AD8051ART-R [ADI]

IC OP-AMP, 27000 uV OFFSET-MAX, PDSO5, MO-178AA, SOT-23, 5 PIN, Operational Amplifier;
AD8051ART-R
型号: AD8051ART-R
厂家: ADI    ADI
描述:

IC OP-AMP, 27000 uV OFFSET-MAX, PDSO5, MO-178AA, SOT-23, 5 PIN, Operational Amplifier

放大器 光电二极管
文件: 总20页 (文件大小:309K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Cost, High Speed  
Rail-to-Rail Amplifiers  
a
AD8051/AD8052/AD8054  
FEATURES  
PIN CONNECTIONS  
(Top Views)  
Low Cost Single (AD8051), Dual (AD8052), and Quad  
(AD8054)  
Voltage Feedback Architecture  
R-8 (SOIC)  
Fully Specified at +3 V, +5 V, and ؎5 V Supplies  
Single-Supply Operation  
AD8051  
1
2
3
4
8
7
6
5
NC  
+V  
NC  
–IN  
+IN  
S
Output Swings to Within 25 mV of Either Rail  
Input Voltage Range: –0.2 V to +4 V; VS = +5 V  
High Speed and Fast Settling on 5 V:  
110 MHz –3 dB Bandwidth (G = +1) (AD8051/AD8052)  
150 MHz –3 dB Bandwidth (G = +1) (AD8054)  
145 V/s Slew Rate  
50 ns Settling Time to 0.1%  
Small Packaging  
AD8051 Available in SOT-23-5  
AD8052 Available in MSOP-8  
V
OUT  
–V  
NC  
S
NC = NO CONNECT  
SOT-23-5 (RT)  
AD8051  
V
1
2
5 +V  
S
OUT  
–V  
S
+ –  
AD8054 Available in TSSOP-14  
+IN  
3
4 –IN  
Good Video Specifications (G = +2)  
Gain Flatness of 0.1 dB to 20 MHz; RL = 150 ⍀  
0.03% Differential Gain Error; RL = 1 k⍀  
0.03؇ Differential Phase Error; RL = 1 k⍀  
Low Distortion  
–80 dBc Total Harmonic @ 1 MHz, RL = 100 ⍀  
Outstanding Load Drive Capability  
Drives 45 mA, 0.5 V from Supply Rails (AD8051/AD8052)  
Drives 50 pF Capacitive Load (G = +1) (AD8051/AD8052)  
Low Power of 2.75 mA/Amplifier (AD8054)  
Low Power of 4.4 mA/Amplifier (AD8051/AD8052)  
R-8, MSOP (RM)  
AD8052  
1
2
3
4
8
7
6
5
+V  
S
OUT1  
–IN1  
+IN1  
+
OUT  
–IN2  
+IN2  
+
–V  
S
R-14, TSSOP-14 (RU-14)  
APPLICATIONS  
Coax Cable Drivers  
Active Filters  
Video Switchers  
A/D Driver  
Professional Cameras  
CCD Imaging Systems  
CD/DVD ROMs  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT D  
OUT A  
؊IN A  
+IN A  
V+  
؊IN D  
+IN D  
AD8054  
V؊  
+IN C  
+IN B  
؊IN B  
OUT B  
؊IN C  
8
OUT C  
GENERAL DESCRIPTION  
The AD8051 (single), AD8052 (dual), and AD8054 (quad) are  
low cost, voltage feedback, high speed amplifiers designed to  
operate on +3 V, +5 V, or 5 V supplies. They have true single-  
supply capability with an input voltage range extending 200 mV  
below the negative rail and within 1 V of the positive rail.  
Despite their low cost, the AD8051/AD8052/AD8054 provide  
excellent overall performance and versatility. The output voltage  
swing extends to within 25 mV of each rail, providing the maxi-  
mum output dynamic range with excellent overdrive recovery.  
REV. F  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
AD8051/AD8052/AD8054  
This makes the AD8051/AD8052/AD8054 useful for video  
electronics, such as cameras, video switchers, or any high speed  
portable equipment. Low distortion and fast settling make them  
ideal for active filter applications.  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
V
= +5V  
S
G = –1  
R
R
= 2k  
= 2k⍀  
F
L
The AD8051/AD8052/AD8054 offer low power supply current  
and can operate on a single 3 V power supply. These features  
are ideally suited for portable and battery-powered applications  
where size and power are critical.  
1.5  
1.0  
The wide bandwidth and fast slew rate on a single +5 V supply  
make these amplifiers useful in many general-purpose, high  
speed applications where dual power supplies of up to 6 V and  
single supplies from +3 V to +12 V are needed.  
0.5  
0
0.1  
1
10  
50  
All of this low cost performance is offered in an 8-lead SOIC, as  
well as a tiny SOT-23-5 package (AD8051), an MSOP package  
(AD8052), and a TSSOP-14 (AD8054). The AD8051 and  
AD8052 in the SOIC-8 and RM packages, and the AD8054 in  
the RN-14 and RU packages are available in the extended tem-  
perature range of 40°C to +125°C.  
FREQUENCY – MHz  
Figure 1. Low Distortion Rail-to-Rail Output Swing  
–2–  
REV. F  
AD8051/AD8052/AD8054  
(@ TA = 25؇C, VS = 5 V, RL = 2 kto 2.5 V, unless otherwise noted.)  
SPECIFICATIONS  
AD8051A/AD8052A  
Typ  
AD8054A  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Unit  
DYNAMIC PERFORMANCE  
3 dB Small Signal Bandwidth  
G = +1, VO = 0.2 V p-p  
G = 1, +2, VO = 0.2 V p-p  
G = +2, VO = 0.2 V p-p,  
RL = 150 to 2.5 V,  
RF = 806 for AD8051A/  
AD8052A  
RF = 200 for AD8054A  
G = 1, VO = 2 V Step  
G = +1, VO = 2 V p-p  
G = 1, VO = 2 V Step  
70  
110  
50  
80  
150  
60  
MHz  
MHz  
Bandwidth for 0.1 dB Flatness  
20  
MHz  
MHz  
V/µs  
MHz  
ns  
12  
170  
45  
Slew Rate  
Full Power Response  
Settling Time to 0.1%  
100  
145  
35  
50  
140  
40  
NOISE/DISTORTION PERFORMANCE  
Total Harmonic Distortion*  
Input Voltage Noise  
Input Current Noise  
Differential Gain Error (NTSC)  
fC = 5 MHz, VO = 2 V p-p, G = +2  
f = 10 kHz  
f = 10 kHz  
G = +2, RL = 150 to 2.5 V  
RL = 1 kto 2.5 V  
G = +2, RL = 150 to 2.5 V  
RL = 1 kto 2.5 V  
67  
16  
68  
16  
dB  
nV/Hz  
fA/Hz  
%
850  
0.09  
0.03  
0.19  
0.03  
60  
850  
0.07  
0.02  
0.26  
0.05  
60  
%
Differential Phase Error (NTSC)  
Crosstalk  
Degrees  
Degrees  
dB  
f = 5 MHz, G = +2  
DC PERFORMANCE  
Input Offset Voltage  
1.7  
10  
25  
1.7  
12  
30  
mV  
mV  
µV/°C  
µA  
µA  
µA  
dB  
dB  
dB  
dB  
TMINTMAX  
Offset Drift  
Input Bias Current  
10  
1.4  
15  
2
2.5  
3.25  
0.75  
4.5  
4.5  
1.2  
TMINTMAX  
Input Offset Current  
Open-Loop Gain  
0.1  
98  
96  
82  
78  
0.2  
98  
96  
82  
78  
RL = 2 kto 2.5 V  
TMINTMAX  
RL = 150 to 2.5 V  
TMINTMAX  
86  
76  
82  
74  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
290  
1.4  
0.2 to +4  
88  
300  
1.5  
0.2 to +4  
kΩ  
pF  
V
VCM = 0 V to 3.5 V  
72  
70  
86  
dB  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
RL = 10 kto 2.5 V  
RL = 2 kto 2.5 V  
RL = 150 to 2.5 V  
VOUT = 0.5 V to 4.5 V  
TMINTMAX  
Sourcing  
Sinking  
G = +1 (AD8051/AD8052)  
G = +2 (AD8054)  
0.015 to 4.985  
0.025 to 4.975  
