢂ  
50ꢂ  
AD8021  
+V  
C
S
49.9ꢂ  
50CABLE  
50ꢂ  
+V  
R
S
S
499ꢂ  
50CABLE  
R
O
499ꢂ  
5
5
R
C
IN  
C
C
R
49.9ꢂ  
D
–V  
S
7pF  
–V  
S
R
C
F
R
G
499ꢂ  
499ꢂ  
55.6ꢂ  
F
Test Circuit 1. Noninverting Gain  
Test Circuit 4. CMRR  
FET  
PROBE  
AD8021  
HP8753D  
+V  
S
+V  
S
NETWORK  
ANALYZER  
50CABLE  
R
S
50ꢂ  
100ꢂ  
5
50ꢂ  
5
C
L
C
C
R
49.9ꢂ  
IN  
R
L
7pF  
C
–V  
C
S
–V  
S
R
R
F
G
R
499ꢂ  
R
499ꢂ  
G
F
C
F
Test Circuit 2. Noninverting Gain with FET Probe  
Test Circuit 5. Output Impedance, Chip Enabled  
AD8021  
+V  
S
+V  
S
49.9ꢂ  
50CABLE  
R
O
1
976ꢂ  
49.9ꢂ  
1.0V  
LOGIC REF  
49.9ꢂ  
5
C
C
DISABLE  
8
53.6ꢂ  
5
R
D
C
C
–V  
S
4V  
49.9ꢂ  
50CABLE  
–V  
S
7pF  
50ꢂ  
R
R
F
G
R
49.9ꢂ  
IN  
499ꢂ  
499ꢂ  
Test Circuit 3. Inverting Gain  
Test Circuit 6. Enable/Disable  
REV. D  
–13–  
AD8021  
BIAS  
BNC  
HP8753D  
NETWORK  
ANALYZER  
HP8753D  
NETWORK  
ANALYZER  
50ꢂ  
50ꢂ  
+V  
S
50ꢂ  
+V  
50ꢂ  
50CABLE  
50CABLE  
S
49.9, 5W  
49.9ꢂ  
+V  
AD8021  
5
S
FET  
PROBE  
1
8
976ꢂ  
49.9ꢂ  
LOGIC REF  
249ꢂ  
5
DISABLE  
53.6ꢂ  
1kꢂ  
C
7pF  
C
–V  
C
7pF  
S
C
–V  
S
499ꢂ  
499ꢂ  
499ꢂ  
499ꢂ  
Test Circuit 7. Input to Output Isolation, Chip Disabled  
Test Circuit 9. Positive PSRR  
BIAS  
BNC  
HP8753D  
NETWORK  
ANALYZER  
50ꢂ  
50ꢂ  
–V  
S
50CABLE  
+V  
S
976ꢂ  
249ꢂ  
5
53.6ꢂ  
HP8753D  
AD8021  
1
NETWORK  
ANALYZER  
+V  
C
7pF  
S
C
8
–V  
S
49.9ꢂ  
5W  
100ꢂ  
50ꢂ  
5
C
7pF  
C
499ꢂ  
499ꢂ  
–V  
S
Test Circuit 8. Output Impedance, Chip Disabled  
Test Circuit 10. Negative PSRR  
REV. D  
–14–  
AD8021  
APPLICATIONS  
bandwidth is degraded to about 20 MHz and the phase margin  
increases to 90° (Arrow B). However, by reducing CC to zero,  
the bandwidth and phase margin return to about 200 MHz and  
60° (Arrow C), respectively. In addition, the slew rate is dra-  
matically increased, as it roughly varies with the inverse of CC.  
The typical voltage feedback op amp is frequency stabilized with  
a fixed internal capacitor, CINTERNAL, using dominant pole compen-  
sation. To a first-order approximation, voltage feedback op amps  
have a fixed gain bandwidth product. For example, if its –3 dB  
bandwidth for G = +1 is 200 MHz, at a gain of G = +10 its  
bandwidth will be only about 20 MHz. The AD8021 is a voltage  
feedback op amp with a minimal CINTERNAL of about 1.5 pF. By  
adding an external compensation capacitor, CC, the user can  
circumvent the fixed gain bandwidth limitation of other voltage  
feedback op amps.  
10  
9
8
7
6
5
4
3
2
1
0
Unlike the typical op amp with fixed compensation, the AD8021  
allows the user to  
1. Maximize the amplifier bandwidth for closed-loop gains  
between 1 and 10, avoiding the usual loss of bandwidth  
and slew rate.  
2. Optimize the trade-off between bandwidth and phase  
margin for a particular application.  
1
2
3
4
5
6
7
8
9
10  
11  
3. Match bandwidth in gain blocks with different noise gains,  
such as when designing differential amplifiers (as shown in  
Figure 10).  
NOISE GAIN V/V  
Figure 4. Suggested Compensation Capacitance  
vs. Gain for Maintaining 1 dB Peaking  
110  
100  
180  
135  
90  
Table I and Figure 4 provide recommended values of compensa-  
tion capacitance at various gains and the corresponding slew rate,  
bandwidth, and noise. Note that the value of the compensation  
capacitor depends on the circuit noise gain, not the voltage gain.  
