AD8047AR [ADI]

250 MHz, General Purpose Voltage Feedback Op Amps; 250兆赫,通用电压反馈运算放大器
AD8047AR
型号: AD8047AR
厂家: ADI    ADI
描述:

250 MHz, General Purpose Voltage Feedback Op Amps
250兆赫,通用电压反馈运算放大器

运算放大器 放大器电路 光电二极管
文件: 总16页 (文件大小:480K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
250 MHz, General Purpose  
Voltage Feedback Op Amps  
a
AD8047/AD8048  
FEATURES  
Wide Bandwidth  
Small Signal  
FUNCTIONAL BLOCK DIAGRAM  
8-Pin Plastic Mini-DIP (N), Cerdip (Q)  
and SO (R) Packages  
AD8047, G = +1 AD8048, G = +2  
250 MHz  
260 MHz  
160 MHz  
Large Signal (2 V p-p) 130 MHz  
5.8 mA Typical Supply Current  
Low Distortion, (SFDR) Low Noise  
–66 dBc typ @ 5 MHz  
–54 dBc typ @ 20 MHz  
5.2 nV/Hz (AD8047), 3.8 nV/Hz (AD8048) Noise  
Drives 50 pF Capacitive Load  
8
7
6
5
1
2
3
4
NC  
–INPUT  
+INPUT  
NC  
+V  
S
OUTPUT  
NC  
AD8047/48  
–V  
S
(Top View)  
High Speed  
NC = NO CONNECT  
Slew Rate 750 V/µs (AD8047), 1000 V/µs (AD8048)  
Settling 30 ns to 0.01%, 2 V Step  
±3 V to ±6 V Supply Operation  
APPLICATIONS  
Low Power ADC Input Driver  
Differential Amplifiers  
IF/RF Amplifiers  
Pulse Amplifiers  
Professional Video  
DAC Current to Voltage Conversion  
Baseband and Video Communications  
Pin Diode Receivers  
The AD8047 and AD8048’s low distortion and cap load drive  
make the AD8047/AD8048 ideal for buffering high speed  
ADCs. They are suitable for 12 bit/10 MSPS or 8 bit/60 MSPS  
ADCs. Additionally, the balanced high impedance inputs of the  
voltage feedback architecture allow maximum flexibility when  
designing active filters.  
The AD8047 and AD8048 are offered in industrial (–40°C to  
+85°C) temperature ranges and are available in 8-pin plastic  
DIP and SOIC packages.  
Active Filters/Integrators  
PRODUCT DESCRIPTION  
The AD8047 and AD8048 are very high speed and wide band-  
width amplifiers. The AD8047 is unity gain stable. The  
AD8048 is stable at gains of two or greater. The AD8047 and  
AD8048, which utilize a voltage feedback architecture, meet the  
requirements of many applications that previously depended on  
current feedback amplifiers.  
A proprietary circuit has produced an amplifier that combines  
many of the best characteristics of both current feedback and  
voltage feedback amplifiers. For the power (6.6 mA max) the  
AD8047 and AD8048 exhibit fast and accurate pulse response  
(30 ns to 0.01%) as well as extremely wide small signal and  
large signal bandwidth and low distortion. The AD8047  
achieves –54 dBc distortion at 20 MHz and 250 MHz small sig-  
nal and 130 MHz large signal bandwidths.  
1V  
5ns  
Figure 1. AD8047 Large Signal Transient Response,  
VO = 4 V p-p, G = +1  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
© Analog Devices, Inc., 1995  
One Technology Way, P.O. Box 9106, Norwood. MA 02062-9106, U.S.A.  
Tel: 617/329-4700  
Fax: 617/326-8703  
AD8047/AD8048–SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS(±VS = ±5 V; RLOAD = 100 ; AV = 1 (AD8047); AV = 2 (AD8048), unless otherwise noted)  
AD8047A  
AD8048A  
Parameter  
Conditions  
Min Typ Max Min Typ Max Units  
DYNAMIC PERFORMANCE  
Bandwidth (–3 dB)  
Small Signal  
V
OUT 0.4 V p-p  
VOUT = 2 V p-p  
OUT = 300 mV p-p  
8047, RF = 0 ; 8048, RF = 200 Ω  
OUT = 4 V Step  
OUT = 0.5 V Step  
OUT = 4 V Step  
170  
100  
250  
130  
180 260  
135 160  
MHz  
MHz  
Large Signal1  
Bandwidth for 0.1 dB Flatness  
V
35  
50  
740 1000  
1.2  
MHz  
V/µs  
ns  
Slew Rate, Average +/–  
Rise/Fall Time  
V
V
V
475  
750  
1.1  
4.3  
3.2  
ns  
Settling Time  
To 0.1%  
To 0.01%  
V
OUT = 2 V Step  
13  
30  
13  
30  
ns  
ns  
VOUT = 2 V Step  
HARMONIC/NOISE PERFORMANCE  
2nd Harmonic Distortion  
2 V p-p; 20 MHz  
RL = 1 kΩ  
2 V p-p; 20 MHz  
RL = 1 kΩ  
f = 100 kHz  
f = 100 kHz  
–54  
–64  
–60  
–61  
5.2  
–48  
–60  
–56  
–65  
3.8  
dBc  
dBc  
dBc  
dBc  
nV/Hz  
pA/Hz  
3rd Harmonic Distortion  
Input Voltage Noise  
Input Current Noise  
1.0  
1.0  
Average Equivalent Integrated  
Input Noise Voltage  
Differential Gain Error (3.58 MHz)  
Differential Phase Error (3.58 MHz)  
0.1 MHz to 10 MHz  
RL = 150 , G = +2  
RL = 150 , G = +2  
16  
0.02  
0.03  
11  
0.01  
0.02  
µV rms  
%
Degree  
DC PERFORMANCE2, RL = 150 Ω  
Input Offset Voltage3  
1
3
4
1
3
4
mV  
mV  
µV/°C  
µA  
µA  
µA  
T
MIN–TMAX  
Offset Voltage Drift  
Input Bias Current  
±5  
1
±5  
1
3.5  
6.5  
2
3.5  
6.5  
2
T
MIN–TMAX  