0.2 to 4.8  
45  
45  
80  
130  
50  
0.03 to 4.975  
0.125 to 4.875 0.05 to 4.95  
V
V
V
mA  
mA  
mA  
mA  
pF  
pF  
0.1 to 4.9  
0.3 to 4.625  
0.55 to 4.4  
0.25 to 4.65  
Output Current  
30  
30  
45  
85  
Short-Circuit Current  
Capacitive Load Drive  
40  
POWER SUPPLY  
Operating Range  
Quiescent Current/Amplifier  
Power Supply Rejection Ratio  
3
12  
5
3
12  
V
4.4  
80  
2.75  
80  
3.275 mA  
dB  
VS  
=
1 V  
70  
68  
OPERATING TEMPERATURE RANGE  
RT  
40  
40  
+85  
°C  
RM, R-8, RU, R-14  
+125 40  
+125 °C  
*Refer to TPC 13.  
Specifications subject to change without notice.  
REV. F  
–3–  
AD8051/AD8052/AD8054  
(@ TA = 25؇C, VS = 3 V, RL = 2 kto 1.5 V, unless otherwise noted.)  
SPECIFICATIONS  
AD8051A/AD8052A  
Typ  
AD8054A  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Unit  
DYNAMIC PERFORMANCE  
3 dB Small Signal Bandwidth  
G = +1, VO = 0.2 V p-p  
G = 1, +2, VO = 0.2 V p-p  
G = +2, VO = 0.2 V p-p,  
70  
110  
50  
80  
135  
65  
MHz  
MHz  
Bandwidth for 0.1 dB Flatness  
R
R
R
L = 150 to 2.5 V,  
F = 402 for AD8051A/AD8052A  
F = 200 for AD8054A  
17  
MHz  
MHz  
V/µs  
MHz  
ns  
10  
150  
85  
Slew Rate  
Full Power Response  
Settling Time to 0.1%  
G = 1, VO = 2 V Step  
G = +1, VO = 1 V p-p  
G = 1, VO = 2 V Step  
90  
135  
65  
55  
110  
55  
NOISE/DISTORTION PERFORMANCE  
Total Harmonic Distortion*  
fC = 5 MHz, VO = 2 V p-p,  
G = 1, RL = 100 to 1.5 V  
f = 10 kHz  
47  
16  
600  
48  
16  
600  
dB  
nV/Hz  
fA/Hz  
Input Voltage Noise  
Input Current Noise  
f = 10 kHz  
Differential Gain Error (NTSC)  
G = +2, VCM = 1 V  
R
R
L = 150 to 1.5 V,  
L = 1 kto 1.5 V  
0.11  
0.09  
0.13  
0.09  
%
%
Differential Phase Error (NTSC)  
Crosstalk  
G = +2, VCM = 1 V  
R
R
L = 150 to 1.5 V  
L = 1 kto 1.5 V  
0.24  
0.10  
60  
0.3  
0.1  
60  
Degrees  
Degrees  
dB  
f = 5 MHz, G = +2  
DC PERFORMANCE  
Input Offset Voltage  
1.6  
10  
25  
1.6  
12  
30  
mV  
mV  
µV/°C  
µA  
µA  
µA  
dB  
dB  
dB  
dB  
TMINTMAX  
Offset Drift  
Input Bias Current  
10  
1.3  
15  
2
2.6  
3.25  
0.8  
4.5  
4.5  
1.2  
T
MINTMAX  
Input Offset Current  
Open-Loop Gain  
0.15  
96  
94  
82  
76  
0.2  
96  
94  
80  
76  
R
T
R
L = 2 kΩ  
MINTMAX  
L = 150 Ω  
80  
74  
80  
72  
TMINTMAX  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
290  
1.4  
0.2 to +2  
88  
300  
1.5  
0.2 to +2  
kΩ  
pF  
V
VCM = 0 V to 1.5 V  
72  
70  
86  
dB  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
RL = 10 kto 1.5 V  
0.01 to 2.99  
0.025 to 2.98  
V
R
R
V
T
L = 2 kto 1.5 V  
L = 150 to 1.5 V  
OUT = 0.5 V to 2.5 V  
MINTMAX  
0.075 to 2.9 0.02 to 2.98  
0.1 to 2.9  
0.35 to 2.55  
0.35 to 2.965  
0.15 to 2.75  
25  
25  
30  
50  
V
V
0.2 to 2.75  
0.125 to 2.875  
Output Current  
45  
45  
60  
90  
45  
mA  
mA  
mA  
mA  
pF  
pF  
Short-Circuit Current  
Capacitive Load Drive  
Sourcing  
Sinking  
G = +1 (AD8051/AD8052)  
G = +2 (AD8054)  
35  
POWER SUPPLY  
Operating Range  
3
12  
3
12  
V
Quiescent Current/Amplifier  
Power Supply Rejection Ratio  
4.2  
80  
4.8  
2.625  
80  
3.125 mA  
dB  
VS = 0.5 V  
68  
68  
OPERATING TEMPERATURE RANGE  
RT  
40  
40  
+85  
°C  
+125 °C  
RM, R-8, RU, R-14  
+125 40  
*Refer to TPC 13.  
Specifications subject to change without notice.  
–4–  
REV. F  
AD8051/AD8052/AD8054  
(@ TA = 25؇C, VS = ؎5 V, RL = 2 kto Ground, unless otherwise noted.)  
SPECIFICATIONS  
AD8051A/AD8052A  
Typ  
AD8054A  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Unit  
DYNAMIC PERFORMANCE  
3 dB Small Signal Bandwidth  
G = +1, VO = 0.2 V p-p  
G = 1, +2, VO = 0.2 V p-p  
G = +2, VO = 0.2 V p-p,  
RL = 150 ,  
70  
110  
50  
85  
160  
65  
MHz  
MHz  
Bandwidth for 0.1 dB Flatness  
RF = 1.1 kfor  
AD8051A/AD8052A  
RF = 200 for AD8054A  
G = 1, VO = 2 V Step  
G = +1, VO = 2 V p-p  
G = 1, VO = 2 V Step  
20  
MHz  
MHz  
V/µs  
MHz  
ns  
15  
190  
50  
Slew Rate  
Full Power Response  
Settling Time to 0.1%  
105  
170  
40  
50  
150  
40  
NOISE/DISTORTION PERFORMANCE  
Total Harmonic Distortion  
Input Voltage Noise  
Input Current Noise  
Differential Gain Error (NTSC)  
fC = 5 MHz, VO = 2 V p-p, G = +2  
f = 10 kHz  
f = 10 kHz  
G = +2, RL = 150 Ω  
RL = 1 kΩ  
G = +2, RL = 150 Ω  
RL = 1 kΩ  
71  
16  
72  
16  
dB  
nV/Hz  
fA/Hz  
%
900  
0.02  
0.02  
0.11  
0.02  
60  
900  
0.06  
0.02  
0.15  
0.03  
60  
%
Differential Phase Error (NTSC)  
Crosstalk  
Degrees  
Degrees  
dB  
f = 5 MHz, G = +2  
DC PERFORMANCE  
Input Offset Voltage  
1.8  
11  
27  
1.8  
13  
32  
mV  
mV  
µV/°C  
µA  
µA  
µA  
dB  
dB  
dB  
dB  
TMINTMAX  
Offset Drift  
Input Bias Current  
10  
1.4  
15  
2
2.6  
3.5  
0.75  
4.5  
4.5  
1.2  
TMINTMAX  
Input Offset Current  
Open-Loop Gain  
0.1  
96  
96  
82  
80  
0.2  
96  
96  
82  
80  
RL = 2 kΩ  
88  
78  
84  
76  
TMINTMAX  
RL = 150 Ω  
TMINTMAX  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
290  
1.4  
5.2 to +4  
88  
300  
1.5  
5.2 to +4  
kΩ  
pF  
V
VCM = 5 V to +3.5 V  
72  
70  
86  
dB  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
RL = 10 kΩ  
4.98 to +4.98  
4.97 to +4.97  
V
RL = 2 kΩ  
RL = 150 Ω  
4.85 to +4.85 4.97 to +4.97  
4.45 to +4.3 4.6 to +4.6  
4.8 to +4.8  
4.0 to +3.8  
4.9 to +4.9  
4.5 to +4.5  
V
V
Output Current  
VOUT = 4.5 V to +4.5 V  
TMINTMAX  
Sourcing  
Sinking  
G = +1 (AD8051/AD8052)  
G = +2 (AD8054)  
45  
45  
100  
160  
50  
30  
30  
60  
100  
mA  
mA  
mA  
mA  
pF  
pF  
Short-Circuit Current  
Capacitive Load Drive  
40  
POWER SUPPLY  
Operating Range  
3
12  
3
12  
V
Quiescent Current/Amplifier  
Power Supply Rejection Ratio  
4.8  
80  
5.5  
2.875  
80  
3.4  
mA  
dB  
VS  
=
1 V  
68  
68  
OPERATING TEMPERATURE RANGE  
RT  
40  
40  
+85  
°C  
RM, RN-8, RU, R-14  
+125 40  
+125 °C  
Specifications subject to change without notice.  
REV. F  
–5–  
AD8051/AD8052/AD8054  
ABSOLUTE MAXIMUM RATINGS1  
for plastic encapsulated devices is determined by the glass  
transition temperature of the plastic, approximately 150°C.  
