AD8054ARU-REEL [ADI]

Low Cost, High Speed Rail-to-Rail Amplifiers; 低成本,高速轨到轨放大器
AD8054ARU-REEL
型号: AD8054ARU-REEL
厂家: ADI    ADI
描述:

Low Cost, High Speed Rail-to-Rail Amplifiers
低成本,高速轨到轨放大器

运算放大器 放大器电路 光电二极管
文件: 总16页 (文件大小:270K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Cost, High Speed  
Rail-to-Rail Amplifiers  
a
AD8051/AD8052/AD8054  
CONNECTION DIAGRAMS  
(Top Views)  
FEATURES  
Low Cost Single (AD8051), Dual (AD8052) and Quad  
(AD8054)  
Voltage Feedback Architecture  
Fully Specified at +3 V, +5 V and ؎5 V Supplies  
Single Supply Operation  
Output Swings to Within 25 mV of Either Rail  
Input Voltage Range: –0.2 V to +4 V; VS = +5 V  
High Speed and Fast Settling on +5 V:  
110 MHz –3 dB Bandwidth (G = +1) (AD8051/AD8052)  
150 MHz –3 dB Bandwidth (G = +1) (AD8054)  
145 V/s Slew Rate  
SO-8  
SOT-23-5 (RT)  
AD8051  
AD8051  
1
2
3
4
V
OUT  
8
7
6
5
NC  
+V  
1
2
5 +V  
S
NC  
–IN  
+IN  
S
–V  
S
+ –  
V
OUT  
+IN  
3
4 –IN  
–V  
NC  
S
NC = NO CONNECT  
R-8, SOIC (RM)  
R-14, TSSOP-14 (RU-14)  
50 ns Settling Time to 0.1%  
Small Packaging  
AD8051 Available in SOT-23-5  
AD8052 Available in SOIC-8  
AD8052  
1
2
3
4
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
8
7
6
5
+V  
S
OUT1  
–IN1  
+IN1  
OUT D  
OUT A  
؊IN A  
+IN A  
V+  
+
OUT  
–IN2  
+IN2  
؊IN D  
+IN D  
+
AD8054 Available in TSSOP-14  
AD8054  
V؊  
–V  
S
Good Video Specifications (G = +2)  
Gain Flatness of 0.1 dB to 20 MHz; RL = 150 ⍀  
0.03% Differential Gain Error; RL = 1K  
0.03؇ Differential Phase Error; RL = 1K  
Low Distortion  
–80 dBc Total Harmonic @ 1 MHz, RL = 100 ⍀  
Outstanding Load Drive Capability  
Drives 45 mA, 0.5 V from Supply Rails (AD8051/AD8052)  
Drives 50 pF Capacitive Load (G = +1) (AD8051/AD8052)  
Low Power of 2.75 mA/Amplifier (AD8054)  
Low Power of 4.4 mA/Amplifier (AD8051/AD8052)  
+IN C  
+IN B  
؊IN B  
OUT B  
؊IN C  
8
OUT C  
portable equipment. Low distortion and fast settling make them  
ideal for active filter applications.  
The AD8051/AD8052/AD8054 offer low power supply cur-  
rent and can operate on a single +3 V power supply. These  
features are ideally suited for portable and battery powered  
applications where size and power are critical.  
APPLICATIONS  
Coax Cable Driver  
Active Filters  
Video Switchers  
A/D Driver  
The wide bandwidth and fast slew rate on a single +5 V supply  
make these amplifiers useful in many general purpose, high speed  
applications where dual power supplies of up to ±6 V and single  
supplies from +3 V to +12 V are needed.  
All of this low cost performance is offered in an 8-lead SOIC,  
along with a tiny SOT-23-5 package (AD8051), a µSOIC  
package (AD8052) and a TSSOP-14 (AD8054).  
Professional Cameras  
CCD Imaging Systems  
CD/DVD ROM  
5.0  
4.5  
PRODUCT DESCRIPTION  
The AD8051 (single), AD8052 (dual) and AD8054 (quad) are  
low cost, voltage feedback, high speed amplifiers designed to  
operate on +3 V, +5 V or ±5 V supplies. They have true single  
supply capability with an input voltage range extending 200 mV  
below the negative rail and within 1 V of the positive rail.  