As shown in Figure 5, the noise gain, GN, of an op amp gain block  
is equal to its noninverting voltage gain, regardless of whether  
it is actually used for inverting or noninverting gain. Thus,  
90  
86  
80  
(A)  
(C)  
45  
(B)  
= 0pF  
C
C
70  
60  
50  
40  
30  
20  
10  
0
0
C
= 10pF  
C
(C)  
Noninverting GN = RF / RG +1  
Inverting GN = RF / RG +1  
(B)  
(A)  
R
200ꢂ  
R
F
800ꢂ  
G
–10  
1k  
3
R
S
10k  
100k  
1M  
10M  
100M  
1G  
10G  
+
1
FREQUENCY – Hz  
2
3
6
+
AD8021  
Figure 3. Simplified Diagram of Open-Loop Gain  
and Phase Response  
6
5
AD8021  
2
R
800ꢂ  
5
F
–V  
S
Figure 3 is the AD8021 gain and phase plot that has been sim-  
plified for instructional purposes. If the desired closed-loop gain  
is G = +1 and CC = 10 pF is chosen, Arrow A of the figure  
shows that the bandwidth is about 200 MHz and the phase  
margin is about 60°. If the gain is changed to G = +10 and CC  
is fixed at 10 pF, then (as expected for a typical op amp) the  
G = –4  
= 5  
–V  
S
G
C
N
COMP  
C
G = G = 5  
R
G
200ꢂ  
COMP  
N
NONINVERTING  
INVERTING  
Figure 5. The Noise Gain of Both Is 5  
Table I. Recommended Component Values. See Test Circuit 2. CF = CL = 0, RL = 1 k, RIN = 49.9 ꢂ  
Noise Gain  
(Noninverting  
Gain)  
Slew  
CCOMP Rate  
–3 dB  
SS BW  
(MHz)  
Output Noise  
(AD8021 Only)  
Output Noise  
(AD8021 with Resistors)  
(nV/Hz)  
RS  
()  
RF  
()  
RG  
()  
(pF)  
(V/s)  
(nV/  
Hz)  
1
75  
75  
NA  
499  
249  
110  
52.3  
10  
10  
7
2
0
0
120  
150  
300  
420  
200  
34  
490  
205  
185  
150  
42  
2.1  
4.3  
10.7  
21.2  
42.2  
2.8  
8.2  
15.5  
27.9  
52.7  
2
49.9  
49.9  
49.9  
49.9  
49.9  
499  
1 k  
1 k  
1 k  
1 k  
5
10  
20  
100  
0
6
211.1  
264.1  
REV. D  
–15–  
AD8021  
With the AD8021, a variety of trade-offs can be made to fine-tune  
its dynamic performance. Sometimes more bandwidth or slew  
rate is needed at a particular gain. Reducing the compensation  
capacitance, as illustrated in TPC 3, will increase the bandwidth  
and peaking due to a decrease in phase margin. On the other hand,  
if more stability is needed, increasing the compensation cap will  
decrease the bandwidth while increasing the phase margin.  
this high impedance with a current gain of 5,000, so that the  
AD8021 can maintain a high open-loop gain even when driving  
heavy loads.  
Two internal diode clamps across the inputs (Pins 2 and 3) protect  
the input transistors from large voltages that could otherwise cause  
emitter-base breakdown, which would result in degradation of  
offset voltage and input bias current.  
As with all high speed amplifiers, parasitic capacitance and induc-  
tance around the amplifier can affect its dynamic response.  
Often, the input capacitance (due to the op amp itself, as well  
as the PC board) could have a significant effect. The feedback  
resistance, together with the input capacitance, may contribute to  
a loss of phase margin, thereby affecting the high frequency response,  
as shown in TPC 10. Furthermore, a capacitor (CF) in parallel  
with the feedback resistor can compensate for this phase loss.  
+V  
S
OUTPUT  
+IN  
Additionally, any resistance in series with the source will create  
a pole with the input capacitance (as well as dampen high fre-  
quency resonance due to package and board inductance and  