Temporarily exceeding this limit may cause a shift in parametric  
performance due to a change in the stresses exerted on the die  
by the package. Exceeding a junction temperature of 175°C for  
an extended period can result in device failure.  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.6 V  
Internal Power Dissipation2  
Small Outline Package (RN) Observe Power Derating Curves  
SOT-23-5 Package . . . . . . . Observe Power Derating Curves  
MSOP Package . . . . . . . . . Observe Power Derating Curves  
TSSOP-14 Package . . . . . . Observe Power Derating Curves  
Input Voltage (Common Mode) . . . . . . . . . . . . . . . . . . . . VS  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . 2.5 V  
Output Short-Circuit Duration  
. . . . . . . . . . . . . . . . . . Observe Power Derating Curves  
Storage Temperature Range (RN) . . . . . . . . 65°C to +150°C  
Operating Temperature Range (A Grade) . . 40°C to +125°C  
Lead Temperature Range (Soldering 10 sec) . . . . . . . . . 300°C  
While the AD8051/AD8052/AD8054 are internally short-circuit  
protected, this may not be sufficient to guarantee that the maxi-  
mum junction temperature (150°C) is not exceeded under all  
conditions. To ensure proper operation, it is necessary to observe  
the maximum power derating curves.  
2.5  
NOTES  
SOIC-14  
SOIC-8  
2.0  
1.5  
1.0  
1 Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2 Specification is for device in free air:  
TSSOP-14  
8-Lead SOIC: JA = 125°C/W  
5-Lead SOT-23-5: JA = 180°C/W  
MSOP-8  
8-Lead MSOP: JA = 150°C/W  
0.5  
0
14-Lead SOIC: JA = 90°C/W  
SOT-23-5  
14-Lead TSSOP: JA = 120°C/W  
MAXIMUM POWER DISSIPATION  
–35 –15  
15  
35  
55  
75  
95  
115  
–55  
5
AMBIENT TEMPERATURE – ؇C  
The maximum power that can be safely dissipated by the  
AD8051/AD8052/AD8054 is limited by the associated rise in  
junction temperature. The maximum safe junction temperature  
Figure 2. Plot of Maximum Power Dissipation vs.  
Temperature for AD8051/AD8052/AD8054  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
AD8051/AD8052/AD8054 feature proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions  
are recommended to avoid performance degradation or loss of functionality.  
–6–  
REV. F  
AD8051/AD8052/AD8054  
ORDERING GUIDE  
Temperature  
Range  
Package  
Descriptions  
Package  
Model  
Options1  
Branding  
AD8051AR  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
8-Lead SOIC  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
RT-5  
RT-5  
RT-5  
RT-5  
RT-5  
RT-5  
AD8051AR-REEL  
AD8051AR-REEL7  
AD8051ARZ2  
13" Tape and Reel  
7" Tape and Reel  
8-Lead SOIC  
AD8051ARZ-REEL2  
AD8051ARZ-REEL72  
AD8051ART-REEL  
AD8051ART-REEL7  
AD8051ART-R2  
13" Tape and Reel  
7" Tape and Reel  
13" Tape and Reel  
7" Tape and Reel  
7" Tape and Reel  
7" Tape and Reel  
13" Tape and Reel  
7" Tape and Reel  
H2A  
H2A  
H2A  
H2A  
H2A  
H2A  
AD8051ARTZ-R22  
AD8051ARTZ-REEL2  
AD8051ARTZ-REEL72 40°C to +85°C  
AD8052AR  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
8-Lead SOIC  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
RM-8  
RM-8  
RM-8  
RM-8  
AD8052AR-REEL  
AD8052AR-REEL7  
AD8052ARZ2  
13" Tape and Reel  
7" Tape and Reel  
8-Lead SOIC  
13" Tape and Reel  
7" Tape and Reel  
8-Lead MSOP  
13" Tape and Reel  
7" Tape and Reel  
7" Tape and Reel  
AD8052ARZ-REEL2  
AD8052ARZ-REEL72  
AD8052ARM  
H4A  
H4A  
H4A  
H4A  
AD8052ARM-REEL  
AD8052ARM-REEL7  
AD8052ARMZ-REEL72 40°C to +125°C  
AD8054AR  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
14-Lead SOIC  
R-14  
R-14  
R-14  
R-14  
R-14  
R-14  
RU-14  
RU-14  
RU-14  
RU-14  
RU-14  
RU-14  
AD8054AR-REEL  
AD8054AR-REEL7  
AD8054ARZ2  
13" Tape and Reel  
7" Tape and Reel  
14-Lead SOIC  
AD8054ARZ-REEL2  
AD8054ARZ-REEL72  
AD8054ARU  
13" Tape and Reel  
7" Tape and Reel  
14-Lead TSSOP  
13" Tape and Reel  
7" Tape and Reel  
14-Lead TSSOP  
13" Tape and Reel  
7" Tape and Reel  
AD8054ARU-REEL  
AD8054ARU-REEL7  
AD8054ARUZ2  
AD8054ARUZ-REEL2  
AD8054ARUZ-REEL72 40°C to +125°C  
NOTES  
1R = Small Outline; RM = MSOP; RT = SOT-23; RU = TSSOP.  
2Z = Pb-free part.  
REV. F  
–7–  
AD8051/AD8052/AD8054  
–Typical Performance Characteristics  
3
5
V
= +5V  
G = +1  
= 0  
S
4
3
2
1
G = +2  
= 2k  
2
1
G = +2  
= 2k⍀  
R
GAIN AS SHOWN  
R
R
F
R
F
R
AS SHOWN  
= 5k⍀  
= 0.2V p-p  
F
F
L
V
O
0
–1  
–2  
G = +5  
= 2k⍀  
R
F
0
–1  
–2  
–3  
G = +1  
= 0  
G = +10  
= 2k⍀  
R
F
R
F
G = +10  
= 2k⍀  
–3  
–4  
–5  
R
F
V
= +5V  
S
GAIN AS SHOWN  
R
R
–4  
–5  
–6  
–7  
AS SHOWN  
= 2k⍀  
F
L
G = +5  
= 2k⍀  
V
= 0.2V p-p  
–6  
–7  
O
R
F
0.1  
1
10  
FREQUENCY – MHz  
100  
500  
1M  
500M  
100k  
10M  
FREQUENCY – Hz  
100M  
TPC 1. AD8051/AD8052 Normalized Gain vs.  
Frequency; VS = +5 V  
TPC 4. AD8054 Normalized Gain vs. Frequency;  
VS = +5 V  
3
2
6
5
4
+3V  
+5V  
؎5V  
V
= +3V  
V
= +5V  
G = +1  
S
S
1
0
R
C
= 2k⍀  
= 5pF  
L
L
3
2
V
= 0.2V p-p  
O
–1  
V
= ؎5V  
S
–2  
–3  
–4  
–5  
1
0
V
AS SHOWN  
S
G = +1  
R
= 2k⍀  
= 0.2V p-p  
L
V
O
؎5V  
–1  
–2  
–3  
–4  
+3V  
+5V  
–6  
–7  
0.1  
1
10  
FREQUENCY – MHz  
100  
500  
100k  
1M  
10M  
100M  
500M  
FREQUENCY – Hz  
TPC 2. AD8051/AD8052 Gain vs. Frequency  
vs. Supply  
TPC 5. AD8054 Gain vs. Frequency vs. Supply  
3
2
4
+85؇C  
3
+25؇C  
–40؇C  
1
2
–40؇C  
0
1
0
+85؇C  
–1  
+25؇C  
–2  
V
R
C
= +5V  
= 2kTO 2.5V  
= 5pF  
–1  
–2  
S
–3  
–4  
–5  
L
V
= +5V  
S
L
G = +1  
R
G = +1  
= 0.2V p-p  
= 2k⍀  
= 0.2V p-p  
L
–3  
–4  
–5  
V
O
V
O
–6 TEMPERATURE AS SHOWN  
–7  
0.1  
1
10  
FREQUENCY – MHz  
100  
500  
1
10  
100  
500  
FREQUENCY – MHz  
TPC 3. AD8051/AD8052 Gain vs. Frequency vs.  
Temperature  
TPC 6. AD8054 Gain vs. Frequency vs.  
Temperature  
–8–  
REV. F  
AD8051/AD8052/AD8054  
6.3  
6.2  
6.3  
6.2  
6.1  
6.0  
5.9  
5.8  
5.7  
5.6  
5.5  
5.4  
5.3  
6.1  
6.0  
5.9  
5.8  
V
= +5V  
S
R
R
= 200  
= 150⍀  
V
= +5V  
F
S
5.7  
5.6  
G = +2  
L
R
R
V
= 150⍀  
= 806⍀  
= 0.2V p-p  
L