V
= +5V  
S
G = –1  
R
4.0  
3.5  
3.0  
2.5  
2.0  
= 2k  
F
L
R
= 2k⍀  
Despite their low cost, the AD8051/AD8052/AD8054 provide  
excellent overall performance and versatility. The output volt-  
age swing extends to within 25 mV of each rail, providing the  
maximum output dynamic range with excellent overdrive recov-  
ery. This makes the AD8051/AD8052/AD8054 useful for video  
electronics such as cameras, video switchers or any high speed  
1.5  
1.0  
0.5  
0
0.1  
1
10  
50  
FREQUENCY – MHz  
REV. B  
Figure 1. Low Distortion Rail-to-Rail Output Swing  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1999  
AD8051/AD8052/AD8054–SPECIFICATIONS (@ T = +25؇C, V = +5 V, R = 2 kto +2.5 V,  
unless otherwise noted)  
A
S
L
AD8051A/AD8052A  
Typ  
AD8054A  
Parameter  
Conditions  
Min  
Max Min  
Typ  
Max Units  
DYNAMIC PERFORMANCE  
–3 dB Small Signal Bandwidth  
G = +1, VO = 0.2 V p-p  
G = –1, +2, VO = 0.2 V p-p  
G = +2, VO = 0.2 V p-p,  
RL = 150 to +2.5 V,  
70  
110  
50  
80  
150  
60  
MHz  
MHz  
Bandwidth for 0.1 dB Flatness  
RF = 806 for AD8051A/AD8052A  
RF = 200 for AD8054A  
G = –1, VO = 2 V Step  
20  
MHz  
MHz  
V/µs  
MHz  
ns  
12  
Slew Rate  
100  
145  
35  
140  
170  
45  
Full Power Response  
Settling Time to 0.1%  
G = +1, VO = 2 V p-p  
G = –1, VO = 2 V Step  
50  
40  
NOISE/DISTORTION PERFORMANCE  
Total Harmonic Distortion1  
Input Voltage Noise  
fC = 5 MHz, VO = 2 V p-p, G = +2  
f = 10 kHz  
–67  
16  
–68  
16  
dB  
nV/Hz  
fA/Hz  
%
Input Current Noise  
f = 10 kHz  
850  
0.09  
0.03  
0.19  
0.03  
–60  
850  
0.07  
0.02  
0.26  
0.05  
–60  
Differential Gain Error (NTSC)  
G = +2, RL = 150 to +2.5 V  
RL = 1 kto +2.5 V  
G = +2, RL = 150 to +2.5 V  
RL = 1 kto +2.5 V  
f = 5 MHz, G = +2  
%
Differential Phase Error (NTSC)  
Crosstalk  
Degrees  
Degrees  
dB  
DC PERFORMANCE  
Input Offset Voltage  
1.7  
10  
25  
1.7  
12  
30  
mV  
mV  
µV/°C  
µA  
TMIN –TMAX  
Offset Drift  
10  
15  
2
Input Bias Current  
1.4  
2.5  
4.5  
4.5  
1.2  
TMIN –TMAX  
3.25  
0.75  
82  
µA  
Input Offset Current  
Open-Loop Gain  
0.1  
98  
96  
82  
78  
0.2  
98  
96  
82  
78  
µA  
RL = 2 kto +2.5 V  
TMIN –TMAX  
86  
76  
dB  
dB  
RL = 150 to +2.5 V  
TMIN –TMAX  
74  
dB  
dB  
INPUT CHARACTERISTICS  
Input Resistance  
290  
300  
1.5  
kΩ  
pF  
V
Input Capacitance  
1.4  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
–0.2 to 4  
88  
–0.2 to 4  
86  
VCM = 0 V to +3.5 V  
72  
70  
dB  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
R
L = 10 kto +2.5 V  
0.015 to 4.985  
0.03 to 4.975  
V
RL = 2 kto +2.5 V  
RL = 150 to +2.5 V  
VOUT = 0.5 V to +4.5 V  
TMIN –TMAX  
0.1 to 4.9  
0.025 to 4.975  
0.125 to 4.875 0.05 to 4.95  
V
0.3 to 4.625 0.2 to 4.8  
0.55 to 4.4  
0.25 to 4.65  
V
Output Current  
45  
30  
30  
45  
85  
mA  
mA  
mA  
mA  
pF  
pF  
45  
80  
Short Circuit Current  
Capacitive Load Drive  
Sourcing  
Sinking  
130  
50  
G = +1 (AD8051/AD8052)  
G = +2 (AD8054)  
40  
POWER SUPPLY  
Operating Range  
3
12  
5
3
12  
V
Quiescent Current/Amplifier  
Power Supply Rejection Ratio  
4.4  
2.75  
80  
3.275 mA  
dB  
VS = ±1 V  
70  
80  
68  
OPERATING TEMPERATURE RANGE  
–40  
+85 –40  
+85 °C  
NOTES  
1Refer to Figure 15.  
Specifications subject to change without notice.  
–2–  
REV. B  
AD8051/AD8052/AD8054  
(@ TA = +25؇C, VS = +3 V, RL = 2 kto +1.5 V, unless otherwise noted)  
SPECIFICATIONS  
AD8051A/AD8052A  
Typ  
AD8054A  
Typ  
Parameter  
Conditions  
Min  
Max Min  
Max Units  
DYNAMIC PERFORMANCE  
–3 dB Small Signal Bandwidth  
G = +1, VO = 0.2 V p-p  
70  
110  
50  
80  
135  
65  
MHz  
MHz  
G = –1, +2, VO = 0.2 V p-p  
G = +2, VO = 0.2 V p-p,  
RL = 150 to 2.5 V,  
Bandwidth for 0.1 dB Flatness  
RF = 402 for AD8051A/AD8052A  
17  
MHz  
MHz  
V/µs  
MHz  
ns  
R
F = 200 for AD8054A  
10  
150  
85  
Slew Rate  
Full Power Response  
Settling Time to 0.1%  
G = –1, VO = 2 V Step  
G = +1, VO = 1 V p-p  
G = –1, VO = 2 V Step  
90  
135  
65  
55  
110  
55  
NOISE/DISTORTION PERFORMANCE  
Total Harmonic Distortion1  
fC = 5 MHz, VO = 2 V p-p,  
G = –1, RL = 100 to +1.5 V  
f = 10 kHz  
–47  
16  
600  
–48  
16  
600  
dB  
nV/Hz  
fA/Hz  
Input Voltage Noise  
Input Current Noise  
f = 10 kHz  
Differential Gain Error (NTSC)  
G = +2, VCM = +1 V  
RL = 150 to +1.5 V,  
0.11  
0.09  
0.13  
0.09  
%
%
R
L = 1 kto +1.5 V  
Differential Phase Error (NTSC)  
G = +2, VCM = +1 V  
RL = 150 to +1.5 V  
0.24  
0.10  
–60  
0.3  
0.1  
–60  
Degrees  
Degrees  
dB  
R
L = 1 k to +1.5 V  
Crosstalk  
f = 5 MHz, G = +2  
DC PERFORMANCE  
Input Offset Voltage  
1.6  
10  
25  
1.6  
12  
30  
mV  
mV  
µV/°C  
µA  
µA  
µA  
dB  
dB  
dB  
dB  
T
MIN –TMAX  
Offset Drift  
Input Bias Current  
10  
1.3  
15  
2
2.6  
3.25  
0.8  
80  
4.5  
4.5  
1.2  
TMIN –TMAX  
Input Offset Current  
Open-Loop Gain  
0.15  
96  
94  
82  
76  
0.2  
96  
94  
80  
76  
RL = 2 kΩ  
T
RL = 150 Ω  
TMIN –TMAX  
80  
74  
MIN –TMAX  
72  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
290  
1.4  
–0.2 to 2  
88  
300  
1.5  
–0.2 to 2  
86  
kΩ  
pF  
V
VCM = 0 V to 1.5 V  
72  
70  
dB  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
R
L = 10 kto +1.5 V  
0.01 to 2.99  
0.075 to 2.9 0.02 to 2.98  
0.025 to 2.98  
0.35 to 2.965  
V
V
RL = 2 kto +1.5 V  
0.1 to 2.9  
R
V
L = 150 to +1.5 V  
OUT = 0.5 V to +2.5 V  
0.2 to 2.75 0.125 to 2.875  
0.35 to 2.55 0.15 to 2.75  
V
Output Current  
45  
45  
60  
90  
45  
25  
25  
30  
50  
mA  
mA  
mA  
mA  
pF  
pF  
TMIN –TMAX  
Sourcing  
Sinking  
G = +1 (AD8051/AD8052)  
G = +2 (AD8054)  
Short Circuit Current  
Capacitive Load Drive  
35  
POWER SUPPLY  
Operating Range  
3
12  
3
12  
V
Quiescent Current/Amplifier  
Power Supply Rejection Ratio  
4.2  
80  
4.8  
2.625  
80  
3.125 mA  
dB  
VS = +0.5 V  
68  
68  
OPERATING TEMPERATURE RANGE  
–40  
+85 –40  
+85 °C  
NOTES  
1Refer to Figure 15.  