MIN–TMAX  
Input Offset Current  
0.5  
0.5  
T
3
3
µA  
Common-Mode Rejection Ratio  
Open-Loop Gain  
V
V
CM = ±2.5 V  
OUT = ±2.5 V  
74  
58  
54  
80  
62  
74  
65  
56  
80  
68  
dB  
dB  
dB  
TMIN–TMAX  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
500  
1.5  
±3.4  
500  
1.5  
±3.4  
kΩ  
pF  
V
Input Common-Mode Voltage Range  
OUTPUT CHARACTERISTICS  
Output Voltage Range, RL = 150 Ω  
Output Current  
Output Resistance  
Short Circuit Current  
±2.8 ±3.0  
±2.8 ±3.0  
V
mA  
50  
0.2  
130  
50  
0.2  
130  
mA  
POWER SUPPLY  
Operating Range  
Quiescent Current  
±3.0 ±5.0 ±6.0 ±3.0 ±5.0 ±6.0  
V
5.8 6.6  
7.5  
5.9 6.6  
7.5  
mA  
mA  
dB  
TMIN–TMAX  
Power Supply Rejection Ratio  
72  
78  
72  
78  
NOTES  
1See Max Ratings and Theory of Operation sections of data sheet.  
2Measured at AV = 50.  
3Measured with respect to the inverting input.  
Specifications subject to change without notice.  
REV. 0  
–2–  
AD8047/AD8048  
MAXIMUM POWER DISSIPATION  
ABSOLUTE MAXIMUM RATINGS1  
The maximum power that can be safely dissipated by these de-  
vices is limited by the associated rise in junction temperature.  
The maximum safe junction temperature for plastic encapsu-  
lated devices is determined by the glass transition temperature  
of the plastic, approximately +150°C. Exceeding this limit tem-  
porarily may cause a shift in parametric performance due to a  
change in the stresses exerted on the die by the package. Exceed-  
ing a junction temperature of +175°C for an extended period can  
result in device failure.  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.6 V  
Voltage Swing × Bandwidth Product (AD8047) . . . 180 V – MHz  
(AD8048) . . . 250 V– MHz  
Internal Power Dissipation2  
Plastic Package (N) . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Watts  
Small Outline Package (R) . . . . . . . . . . . . . . . . . . . 0.9 Watts  
Input Voltage (Common Mode) . . . . . . . . . . . . . . . . . . . . ±VS  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . ±1.2 V  
Output Short Circuit Duration  
. . . . . . . . . . . . . . . . . . . . . . Observe Power Derating Curves  
Storage Temperature Range (N, R) . . . . . . . .65°C to +125°C  
Operating Temperature Range (A Grade) . . . 40°C to +85°C  
Lead Temperature Range (Soldering 10 sec) . . . . . . . . +300°C  
While the AD8047 and AD8048 are internally short circuit pro-  
tected, this may not be sufficient to guarantee that the maxi-  
mum junction temperature (+150°C) is not exceeded under all  
conditions. To ensure proper operation, it is necessary to ob-  
serve the maximum power derating curves.  
NOTES  
1Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. This is a stress rating only, and functional  
operation of the device at these or any other conditions above those indicated in the  
operational section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2Specification is for device in free air:  
2.0  
T
= +150°C  
J
8-PIN MINI-DIP PACKAGE  
1.5  
1.0  
0.5  
8-Pin Plastic DIP Package: θJA  
= 90°C/Watt  
8-Pin SOIC Package: θJA = 140°C/Watt  
METALIZATION PHOTOS  
Dimensions shown in inches and (mm).  
Connect Substrate to –VS.  
8-PIN SOIC PACKAGE  
AD8047  
+V  
S
0
–50 –40 –30 –20 –10  
0 10 20 30 40 50 60 70 80 90  
AMBIENT TEMPERATURE –  
°C  
Figure 2. Plot of Maximum Power Dissipation vs.  
Temperature  
0.045  
(1.14)  
V
OUT  
ORDERING GUIDE  
–IN  
Temperature  
Range  
Package  
Description Option*  
Package  
–V  
S
+IN  
Model  
0.044  
(1.13)  
AD8047AN  
AD8047AR  
AD8047-EB  
–40°C to +85°C  
–40°C to +85°C  
Plastic DIP N-8  
SOIC  
R-8  
AD8048  
+V  
Evaluation  
Board  
S
AD8048AN  
AD8048AR  
AD8048-EB  
–40°C to +85°C  
–40°C to +85°C  
Plastic DIP N-8  
SOIC  
R-8  
Evaluation  
Board  
0.045  
–OUT (1.14)  
*N = Plastic DIP; R= SOIC (Small Outline Integrated Circuit)  
–IN  
–V  
S
+IN  
0.044  
(1.13)  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although these devices feature proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. 0  
–3–  
AD8047/AD8048  
AD8047–Typical Characteristics  
R
F
10µF  
+VS  
10µF  
+V  
S
PULSE  
GENERATOR  
0.1µF  
0.1µF  
7
PULSE  
GENERATOR  
T
/T = 500ps  
F
R
2
3
R
IN  
7
V
6
VOUT  
2
3
AD8047  
4
IN  
TR/TF = 500ps  
VIN  
0.1µF  
V
6
AD8047  
4
OUT  
R
= 66.5Ω  
T
RL = 100Ω  
0.1µF  
10µF  
RT = 49.9Ω  
R
= 100Ω  
L
100Ω  
10µF  
–VS  
–V  
S