F
G = +2  
= 0.2V p-p  
V
O
5.5  
O
5.4  
5.3  
0.1  
1
10  
100  
1
10  
100  
FREQUENCY – MHz  
FREQUENCY – MHz  
TPC 7. AD8051/AD8052 0.1 dB Gain Flatness vs.  
Frequency; G = +2  
TPC 10. AD8054 0.1 dB Gain Flatness vs.  
Frequency; G = +2  
9
9
8
V
V
= +5V  
= 2V p-p  
8
7
6
V
V
= +5V  
= 2V p-p  
S
S
O
O
7
6
5
4
3
5
V
V
= ؎5V  
= 4V p-p  
S
4
O
V
V
= ؎5V  
= 4V p-p  
S
3
O
V
AS SHOWN  
V
AS SHOWN  
S
S
2
2
1
G = +2  
G = +2  
R
R
V
= 2k⍀  
= 2k⍀  
AS SHOWN  
R
R
V
= 2k⍀  
= 2k⍀  
AS SHOWN  
L
F
L
F
1
0
O
0
O
–1  
0.1  
–1  
0.1  
1
10  
FREQUENCY – MHz  
100  
500  
1
10  
100  
500  
FREQUENCY – MHz  
TPC 8. AD8051/AD8052 Large Signal Frequency  
Response; G = +2  
TPC 11. AD8054 Large Signal Frequency  
Response; G = +2  
80  
80  
70  
V
R
= +5V  
= 2k⍀  
V
R
C
= +5V  
= 2k⍀  
= 5pF  
S
70  
60  
50  
40  
30  
20  
S
L
L
L
60  
50  
40  
30  
20  
GAIN  
GAIN  
0
180  
50؇ PHASE  
MARGIN  
–45  
–90  
–135  
–180  
135  
90  
PHASE  
45؇ PHASE  
MARGIN  
PHASE  
10  
0
10  
0
45  
0
–10  
–20  
–10  
–20  
0.01  
0.1  
1
10  
100  
500  
30k 100k  
1M  
10M  
100M  
500M  
FREQUENCY – MHz  
FREQUENCY – Hz  
TPC 9. AD8051/AD8052 Open-Loop Gain and  
Phase vs. Frequency  
TPC 12. AD8054 Open-Loop Gain and Phase  
Margin vs. Frequency  
REV. F  
–9–  
AD8051/AD8052/AD8054  
1000  
100  
10  
؊20  
V
= 2V p-p  
V = +3V, G = ؊1  
S
O
V
= +5V  
S
R
= 2k, R = 100⍀  
F
L
؊30  
؊40  
V
R
= +5V, G = +2  
S
= 2k, R = 100⍀  
F
L
V
R
= +5V, G = +1  
= 100⍀  
S
؊50  
؊60  
L
؊70  
V
= +5V, G = +1  
S
؊80  
R
= 2k⍀  
L
V
R
= +5V, G = +2  
S
؊90  
= 2k, R = 2k⍀  
F
L
؊100  
؊110  
1
10  
1
2
3
4
5
6
7
8
9 10  
100  
1k  
10k  
100k  
1M  
10M  
FUNDAMENTAL FREQUENCY – MHz  
FREQUENCY – Hz  
TPC 13. Total Harmonic Distortion  
TPC 16. Input Voltage Noise vs. Frequency  
؊30  
؊40  
100  
V
= +5V  
S
10MHz  
؊50  
؊60  
10  
؊70  
؊80  
5MHz  
؊90  
؊100  
؊110  
؊120  
؊130  
؊140  
V
R
= +5V  
= 2k⍀  
S
1MHz  
1
L
G = +2  
0.1  
10  
0
0.5 1.0 1.5  
2.0 2.5  
3.0 3.5  
OUTPUT VOLTAGE – V p-p  
4.0  
5.0  
4.5  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY – Hz  
TPC 14. Worst Harmonic vs. Output Voltage  
TPC 17. Input Current Noise vs. Frequency  
0.10  
0.10  
R
= 150⍀  
NTSC SUBSCRIBER (3.58MHz)  
NTSC SUBSCRIBER (3.58MHz)  
L
0.08  
0.06  
0.04  
0.02  
R
= 1k⍀  
0.05  
L
0.00  
0.00  
؊0.02  
R
= 1k⍀  
L
–0.05  
V
= +5, G = +2  
V
= +5, G = +2  
S
S
R
= 2k, R AS SHOWN  
؊0.04  
؊0.06  
R = 150⍀  
L
R
= 2k, R AS SHOWN  
F
L
F
L
–0.10  
0
50  
10  
20  
30  
40  
60  
70  
80  
90 100  
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th  
0.3  
0.2  
0.1  
0.10  
0.05  
R
= 1k⍀  
L
0.00  
R
= 1k⍀  
L
؊0.05  
؊0.10  
؊0.15  
؊0.20  
؊0.25  
0.0  
–0.1  
–0.2  
R
= 150⍀  
L
V
R
R
= +5, G = +2  
= 2k,  
AS SHOWN  
S
V
R
= +5, G = +2  
S
F
L
= 2k, R AS SHOWN  
R = 150⍀  
L
F
L
–0.3  
20  
30  
40  
50  
60  
70  
80  
90 100  
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th  
MODULATING RAMP LEVEL – IRE  
0
10  
MODULATING RAMP LEVEL – IRE  
TPC 15. AD8051/AD8052 Differential Gain and  
Phase Errors  
TPC 18. AD8054 Differential Gain and  
Phase Errors  
–10–  
REV. F  
AD8051/AD8052/AD8054  
–10  
–20  
–10  
–20  
V
R
R
= +5V  
S
= 2k  
= 2k⍀  
= 2V p-p  
F
L
–30  
–40  
–30  
–40  
–50  
–60  
–70  
–80  
V
O
R
= 100⍀  
L
–50  
–60  
–70  
–80  
–90  
V
= ؎5V  
R
= 1k⍀  
S
L
R
R
= 1k⍀  
= AS SHOWN  
= 2V p-p  
F
L
V
O
–90  
–100  
–110  
–100  
0.1  
1
10  
FREQUENCY – MHz  
1
10  
100  
500  
0.1  
100  
500  
FREQUENCY – MHz  
TPC 19. AD8052 Crosstalk (Output-to-Output) vs.  
Frequency  
TPC 22. AD8054 Crosstalk (Output-to-Output) vs.  
Frequency  
20  
0
V
= +5V  
V
= +5V  
S
S
–10  
–20  
–30  
–40  
–50  
–60  
10  
0
–10  
–PSRR  
+PSRR  
–20  
–30  
–40  
–50  
–70  
–80  
–60  
–70  
–90  
–100  
0.03  
–80  
0.01  
500  
0.1  
1
10  
100  
500  
0.1  
1
10  
100  
FREQUENCY – MHz  
FREQUENCY – MHz  
TPC 20. CMRR vs. Frequency  
TPC 23. PSRR vs. Frequency  
70  
100  
31  
V
= ؉5V  
S
AD8051/AD8052  
60  
50  
G = ؉1  
10  
AD8054  
3.1  
40  
1
0.31  
0.1  
30  
20  
V
= ؉5V  
S
10  
0
0.031  
0.01  
G = ؊1  
= 2k⍀  
R
L
0.5  
1
1.5  
2
0.1  
1
10  
100  
500  
INPUT STEP – V p-p  
FREQUENCY – MHz  
TPC 21. Closed-Loop Output Resistance vs.  
Frequency  
TPC 24. Settling Time vs. Input Step  
REV. F  
–11–  
AD8051/AD8052/AD8054  
1.00  
1.000  
V
= +5V  
S
V
= +85؇C  
V
= +5V  
OH  
S
0.90  
0.80  
+5V – V  
(+125؇C)  
OH  
0.875  
0.750  
0.625  
0.500  
V
= +25؇C  
OH  
0.70  
0.60  
0.50  
0.40  
+5V – V  
(+25؇C)  
OH  
V
= –40؇C  
OH  
V
= +85؇C  
OL  
+5V – V  
(–40؇C)  
OH  
0.375  
0.250  
0.125  
0.00  
0.30  
0.20  
V
= +25؇C  
OL  
V
(+125؇C)  
V
= –40؇C  
OL  
OL  
V
(+25؇C)  
0.10  
0
OL  
V
(–40؇C)  
OL  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85  
LOAD CURRENT – mA  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
LOAD CURRENT – mA  
TPC 25. AD8051/AD8052 Output Saturation  
Voltage vs. Load Current  
TPC 27. AD8054 Output Saturation Voltage vs.  
Load Current  
100  
R
= 2k⍀  
L
90  
R
= 150⍀  
L
80  
70  
V
= +5V  
S
60  
0
5.0  
0.5  
1.0 1.5  
2.0 2.5  
3.0 3.5  
4.0 4.5  
OUTPUT VOLTAGE – V  
TPC 26. Open-Loop Gain vs. Output Voltage  
–12–  
REV. F  
AD8051/AD8052/AD8054  
5
2.5  
1.50  
Figure 3. 100 mV Step Response, G = +1  
Figure 6. Output Swing; G = –1, RL = 2 k  
2.55  
2.50  
2.45  
2.60  
2.50  
2.40  
20ns  
Figure 4. AD8051/AD8052 200 mV Step  
Response; VS = +5 V, G = +1  
Figure 7. AD8054 100 mV Step Response;  
VS = +5 V, G = +1  
4.5  
3.5  
2.5  
1.5  
0.5  
4
3
2
1
؊1  
؊2  
؊3  
؊4  
20ns  
500mV  
Figure 5. Large Signal Step Response; VS = +5 V, G = +2  
Figure 8. Large Signal Step Response;  
VS = 5 V, G = +1  
REV. F  
–13–  
AD8051/AD8052/AD8054  
Overdrive Recovery  
Overdrive of an amplifier occurs when the output and/or input  
range is exceeded. The amplifier must recover from this overdrive  
condition. As shown in Figure 9, the AD8051/AD8052/AD8054  
recovers within 60 ns from negative overdrive and within 45 ns  