Specifications subject to change without notice.  
REV. B  
–3–  
(@ TA = +25؇C, VS = ؎5 V, RL = 2 kto Ground,  
unless otherwise noted)  
AD8051/AD8052/AD8054–SPECIFICATIONS  
AD8051A/AD8052A  
AD8054A  
Typ  
Parameter  
Conditions  
Min  
Typ  
Max Min  
Max Units  
DYNAMIC PERFORMANCE  
–3 dB Small Signal Bandwidth  
G = +1, VO = 0.2 V p-p  
G = –1, +2, VO = 0.2 V p-p  
G = +2, VO = 0.2 V p-p,  
RL = 150 ,  
70  
110  
50  
85  
160  
65  
MHz  
MHz  
Bandwidth for 0.1 dB Flatness  
R
F = 1.1 kfor AD8051A/AD8052A  
20  
MHz  
MHz  
V/µs  
MHz  
ns  
RF = 200 for AD8054A  
G = –1, VO = 2 V Step  
G = +1, VO = 2 V p-p  
G = –1, VO = 2 V Step  
15  
Slew Rate  
105  
170  
40  
150  
190  
50  
Full Power Response  
Settling Time to 0.1%  
50  
40  
NOISE/DISTORTION PERFORMANCE  
Total Harmonic Distortion  
Input Voltage Noise  
fC = 5 MHz, VO = 2 V p-p, G = +2  
f = 10 kHz  
–71  
16  
–72  
16  
dB  
nV/Hz  
fA/Hz  
%
Input Current Noise  
f = 10 kHz  
900  
0.02  
0.02  
0.11  
0.02  
–60  
900  
0.06  
0.02  
0.15  
0.03  
–60  
Differential Gain Error (NTSC)  
G = +2, RL = 150 Ω  
R
L = 1 kΩ  
%
Differential Phase Error (NTSC)  
Crosstalk  
G = +2, RL = 150 Ω  
RL = 1 kΩ  
Degrees  
Degrees  
dB  
f = 5 MHz, G = +2  
DC PERFORMANCE  
Input Offset Voltage  
1.8  
11  
27  
1.8  
13  
32  
mV  
mV  
µV/°C  
µA  
TMIN –TMAX  
Offset Drift  
10  
15  
2
Input Bias Current  
1.4  
2.6  
3.5  
0.75  
84  
4.5  
4.5  
1.2  
TMIN –TMAX  
µA  
Input Offset Current  
Open-Loop Gain  
0.1  
96  
96  
82  
80  
0.2  
96  
96  
82  
80  
µA  
RL = 2 kΩ  
88  
78  
dB  
TMIN –TMAX  
RL = 150 Ω  
TMIN –TMAX  
dB  
76  
dB  
dB  
INPUT CHARACTERISTICS  
Input Resistance  
290  
300  
kΩ  
pF  
V
Input Capacitance  
1.4  
1.5  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
–5.2 to 4  
88  
–5.2 to 4  
86  
VCM = –5 V to +3.5 V  
72  
70  
dB  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
RL = 10 kΩ  
RL = 2 kΩ  
–4.98 to +4.98  
–4.97 to +4.97  
V
–4.85 to +4.85 –4.97 to +4.97  
–4.8 to +4.8 –4.9 to +4.9  
V
R
L = 150 Ω  
–4.45 to +4.3 –4.6 to +4.6  
–4.0 to +3.8 –4.5 to +4.5  
V
Output Current  
VOUT = 4.5 V to +4.5 V  
TMIN –TMAX  
45  
30  
mA  
mA  
mA  
mA  
pF  
pF  
45  
30  
Short Circuit Current  
Capacitive Load Drive  
Sourcing  
100  
160  
50  
60  
Sinking  
100  
G = +1 (AD8051/AD8052)  
G = +2 (AD8054)  
40  
POWER SUPPLY  
Operating Range  
3
12  
3
12  
V
Quiescent Current/Amplifier  
Power Supply Rejection Ratio  
4.8  
5.5  
2.875  
3.4  
mA  
dB  
VS = ±1 V  
68  
80  
68  
80  
OPERATING TEMPERATURE RANGE  
–40  
+85 –40  
+85 °C  
Specifications subject to change without notice.  