Figure 3. Noninverting Configuration, G = +1  
Figure 6. Inverting Configuration, G = –1  
1V  
5ns  
1V  
5ns  
Figure 4. Large Signal Transient Response;  
VO = 4 V p-p, G = +1  
Figure 7. Large Signal Transient Response;  
VO = 4 V p-p, G = –1, RF = RIN = 200 Ω  
100mV  
5ns  
100mV  
5ns  
Figure 5. Small Signal Transient Response;  
VO = 400 mV p-p, G = +1  
Figure 8. Small Signal Transient Response;  
VO = 400 mV p-p, G = –1, RF = RIN = 200 Ω  
–4–  
REV. 0  
AD8047/AD8048  
AD8048–Typical Characteristics  
RF  
R
F
PULSE  
GENERATOR  
10µF  
0.1µF  
10µF  
0.1µF  
+VS  
+V  
7
PULSE  
GENERATOR  
S
TR/T F = 500ps  
RIN  
T
/T = 500ps  
F
R
R
7
IN  
2
3
V
IN  
2
3
VOUT  
6
AD8048  
4
V
6
R
T
= 66.5Ω  
AD8048  
4
OUT  
0.1µF  
0.1µF  
VIN  
RL = 100Ω  
R
L
= 100Ω  
RT = 49.9Ω  
R = 100Ω  
S
10µF  
10µF  
–VS  
–V  
S
Figure 9. Noninverting Configuration, G = +2  
Figure 12. Inverting Configuration, G= –1  
1V  
1V  
5ns  
5ns  
Figure 10. Large Signal Transient Response;  
Figure 13. Large Signal Transient Response;  
VO = 4 V p-p, G = +2, RF = RIN = 200 Ω  
VO = 4 V p-p, G = –1, RF = RIN = 200 Ω  
100mV  
5ns  
100mV  
5ns  
Figure 11. Small Signal Transient Response;  
Figure 14. Small Signal Transient Response;  
VO = 400 mV p-p, G = +2, RF = RIN = 200 Ω  
VO = 400 mV p-p, G = –1, RF = RIN = 200 Ω  
REV. 0  
–5–  
AD8047/AD8048  
AD8047–Typical Characteristics  
1
1
0
0
–1  
–1  
–2  
–3  
–4  
–5  
–6  
R
R
R
V
= 100Ω  
L
F
F
R
R
R
= 100Ω  
= 0FOR DIP  
= 66.5FOR SOIC  
= 0FOR DIP  
= 66.5FOR SOIC  
= 2V p-p  
L
–2  
–3  
–4  
–5  
–6  
F
F
OUT  
V
= 300mV p-p  
OUT  
–7  
–8  
–9  
–7  
–8  
–9  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 15. AD8047 Small Signal Frequency Response  
G = +1  
Figure 18. AD8047 Large Signal Frequency Response,  
G = +1  
0.1  
0
1
0
–0.1  
–1  
R
R
R
= 100Ω  
= 0FOR DIP  
= 66.5FOR SOIC  
L
–0.2  
–0.3  
–0.4  
R
R
V
= 100Ω  
–2  
–3  
–4  
–5  
–6  
L
F
F
= R = 200Ω  
IN  
F
= 300mV p-p  
OUT  
V
= 300mV p-p  
OUT  
–0.5  
–0.6  
–0.7  
–0.8  
–0.9  
–7  
–8  
–9  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 16. AD8047 0.1 dB Flatness, G = +1  
Figure 19. AD8047 Small Signal Frequency Response,  
G = –1  
100  
70  
60  
–20  
80  
R
V
= 1kΩ  
L
–30  
= 2V p-p  
PHASE  
MARGIN  
OUT  
60  
40  
20  
0
50  
40  
–40  
–50  
–60  
–70  
–80  
–90  
30  
GAIN  
20  
2ND HARMONIC  
–20  
–40  
10  
0
R
= 100Ω  
3RD HARMONIC  
L
–60  
–80  
–10  
–20  
–30  
–100  
–110  
–120  
–100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
10k  
100k  
1M  
10M  
100M  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 17. AD8047 Open-Loop Gain and Phase Margin vs.  
Frequency  
Figure 20. AD8047 Harmonic Distortion vs. Frequency,  
G = +1  
–6–  
REV. 0  
AD8047/AD8048  
–20  
–30  
0.5  
R
= 100Ω  
= 2V p-p  
L
V
R
R
V
= 100Ω  
= 0Ω  
OUT  
0.4  
0.3  
L
F
–40  
–50  
–60  
–70  
–80  
–90  
= 2V STEP  
OUT  
0.2  
0.1  
2ND HARMONIC  
0.0  
–0.1  
–0.2  
–0.3  
3RD HARMONIC  
–100  
–110  
–120  
–0.4  
–0.5  
10k  
100k  
1M  
FREQUENCY – Hz  
10M  
100M  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
SETTLING TIME – ns  
Figure 21. AD8047 Harmonic Distortion vs. Frequency,  
G = +1  
Figure 24. AD8047 Short-Term Settling Time, G = +1  
–25  
0.25  
R
R
V
= 100Ω  
= 0Ω  
0.20  
0.15  
L
F
f = 20MHz  
–30  
–35  
–40  
–45  
–50  
–55  
R
R
= 1kΩ  
= 0Ω  
L
F
= 2V STEP  
OUT  
0.10  
0.05  
0.00  
3RD HARMONIC  
2ND HARMONIC  
4.5  
–0.05  
–0.10  
–0.15  
–60  
–65  
–0.20  
–0.25  
0
2
4
6
8
10  
12  
14  
16  
18  
1.6  
2.5  
3.5  
5.5  
6.5  
SETTLING TIME – µs  
OUTPUT SWING – V p-p  
Figure 25. AD8047 Long-Term Settling Time, G = +1  
Figure 22. AD8047 Harmonic Distortion vs. Output Swing,  
G = +1  
17  
0.04  
0.02  
15  
13  
11  
9
0.00  
–0.02  
–0.04  
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th  
0.04  
0.02  
7
0.00  
5
–0.02  
–0.04  
3
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th  
10  
100  
1k  
10k  
100k  
FREQUENCY – Hz  
Figure 26. AD8047 Noise vs. Frequency  
Figure 23. AD8047 Differential Gain and Phase Error,  
G = +2, RL = 150 , RF = 200 , RIN = 200 Ω  
REV. 0  
–7–  
AD8047/AD8048  
AD8048–Typical Characteristics  
7
6
5
7
6
5
R
R
V
= 100Ω  
L
F
R
R
V
= 100Ω  
L
F
= R = 200Ω  
IN  
4
3
= R = 200Ω  
IN  
= 2V p-p  
4
3
OUT  
= 300mV p-p  
OUT  
2
1
0
2
1
0
–1  
–2  
–3  
–1  
–2  
–3  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 27. AD8048 Small Signal Frequency Response,  