from positive overdrive.  
2.60  
2.55  
2.50  
2.45  
2.40  
Figure 11. AD8051/AD8052 200 mV Step  
Response: CL = 50 pF  
10000  
1000  
100  
10  
V
= +5V  
S
Յ 30%  
OVERSHOOT  
R
= 3⍀  
S
Figure 9. Overdrive Recovery  
R
= 0⍀  
S
Driving Capacitive Loads  
Consider the AD8051/AD8052 in a closed-loop gain of +1 with  
+VS = 5 V and a load of 2 kin parallel with 50 pF. Figures 10  
and 11 show its frequency and time domain responses, respec-  
tively, to a small-signal excitation. The capacitive load drive of  
the AD8051/AD8052/AD8054 can be increased by adding a  
low value resistor in series with the load. Figures 12 and 13  
show the effect of a series resistor on the capacitive drive for  
varying voltage gains. As the closed-loop gain is increased, the  
larger phase margin allows for larger capacitive loads with less  
peaking. Adding a series resistor with lower closed-loop gains  
accomplishes the same effect. For large capacitive loads, the  
frequency response of the amplifier will be dominated by the  
roll-off of the series resistor and the load capacitance.  
R
R
G
F
R
S
V
IN  
100mV STEP  
50⍀  
V
OUT  
C
L
1
1
2
3
A
4
5
6
V/V  
CL  
Figure 12. AD8051/AD8052 Capacitive Load Drive  
vs. Closed-Loop Gain  
1000  
V
= +5V  
S
Յ 30%  
OVERSHOOT  
8
6
R
= 10⍀  
S
4
2
R
= 0⍀  
S
100  
0
؊2  
؊4  
R
R
G
F
R
S
V
IN  
100mV STEP  
50⍀  
V
= +5V  
V
OUT  
S
؊6  
؊8  
C
G = +1  
R
C
V
L
= 2k⍀  
= 50pF  
= 200mV p-p  
L
L
10  
O
1
2
3
A
4
5
6
؊10  
– V/V  
CL  
500  
0.1  
1
10  
100  
Figure 13. AD8054 Capacitive Load Drive vs.  
Closed-Loop Gain  
FREQUENCY – MHz  
Figure 10. AD8051/AD8052 Closed-Loop  
Frequency Response: CL = 50 pF  
Circuit Description  
The AD8051/AD8052/AD8054 is fabricated on the Analog Devices  
proprietary eXtra-Fast Complementary Bipolar (XFCB) process,  
which enables the construction of PNP and NPN transistors  
with similar fTs in the 2 GHz to 4 GHz region. The process is  
dielectrically isolated to eliminate the parasitic and latch-up  
–14–  
REV. F  
AD8051/AD8052/AD8054  
problems caused by junction isolation. These features allow the  
construction of high frequency, low distortion amplifiers with  
low supply currents. This design uses a differential output input  
stage to maximize bandwidth and headroom (see Figure 14).  
The smaller signal swings required on the first stage outputs (nodes  
SIP, SIN) reduce the effect of nonlinear currents due to junction  
capacitances and improve the distortion performance. This  
design achieves harmonic distortion of 80 dBc @ 1 MHz into  
100 with VOUT = 2 V p-p (Gain = +1) on a single 5 V supply.  
minimum. Parasitic capacitance of less than 1 pF at the inverting  
input can significantly affect high speed performance.  
Stripline design techniques should be used for long signal traces  
(greater than about 25 mm). These should be designed with a  
characteristic impedance of 50 or 75 and be properly  
terminated at each end.  
Active Filters  
Active filters at higher frequencies require wider bandwidth  
op amps to work effectively. Excessive phase shift produced by  
lower frequency op amps can significantly impact active filter  
performance.  
The inputs of the device can handle voltages from 0.2 V below  
the negative rail to within 1 V of the positive rail. Exceeding  
these values will not cause phase reversal; however, the input  
ESD devices will begin to conduct if the input voltages exceed  
the rails by greater than 0.5 V. During this overdrive condition,  
the output stays at the rail.  
Figure 15 shows an example of a 2 MHz biquad bandwidth  
filter that uses three op amps of an AD8054. Such circuits are  
sometimes used in medical ultrasound systems to lower the  
noise bandwidth of the analog signal before A/D conversion.  
The rail-to-rail output range of the AD8051/AD8052/AD8054  
is provided by a complementary common-emitter output stage.  
High output drive capability is provided by injecting all output  
stage predriver currents directly into the bases of the output  
devices Q8 and Q36. Biasing of Q8 and Q36 is accomplished by  
I8 and I5, along with a common-mode feedback loop (not shown).  
This circuit topology allows the AD8051/AD8052 to drive 45 mA  
of output current and allows the AD8054 to drive 30 mA of  
output current with the outputs within 0.5 V of the supply rails.  
Note that the unused amplifiers inputs should be tied to  
ground.  
R6  
1k  
C1  
50pF  
13  
12  
R2  
2k⍀  
R4  
2k⍀  
14  
C2  
50pF  
R1  
3k⍀  
R3  
2k⍀  
2
3
V
IN  
R5  
2k⍀  
V
1
6
5
CC  
7
9
I9  
Q25  
Q50  
Q39  
R26  
Q4  
R39  
Q5  
8
I10  
I2  
I3  
Q36  
I5  
10  
AD8054  
Q51  
AD8054  
AD8054  
Q23  
V
Q40  
EE  
BAND-PASS  
FILTER OUTPUT  
R2  
R15  
Q13  
Q22  
R27  
R23  
Q21  
V
EE  
C3  
C9  
Q31  
Q7  
V
V
P
N
IN  
Q1  
V
OUT  
Figure 15. 2 MHz Biquad Band-Pass Filter Using AD8054  
Q27  
IN  
The frequency response of the circuit is shown in Figure 16.  
SIP  
SIN  
0
؊10  
؊20  
؊30  
؊40  
Q2  
Q8  
Q11  
R3  
Q3  
Q24  
I7  
Q47  
I8  
I11  
V
C7  
R21  
R5  
CC  
V
EE  
Figure 14. AD8051/AD8052 Simplified Schematic  
APPLICATIONS  
Layout Considerations  
The specified high speed performance of the AD8051/AD8052/  
AD8054 requires careful attention to board layout and compo-  
nent selection. Proper RF design techniques and low parasitic  
component selection are necessary.  
10k  
100k  
1M  
10M  
100M  
The PCB should have a ground plane covering all unused portions  
of the component side of the board to provide a low impedance  
path. The ground plane should be removed from the area near  
the input pins to reduce parasitic capacitance.  
FREQUENCY – Hz  
Figure 16. Frequency Response of 2 MHz Band-  
Pass Biquad Filter  
Chip capacitors should be used for supply bypassing. One end  
should be connected to the ground plane and the other within  
3 mm of each power pin. An additional large (4.7 µF to 10 µF)  
tantalum electrolytic capacitor should be connected in parallel,  
but not necessarily so close, to supply current for fast, large  