capacitance), the effect of which is shown in TPC 11.  
C
INTERNAL  
1.5pF  
–IN  
–V  
S
It must also be noted that increasing resistor values will increase  
the overall noise of the amplifier, and that reducing the feedback  
resistor value will increase the load on the output stage, thus  
increasing distortion (TPC 18).  
C
COMP  
C
C
Figure 6. Simplified Schematic  
Using the Disable Feature  
When Pin 8 (DISABLE) is approximately 2 V or more higher than  
Pin 1 (LOGIC REFERENCE), the part is enabled. When Pin 8  
is brought down to within about 1.5 V of Pin 1, the part is dis-  
abled. See the Specification tables for exact disable and enable  
voltage levels. If the disable feature is not going to be used, Pin 8  
can be tied to VS or a logic high source, and Pin 1 can be tied to  
ground or logic low. Alternatively, if Pin 1 and Pin 8 are not  
connected, the part will be in an enabled state.  
PCB LAYOUT CONSIDERATIONS  
As with all high speed op amps, achieving optimum performance  
from the AD8021 requires careful attention to PC board layout.  
Particular care must be exercised to minimize lead lengths  
between the ground leads of the bypass capacitors and between  
the compensation capacitor and the negative supply. Otherwise,  
lead inductance can influence the frequency response and even  
cause high frequency oscillations. Use of a multilayer printed  
circuit board, with an internal ground plane, will reduce ground  
noise and enable a compact component arrangement.  
THEORY OF OPERATION  
The AD8021 is fabricated on the second generation of Analog  
Devices’ proprietary High Voltage eXtra-Fast Complementary  
Bipolar (XFCB) process, which enables the construction of PNP  
and NPN transistors with similar fTs in the 3 GHz region. The  
transistors are dielectrically isolated from the substrate (and each  
other), eliminating the parasitic and latch-up problems caused  
by junction isolation. It also reduces nonlinear capacitance  
(a source of distortion) and allows a higher transistor fT for a  
given quiescent current. The supply current is trimmed, which  
results in less part-to-part variation of bandwidth, slew rate,  
distortion, and settling time.  
Due to the relatively high impedance of Pin 5 and low values of  
the compensation capacitor, a guard ring is recommended. The  
guard ring is simply a PC trace that encircles Pin 5 and is  
connected to the output, Pin 6, which is at the same potential as  
Pin 5. This serves two functions. It shields Pin 5 from any local  
circuit noise generated by surrounding circuitry. It also mini-  
mizes stray capacitance, which would tend to otherwise reduce  
the bandwidth. An example of a guard ring layout may be seen  
in Figure 7.  
Also shown in Figure 7, the compensation capacitor is located  
immediately adjacent to the edge of the AD8021 package, spanning  
Pin 4 and Pin 5. This capacitor must be a high quality surface-  
mount COG or NPO ceramic. The use of leaded capacitors is not  
recommended. The high frequency bypass capacitor(s) should  
be located immediately adjacent to the supplies, Pins 4 and 7.  
As shown in Figure 6, the AD8021 input stage consists of an NPN  
differential pair in which each transistor operates at 0.8 mA collec-  
tor current. This allows the input devices a high transconductance;  