–4–  
REV. B  
AD8051/AD8052/AD8054  
ABSOLUTE MAXIMUM RATINGS1  
plastic encapsulated devices is determined by the glass transi-  
tion temperature of the plastic, approximately +150°C. Tempo-  
rarily exceeding this limit may cause a shift in parametric  
performance due to a change in the stresses exerted on the die by  
the package. Exceeding a junction temperature of +175°C for an  
extended period can result in device failure.  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.6 V  
Internal Power Dissipation2  
Small Outline Package (R) . . . Observe Power Derating Curves  
SOT-23-5 Package . . . . . . . . Observe Power Derating Curves  
µSOIC Package . . . . . . . . . . Observe Power Derating Curves  
TSSOP-14 Package . . . . . . . Observe Power Derating Curves  
Input Voltage (Common Mode) . . . . . . . . . . . . . . . . . . . . ±VS  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . ±2.5 V  
Output Short Circuit Duration  
. . . . . . . . . . . . . . . . . . . . . . Observe Power Derating Curves  
Storage Temperature Range (R) . . . . . . . . . –65°C to +125°C  
Operating Temperature Range (A Grade) . . . –40°C to +85°C  
Lead Temperature Range (Soldering 10 sec) . . . . . . . . +300°C  
While the AD8051/AD8052/AD8054 are internally short circuit  
protected, this may not be sufficient to guarantee that the maxi-  
mum junction temperature (+150°C) is not exceeded under  
all conditions. To ensure proper operation, it is necessary to ob-  
serve the maximum power derating curves.  
2.0  
14-LEAD SOIC  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2Specification is for device in free air:  
8-Lead SOIC: θJA = 155°C/W  
5-Lead SOT-23-5: θJA = 240°C/W  
8-Lead µSOIC: θJA = 200°C/W  
14-Lead SOIC: θJA = 120°C/W  
1.5  
8-LEAD SOIC  
PACKAGE  
T
= +150؇C  
J
14-LEAD TSSOP-14  
1.0  
0.5  
0
SOIC  
SOT-23-5  
14-Lead TSSOP: θJA = 180°C/W  
MAXIMUM POWER DISSIPATION  
–50 –40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
AMBIENT TEMPERATURE – ؇C  
The maximum power that can be safely dissipated by the AD8051/  
AD8052/AD8054 is limited by the associated rise in junction  
temperature. The maximum safe junction temperature for  
Figure 2. Plot of Maximum Power Dissipation vs.  
Temperature for AD8051/AD8052/AD8054  
ORDERING GUIDE  
Temperature  
Range  
Package  
Descriptions  
Package  
Options* Code  
Brand  
Model  
AD8051AR  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
8-Lead SOIC  
SO-8  
AD8051AR-REEL  
AD8051AR-REEL7  
AD8051ART-REEL  
13" Tape and Reel SO-8  
7" Tape and Reel SO-8  
13" Tape and Reel RT-5  
H2A  
H2A  
AD8051ART-REEL7 –40°C to +85°C  
7" Tape and Reel  
RT-5  
AD8052AR  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
8-Lead SOIC  
13" Tape and Reel SO-8  
7" Tape and Reel  
8-Lead µSOIC  
SO-8  
AD8052AR-REEL  
AD8052AR-REEL7  
AD8052ARM  
SO-8  
RM-8  
H4A  
H4A  
H4A  
AD8052ARM-REEL  
13" Tape and Reel RM-8  
AD8052ARM-REEL7 –40°C to +85°C  
7" Tape and Reel  
RM-8  
AD8054AR  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
14-Lead SOIC  
13" Tape and Reel R-14  
7" Tape and Reel  
14-Lead µSOIC  
R-14  
AD8054AR-REEL  
AD8054AR-REEL7  
AD8054ARU  
R-14  
RU-14  
AD8054ARU-REEL  
13" Tape and Reel RU-14  
AD8054ARU-REEL7 –40°C to +85°C  
7" Tape and Reel RU-14  
*R = Small Outline; RM = Micro Small Outline; RT = Surface Mount; RU = TSSOP .  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD8051/AD8052/AD8054 feature proprietary ESD protection circuitry, perma-  
nent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper  
ESD precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. B  
–5–  
AD8051/AD8052/AD8054  
3
5
4
3
2
1
V
= +5V  
G = +1  
= 0  
S
2
1
G = +2  
= 2k⍀  
G = +2  
R
GAIN AS SHOWN  
F
R
F
R
= 2k⍀  
F
R
R
V
AS SHOWN  
= 5k⍀  
F
L
= 0.2V p-p  
0
–1  
–2  
O
G = +5  
R
= 2k⍀  
F
0
–1  
–2  
–3  
G = +1  
= 0  
G = +10  
= 2k⍀  
R
F
R
F
G = +10  
= 2k⍀  
–3  
–4  
–5  
R
F
V
= +5V  
S
GAIN AS SHOWN  
R
–4  
–5  
–6  
–7  
AS SHOWN  
F
R
= 2k⍀  
L
G = +5  
= 2k⍀  
V
= 0.2V p-p  
–6  
–7  
O
R
F
0.1  
1
10  
FREQUENCY – MHz  
100  
500  
1M  
500M  
100k  
10M  
FREQUENCY – Hz  
100M  
Figure 3. AD8051/AD8052 Normalized Gain vs.  
Frequency; VS = +5 V  
Figure 6. AD8054 Normalized Gain vs. Frequency;  
VS = +5 V  
3
2
6
5
4
+3V  
+5V  
؎5V  
V
= +3V  
V
= +5V  
S
S
G = +1  
1
0
R
C
= 2k⍀  
= 5pF  
L
L
3
2
V
= 0.2V p-p  
O
–1  
V
= ؎5V  
S
–2  
–3  
–4  
–5  
1
0
V
AS SHOWN  
S
G = +1  
R
= 2k⍀  
= 0.2V p-p  
L
V
O
؎5V  
–1  
–2  
–3  
–4  
+3V  
+5V  
–6  
–7  
0.1  
1
10  
FREQUENCY – MHz  
100  
500  
100k  
1M  
10M  
100M  
500M  
FREQUENCY – Hz  
Figure 7. AD8054 Gain vs. Frequency vs. Supply  
Figure 4. AD8051/AD8052 Gain vs. Frequency  
vs. Supply  
3
2
4
+85؇C  
3
+25؇C  
–40؇C  
1
2
–40؇C  
0
1
0
+85؇C  
–1  
+25؇C  
–2  
–3  
V
= +5V  
–1  
–2  
S
R
C
= 2kTO 2.5V  
= 5pF  
L
V
= +5V  
S
L
–4  
–5  
G = +1  
R
G = +1  
= 0.2V p-p  
= 2k⍀  
= 0.2V p-p  
–3  
–4  
–5  
V
L
O
V
O
–6 TEMPERATURE AS SHOWN  
–7  
0.1  
1
10  
100  
500  
1
10  
100  
500  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 5. AD8051/AD8052 Gain vs. Frequency vs.  
