AD8044_04 [ADI]

Quad 150 MHz Rail-to-Rail Amplifier; 四核150 MHz轨到轨放大器
AD8044_04
型号: AD8044_04
厂家: ADI    ADI
描述:

Quad 150 MHz Rail-to-Rail Amplifier
四核150 MHz轨到轨放大器

放大器
文件: 总16页 (文件大小:451K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad 150 MHz  
Rail-to-Rail Amplifier  
a
AD8044  
CONNECTION DIAGRAM  
FEATURES  
14-Lead Plastic DIP and SOIC  
Single AD8041 and Dual AD8042 Also Available  
Fully Specified at +3 V, +5 V, and ؎5 V Supplies  
Output Swings to Within 25 mV of Either Rail  
Input Voltage Range Extends 200 mV Below Ground  
No Phase Reversal with Inputs 1 V Beyond Supplies  
Low Power of 2.75 mA/Amplifier  
High Speed and Fast Settling on +5 V  
150 MHz –3 dB Bandwidth (G = +1)  
170 V/s Slew Rate  
OUT A  
–IN A  
+IN A  
V+  
1
2
3
4
5
6
7
14 OUT D  
13 –IN D  
+IN D  
12  
V–  
11  
10  
9
AD8044  
+IN C  
–IN C  
OUT C  
+IN B  
–IN B  
OUT B  
8
40 ns Settling Time to 0.1%  
TOP VIEW  
Good Video Specifications (RL = 150 , G = +2)  
Gain Flatness of 0.1 dB to 12 MHz  
0.06% Differential Gain Error  
0.15؇ Differential Phase Error  
Low Distortion  
–68 dBc Total Harmonic @ 5 MHz  
Outstanding Load Drive Capability  
Drives 30 mA 0.5 V from Supply Rails  
The output voltage swing extends to within 25 mV of each rail,  
providing the maximum output dynamic range. Additionally, it  
features gain flatness of 0.1 dB to 12 MHz, while offering differ-  
ential gain and phase error of 0.04% and 0.22on a single +5 V  
supply. This makes the AD8044 useful for video electronics,  
such as cameras, video switchers, or any high speed portable  
equipment. The AD8044’s low distortion and fast settling make  
it ideal for active filter applications.  
APPLICATIONS  
Active Filters  
Video Switchers  
Distribution Amplifiers  
A/D Driver  
Professional Cameras  
CCD Imaging Systems  
Ultrasound Equipment (Multichannel)  
The AD8044 offers low power supply current of 13.1 mA max  
and can run on a single +3.3 V power supply. These features are  
ideally suited for portable and battery-powered applications  
where size and power are critical.  
The wide bandwidth of 150 MHz, along with 170 V/ms of slew  
rate on a single +5 V supply, make the AD8044 useful in many  
general-purpose, high speed applications where dual power  
supplies of up to ±6 V and single supplies from +3 V to +12 V  
are needed. The AD8044 is available in 14-lead PDIP and  
SOIC.  
PRODUCT DESCRIPTION  
The AD8044 is a quad, low power, voltage feedback, high  
speed amplifier designed to operate on +3 V, +5 V, or ±5 V  
supplies. It has true single-supply capability with an input volt-  
age range extending 200 mV below the negative rail and within  
1 V of the positive rail.  
18  
V
= +5V  
S
15  
12  
9
G = +1  
V
= +5V  
S
6
5V  
3
0
2.5V  
–3  
–6  
–9  
0V  
1V  
2s  
–12  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 1. Output Swing: Gain = –1, RL = 2 kW  
REV. B  
Figure 2. Frequency Response: Gain = +1, VS = +5 V  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
AD8044–SPECIFICATIONS(@ TA = +25؇C, VS = +5 V, RL = 2 kto 2.5 V, unless otherwise noted.)  
AD8044A  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
DYNAMIC PERFORMANCE  
–3 dB Small Signal Bandwidth, VO < 0.5 V p-p  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Full Power Response  
Settling Time to 1%  
G = +1  
80  
150  
12  
170  
26  
MHz  
MHz  
V/ms  
MHz  
ns  
G = +2, RL = 150 W  
G = –1, VO = 4 V Step  
VO = 2 V p-p  
140  
G = –1, VO = 2 V Step  
30  
Settling Time to 0.1%  
40  
ns  
NOISE/DISTORTION PERFORMANCE  
Total Harmonic Distortion  
Input Voltage Noise  
f
C = 5 MHz, VO = 2 V p-p, G = +2, RL = 1 kW  
–68  
16  
850  
0.04  
0.22  
–60  
dB  
f = 10 kHz  
f = 10 kHz  
G = +2, RL = 150 W to 2.5 V  
G = +2, RL = 150 W to 2.5 V  
f = 5 MHz, RL = 1 kW, G = +2  
nV/÷Hz  
fA/÷Hz  
%
Degrees  
dB  
Input Current Noise  
Differential Gain Error (NTSC)  
Differential Phase Error (NTSC)  
Crosstalk  
DC PERFORMANCE  
Input Offset Voltage  
1.0  
6
8
mV  
mV  
mV/C  