thus, the AD8021 has a low input noise of 2.1 nV/Hz @ 50 kHz.  
The input stage drives a folded cascode that consists of a pair of  
PNP transistors. The folded cascode and current mirror provide  
a differential to single-ended conversion of signal current. This  
current then drives the high impedance node (Pin 5), where the  
CC external capacitor is connected. The output stage preserves  
To achieve the shortest possible lead length at the inverting  
input, the feedback resistor RF is located beneath the board and  
just spans the distance from the output, Pin 6, to inverting input  
Pin 2. The return node of resistor RG should be situated as  
closely as possible to the return node of the negative supply  
bypass capacitor connected to Pin 4.  
REV. D  
–16–  
AD8021  
(TOPVIEW)  
Table II. Summary of ADC Driver Performance,  
fC = 65 kHz, VOUT = 10 V p-p  
BYPASS  
LOGIC REFERENCE  
1
2
3
4
8
7
6
5
DISABLE  
CAPACITOR  
Parameter  
Measurement Unit  
+V  
–IN  
+IN  
S
Second Harmonic Distortion  
Third Harmonic Distortion  
THD  
SFDR  
–101.3  
–109.5  
–100.0  
100.3  
dB  
dB  
dB  
dB  
V
OUT  
GROUND  
PLANE  
–V  
S
C
COMP  
METAL  
+12V  
5V  
BYPASS  
CAPACITOR  
50ꢂ  
3
+
50ꢂ  
COMPENSATION  
CAPACITOR  
6
IN  
HI  
AD8021  
50ꢂ  
5
2
C
GROUND  
PLANE  
C
AD7665  
570kSPS  
R
750ꢂ  
F
–12V  
Figure 7. Recommended Location of Critical  
Components and Guard Ring  
ADC  
R
82.5ꢂ  
G
OPTIONAL C  
F
IN  
LO  
DRIVING 16-BIT ADCS  
Low noise and adjustable compensation make the AD8021  
especially suitable as a buffer/driver for high resolution analog-  
to-digital converters.  
Figure 9. Noninverting ADC Driver, Gain = 10, fC = 100 kHz  
As seen in TPC 15, the harmonic distortion is better than 90 dB at  
frequencies between 100 kHz and 1 MHz. This is a real advantage  
for complex waveforms that contain high frequency information,  
as the phase and gain integrity of the sampled waveform can be  
preserved throughout the conversion process. The increase in  
loop gain results in improved output regulation and lower noise  
when the converter input changes state during a sample. This  
advantage is particularly apparent when using 16-bit high resolu-  
tion ADCs with high sampling rates.  
Table III. Summary of ADC Driver Performance,  
fC = 100 kHz, VOUT = 20 V p-p  
Parameter  
Measurement Unit  
Second Harmonic Distortion  
Third Harmonic Distortion  
THD  
SFDR  
–92.6  
–86.4  
–84.4  
5.4  
dB  
dB  
dB  
dB  
Figure 8 shows a typical ADC driver configuration. The AD8021  
is in an inverting gain of –7.5, fC is 65 kHz, and its output voltage  
is 10 V p-p. The results are listed in Table II.  
Figure 9 shows another ADC driver connection. The circuit was  
tested with a noninverting gain of 10.1 and an output voltage of  
approximately 20 V p-p for optimum resolution and noise per-  
formance. No filtering was used. An FFT was performed using  
Analog Devices’ evaluation software for the AD7665 16-bit  
converter. The results are listed in Table III.  
+12V  
5V  
3
+
6
IN  
HI  
AD8021  
590ꢂ  
DIFFERENTIAL DRIVER  
5
2
C
C
The AD8021 is uniquely suited as a low noise differential driver  
for many ADCs, balanced lines, and other applications requiring  
differential drive. If pairs of internally compensated op amps are  
configured as inverter and follower, the noise gain of the inverter  
will be higher than that of the follower section, resulting in an  