signal changes at the output.  
A/D and D/A Applications  
Figure 17 is a schematic showing the AD8051 used as a driver for  
an AD9201, a 10-bit 20 MSPS dual A/D converter. This converter  
is designed to convert I and Q signals in communications systems.  
In this application, only the I channel is being driven. The I chan-  
nel is enabled by applying a logic HIGH to SELECT, Pin 13.  
The feedback resistor should be located close to the inverting  
input pin to keep the parasitic capacitance at this node to a  
The AD8051 is running from a dual supply and is configured  
for a gain of +2. The input signal is terminated in 50 and the  
REV. F  
–15–  
AD8051/AD8052/AD8054  
CLK  
SLEEP  
INA-I  
0.33F  
0.01F  
22⍀  
؉V  
DD  
SELECT  
+5V  
10pF  
1k⍀  
22⍀  
INB-I  
10pF  
10F  
0.1F  
AD9201  
DATA OUT  
REFT-I  
D9  
D8  
D7  
D6  
22⍀  
10F  
0.1F  
0.1F  
0.1F  
10F  
REFB-I  
AVSS  
50⍀  
AD8051  
REFSENSE  
VREF  
1k⍀  
1k⍀  
D5  
D4  
0.1F  
10F  
0.1F  
؊5V  
AVDD  
؉5V  
D3  
10F  
0.1F  
D2  
REFB-Q  
REFT-Q  
0.1F  
10F  
0.1F  
D1  
0.1F  
22⍀  
D0  
؉5V  
DVDD  
DVSS  
INB-Q  
10pF  
0.1F  
10F  
22⍀  
INA-Q  
10pF  
CHIP–SELECT  
Figure 17. AD8051 Driving an AD9201, a 10-Bit 20 MSPS A/D Converter  
output is 2 V p-p, which is the maximum input range of the  
AD9201. The 22 series resistor limits the maximum current  
that flows and helps to lower the distortion of the A/D.  
With the sampling clock running at 20 MSPS, the A/D output  
was analyzed with a digital analyzer. Two input frequencies  
were used, 1 MHz and 9.5 MHz, which is just short of the  
Nyquist frequency. These signals were well filtered to minimize  
any harmonics.  
The AD9201 has differential inputs for each channel. These are  
designated the A and B inputs. The B inputs of each channel are  
connected to VREF (Pin 22), which supplies a positive reference  
of 2.5 V. Each of the B inputs has a small low-pass filter that also  
helps to reduce distortion.  
Figure 18 shows the FFT response of the A/D for the case of  
a 1 MHz analog input. The SFDR is 71.66 dB and the A/D is  
producing 8.8 ENOB (effective number of bits). When the analog  
frequency was raised to 9.5 MHz, the SFDR was reduced to  
60.18 dB and the A/D operated with 8.46 ENOBs as shown in  
Figure 19. The inclusion of the AD8051 in the circuit did not  
worsen the distortion performance of the AD9201.  
The output of the op amp is ac-coupled into INA-I (Pin 16)  
via two parallel capacitors to provide good high frequency and  
low frequency coupling. The 1 kresistor references the signal  
to VREF that is applied to INB-I. Thus, INA-I swings both  
positive and negative with respect to the bias voltage applied  
to INB-I.  
10  
10  
PART#  
0
PART#  
FFTSIZE 8192  
0
FUND  
FUND  
FFTSIZE 8192  
0
؊10  
؊20  
؊30  
0
؊10  
؊20  
؊30  
FCLK  
FUND  
20.0MHz  
FCLK  
FUND  
VIN  
20.0MHz  
998.5kHz  
؊0.51dB  
؊68.13  
54.97  
9.5MHz  
VIN  
؊0.44dB  
THD  
THD  
؊57.08  
54.65  
52.69  
8.46  
SNR  
SNR  
SINAD  
ENOB  
SFDR  
54.76  
SINAD  
ENOB  
SFDR  
2ND  
8.80  
؊40  
؊50  
؊40  
؊50  
71.66  
60.18  
؊60.18  
؊74.53  
؊76.06  
؊76.35  
؊79.05  
؊80.36  
2ND  
3RD  
3RD  
؊60.23  
؊82.01  
؊78.83  
؊81.28  
؊77.28  
؊84.54  
2ND  
3RD  
؊60  
؊70  
؊60  
؊70  
؊80  
4TH  
5TH  
4TH  
5TH  
7TH  
2ND  
9TH  
3RD  
4TH  
6TH  
7TH  
8TH  
9TH  
6TH  
7TH  
7TH  
8TH  
5TH  
6TH  
6TH  
؊75.08  
؊88.12  
؊77.87  
4TH  
؊80  
8TH  
8TH  
9TH  
؊90  
؊90  
؊92.78  
؊100  
؊110  
؊120  
؊100  
؊110  
؊120  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
6
7
8
9
10  
5
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 18. FFT Plot for AD8051 Driving the AD9201  
at 1 MHz  
Figure 19. FFT Plot for AD8051 Driving the AD9201  
at 9.5 MHz  
–16–  
REV. F  
AD8051/AD8052/AD8054  
Sync Stripper  
duty cycle that is a small fraction of a percent, and the other  
extreme defined by the opposite condition.  
Synchronizing pulses are sometimes carried on video signals so  
as not to require a separate channel to carry the synchronizing  
information. However, for some functions, such as A/D conversion,  
it is not desirable to have the sync pulses on the video signal.  
These pulses reduce the dynamic range of the video signal and  
do not provide any useful information for such a function.  
The worst case of composite video is not quite this demanding.  
One bounding condition is a signal that is mostly black for an  
entire frame but has a white (full amplitude) minimum width  
spike at least once in a frame.  
The other extreme is for a full white video signal. The blanking  
intervals and sync tips of such a signal have negative-going  
excursions in compliance with the composite video specifications.  
The combination of horizontal and vertical blanking intervals  
limit such a signal to being at the highest (white) level for a  
maximum of about 75% of the time.  
A sync stripper removes the synchronizing pulses from a video  
signal while passing all the useful video information. Figure 20  
shows a practical single-supply circuit that uses only a single  
AD8051. It is capable of directly driving a reverse terminated  
video line.  
As a result of the duty cycles between the two extremes presented  
above, a 1 V p-p composite video signal that is multiplied by a  
gain of +2 requires about 3.2 V p-p of dynamic voltage swing at  
the output for an op amp to pass a composite video signal of  
arbitrarily varying duty cycle without distortion.  
VIDEO WITHOUT SYNC  
VIDEO WITH SYNC  
V
GROUND  
+0.4V  
BLANK  
Some circuits use a sync tip clamp to hold the sync tips at a relatively  
constant level to lower the amount of dynamic signal swing  
required. However, these circuits can have artifacts such as sync  
tip compression unless they are driven by a source with a very  
low output impedance. The AD8051/AD8052/AD8054 have  
adequate signal swing when running on a single 5 V supply to handle  
an ac-coupled composite video signal.  