mA  
mA  
mA  
T
MIN–TMAX  
Offset Drift  
Input Bias Current  
8
2
4.5  
4.5  
1.2  
T
R
MIN–TMAX  
Input Offset Current  
Open-Loop Gain  
0.2  
94  
88  
L = 1 kW  
82  
80  
dB  
dB  
TMIN–TMAX  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
225  
1.6  
–0.2 to 4  
90  
kW  
pF  
V
VCM = 0 V to 3.5 V  
dB  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
Output Voltage Swing:  
Output Voltage Swing:  
Output Current  
R
R
R
T
L = 10 kW to 2.5 V  
L = 1 kW to 2.5 V  
L = 150 W to 2.5 V  
MIN–TMAX, VOUT = 0.5 V to 4.5 V  
0.03 to 4.975  
0.25 to 4.75 0.075 to 4.91  
V
V
V
mA  
mA  
mA  
pF  
0.55 to 4.4  
0.25 to 4.65  
30  
45  
85  
40  
Short Circuit Current  
Sourcing  
Sinking  
G = +2  
Capacitive Load Drive  
POWER SUPPLY  
Operating Range  
3
12  
V
Quiescent Current  
Power Supply Rejection Ratio  
11  
80  
13.1  
mA  
dB  
VS = 0, +5 V, ±1 V  
70  
OPERATING TEMPERATURE RANGE  
Specifications subject to change without notice.  
–40  
+85  
C  
REV. B  
–2–  
AD8044  
SPECIFICATIONS  
(@ TA = +25؇C, VS = +3 V, RL = 2 kto 1.5 V, unless otherwise noted.)  
AD8044A  
Typ  
Parameter  
Conditions  
Min  
Max  
Units  
DYNAMIC PERFORMANCE  
–3 dB Small Signal Bandwidth, VO < 0.5 V p-p  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Full Power Response  
Settling Time to 1%  
G = +1  
G = +2, RL = 150 W  
G = –1, VO = 2 V Step  
80  
135  
10  
150  
22  
MHz  
MHz  
V/ms  
MHz  
ns  
110  
V
O = 2 V p-p  
G = –1, VO = 2 V Step  
35  
Settling Time to 0.1%  
55  
ns  
NOISE/DISTORTION PERFORMANCE  
Total Harmonic Distortion  
Input Voltage Noise  
f
C = 5 MHz, VO = 2 V p-p, G = –1, RL = 100 W  
–48  
16  
600  
0.13  
0.3  
dB  
f = 10 kHz  
f = 10 kHz  
nV/÷Hz  
fA/÷Hz  
%
Degrees  
dB  
Input Current Noise  
Differential Gain Error (NTSC)  
Differential Phase Error (NTSC)  
Crosstalk  
G = +2, RL = 150 W to 1.5 V, Input VCM = 0.5 V  
G = +2, RL = 150 W to 1.5 V, Input VCM = 0.5 V  
f = 5 MHz, RL = 1 kW, G = +2  
–60  
DC PERFORMANCE  
Input Offset Voltage  
1.5  
5.5  
7.5  
mV  
mV  
mV/C  
mA  
mA  
mA  
T
MIN–TMAX  
Offset Drift  
Input Bias Current  
8
2
4.5  
4.5  
1.2  
T
R
MIN–TMAX  
Input Offset Current  
Open-Loop Gain  
0.2  
92  
88  
L = 1 kW  
80  
76  
dB  
dB  
TMIN–TMAX  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
225  
1.6  
–0.2 to 2  
90  
kW  
pF  
V
VCM = 0 V to 1.5 V  
dB  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
Output Voltage Swing:  
Output Voltage Swing:  
Output Current  
R
R
R
T
L = 10 kW to 1.5 V  
L = 1 kW to 1.5 V  
L = 150 W to 1.5 V  
MIN–TMAX, VOUT = 0.5 V to 2.5 V  
0.025 to 2.98  
0.17 to 2.82 0.06 to 2.93  
0.35 to 2.55 0.15 to 2.75  
V
V
V
mA  
mA  
mA  
pF  
25  
30  
50  
35  
Short Circuit Current  
Sourcing  
Sinking  
G = +2  
Capacitive Load Drive  
POWER SUPPLY  
Operating Range  
3
12  
V
Quiescent Current  
Power Supply Rejection Ratio  
10.5  
80  
12.5  
mA  
dB  
VS = 0, +3 V, +0.5 V  
70  
0
OPERATING TEMPERATURE RANGE  
Specifications subject to change without notice.  
+70  
C  
REV. B  
–3–  
(@ T = +25؇C, V = ؎5 V, R = 2 kto 0 V, unless otherwise noted.)  
AD8044–SPECIFICATIONS  
A
S
L
AD8044A  
Typ  
Parameter  
Conditions  
Min  
Max  
Units  
DYNAMIC PERFORMANCE  
–3 dB Small Signal Bandwidth, VO < 0.5 V p-p  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Full Power Response  
Settling Time to 0.1%  
G = +1  
G = +2, RL = 150 W  
G = –1, VO = 8 V Step  
85  
160  
15  
190  
29  
MHz  
MHz  
V/ms  
MHz  
ns  
150  
V
O = 2 V p-p  
G = –1, VO = 2 V Step  
30  
Settling Time to 0.01%  
40  
ns  
NOISE/DISTORTION PERFORMANCE  
Total Harmonic Distortion  
Input Voltage Noise  
f
C = 5 MHz, VO = 2 V p-p, G = +2  
–72  
16  
900  
0.06  
0.15  
–60  
dB  
f = 10 kHz  
f = 10 kHz  
G = +2, RL = 150 W  
G = +2, RL = 150 W  
f = 5 MHz, RL = 1 kW, G = +2  
nV/÷Hz  
fA/÷Hz  
%
Degrees  
dB  
Input Current Noise  
Differential Gain Error (NTSC)  
Differential Phase Error (NTSC)  
Crosstalk  
DC PERFORMANCE  
Input Offset Voltage  
1.4  
6.5  
9
mV  