G = +2  
Figure 30. AD8048 Large Signal Frequency Response,  
G = +2  
6.5  
1
0
6.4  
6.3  
R
R
= 100Ω  
L
= R = 200Ω  
IN  
F
V
= 300mV p-p  
OUT  
–1  
R
R
V
= 100Ω  
L
= R = 200Ω  
F
IN  
6.2  
6.1  
= 300mV p-p  
–2  
–3  
OUT  
6.0  
5.9  
5.8  
–4  
–5  
–6  
5.7  
5.6  
5.5  
–7  
–8  
–9  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
FREQUENCY – Hz  
1G  
FREQUENCY – Hz  
Figure 31. AD8048 Small Signal Frequency Response,  
G = –1  
Figure 28. AD8048 0.1 dB Flatness, G = +2  
100  
90  
80  
70  
–20  
80  
60  
40  
20  
R
L
= 1kΩ  
–30  
V
= 2V p-p  
OUT  
–40  
–50  
–60  
–70  
–80  
–90  
PHASE  
60  
50  
40  
0
2ND HARMONIC  
–20  
–40  
–60  
–80  
30  
20  
10  
0
R
= 100Ω  
L
3RD HARMONIC  
–100  
–110  
–120  
–100  
–120  
–10  
–20  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
10k  
100k  
1M  
10M  
100M  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 29. AD8048 Open-Loop Gain and Phase Margin vs.  
Frequency  
Figure 32. AD8048 Harmonic Distortion vs. Frequency,  
G = +2  
–8–  
REV. 0  
AD8047/AD8048  
0.5  
–20  
–30  
R
R
V
= 100Ω  
= 200Ω  
L
F
R
= 100Ω  
= 2V p-p  
0.4  
0.3  
L
V
OUT  
= 2V STEP  
OUT  
–40  
–50  
–60  
–70  
–80  
–90  
0.2  
0.1  
0.0  
2ND HARMONIC  
–0.1  
–0.2  
–0.3  
3RD HARMONIC  
–100  
–110  
–120  
–0.4  
–0.5  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
10k  
100k  
1M  
FREQUENCY – Hz  
10M  
100M  
SETTLING TIME – ns  
Figure 36. AD8048 Short-Term Settling Time, G = +2  
Figure 33. AD8048 Harmonic Distortion vs. Frequency,  
G = +2  
–15  
0.25  
R
R
= 100Ω  
= 200Ω  
= 2V STEP  
–20  
L
0.20  
0.15  
f = 20MHz  
F
R
= 1kΩ  
–25  
–30  
L
F
V
OUT  
3RD HARMONIC  
R
= 200  
0.10  
–35  
–40  
–45  
–50  
–55  
–60  
0.05  
0.0  
–0.05  
–0.10  
–0.15  
2ND HARMONIC  
–0.20  
–0.25  
–65  
–70  
1.5  
2.5  
3.5  
4.5  
5.5  
6.5  
0
2
4
6
8
10  
12  
14  
16  
18  
OUTPUT SWING – Volts p-p  
SETTLING TIME – µs  
Figure 34. AD8048 Harmonic Distortion vs. Output Swing,  
G = +2  
Figure 37. AD8048 Long-Term Settling Time 2 V Step,  
G = +2  
17  
0.04  
0.02  
15  
13  
11  
9
0.00  
–0.02  
–0.04  
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th  
0.04  
0.02  
7
0.00  
5
–0.02  
–0.04  
3
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th  
10  
100  
1k  
10k  
100k  
FREQUENCY – Hz  
Figure 35. AD8048 Differential Gain and Phase Error,  
Figure 38. AD8048 Noise vs. Frequency  
G = +2, RL = 150 , RF = 200 , RIN = 200 Ω  
REV. 0  
–9–  
AD8047/AD8048–Typical Characteristics  
100  
100  
90  
V  
= 1V  
V  
R
L
= 1V  
CM  
= 100Ω  
CM  
= 100Ω  
90  
R
L
80  
70  
80  
70  
60  
50  
40  
60  
50  
40  
30  
20  
30  
20  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 39. AD8047 CMRR vs. Frequency  
Figure 42. AD8048 CMRR vs. Frequency  
100  
100  
10  
1
10  
1
0.1  
0.1  
0.01  
0.01  
10k  
100k  
1M  
10M  
100M  
1G  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 43. AD8048 Output Resistance vs. Frequency,  
G = +2  
Figure 40. AD8047 Output Resistance vs. Frequency,  
G = +1  
90  
90  
80  
–PSRR  
80  
+PSRR  
70  
70  
+PSRR  
60  
–PSRR  
60  
50  
40  
30  
20  
50  
40  
30  
20  
10  
0
10  
0
10k  
100k  
1M  
10M  
100M  
1G  
3k  
10k  
100k  
1M  
100M  
500M  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 41. AD8047 PSRR vs. Frequency  
Figure 44. AD8048 PSRR vs. Frequency,  
G = +2  
–10–  
REV. 0  
AD8047/AD8048  
83.0  
4.1  
3.9  
3.7  
3.5  
3.3  
3.1  
2.9  
2.7  
82.0  
81.0  
R
= 1kΩ  
+V  
OUT  
L
AD8047  
AD8048  
–V  
OUT  
80.0  
79.0  
78.0  
+V  
OUT  
R
L
= 150Ω  
–V  
OUT  
+V  
OUT  
77.0  
76.0  
R
= 50Ω  
2.5  
2.3  
L
–V  
OUT  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
JUNCTION TEMPERATURE –  
°
C
JUNCTION TEMPERATURE – °C  
Figure 45. AD8047/AD8048 Output Swing vs. Temperature  
Figure 48. AD8047/AD8048 CMRR vs. Temperature  
8.0  
2600  
2400  
AD8048  
7.5  
AD8047  
AD8048  
±6V  
2200  
7.0  
2000  
1800  
1600  
±6V  
6.5  
AD8048  
6.0  
AD8047  
±5V  
5.5  
±5V  
5.0  
1400  
AD8047  
1200  
1000  
4.5  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
JUNCTION TEMPERATURE – °C  
JUNCTION TEMPERATURE –  
°C  
Figure 46. AD8047/AD8048 Open-Loop Gain vs.  
Temperature  
Figure 49. AD8047/AD8048 Supply Current vs.  
Temperature  
94  
92  
900  
800  
90  
88  
86  
84  
82  
80  
78  
76  
+PSRR  
700  
AD8048  
AD8047  