Temperature  
Figure 8. AD8054 Gain vs. Frequency vs. Temperature  
–6–  
REV. B  
AD8051/AD8052/AD8054  
6.3  
6.2  
6.1  
6.0  
5.9  
5.8  
5.7  
5.6  
5.5  
5.4  
5.3  
6.3  
6.2  
6.1  
6.0  
5.9  
5.8  
V
= +5V  
S
R
R
= 200⍀  
= 150⍀  
F
V
= +5V  
S
5.7  
5.6  
G = +2  
R
R
L
= 150⍀  
= 806⍀  
= 0.2V p-p  
G = +2  
V = 0.2V p-p  
O
L
F
5.5  
V
O
5.4  
5.3  
1
10  
100  
0.1  
1
10  
100  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 9. AD8051/AD8052 0.1 dB Gain Flatness vs.  
Frequency; G = +2  
Figure 12. AD8054 0.1 dB Gain Flatness vs. Frequency;  
G = +2  
9
9
V
V
= +5V  
= 2V p-p  
V
V
= +5V  
= 2V p-p  
8
7
6
8
7
S
S
O
O
6
5
5
4
3
V
V
= ؎5V  
= 4V p-p  
S
4
O
V
V
= ؎5V  
= 4V p-p  
S
3
O
V
AS SHOWN  
V AS SHOWN  
S
G = +2  
S
2
2
1
G = +2  
R
R
V
= 2k⍀  
= 2k⍀  
AS SHOWN  
R
R
V
= 2k⍀  
= 2k⍀  
AS SHOWN  
O
L
F
L
1
F
0
0
O
–1  
0.1  
–1  
0.1  
1
10  
100  
500  
1
10  
FREQUENCY – MHz  
100  
500  
FREQUENCY – MHz  
Figure 10. AD8051/AD8052 Large Signal Frequency  
Response; G = +2  
Figure 13. AD8054 Large Signal Frequency Response;  
G = +2  
80  
80  
V
= +5V  
V
= +5V  
= 2k⍀  
= 5pF  
S
70  
60  
50  
40  
30  
20  
S
70  
R
= 2k⍀  
R
C
L
L
L
60  
50  
40  
30  
20  
GAIN  
GAIN  
0
180  
50؇ PHASE  
MARGIN  
–45  
–90  
–135  
–180  
135  
90  
PHASE  
45؇ PHASE  
MARGIN  
PHASE  
10  
0
10  
0
45  
0
–10  
–20  
–10  
–20  
0.01  
0.1  
1
10  
100  
500  
30k 100k  
1M  
10M  
100M  
500M  
FREQUENCY – MHz  
FREQUENCY – Hz  
Figure 11. AD8051/AD8052 Open-Loop Gain and  
Phase vs. Frequency  
Figure 14. AD8054 Open-Loop Gain and Phase  
Margin vs. Frequency  
REV. B  
–7–  
AD8051/AD8052/AD8054  
1000  
100  
10  
؊20  
V
= 2V p-p  
V = +3V, G = ؊1  
S
V
= +5V  
O
S
R
= 2k, R = 100⍀  
L
F
؊30  
؊40  
V
R
= +5V, G = +2  
S
= 2k, R = 100⍀  
F
L
V
= +5V, G = +1  
S
؊50  
؊60  
R
= 100⍀  
L
؊70  
V
= +5V, G = +1  
S
؊80  
R
= 2k⍀  
L
V
R
= +5V, G = +2  
= 2k, R = 2k⍀  
L
S
؊90  
F
؊100  
؊110  
1
10  
1
2
3
4
5
6
7
8
9 10  
100  
1k  
10k  
100k  
1M  
10M  
FUNDAMENTAL FREQUENCY – MHz  
FREQUENCY – Hz  
Figure 18. Input Voltage Noise vs. Frequency  
Figure 15. Total Harmonic Distortion  
؊30  
100  
V
= +5V  
S
؊40  
؊50  
10MHz  
؊60  
10  
؊70  
؊80  
5MHz  
؊90  
؊100  
؊110  
؊120  
؊130  
؊140  
V
R
= +5V  
= 2k⍀  
S
1MHz  
1
L
G = +2  
0.1  
10  
0
0.5 1.0 1.5  
2.0 2.5  
3.0 3.5  
OUTPUT VOLTAGE – V p-p  
4.0  
5.0  
4.5  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY – Hz  
Figure 16. Worst Harmonic vs. Output Voltage  
Figure 19. Input Current Noise vs. Frequency  
0.10  
0.10  
R
= 150⍀  
NTSC SUBSCRIBER (3.58MHz)  
NTSC SUBSCRIBER (3.58MHz)  
L
0.08  
0.06  
0.04  
0.02  
R
= 1k⍀  
0.05  
L
0.00  
0.00  
؊0.02  
؊0.04  
؊0.06  
R
= 1k⍀  
L
–0.05  
V
R
= +5, G = +2  
V
= +5, G = +2  
S
S
= 2k, R AS SHOWN  
R
= 150⍀  
F
L
R
= 2k, R AS SHOWN  
L
F
L
–0.10  
0
50  
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th  
10  
20  
30  
40  
60  
70  
80  
90 100  
0.3  
0.2  
0.1  
0.10  
0.05  
R
= 1k⍀  
L
0.00  
R
= 1k⍀  
L
؊0.05  
؊0.10  
؊0.15  
؊0.20  
؊0.25  
0.0  
–0.1  
–0.2  
R
= 150⍀  
L
V
R
R
= +5, G = +2  
= 2k,  
AS SHOWN  
S
V
= +5, G = +2  
S
F
L
R
= 150⍀  
R
= 2k, R AS SHOWN  
L
L
F
–0.3  
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th  
MODULATING RAMP LEVEL – IRE  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
MODULATING RAMP LEVEL – IRE  
Figure 17. AD8051/AD8052 Differential Gain and Phase  
Errors  
Figure 20. AD8054 Differential Gain and Phase Errors  
–8–  
REV. B  
AD8051/AD8052/AD8054  
–10  
–20  
–10  
–20  
V
= +5V  
S
R
R
= 2k⍀  
= 2k⍀  
= 2V p-p  
F
L
–30  
–40  
–30  
–40  
–50  
–60  
–70  
–80  
V
O
R
= 100⍀  
L
–50  
–60  
–70  
–80  
–90  
V
= ؎5V  
R
= 1k⍀  
S
L
R
R
= 1k⍀  
= AS SHOWN  
= 2V p-p  
F
L
V
O
–90  
–100  
–110  
–100  
0.1  
1
10  
100  
500  
1
10  
FREQUENCY – MHz  
0.1  
100  
500  
FREQUENCY – MHz  
Figure 24. AD8054 Crosstalk (Output-to-Output) vs.  