mV  
mV/C  
mA  
mA  
mA  
T
MIN–TMAX  
Offset Drift  
Input Bias Current  
10  
2
4.5  
4.5  
1.2  
T
R
MIN–TMAX  
Input Offset Current  
Open-Loop Gain  
0.2  
96  
92  
L = 1 kW  
82  
76  
dB  
dB  
TMIN–TMAX  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
225  
1.6  
–5.2 to 4  
90  
kW  
pF  
V
VCM = –5 V to 3.5 V  
dB  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
Output Voltage Swing:  
Output Voltage Swing:  
Output Current  
R
R
R
T
L = 10 kW  
L = 1 kW  
L = 150 W  
MIN–TMAX, VOUT = –4.5 V to +4.5 V  
–4.97 to +4.97  
–4.85 to +4.85  
–4.5 to +4.5  
30  
60  
100  
40  
V
V
V
mA  
mA  
mA  
pF  
–4.6 to +4.6  
–4.0 to +3.8  
Short Circuit Current  
Sourcing  
Sinking  
G = +2  
Capacitive Load Drive  
POWER SUPPLY  
Operating Range  
3
12  
V
Quiescent Current  
Power Supply Rejection Ratio  
11.5  
80  
13.6  
mA  
dB  
VS = –5, +5 V, ±1 V  
70  
OPERATING TEMPERATURE RANGE  
Specifications subject to change without notice.  
–40  
+85  
C  
–4–  
REV. B  
AD8044  
ABSOLUTE MAXIMUM RATINGS1  
While the AD8044 is internally short-circuit protected, this may  
not be sufficient to guarantee that the maximum junction tem-  
perature (+150C) is not exceeded under all conditions. To  
ensure proper operation, it is necessary to observe the maximum  
power derating curves.  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +12.6 V  
Internal Power Dissipation2  
Plastic DIP Package (N) . . . . . . . . . . . . . . . . . . . 1.6 Watts  
Small Outline Package (R) . . . . . . . . . . . . . . . . . . 1.0 Watts  
Input Voltage (Common-Mode) . . . . . . . . . . . . . . ±VS ± 0.5 V  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . ±3.4 V  
Output Short Circuit Duration  
2.5  
T
= +150 C  
J
. . . . . . . . . . . . . . . . . . . . . . Observe Power Derating Curves  
Storage Temperature Range (N, R) . . . . . . . –65C to +125C  
Lead Temperature Range (Soldering 10 sec) . . . . . . . . +300C  
2.0  
14-LEAD PLASTIC DIP PACKAGE  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2Specification is for the device in free air:  
1.5  
1.0  
0.5  
14-LEAD SOIC  
14-Lead Plastic Package: qJA = 75C/W  
14-Lead SOIC Package: qJA = 120C/W  
MAXIMUM POWER DISSIPATION  
–50 –40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
AMBIENT TEMPERATURE (؇C)  
The maximum power that can be safely dissipated by the  
AD8044 is limited by the associated rise in junction tempera-  
ture. The maximum safe junction temperature for plastic encap-  
sulated devices is determined by the glass transition temperature  
of the plastic, approximately +150C. Exceeding this limit  
temporarily may cause a shift in parametric performance due to  
a change in the stresses exerted on the die by the package.  
Exceeding a junction temperature of +175C for an extended  
period can result in device failure.  
Figure 3. Maximum Power Dissipation vs. Temperature  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
AD8044AN  
AD8044AR-14  
–40C to +85C  
–40C to +85C  
–40C to +85C  
–40C to +85C  
–40C to +85C  
–40C to +85C  
–40C to +85C  
14-Lead PDIP  
14-Lead SOIC  
14-Lead SOIC 13" REEL R-14  
14-Lead SOIC 7" REEL  
14-Lead Plastic SOIC  
14-Lead SOIC 13" REEL R-14  
N-14  
R-14  
AD8044AR-14-REEL  
AD8044AR-14-REEL7  
AD8044ARZ-14*  
AD8044ARZ-14-REEL*  
AD8044ARZ-14-REEL7*  
R-14  
R-14  
14-Lead SOIC 7" REEL  
R-14  
*Z = Pb free part  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD8016 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–5–  
REV. B  
AD8044–Typical Performance Characteristics  
100  
95  
11  
V
= +5V  
S
A
10  
9
T
= +25؇C  
62 PARTS  
MEAN = 350V  
8
7
STD DEVIATION = 560V  
90  
6
5
4
3
2
1
85  
V
= +5V  
S
T = +25؇C  
80  
75  
70  
0
0
250  
500  
750  
1000  
1250  
1500  
1750 2000  
–3 –2.5 –2 –1.5 –1 –0.5  
V
0
OS  
0.5  
1
1.5  
2
2.5  
3
LOAD RESISTANCE ()  
(mV)  
Figure 4. Typical Distribution of VOS  
Figure 7. Open-Loop Gain vs. RL to +2.5 V  
100  
97  
15  
V
= +5V  
= 1kTO +2.5V  
S
L
MEAN = 7.9V/؇C  