imbalance in the frequency response (see Figure 11).  
10pF  
AD7665  
570kSPS  
R
200ꢂ  
G
–12V  
50ꢂ  
R
F
65kHz  
1.5kꢂ  
56pF  
IN  
LO  
A better solution takes advantage of the external compensation  
feature of the AD8021. By reducing the CCOMP value of the inverter,  
its bandwidth may be increased to match that of the follower,  
avoiding compromises in gain bandwidth and phase delay. The  
inverting and noninverting bandwidths can be closely matched  
using the compensation feature, thus minimizing distortion.  
Figure 8. Inverting ADC Driver, Gain = –7.5, fC = 65 kHz  
REV. D  
–17–  
AD8021  
Figure 10 illustrates an inverter-follower driver circuit operating  
at a gain of 2, using individually compensated AD8021s. The  
values of feedback and load resistors were selected to provide a  
total load of less than 1 k, and the equivalent resistances seen  
at each op amp’s inputs were matched to minimize offset volt-  
age and drift. Figure 12 is a plot of the resulting ac responses of  
driver halves.  
USING THE AD8021 IN ACTIVE FILTERS  
The low noise and high gain bandwidth of the AD8021 make it an  
excellent choice in active filter circuits. Most active filter litera-  
ture provides resistor and capacitor values for various filters but  
neglects the effect of the op amp’s finite bandwidth on filter  
performance; ideal filter response with infinite loop gain is implied.  
Unfortunately, real filters do not behave in this manner. Instead,  
they exhibit finite limits of attenuation, depending on the gain  
bandwidth of the active device. Good low-pass filter performance  
requires an op amp with high gain bandwidth for attenuation at  
high frequencies, and low noise and high dc gain for low frequency,  
pass-band performance.  
249ꢂ  
G = +2  
3
+
V
IN  
6
AD8021  
49.9ꢂ  
5
2
–V  
S
7pF  
Figure 13 shows the schematic of a 2-pole, low-pass active filter,  
and Table IV lists typical component values for filters having a  
Bessel-type response with gains of 2 and 5. Figure 14 is a network  
analyzer plot of this filter’s performance.  
499ꢂ  
499ꢂ  
V
OUT1  
1kꢂ  
232ꢂ  
G = –2  
3
2
+
6
V
AD8021  
OUT2  
5
C1  
1kꢂ  
+V  
S
–V  
S
5pF  
AD8021  
R1  
R2  
C2  
3
2
V
IN  
6
332ꢂ  
664ꢂ  
V
OUT  
5
Figure 10. Differential Amplifier  
C
C
–V  
S
12  
R
F
R
G
9
6
Figure 13. Schematic of a Second-Order Low-Pass  
Active Filter  
3
G = –2  
G = +2  
0
–3  
–6  
–9  
–12  
–15  
–18  
Table IV. Typical Component Values for Second-Order  
Low-Pass Filter of Figure 13  
Gain R1 () R2 () RF () RS () C1  
C2  
CC  
2
5
71.5  
44.2  
215  
365  
499  
90.9  
499  
365  
10 nF 10 nF 7 pF  
10 nF 10 nF 2 pF  
100k  
1M  
10M  
100M  
1G  
50  
40  
FREQUENCY – Hz  
Figure 11. AC Response of Two Identically  
Compensated High Speed Op Amps Configured  
for Gains of +2 and –2  
30  
20  
G = 5  
10  
12  
9
0
G = 2  
–10  
–20  
–30  
–40  
6
3
G = 2  
0
–3  
–50  
1k  
–6  
10k  
100k  
FREQUENCY – Hz  
1M  
10M  
–9  
–12  
–15  
–18  
Figure 14. Frequency Response of the Filter Circuit  
of Figure 13 for Two Different Gains  
100k  
1M  
10M  
100M  
1G  
FREQUENCY – Hz  
Figure12. AC Response of Two Dissimilarly  
Compensated AD8021 Op Amps (Figure 11) Configured  
for Gains of +2 and –2. Note the Close Gain Match.  
REV. D  
–18–  
AD8021  
20  
18  
16  
14  
12  
10  
8