Frequency  
Figure 21. AD8052 Crosstalk (Output-to-Output) vs.  
Frequency  
20  
0
V
= +5V  
V
= +5V  
S
S
–10  
–20  
–30  
–40  
–50  
–60  
10  
0
–10  
–PSRR  
+PSRR  
–20  
–30  
–40  
–50  
–70  
–80  
–60  
–70  
–90  
–100  
–80  
0.03  
500  
0.01  
0.1  
1
10  
100  
500  
0.1  
1
10  
100  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 25. PSRR vs. Frequency  
Figure 22. CMRR vs. Frequency  
100  
31  
70  
V
= ؉5V  
S
AD8051/AD8052  
60  
50  
G = ؉1  
10  
AD8054  
3.1  
40  
1
0.31  
0.1  
30  
20  
V
= ؉5V  
S
10  
0
0.031  
0.01  
G = ؊1  
= 2k⍀  
R
L
0.1  
1
10  
100  
500  
0.5  
1
1.5  
2
INPUT STEPS – Volts p-p  
FREQUENCY – MHz  
Figure 23. Closed Loop Output Resistance vs. Frequency  
Figure 26. Settling Time vs. Input Step  
REV. B  
–9–  
AD8051/AD8052/AD8054  
1.00  
1.00  
V
= +5V  
V = +5V  
S
S
V
= +85؇C  
OH  
0.90  
0.80  
+5V –V  
(+125؇C)  
0.875  
0.750  
0.625  
0.500  
OH  
V
= +25؇C  
OH  
+5V –V  
(+25؇C)  
0.70  
0.60  
0.50  
0.40  
OH  
V
= –40؇C  
OH  
V
= +85؇C  
OL  
+5V –V  
(–55؇C)  
OH  
0.375  
0.250  
0.125  
0.00  
0.30  
0.20  
V
= +25؇C  
OL  
V
(+125؇C)  
OL  
V
= –40؇C  
OL  
V
(+25؇C)  
0.10  
0
OL  
V
(–55؇C)  
OL  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85  
LOAD CURRENT – mA  
LOAD CURRENT – mA  
Figure 27. AD8051/AD8052 Output Saturation Voltage vs.  
Load Current  
Figure 29. AD8054 Output Saturation Voltage vs. Load  
Current  
100  
R
= 2k⍀  
L
90  
R
= 150⍀  
L
80  
70  
V
= +5V  
S
60  
0
5
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
OUTPUT VOLTAGE – Volts  
Figure 28. Open-Loop Gain vs. Output Voltage  
–10–  
REV. B  
AD8051/AD8052/AD8054  
5
2.5  
1.50V  
Figure 33. Output Swing; G = –1, RL = +2 k  
Figure 30. 100 mV Step Response, G = +1  
2.55  
2.50  
2.45  
2.60  
2.50  
2.40  
20ns  
Figure 34. AD8054 100 mV Step Response; VS = +5 V,  
G = +1  
Figure 31. AD8051/AD8052 200 mV Step Response;  
VS = +5 V, G = +1  
4
3
2
3.5  
2.5  
1.5  
1
؊1  
؊2  
؊3  
؊4  
Figure 32. Large Signal Step Response; VS = +5 V, G = +2  
Figure 35. Large Signal Step Response; VS = ±5 V, G = +1  
REV. B  
–11–  
AD8051/AD8052/AD8054  
Overdrive Recovery  
Overdrive of an amplifier occurs when the output and/or input  
range are exceeded. The amplifier must recover from this over-  
drive condition. As shown in Figure 36, the AD8051/AD8052/  
AD8054 recovers within 60 ns from negative overdrive and  
within 45 ns from positive overdrive.  
2.60  
2.55  
2.50  
2.45  
2.40  
Figure 38. AD8051/AD8052 200 mV Step Response:  
CL = 50 pF  
10000  
V
= +5V  
S
Յ 30%  
OVERSHOOT  
R
= 3⍀  
S
Figure 36. Overdrive Recovery  
1000  
100  
10  
R
= 0⍀  
Driving Capacitive Loads  
S
Consider the AD8051/AD8052 in a closed-loop gain of +1 with  
+VS = 5 V and a load of 2 kin parallel with 50 pF. Figures 37  
and 38 show its frequency and time domain responses, respec-  
tively, to a small-signal excitation. The capacitive load drive of  
the AD8051/AD8052/AD8054 can be increased by adding a  
low valued resistor in series with the load. Figures 39 and 40  
show the effect of a series resistor on capacitive drive for varying  
voltage gains. As the closed-loop gain is increased, the larger  
phase margin allows for larger capacitive loads with less peak-  
ing. Adding a series resistor with lower closed-loop gains ac-  
complishes the same effect. For large capacitive loads, the  
frequency response of the amplifier will be dominated by the  
roll-off of the series resistor and the load capacitance.  