STD DEV = 2.3V/؇C  
SAMPLE SIZE = 62  
R
12  
9
V
= +5  
S
94  
6
3
0
91  
88  
85  
2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0  
DRIFT (V/؇C)  
–40  
–20  
0
20  
40  
60  
80  
100  
V
OS  
TEMPERATURE (؇C)  
Figure 5. VOS Drift Over –40C to +85C  
Figure 8. Open-Loop Gain vs. Temperature  
2.4  
2.2  
100  
V
= +5V  
S
V
= +5V  
90  
80  
70  
60  
50  
40  
30  
R = 500  
L
S
R
= 50⍀  
L
2.0  
1.8  
0
20  
10  
0
–45 –35 –25 –15 –5  
5
15 25 35 45 55 65 75 85  
TEMPERATURE (؇C)  
0
0.15 0.35 0.75 1.25 1.75 2.25 2.75 3.25 3.75 4.45 4.65 4.85  
OUTPUT VOLTAGE (V)  
5
Figure 6. IB vs. Temperature  
Figure 9. Open-Loop Gain vs. Output Voltage  
REV. B  
–6–  
AD8044  
300  
100  
30  
0.03  
0.02  
V
= +5V  
S
G = +2  
= 150  
0.01  
0.00  
R
L
–0.01  
–0.02  
–0.03  
–0.04  
0
10  
10  
20  
20  
30  
30  
40  
40  
50  
50  
60 70  
80  
90 100  
10  
0.20  
V
= +5V  
0.15  
0.10  
0.05  
0.00  
S
G = +2  
= 150  
R
L
3
1
–0.05  
–0.10  
–0.15  
–0.20  
10  
100  
1M  
10M  
1k  
10k  
100k  
0
60 70  
80  
90 100  
FREQUENCY (Hz)  
MODULATING RAMP LEVEL (IRE)  
Figure 10. Input Voltage Noise vs. Frequency  
Figure 13. Differential Gain and Phase Errors  
–30  
V
R
A
= +5V,  
= 100  
= +1  
S
L
V
V
= 2V p-p  
O
0.3  
0.2  
0.1  
V
R
A
= +5V,  
= 100⍀  
= +2  
S
L
V
–40  
–50  
–60  
–70  
–80  
V
= +3V,  
= 100⍀  
= –1  
S
R
A
L
V
11.6MHz  
0.0  
–0.1  
–0.2  
V
R
R
= +5V  
S
F
L
= 200  
–0.3  
–0.4  
–0.5  
–0.6  
= 150TO 2.5V  
V
R
A
= +5V,  
= 1k  
= +2  
V
R
A
= +5V,  
= 1k⍀  
= +1  
S
L
V
S
L
V
–90  
G = +2  
V = 0.2V p-p  
i
–100  
1
2
3
4
5
6
7
8 9 10  
FUNDAMENTAL FREQUENCY (MHz)  
1M  
10M  
FREQUENCY (Hz)  
100M  
Figure 11. Total Harmonic Distortion  
Figure 14. 0.1 dB Gain Flatness  
–30  
80  
–40  
–50  
–60  
–70  
V
= +5V  
= 2k  
= 5pF  
10MHz  
S
L
L
70  
60  
R
C
50  
40  
–80  
–90  
5MHz  
1MHz  
GAIN  
30  
20  
10  
180  
–100  
–110  
135  
90  
V
= +5V  
PHASE  
S
L
R
= 2kTO 2.5V  
–120  
–130  
G = +2  
0
45  
0
–10  
–140  
80MHz  
100M  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
–20  
OUTPUT VOLTAGE (V p-p)  
10M  
1M  
FREQUENCY (Hz)  
30k  
100k  
Figure 12. Worst Harmonic vs. Output Voltage  
Figure 15. Open-Loop Gain and Phase Margin  
vs. Frequency  
–7–  
REV. B  
AD8044  
4
3
2
70  
+85؇C  
+25؇C  
–40؇C  
G = –1  
= 2k  
V
= +5V  
R
S
L
L
L
R
C
= 2kTO 2.5V  
= 5pF  
60  
50  
40  
30  
20  
V
= +3V, 0.1%  
S
G = +1  
V
V
= +5V, 0.1% AND  
S
S
V
= 0.2V p-p  
O
= ؎5V, 0.1%  
1
0
–1  
–2  
–3  
–4  
V
= +3V, 1%  
S
V
V
= +5V, 1% AND  
= ؎5V, 1%  
S
S
10  
0
–5  
1M  
10M  
0.5  
1
1.5  
2
100M  
INPUT STEPS (V p-p)  
FREQUENCY (Hz)  
Figure 19. Settling Time vs. Input Step  
Figure 16. Closed-Loop Frequency Response  
vs. Temperature  
6
0
G = +1  
5
4
+3V  
+5V  
؎5V  
–10  
–20  
–30  
R
C
= 2k⍀  
L
L
O
V
= ؎5V  
= 5pF  
= 0.2V p-p  
S
V
3
2
V
= +3V  
S
1
0
–40  
–50  
–60  
؎5V  
–1  
–2  
–3  
+3V  
+5V  
–70  
–80  
–4  
100k  
1M  
10M  
100M  
0.03  
0.1  
1
10  
100  
500  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
Figure 20. CMRR vs. Frequency  
Figure 17. Closed-Loop Frequency Response vs. Supply  
1.00  
0.875  
0.750  
0.625  
0.500  
R
= 50  
BT  
100  
10  
1
V
= +5V  
+5V –V  
(+125؇C)  
S
OH  
G = +1  
= +5V  
V
S
+5V –V  
(+25؇C)  
OH  
R
BT  
V
OUT  
+5V –V  
(–55؇C)  
OH  
0.375  
0.250  
0.125  
R
= 0⍀  
0.1  
BT  
V
(+125؇C)  
OL  
V
(+25؇C)  
OL  
0.01  
V
(–55؇C)  
OL  
0.00  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
0.03  
0.1  
1
10  
100  
500  
FREQUENCY (MHz)  
LOAD CURRENT (mA)  
Figure 21. Output Saturation Voltage vs. Load Current  
Figure 18. Output Resistance vs. Frequency  
–8–  
REV. B  
AD8044  
60  
50  
40  
12.0  
11.5  
11.0  
G = +2, R = 0,  
S
G = +3, R = 0,  
O
S
V
= ؎5V  
S
V
= 100mV STEP  
O
V
= 150mV STEP  
R
= R = 750⍀  
F
G
G = +1, R = 20,  
S
V
= +5V  
= +3V  
S
V
= 100mV STEP  
O
R
R
= 750⍀  
= 375⍀  
F
G
R
= 0, R =  
G
F
G = +1, R = 40,  
O
S
V
S
V
= 100mV STEP  
R
R
F
30  
20  
10  
0
G
10.5  
10.0  
9.5  
R
= 0, R =  