GROUND  
+3V OR +5V  
+
0.1F  
10F  
100⍀  
V
IN  
TO A/D  
AD8051  
R2  
1k⍀  
The input to the circuit in Figure 21 is a standard composite  
(1 V p-p) video signal that has the blanking level at ground. The  
input network level shifts the video signal by means of ac coupling.  
The noninverting input of the op amp is biased to half of the  
supply voltage.  
R1  
1k⍀  
+0.8V  
(OR 2 
؋
 V  
)
BLANK  
Figure 20. Sync Stripper  
The feedback circuit provides unity gain for the dc-biasing of  
the input and provides a gain of 2 for any signals that are in the  
video bandwidth. The output is ac-coupled and terminated to  
drive the line.  
The video signal plus sync is applied to the noninverting input  
with the proper termination. The amplifier gain is set to 2 via  
the two 1 kresistors in the feedback circuit. A bias voltage  
must be applied to R1 so that the input signal has the sync pulses  
stripped at the proper level.  
The capacitor values were selected for providing minimum tilt  
or field time distortion of the video signal. These values would  
be required for video that is considered to be studio or broadcast  
quality. However, if a lower consumer grade of video, sometimes  
referred to as consumer video, is all that is desired, the values and  
the cost of the capacitors can be reduced by as much as a factor  
of five with minimum visible degradation in the picture.  
The blanking level of the input video pulse is the desired place  
to remove the sync information. This level is multiplied by 2 by  
the amplifier. This level must be at ground at the output for the  
sync stripping action to take place. Since the gain of the ampli-  
fier from the input of R1 to the output is 1, a voltage equal to  
2 × VBLANK must be applied to make the blanking level come  
out at ground.  
+5V  
4.99k⍀  
Single-Supply Composite Video Line Driver  
+
10F  
4.99k⍀  
+
0.1F  
10F  
Many composite video signals have their blanking level at ground  
and have video information that is both positive and negative.  
Such signals require dual-supply amplifiers to pass them. However,  
by ac level shifting, a single-supply amplifier can be used to  
pass these signals. The following complications may arise from  
such techniques.  
COMPOSITE  
47F  
+
VIDEO  
R
75⍀  
BT  
IN  
1000F  
R
+
T
V
OUT  
10k⍀  
AD8051  
75⍀  
R
L
75⍀  
0.1F  
R
F
1k⍀  
R
1k⍀  
G
Signals of bounded peak-to-peak amplitude that vary in duty  
cycle require larger dynamic swing capacity than their (bounded)  
peak-to-peak amplitude after they are ac-coupled. As a worst case,  
the dynamic signal swing will approach twice the peak-to-peak  
value. The two conditions that define the maximum dynamic swing  
requirements are a signal that is mostly low but goes high with a  
220F  
Figure 21. Single-Supply Composite Video Line Driver  
REV. F  
–17–  
AD8051/AD8052/AD8054  
OUTLINE DIMENSIONS  
14-Lead Standard Small Outline Package [SOIC]  
5-Lead Small Outline Transistor Package [SOT-23]  
(RT-5)  
Narrow Body  
(R-14)  
Dimensions shown in millimeters  
Dimensions shown in millimeters and (inches)  
2.90 BSC  
8.75 (0.3445)  
8.55 (0.3366)  
5
1
4
3
2.80 BSC  
1.60 BSC  
14  
1
8
7
4.00 (0.1575)  
3.80 (0.1496)  
6.20 (0.2441)  
5.80 (0.2283)  
2
PIN 1  
0.95 BSC  
1.27 (0.0500)  
BSC  
0.50 (0.0197)  
0.25 (0.0098)  
1.75 (0.0689)  
1.35 (0.0531)  
؋
 45؇  
1.90  
BSC  
0.25 (0.0098)  
0.10 (0.0039)  
1.30  
1.15  
0.90  
8؇  
0؇  
0.51 (0.0201)  
0.31 (0.0122)  
SEATING  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
COPLANARITY  
0.10  
1.45 MAX  
0.22  
0.08  
PLANE  
10؇  
5؇  
0؇  
COMPLIANT TO JEDEC STANDARDS MS-012AB  
0.15 MAX  
0.60  
0.45  
0.30  
0.50  
0.30  
SEATING  
PLANE  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
COMPLIANT TO JEDEC STANDARDS MO-178AA  
8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
8-Lead Standard Small Outline Package [SOIC]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters  
Dimensions shown in millimeters and (inches)  
3.00  
BSC  
5.00 (0.1968)  
4.80 (0.1890)  
8
5
4
4.90  
BSC  
3.00  
BSC  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
1
PIN 1  
0.65 BSC  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
؋
 45؇  
1.75 (0.0688)  
1.35 (0.0532)  
1.10 MAX  
0.15  
0.00  
0.25 (0.0098)  
0.10 (0.0040)  
0.80  
0.60  
0.40  
8؇  
0؇  
8؇  
0.38  
0.22  
0.51 (0.0201)  
0.31 (0.0122)  
0.23  
0.08  
0؇ 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
COMPLIANT TO JEDEC STANDARDS MO-187AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
–18–  
REV. F  
AD8051/AD8052/AD8054  
OUTLINE DIMENSIONS  
14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters  
5.10  
5.00  
4.90  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
1.05  
1.00  
0.80  
0.65  
BSC  
0.20  
0.09  
1.20  
0.75  
0.60  
0.45  
MAX  
8؇  
0؇  
0.15  
0.05  
0.30  
0.19  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153AB-1  
REV. F  
–19–  
AD8051/AD8052/AD8054  
Revision History  
Location  
Page  
9/04—Data Sheet changed from REV. E to REV. F.  
Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Changes to Figure 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3/04—Data Sheet changed from REV. D to REV. E.  
Changes to GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Changes to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2/03—Data Sheet changed from REV. C to REV. D.  
Changes to GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Changes to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Changes to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
1/03—Data Sheet changed from REV. B to REV. C.  
Changes to GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Changes to PIN CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Changes to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Changes to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Changes to Figure 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
–20–  
REV. F  