AD8048  
AD8048  
600  
500  
400  
–PSRR  
+PSRR  
AD8047  
AD8047  
300  
200  
100  
–PSRR  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
JUNCTION TEMPERATURE – °C  
JUNCTION TEMPERATURE – °C  
Figure 50. AD8047/AD8048 Input Offset Voltage vs.  
Temperature  
Figure 47. AD8047/AD8048 PSRR vs. Temperature  
REV. 0  
–11–  
AD8047/AD8048  
THEORY OF OPERATION  
General  
For general voltage gain applications, the amplifier bandwidth  
can be closely estimated as:  
The AD8047 and AD8048 are wide bandwidth, voltage feed-  
back amplifiers. Since their open-loop frequency response fol-  
lows the conventional 6 dB/octave roll-off, their gain bandwidth  
product is basically constant. Increasing their closed-loop gain  
results in a corresponding decrease in small signal bandwidth.  
This can be observed by noting the bandwidth specification  
between the AD8047 (gain of 1) and AD8048 (gain of 2).  
ωO  
f3 dB  
RF  
2π 1+  
RG  
This estimation loses accuracy for gains of +2/–1 or lower due  
to the amplifier’s damping factor. For these “low gain” cases,  
the bandwidth will actually extend beyond the calculated value  
(see Closed-Loop BW plots, Figures 15 and 26).  
Feedback Resistor Choice  
The value of the feedback resistor is critical for optimum perfor-  
mance on the AD8047 and AD8048. For maximum flatness at a  
gain of 2, RF and RG should be set to 200 for the AD8048.  
When the AD8047 is configured as a unity gain follower, RF  
should be set to 0 (no feedback resistor should be used) for  
the plastic DIP and 66.5 for the SOIC.  
As a rule of thumb, capacitor CF will not be required if:  
NG  
(RFʈRG )× CI ≤  
4 ωO  
where NG is the Noise Gain (1 + RF/RG) of the circuit. For  
most voltage gain applications, this should be the case.  
+V  
S
10µF  
R
F
R
F
G = 1 +  
R
G
7
C
F
V
IN  
3
2
0.1µF  
6
V
OUT  
AD8047/48  
R
TERM  
0.1µF  
4
V
AD8047  
OUT  
I
C
I
I
R
G
10µF  
–V  
S
R
F
Figure 53. Transimpedance Configuration  
Pulse Response  
Figure 51. Noninverting Operation  
+VS  
10µF  
Unlike a traditional voltage feedback amplifier, where the slew  
speed is dictated by its front end dc quiescent current and gain  
bandwidth product, the AD8047 and AD8048 provide “on de-  
mand” current that increases proportionally to the input “step”  
signal amplitude. This results in slew rates (1000 V/µs) compa-  
rable to wideband current feedback designs. This, combined  
with relatively low input noise current (1.0 pA/Hz), gives the  
AD8047 and AD8048 the best attributes of both voltage and  
current feedback amplifiers.  
RF  
G = –  
7
RG  
3
2
0.1µF  
VOUT  
6
AD8047/48  
0.1µF  
4
RG  
VIN  
RTERM  
10µF  
–VS  
RF  
Figure 52. Inverting Operation  
Large Signal Performance  
When the AD8047 is used in the transimpedance (I to V) mode,  
such as in photodiode detection, the value of RF and diode  
capacitance (CI) are usually known. Generally, the value of RF  
selected will be in the krange, and a shunt capacitor (CF)  
across RF will be required to maintain good amplifier stability.  
The value of CF required to maintain optimal flatness (<1 dB  
Peaking) and settling time can be estimated as:  
The outstanding large signal operation of the AD8047 and  
AD8048 is due to a unique, proprietary design architecture.  
In order to maintain this level of performance, the maximum  
180 V-MHz product must be observed, (e.g., @ 100 MHz,  
VO 1.8 V p-p) on the AD8047 and 250 V-MHz product on  
the AD8048.  
Power Supply Bypassing  
1/2  
2
2
CF (2 ωOCI RF 1)/ωO RF  
Adequate power supply bypassing can be critical when optimiz-  
ing the performance of a high frequency circuit. Inductance in  
the power supply leads can form resonant circuits that produce  
peaking in the amplifier’s response. In addition, if large current  
transients must be delivered to the load, then bypass capacitors  
(typically greater than 1 µF) will be required to provide the best  
settling time and lowest distortion. A parallel combination of at  
least 4.7 µF, and between 0.1 µF and 0.01 µF, is recommended.  
Some brands of electrolytic capacitors will require a small series  
damping resistor 4.7 for optimum results.  
[
]
where ωO is equal to the unity gain bandwidth product of the  
amplifier in rad/sec, and CI is the equivalent total input  
capacitance at the inverting input. Typically ωO = 800 × 106  
rad/sec (see Open-Loop Frequency Response curve, Fig-  