G
F
+2.5V  
V
OUT  
V
IN  
R
S
–2.5V  
50⍀  
0
50  
100  
150  
200  
250  
9.0  
LOAD CAPACITANCE (pF)  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (؇C)  
Figure 25. % Overshoot vs. Capacitive Load  
Figure 22. Supply Current vs. Temperature  
3
20  
10  
G = +2  
2
1
R
= 150TO 2.5V  
G = +2  
L
V
= +5V  
S
R
= 200⍀  
F
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
G = +5  
–PSRR  
+PSRR  
–1  
–2  
–3  
–4  
V
R
R
= +5V  
= 5kTO 2.5V  
= 2k⍀  
S
L
F
–5  
–6  
G = +10  
–7  
10M  
FREQUENCY (Hz)  
100M  
500M  
100k  
1M  
0.01  
0.1  
1
10  
100  
500  
FREQUENCY (MHz)  
Figure 23. PSRR vs. Frequency  
Figure 26. Frequency Response vs. Closed-Loop Gain  
10  
9
–10  
V
V
= ؎5V  
S
IN  
V
= ؎5V  
= 2k⍀  
S
L
–20  
–30  
= 1V p-p  
R
G = +2  
8
R
= 1k⍀  
F
–40  
–50  
7
R
= 100  
6
L
–60  
–70  
–80  
5
4
R
= 1k⍀  
L
3
–90  
2
1
0
–100  
–110  
0.1  
1
10  
FREQUENCY (MHz)  
100  
400  
0.1  
1
10  
100  
500  
FREQUENCY (MHz)  
Figure 24. Output Voltage Swing vs. Frequency  
Figure 27. Crosstalk (Output to Output) vs. Frequency  
–9–  
REV. B  
AD8044  
5V  
4.656V  
2.6V  
V
= +5V  
S
G = +1  
V
R
C
= +5V  
= 150TO +2.5V  
= 5pF  
S
R
C
= 2k  
= 5pF  
L
L
L
2.55V  
L
G = –1  
2.5V  
2.5V  
2.45V  
2.4V  
0.211V  
50mV  
40ns  
100s  
500mV  
0V  
Figure 28a. Output Swing vs. Load Reference Voltage,  
VS = +5 V, G = –1  
Figure 30. 100 mV Step Response, VS = +5 V, G = +1  
5V  
3V  
4.309V  
+2.920V  
V
= 3V p-p  
= 2k  
= 5pF  
IN  
V
R
C
= +5V  
= 150TO GND  
= 5pF  
S
L
L
2.5V  
2V  
R
C
V
L
L
= +3V  
S
G = –1  
G = –1  
2.5V  
1.5V  
1V  
0.5V  
0V  
+10mV  
+22mV  
500mV  
100s  
500mV  
200s  
Figure 28b. Output Swing vs. Load Reference Voltage,  
VS = +5 V, G = –1  
Figure 31. Output Swing, VS = +3 V  
1.60V  
4.5V  
V
= 0.1V p-p  
I
N
L
L
1.58V  
1.56V  
V
= +5V  
R
C
V
=
2k  
S
G = +2  
=
5pF  
R
= 2k  
= 1V p-p  
= 5pF  
L
= +3V  
3.5V  
2.5V  
1.5V  
S
1.54V  
1.52V  
1.50V  
V
IN  
G = +1  
C
L
1.48V  
1.46V  
1.44V  
1.42V  
1.40V  
20mV  
20ns  
500mV  
20ns  
0.5V  
Figure 29. One Volt Step Response, VS = +5 V, G = +2  
Figure 32. Step Response, G = +1, VIN = 100 mV  
–10–  
REV. B  
AD8044  
Overdrive Recovery  
Driving Capacitance Loads  
Overdrive of an amplifier occurs when the output and/or input  
range are exceeded. The amplifier must recover from this over-  
drive condition. As shown in Figure 33, the AD8044 recovers  
within 50 ns from negative overdrive and within 25 ns from  
positive overdrive.  
The capacitive load drive of the AD8044 can be increased by  
adding a low valued resistor in series with the load. Figure 35  
shows the effects of a series resistor on capacitive drive for vary-  
ing voltage gains. As the closed-loop gain is increased, the larger  
phase margin allows for larger capacitive loads with less over-  
shoot. Adding a series resistor with lower closed-loop gains  
accomplishes this same effect. For large capacitive loads, the  
frequency response of the amplifier will be dominated by the  
roll-off of the series resistor and capacitive load.  
V
= +5V  
= +2  
= 2k  
= 2k⍀  
S
A
R
R
V
F
L
V
OUT  
1V/DIV  
V
CC  
I1  
I10  
I2  
I3  
I9  
Q50  
Q39  
V
Q25  
Q51  
IN  
R26  
Q4  
R39  
Q5  
2V/DIV  
Q36  
V
I5  
Q23  
Q40  
V
EE  
R15 R2  
Q22  
R27  
R23  
Q21  
V
EE  
C3  
Q31  
Q7  
V
P
Q17  
Q13  
IN  
OUT  
Q27  
V
N
IN  
C9  
SIN  
SIP  
2V  
1V  
50ns  
Q2  
Q11  
R3  
Q8  
Q3  
Q24  
I7  
Q47  
I8  
CC  
Figure 33. Overdrive Recovery, VS + 5 V, VIN = 4 V Step  
I11  
V
C7  
R5  
R21  
Circuit Description  
V
EE  
The AD8044 is fabricated on Analog Devices’ proprietary  
eXtra-Fast Complementary Bipolar (XFCB) process which  
enables the construction of PNP and NPN transistors with  
similar fTs in the 2 GHz–4 GHz region. The process is dielectri-  
cally isolated to eliminate the parasitic and latch-up problems  
caused by junction isolation. These features allow the construc-  
tion of high frequency, low distortion amplifiers with low supply  