相关型号:

AD8051ART-R2

Low Cost, High Speed, Rail-to-Rail Amplifiers
ADI

AD8051ART-REEL

Low Cost, High Speed Rail-to-Rail Amplifiers
ADI

AD8051ART-REEL7

Low Cost, High Speed Rail-to-Rail Amplifiers
ADI

AD8051ARTZ-R2

Low Cost, High Speed, Rail-to-Rail Amplifiers
ADI

AD8051ARTZ-REEL

Low Cost, High Speed, Rail-to-Rail Amplifiers
ADI

AD8051ARTZ-REEL7

Low Cost, High Speed, Rail-to-Rail Amplifiers
ADI

AD8051ARZ

Low Cost, High Speed, Rail-to-Rail Amplifiers
ADI

AD8051ARZ-REEL

Low Cost, High Speed, Rail-to-Rail Amplifiers
ADI

AD8051ARZ-REEL7

Low Cost, High Speed, Rail-to-Rail Amplifiers
ADI

AD8051R8

Voltage-Feedback Operational Amplifier
ETC

AD8051RT

IC IC,OP-AMP,SINGLE,BIPOLAR,TSOP,5PIN,PLASTIC, Operational Amplifier
ADI

AD8051_06

Low Cost, High Speed, Rail-to-Rail Amplifiers
ADI