R
R
G
F
R
S
V
IN  
V
OUT  
100mV STEP  
50⍀  
C
L
1
1
2
3
4
5
6
A
– V/V  
CL  
Figure 39. AD8051/AD8052 Capacitive Load Drive vs.  
Closed-Loop Gain  
8
6
1000  
V
= +5V  
S
4
Յ 30%  
OVERSHOOT  
2
R
= 10⍀  
S
0
؊2  
؊4  
R
= 0⍀  
S
100  
V
= +5V  
S
؊6  
؊8  
G = +1  
R
R
G
F
R
C
V
= 2k⍀  
= 50pF  
= 200mV p-p  
L
L
R
S
V
IN  
100mV STEP  
50⍀  
V
O
OUT  
؊10  
C
L
500  
0.1  
1
10  
100  
10  
FREQUENCY – MHz  
1
2
3
4
5
6
A
– V/V  
CL  
Figure 37. AD8051/AD8052 Closed-Loop Frequency  
Response: CL = 50 pF  
Figure 40. AD8054 Capacitive Load Drive vs. Closed-Loop  
Gain  
Circuit Description  
The AD8051/AD8052/AD8054 is fabricated on Analog Devices’  
proprietary eXtra-Fast Complementary Bipolar (XFCB) pro-  
cess, which enables the construction of PNP and NPN transis-  
tors with similar fTs in the 2 GHz–4 GHz region. The process is  
dielectrically isolated to eliminate the parasitic and latch-up  
–12–  
REV. B  
AD8051/AD8052/AD8054  
problems caused by junction isolation. These features allow the  
construction of high frequency, low distortion amplifiers with low  
supply currents. This design uses a differential output input stage  
to maximize bandwidth and headroom (see Figure 1). The smaller  
signal swings required on the first stage outputs (nodes S1P, S1N)  
reduce the effect of nonlinear currents due to junction capacitances  
and improve the distortion performance. With this design har-  
to a minimum. Parasitic capacitance of less than 1 pF at the  
inverting input can significantly affect high speed performance.  
Stripline design techniques should be used for long signal traces  
(greater than about 25 mm). These should be designed with a  
characteristic impedance of 50 or 75 and be properly termi-  
nated at each end.  
Active Filters  
monic distortion of –80 dBc @ 1 MHz into 100 with VOUT  
=
Active filters at higher frequencies require wider bandwidth op  
amps to work effectively. Excessive phase shift produced by  
lower frequency op amps can significantly impact active filter  
performance.  
2 V p-p (Gain = +1) on a single 5 V supply is achieved.  
The inputs of the device can handle voltages from –0.2 V below  
the negative rail to within 1 V of the positive rail. Exceeding  
these values will not cause phase reversal; however, the input  
ESD devices will begin to conduct if the input voltages exceed  
the rails by greater than 0.5 V. During this overdrive condition,  
the output stays at the rail.  
Figure 42 shows an example of a 2 MHz biquad bandwidth  
filter that uses three op amps of an AD8054. Such circuits are  
sometimes used in medical ultrasound systems to lower the  
noise bandwidth of the analog signal before A/D conversion.  
Please note that the unused amplifiers’ inputs should be tied to  
ground.  
The rail-to-rail output range of the AD8051/AD8052/AD8054  
is provided by a complementary common-emitter output stage.  
High output drive capability is provided by injecting all out-  
put stage predriver currents directly into the bases of the output  
devices Q8 and Q36. Biasing of Q8 and Q36 is accomplished by  
I8 and I5, along with a common-mode feedback loop (not  
shown). This circuit topology allows the AD8051/AD8052 to drive  
45 mA of output current and the AD8054 to drive 30 mA of out-  
put current with the outputs within 0.5 V of the supply rails.  
R6  
1k⍀  
C1  
50pF  
13  
12  
R2  
R4  
2k⍀  
14  
C2  
2k⍀  
R1  
3k⍀  
50pF  
R3  
2k⍀  
2
3
V
IN  
R5  
2k⍀  
1
6
5
7
9
V
CC  
8
V
I9  
OUT  
Q25  
AD8054  
10  
Q50  
Q39  
R26  
Q4  
R39  
Q5  
I10  
I2  
I3  
AD8054  
Q36  
I5  
AD8054  
Q51  
Q23  
V
Q40  
EE  
Figure 42. 2 MHz Biquad Bandpass Filter Using AD8054  
R2  
R15  
Q13  
Q22  
R27  
R23  
Q21  
V
EE  
The frequency response of the circuit is shown in Figure 43.  
C3  
C9  
Q31  
Q7  
V
V
P
N
IN  
Q1  
V
OUT  
Q27  
IN  
SIP  
SIN  
0
؊10  
؊20  
؊30  
؊40  
Q2  
Q8  
Q11  
R3  
Q3  
Q24  
I7  
Q47  
I8  
I11  
V
C7  
R21  
R5  
CC  
V
EE  
Figure 41. AD8051/AD8052 Simplified Schematic  
APPLICATIONS  
Layout Considerations  
The specified high speed performance of the AD8051/AD8052/  
AD8054 requires careful attention to board layout and compo-  
nent selection. Proper RF design techniques and low-parasitic  
component selection are necessary.  
10k  
100k  
1M  
10M  
100M  
FREQUENCY – Hz  
The PCB should have a ground plane covering all unused por-  
tions of the component side of the board to provide a low im-  
pedance path. The ground plane should be removed from the  
area near the input pins to reduce the parasitic capacitance.  
Figure 43. Frequency Response of 2 MHz Bandpass  
Biquad Filter  
A/D and D/A Applications  
Chip capacitors should be used for the supply bypassing. One  
end should be connected to the ground plane and the other  
within 3 mm of each power pin. An additional large (4.7 µF to  
10 µF) tantalum electrolytic capacitor should be connected in  
parallel, but not necessarily so close, to supply current for fast,  
large signal changes at the output.  