currents. This design uses a differential output input stage to  
maximize bandwidth and headroom (see Figure 34). The  
smaller signal swings required on the first stage outputs (nodes  
S1P, S1N) reduce the effect of nonlinear currents due to  
junction capacitances and improve the distortion performance.  
With this design harmonic distortion of better than –85 dB  
@ 1 MHz into 100 W with VOUT = 2 V p-p (Gain = +2) on a  
single 5 volt supply is achieved.  
Figure 34. AD8044 Simplified Schematic  
The AD8044’s rail-to-rail output range is provided by a comple-  
mentary common-emitter output stage. High output drive capa-  
bility is provided by injecting all output stage predriver currents  
directly into the bases of the output devices Q8 and Q36. Bias-  
ing of Q8 and Q36 is accomplished by I8 and I5, along with a  
common-mode feedback loop (not shown). This circuit topol-  
ogy allows the AD8044 to drive 50 mA of output current with  
the outputs within 0.5 V of the supply rails.  
On the input side, the device can handle voltages from –0.2 V  
below the negative rail to within 1.2 V of the positive rail. Ex-  
ceeding these values will not cause phase reversal; however, the  
input ESD devices will begin to conduct if the input voltages  
exceed the rails by greater than 0.5 V.  
–11–  
REV. B  
AD8044  
+5V  
1000  
GRAPHICS  
IC  
V
= +5V  
S
R
< 30% OVERSHOOT  
= 10  
= 0  
S
R
75  
S
R
G
75⍀  
100  
B
75⍀  
75⍀  
75⍀  
R
R
F
G
R
S
V
RGB  
IN  
+3V OR +5V  
75⍀  
V
OUT  
MONITOR #1  
C
100mV STEP  
L
AD8044  
10  
1
10F  
0.1F  
75⍀  
2
3
4
5
6
A
(V/V)  
CL  
V+  
A
B
C
Figure 35. Capacitive Load Drive vs. Closed-Loop Gain  
1k⍀  
APPLICATIONS  
RGB Buffer  
The AD8044 can provide buffering of RGB signals that include  
ground while operating from a single +3 V or +5 V supply.  
1k⍀  
1k⍀  
75⍀  
75⍀  
AD8044  
75⍀  
When driving two monitors from the same RGB video source it  
is necessary to provide an additional driver for one of the moni-  
tors to prevent the double termination situation that the second  
monitor presents. This has usually required a dual-supply op  
amp because the level of the input signal from the video driver  
goes all the way to ground during horizontal blanking. In single-  
supply systems it can be a major inconvenience and expense to  
add an additional negative supply.  
1k⍀  
75⍀  
AD8044  
V–  
75⍀  
RGB  
MONITOR #2  
1k⍀  
A single AD8044 can provide the necessary drive capability and  
yet does not require a negative supply in this application. Fig-  
ure 36 is a schematic that uses three amplifiers out of a single  
AD8044 to provide buffering for a second monitor.  
1k⍀  
Figure 36. Single Supply RGB Video Driver  
The source of the RGB signals is shown to be from a set of three  
current output DACs that are within a single-supply graphics  
IC. This is typically the situation in most PCs and workstations  
that may use either a standalone triple DAC or DACs that are  
integrated into a larger graphics chip.  
Figure 37 is an oscilloscope photo of the circuit in Figure 36  
operating from a +3 V supply and driven by the Blue signal of a  
color bar pattern. Note that the input and output are at ground  
during the horizontal blanking interval. The RGB signals are  
specified to output a maximum of 700 mV peak. The output of  
the AD8044 is 1.4 V with the termination resistors providing a  
divide-by-two.  
During horizontal blanking, the current output from the DACs  
is turned off and the RGB outputs are pulled to ground by the  
termination resistors. If voltage sources were used for the RGB  
signals, then the termination resistors near the graphics IC  
would be in series and the rest of the circuit would remain the  
same. This is because a voltage source is an ac short circuit, so a  
series resistor is required to make the drive end of the line see  
75 W to ac ground. On the other hand, a current source has a  
very high output impedance, so a shunt resistor is required to  
make the drive end of the line see 75 W to ground. In either  