Driving Capacitive Loads  
When the AD8021 drives a capacitive load, the high frequency  
response may show excessive peaking before it rolls off. Two  
techniques can be used to improve stability at high frequency and  
reduce peaking. The first technique is to increase the compensa-  
tion capacitor, CC, which reduces the peaking while maintaining  
gain flatness at low frequencies. The second technique is to add a  
resistor, RSNUB, in series between the output pin of the AD8021  
and the capacitive load, CL. Figure 15 shows the response of the  
AD8021 when both CC and RSNUB are used to reduce peaking.  
For a given CL, Figure 16 can be used to determine the value of  
RSNUB that maintains 2 dB of peaking in the frequency response.  
Note, however, that using RSNUB attenuates the low frequency  
output by a factor of RLOAD/(RSNUB + RLOAD).  
6
4
2
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
CAPACITIVE LOAD – pF  
18  
FET  
PROBE  
+V  
S
Figure 16. Relationship of RSNUB vs. CL for 2 dB  
Peaking at a Gain of +2  
16  
C
R
= 7pF;  
= 0  
R
C
SNUB  
SNUB  
5
6
49.9ꢂ  
14  
12  
10  
8
49.9ꢂ  
R
1kꢂ  
L
33pF  
C
R
= 8pF;  
C
–V  
S
= 0  
C
SNUB  
C
499ꢂ  
499ꢂ  
6
4
2
C
R
= 8pF;  
C
0
= 17.4ꢂ  
SNUB  
0.1  
1.0  
10  
FREQUENCY – MHz  
100  
1000  
Figure 15. Peaking vs. RSNUB and CC for CL = 33 pF  
REV. D  
–19–  
AD8021  
OUTLINE DIMENSIONS  
8-Lead Standard Small Outline Package [SOIC]  
(R-8)  
Dimensions shown in millimeters and (inches)  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45ꢁ  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8ꢁ  
0.51 (0.0201)  
0.31 (0.0122)  
01.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
3.00  
BSC  
8
5
4
4.90  
BSC  
3.00  
BSC  
1
PIN 1  
0.65 BSC  
1.10 MAX  
0.15  
0.00  
0.80  
0.60  
0.40  
8ꢁ  
0ꢁ  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187AA  
Revision History  
Location  
Page  
10/03—Data Sheet changed from REV. C to REV. D.  
Edits to SPECIFICATIONS heading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
7/03—Data Sheet changed from REV. B to REV. C.  
Deleted all references to evaluation board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Universal  
Replaced Figure 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
2/03—Data Sheet changed from REV. A to REV. B.  
Edits to Evaluation Board Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Edits to Figure 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6/02—Data Sheet changed from REV. 0 to REV. A.  
Edits to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
–20–  
REV. D  

相关型号:

AD8021ARMZ

Low Noise, High Speed Amplifier for 16-Bit Systems
ADI

AD8021ARMZ-REEL

Low Noise, High Speed Amplifier for 16-Bit Systems
ADI

AD8021ARMZ-REEL7

Low Noise, High Speed Amplifier for 16-Bit Systems
ADI

AD8021ARZ

Low Noise, High Speed Amplifier for 16-Bit Systems
ADI

AD8021ARZ-REEL

Low Noise, High Speed Amplifier for 16-Bit Systems
ADI

AD8021ARZ-REEL7

Low Noise, High Speed Amplifier for 16-Bit Systems
ADI

AD8021_06

Low Noise, High Speed Amplifier for 16-Bit Systems
ADI

AD8022

Dual High-Speed Low-Noise Op Amps
ADI

AD80220BBCZ

Dual-Channel, 14-Bit CCD Signal Processor and Precision Timing Core
ADI

AD8022AR

Dual High-Speed Low-Noise Op Amps
ADI

AD8022AR-EVAL

Dual High-Speed Low-Noise Op Amps
ADI

AD8022AR-REEL

Dual High Speed, Low Noise Op Amp
ADI