ure 17).  
As an example, choosing RF = 10 kand CI = 5 pF, requires  
CF to be 1.1 pF (Note: CI includes both source and parasitic  
circuit capacitance). The bandwidth of the amplifier can be  
estimated using the CF calculated as:  
Driving Capacitive Loads  
The AD8047/AD8048 have excellent cap load drive capability  
for high speed op amps as shown in Figures 55 and 57. How-  
ever, when driving cap loads greater than 25 pF, the best fre-  
quency response is obtained by the addition of a small series  
resistance. It is worth noting that the frequency response of the  
1. 6  
f3 dB  
2πR F C F  
–12–  
REV. 0  
AD8047/AD8048  
circuit when driving large capacitive loads will be dominated by  
the passive roll-off of RSERIES and CL.  
(1000 V/µs) give higher performance capabilities to these appli-  
cations over previous voltage feedback designs.  
R
F
With a settling time of 30 ns to 0.01% and 13 ns to 0.1%, the  
devices are an excellent choice for DAC I/V conversion. The  
same characteristics along with low harmonic distortion make  
them a good choice for ADC buffering/amplification. With su-  
perb linearity at relatively high signal frequencies, the AD8047  
and AD8048 are ideal drivers for ADCs up to 12 bits.  
R
SERIES  
AD8047  
R
L
C
L
1kΩ  
Operation as a Video Line Driver  
The AD8047 and AD8048 have been designed to offer out-  
standing performance as video line drivers. The important  
specifications of differential gain (0.01%) and differential phase  
(0.02°) meet the most exacting HDTV demands for driving  
video loads.  
Figure 54. Driving Capacitive Loads  
200Ω  
200Ω  
10µF  
+V  
S
0.1µF  
7
75Ω  
CABLE  
2
3
75Ω  
75Ω  
CABLE  
AD8047/  
AD8048  
6
V
OUT  
V
0.1µF  
75Ω  
IN  
4
500mV  
5ns  
75Ω  
10µF  
Figure 55. AD8047 Large Signal Transient Response;  
–V  
S
VO = 2 V p-p, G = +1, RF = 0 , RSERIES = 0 , CL = 27 pF  
Figure 58. Video Line Driver  
R
F
Active Filters  
The wide bandwidth and low distortion of the AD8047 and  
AD8048 are ideal for the realization of higher bandwidth active  
filters. These characteristics, while being more common in many  
current feedback op amps, are offered in the AD8047 and AD8048  
in a voltage feedback configuration. Many active filter configu-  
rations are not realizable with current feedback amplifiers.  
R
SERIES  
R
IN  
AD8048  
R
L
C
L
1k  
A multiple feedback active filter requires a voltage feedback  
amplifier and is more demanding of op amp performance than  
other active filter configurations such as the Sallen-Key. In  
general, the amplifier should have a bandwidth that is at least  
ten times the bandwidth of the filter if problems due to phase  
shift of the amplifier are to be avoided.  
Figure 56. Driving Capacitive Loads  
Figure 59 is an example of a 20 MHz low pass multiple feed-  
back active filter using an AD8048.  
+5V  
C1  
50pF  
10µF  
R4  
154Ω  
R1  
R3  
0.1µF  
154Ω  
78.7Ω  
1
V
IN  
7
2
500mV  
5ns  
C2  
100pF  
V
OUT  
6
AD8048  
100Ω  
0.1µF  
5
3
4
Figure 57. AD8048 Large Signal Transient Response;  
VO = 2 V p-p, G = +2, RF = RIN = 200 , RSERIES = 0 ,  
CL = 27 pF  
10µF  
–5V  
Figure 59. Active Filter Circuit  
APPLICATIONS  
Choose:  
The AD8047 and AD8048 are voltage feedback amplifiers well  
suited for such applications as photodetectors, active filters, and  
log amplifiers. The devices’ wide bandwidth (260 MHz), phase  
margin (65°), low noise current (1.0 pA/Hz), and slew rate  
FO = Cutoff Frequency = 20 MHz  
α = Damping Ratio = 1/Q = 2  
REV. 0  
–13–  
AD8047/AD8048  
H = Absolute Value of Circuit Gain =  
R4  
R1  
= 1  
The PCB should have a ground plane covering all unused por-  
tions of the component side of the board to provide a low im-  
pedance path. The ground plane should be removed from the  
area near the input pins to reduce stray capacitance.  
Then:  
k = 2 π FO C1  
4 C1(H +1)  
Chip capacitors should be used for the supply bypassing (see  
Figure 60). One end should be connected to the ground plane  
and the other within 1/8 inch of each power pin. An additional  
large (0.47 µF–10 µF) tantalum electrolytic capacitor should be  
connected in parallel, though not necessarily so close, to supply  
current for fast, large signal changes at the output.  
C2 =  
R1 =  
R3 =  
α2  
α
2 HK  
α
2 K (H +1)  
The feedback resistor should be located close to the inverting  
input pin in order to keep the stray capacitance at this node to a  