case, the monitor terminates its end of the line with 75 W.  
500mV  
5s  
100  
90  
V
IN  
GND  
GND  
V
OUT  
10  
0%  
The circuit in Figure 36 shows minimum signal degradation  
when using a single-supply for the AD8044. The circuit per-  
forms equally well on either a +3 V or +5 V supply.  
500mV  
Figure 37. +3 V, RGB Buffer  
–12–  
REV. B  
AD8044  
Active Filters  
Layout Considerations  
Active filters at higher frequencies require wider bandwidth op  
amps to work effectively. Excessive phase shift produced by  
lower frequency op amps can significantly impact active filter  
performance.  
The specified high speed performance of the AD8044 requires  
careful attention to board layout and component selection.  
Proper RF design techniques and low-pass parasitic component  
selection are necessary.  
Figure 38 shows an example of a 2 MHz biquad bandwidth  
filter that uses three op amps of an AD8044 package. Such  
circuits are sometimes used in medical ultrasound systems to  
lower the noise bandwidth of the analog signal before A/D  
conversion.  
The PCB should have a ground plane covering all unused por-  
tions of the component side of the board to provide a low im-  
pedance path. The ground plane should be removed from the  
area near the input pins to reduce the stray capacitance.  
Chip capacitors should be used for the supply bypassing. One  
end should be connected to the ground plane and the other  
within 1/8 inch of each power pin. An additional large (0.47 mF  
– 10 mF) tantalum electrolytic capacitor should be connected in  
parallel, but not necessarily so close, to supply current for fast,  
large signal changes at the output.  
R6  
1k  
C1  
50pF  
R2  
2k⍀  
R4  
2k⍀  
C2  
R1  
50pF  
The feedback resistor should be located close to the inverting  
input pin in order to keep the stray capacitance at this node to a  
minimum. Capacitance variations of less than 1 pF at the invert-  
ing input will significantly affect high speed performance.  
3k⍀  
R3  
2
3
V
2k⍀  
IN  
R5  
1
6
5
2k⍀  
7
9
8
V
OUT  
AD8044  
10  
AD8044  
AD8044  
Stripline design techniques should be used for long signal traces  
(greater than about 1 inch). These should be designed with a  
characteristic impedance of 50 W or 75 W and properly termi-  
nated at each end.  
Figure 38. 2 MHz Biquad Band-pass Filter Using AD8044  
The frequency response of the circuit is shown in Figure 39.  
0
–10  
–20  
–30  
–40  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 39. Frequency Response of 2 MHz Band-pass  
Biquad Filter  
–13–  
REV. B  
AD8044  
OUTLINE DIMENSIONS  
14-Lead Plastic Dual In-Line Package [PDIP]  
(N-14)  
Dimensions shown in inches and (millimeters)  
0.685 (17.40)  
0.665 (16.89)  
0.645 (16.38)  
0.295 (7.49)  
0.285 (7.24)  
0.275 (6.99)  
14  
1
8
7
0.100 (2.54)  
BSC  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.015 (0.38)  
MIN  
0.150 (3.81)  
0.135 (3.43)  
0.120 (3.05)  
0.180 (4.57)  
MAX  
0.150 (3.81)  
0.130 (3.30)  
0.110 (2.79)  
SEATING  
PLANE  
0.015 (0.38)  
0.010 (0.25)  
0.008 (0.20)  
0.022 (0.56) 0.060 (1.52)  
0.018 (0.46) 0.050 (1.27)  
0.014 (0.36) 0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MO-095-AB  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
14-Lead Standard Small Outline Package [SOIC]  
Narrow Body  
(R-14)  
Dimensions shown in millimeters and (inches)  
8.75 (0.3445)  
8.55 (0.3366)  
14  
1
8
7
4.00 (0.1575)  
3.80 (0.1496)  
6.20 (0.2441)  
5.80 (0.2283)  
1.27 (0.0500)  
BSC  
0.50 (0.0197)  
0.25 (0.0098)  
1.75 (0.0689)  
1.35 (0.0531)  
؋
 45؇  
0.25 (0.0098)  
0.10 (0.0039)  
8؇  
0؇  
0.51 (0.0201)  
0.31 (0.0122)  
SEATING  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
COPLANARITY  
0.10  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
–14–  
REV. B  
AD8044  
Revision History  
Location  
Page  
8/04—Data Sheet changed from Rev. A to Rev. B  
Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
–15–  
REV. B  
–16–  