minimum. Capacitance variations of less than 1 pF at the in-  
verting input will significantly affect high speed performance.  
R4 = H(R1)  
A/D Converter Driver  
As A/D converters move toward higher speeds with higher reso-  
lutions, there becomes a need for high performance drivers that  
will not degrade the analog signal to the converter. It is desir-  
able from a system’s standpoint that the A/D be the element in  
the signal chain that ultimately limits overall distortion. This  
places new demands on the amplifiers used to drive fast, high  
resolution A/Ds.  
Stripline design techniques should be used for long signal traces  
(greater than about 1 inch). These should be designed with a  
characteristic impedance of 50 or 75 and be properly termi-  
nated at each end.  
Evaluation Board  
An evaluation board for both the AD8047 and AD8048 is avail-  
able that has been carefully laid out and tested to demonstrate  
that the specified high speed performance of the device can be  
realized. For ordering information, please refer to the Ordering  
Guide.  
With high bandwidth, low distortion and fast settling time the  
AD8047 and AD8048 make high performance A/D drivers for  
advanced converters. Figure 60 is an example of an AD8047  
used as an input driver for an AD872, a 12-bit, 10 MSPS A/D  
converter.  
The layout of the evaluation board can be used as shown or  
serve as a guide for a board layout.  
Layout Considerations  
The specified high speed performance of the AD8047 and  
AD8048 requires careful attention to board layout and compo-  
nent selection. Proper RF design techniques and low pass para-  
sitic component selection are mandatory  
+5V DIGITAL  
+5V ANALOG  
10Ω  
7
DVDD  
0.1µF  
6
+5V DIGITAL  
DGND  
4
AVDD  
22  
0.1µF  
+5V ANALOG  
DRVDD  
5
0.1µF  
AGND  
23  
DRGND  
CLOCK INPUT  
10µF  
21  
CLK  
20  
AD872  
49.9Ω  
OTR  
0.1µF  
1
19  
18  
7
2
3
MSB  
BIT2  
BIT3  
BIT4  
BIT5  
BIT6  
BIT7  
BIT8  
BIT9  
BIT10  
BIT11  
BIT12  
1
ANALOG IN  
VINA  
6
AD8047  
17  
16  
15  
14  
13  
12  
11  
10  
0.1µF  
10µF  
5
4
2
DIGITAL OUTPUT  
VINB  
27  
REF GND  
–5V  
ANALOG  
0.1µF  
1µF  
9
8
28  
26  
REF IN  
24  
AGND  
REF OUT  
AVSS  
3
AVSS  
25  
0.1µF  
0.1µF  
–5V ANALOG  
Figure 60. AD8047 Used as Driver for an AD872, a 12-Bit, 10 MSPS A/D Converter  
–14–  
REV. 0  
AD8047/AD8048  
RF  
+VS  
+VS  
RG  
C1  
C3  
C5  
RO  
1000pF  
0.1µF  
10µF  
OPTIONAL  
OUT  
IN  
C2  
C4  
C6  
1000pF  
0.1µF  
10µF  
RT  
–VS  
–VS  
Supply Bypassing  
Noninverting Configuration  
Figure 61. Noninverting Configurations for Evaluation Boards  
Table I.  
AD8047  
AD8048  
Component  
–1  
+1  
+2  
+10  
+101  
–1  
+2  
+10  
+101  
RF  
RG  
RO  
RS  
200 Ω  
200 Ω  
49.9 Ω  
66.5 Ω  
49.9 Ω  
0 Ω  
1 kΩ  
1 kΩ  
49.9 Ω  
0 Ω  
1 kΩ  
1 kΩ  
10 Ω  
49.9 Ω  
0 Ω  
200 Ω  
200 Ω  
49.9 Ω  
200 Ω  
200 Ω  
49.9 Ω  
0 Ω  
1 kΩ  
1 kΩ  
10 Ω  
49.9 Ω  
0 Ω  
110 Ω  
49.9 Ω  
0 Ω  
110 Ω  
49.9 Ω  
0 Ω  
RT  
66.5 Ω  
49.9 Ω  
49.9 Ω  
49.9 Ω  
49.9 Ω  
66.5 Ω  
49.9 Ω  
49.9 Ω  
49.9 Ω  
Small Signal  
BW (–3 dB)  
90 MHz 260 MHz 95 MHz 10 MHz 1 MHz  
250 MHz 250 MHz 22 MHz 2 MHz  
SOIC (R)  
SOIC (R)  
NONINVERTER  
INVERTER  
Figure 62. Evaluation Board Silkscreen (Top)  
SOIC (R)  
SOIC (R)  
INVERTER  
NONINVERTER  
Figure 63. Board Layout (Solder Side)  
–15–  
REV. 0  
AD8047/AD8048  
SOIC (R)  
SOIC (R)  
INVERTER  
NONINVERTER  
Figure 64. Board Layout (Component Side)  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
8-Pin Plastic DIP  
(N Package)  
8
5
0.280 (7.11)  
0.240 (6.10)  
PIN 1  
1
4
0.325 (8.25)  
0.300 (7.62)  
0.430 (10.92)  
0.348 (8.84)  
0.060 (1.52)  
0.015 (0.38)  
0.195 (4.95)  
0.115 (2.93)  
0.210  
(5.33)  
MAX  
0.130  
(3.30)  
MIN  
0.015 (0.381)  
0.008 (0.204)  
0.160 (4.06)  
0.115 (2.93)  
SEATING  
PLANE  
0.100  
(2.54)  
0.022 (0.558)  
0.014 (0.356)  
0.070 (1.77)  
0.045 (1.15)  
BSC  
8-Pin Plastic SOIC  
(R Package)  
0.150 (3.81)  
8
5
4
0.244 (6.20)  
0.157 (3.99)  
0.150 (3.81)  
0.228 (5.79)  
PIN 1  
1
0.020 (0.051) x 45  
CHAMF  
°
0.190 (4.82)  
0.197 (5.01)  
0.189 (4.80)  
0.170 (4.32)  
8
0
°
°
0.090  
(2.29)  
0.102 (2.59)  
0.094 (2.39)  
0.010 (0.25)  
0.004 (0.10)  
10  
°
0
°
0.050  
(1.27)  
BSC  
0.019 (0.48)  
0.014 (0.36)  
0.030 (0.76)  
0.018 (0.46)  
0.098 (0.2482)  
0.075 (0.1905)  
–16–  
REV. 0  

相关型号:

AD8047AR-REEL

250 MHz, General Purpose Voltage Feedback Op Amps
ADI

AD8047AR-REEL7

250 MHz, General Purpose Voltage Feedback Op Amps
ADI

AD8047AR-REEL7

OP-AMP, 4000 uV OFFSET-MAX, PDSO8, PLASTIC, SOIC-8
ROCHESTER

AD8047ARZ

250 MHz, General Purpose Voltage Feedback Op Amps
ADI

AD8047ARZ

OP-AMP, 4000 uV OFFSET-MAX, PDSO8, ROHS COMPLIANT, PLASTIC, SOIC-8
ROCHESTER

AD8047ARZ-REEL

IC OP-AMP, 4000 uV OFFSET-MAX, PDSO8, ROHS COMPLIANT, PLASTIC, SOIC-8, Operational Amplifier
ADI

AD8047ARZ-REEL

OP-AMP, 4000 uV OFFSET-MAX, PDSO8, ROHS COMPLIANT, PLASTIC, SOIC-8
ROCHESTER

AD8047ARZ-REEL7

OP-AMP, 4000 uV OFFSET-MAX, PDSO8, ROHS COMPLIANT, PLASTIC, SOIC-8
ROCHESTER

AD8047ARZ-REEL7

250 MHz, General Purpose Voltage Feedback Op Amps Gain 1 Stable
ADI

AD8047_03

250 MHz, General Purpose Voltage Feedback Op Amps
ADI

AD8047_15

250 MHz, General Purpose Voltage Feedback Op Amps
ADI

AD8048

250 MHz, General Purpose Voltage Feedback Op Amps
ADI