相关型号:

AD8045

3 nV/Hz Ultralow Distortion, High Speed Op Amp
ADI

AD8045ACP-R2

3 nV/Hz Ultralow Distortion, High Speed Op Amp
ADI

AD8045ACP-REEL

3 nV/Hz Ultralow Distortion, High Speed Op Amp
ADI

AD8045ACP-REEL7

3 nV/Hz Ultralow Distortion, High Speed Op Amp
ADI

AD8045ACPZ-R2

3 nV/Hz Ultralow Distortion, High Speed Op Amp
ADI

AD8045ACPZ-REEL

3 nV/Hz Ultralow Distortion, High Speed Op Amp
ADI

AD8045ACPZ-REEL7

3 nV/Hz Ultralow Distortion, High Speed Op Amp
ADI

AD8045ARD

3 nV/Hz Ultralow Distortion, High Speed Op Amp
ADI

AD8045ARD-REEL

3 nV/Hz Ultralow Distortion, High Speed Op Amp
ADI

AD8045ARD-REEL7

3 nV/Hz Ultralow Distortion, High Speed Op Amp
ADI

AD8045ARDZ

3 nV/Hz Ultralow Distortion, High Speed Op Amp
ADI

AD8045ARDZ-REEL

3 nV/Hz Ultralow Distortion, High Speed Op Amp
ADI