Figure 44 is a schematic showing the AD8051 used as a driver  
for an AD9201, a 10-bit 20 MSPS dual A/D converter. This  
converter is designed to convert I and Q signals in communica-  
tion systems. In this application, only the I channel is being  
driven. The I channel is enabled by applying a logic HIGH to  
SELECT, Pin 27.  
The feedback resistor should be located close to the inverting  
input pin in order to keep the parasitic capacitance at this node  
The AD8051 is running from a dual supply and is configured  
for a gain of +2. The input signal is terminated in 50 and  
REV. B  
–13–  
AD8051/AD8052/AD8054  
CLK  
SLEEP  
INA-I  
0.33F  
0.01F  
22⍀  
؉V  
SELECT  
DD  
+5V  
10pF  
1k⍀  
22⍀  
INB-I  
10pF  
10F  
0.1F  
AD9201  
DATA OUT  
REFT-I  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
22⍀  
10F  
0.1F  
0.1F  
0.1F  
10F  
REFB-I  
50⍀  
AD8051  
AVSS  
REFSENSE  
1k⍀  
1k⍀  
V
REF  
0.1F  
10F  
0.1F  
؊5V  
AVDD  
؉5V  
10F  
0.1F  
REFB-Q  
REFT-Q  
0.1F  
10F  
0.1F  
D1  
D0  
0.1F  
22⍀  
؉5V  
DVDD  
DVSS  
INB-Q  
10pF  
0.1F  
10F  
22⍀  
INA-Q  
10pF  
THREE–STATE  
Figure 44. AD8051 Driving an AD9201, a 10-Bit 20 MSPS A/D Converter  
applied to the noninverting input of the AD8051. The amplifier  
output is 2 V p-p, which is the maximum input range of the  
AD9201. The 22 series resistor limits the maximum current  
that flows and helps to lower the distortion of the A/D.  
positive and negative with respect to the bias voltage applied to  
INB-I.  
With the sampling clock running at 20 MSPS, the A/D output  
was analyzed with a digital analyzer. Two input frequencies  
were used, 1 MHz and 9.5 MHz, which is just short of the  
Nyquist frequency. These signals were well filtered to minimize  
any harmonics.  
The AD9201 has differential inputs for each channel. These are  
designated the A and B inputs. The B inputs of each channel are  
connected to VREF (Pin 8) which supplies a positive reference  
of 2.5 V. Each of the B inputs has a small low pass filter that  
also helps to reduce distortion.  
Figure 45 shows the FFT response of the A/D for the case of  
1 MHz analog input. The SFDR is 71.66 dB and the A/D is  
producing 8.8 ENOB (effective number of bits). When the  
analog frequency was raised to 9.5 MHz, the SFDR was re-  
duced to 60.18 dB and the A/D operated with 8.46 ENOBs as  
shown in Figure 46. The inclusion of the AD8051 in the circuit  
had no worsening of the distortion performance of the AD9201.  
The output of the op amp is ac coupled into INA-I (Pin 2) via  
two parallel capacitors to provide good high frequency and low  
frequency coupling. The 1 kresistor references the signal to  
VREF that is applied to INB-I. Thus, INA-I will swing both  
10.0  
10.0  
PART#  
FFTSIZE 8192  
0
PART#  
0
5.0  
0.0  
5.0  
0.0  
FUND  
FUND  
FFTSIZE 8192  
FCLK  
FUND  
VIN  
20.0E؉6  
؊5.0  
؊10.0  
؊15.0  
FCLK  
FUND  
20.0E؉6  
؊5.0  
9.5E؉6  
؊10.0  
؊15.0  
؊20.0  
؊25.0  
؊30.0  
؊35.0  
؊40.0  
؊45.0  
؊50.0  
؊55.0  
؊60.0  
؊65.0  
؊70.0  
؊75.0  
؊80.0  
؊85.0  
؊90.0  
؊95.0  
؊100.0  
؊105.0  
؊110.0  
؊115.0  
؊120.0  
998.5E؉3  
؊0.51dB  
؊68.13  
54.97  
؊0.44dB  
VIN  
؊20.0  
؊25.0  
؊30.0  
THD  
؊57.08  
54.65  
THD  
SNR  
SNR  
SINAD  
ENOB  
SFDR  
2ND  
52.69  
SINAD  
ENOB  
SFDR  
54.76  
؊35.0  
؊40.0  
؊45.0  
؊50.0  
8.46  
8.80  
؊60.18  
؊60.18  
؊71.66  
؊74.53  
؊76.06  
؊76.35  
؊79.05  
؊80.36  
2ND  
3RD  
؊55.0  
؊60.0  
؊65.0  
3RD  
؊60.23  
؊82.01  
؊78.83  
؊81.28  
؊77.28  
؊84.54  
2ND  
3RD  
4TH  
5TH  
4TH  
5TH  
؊70.0  
؊75.0  
؊80.0  
؊85.0  
7TH  
6TH  
7TH  
8TH  
9TH  
2ND  
9TH  
7TH  
4TH  
6TH  
7TH  
3RD  
8TH  
6TH  
6TH  
4TH  
5TH  
؊75.08  
؊88.12  
؊77.87  
8TH  
8TH  
9TH  
؊90.0  
؊95.0  
؊92.78  
؊100.0  
؊105.0  
؊110.0  
؊115.0  
؊120.0  
0.0E؉0  
2.0E؉6  
4.0E؉6  
6.0E؉6  
8.0E؉6  
10.0E؉6  
9.0E؉6  
0.0E؉0  
2.0E؉6  
4.0E؉6  
6.0E؉6  
8.0E؉6  
10.0E؉6  
9.0E؉6  
1.0E؉6  
3.0E؉6  
5.0E؉6  
7.0E؉6  
1.0E؉6  
3.0E؉6  
5.0E؉6  
7.0E؉6  
Figure 46. FFT Plot for AD8051 Driving the AD9201 at  
9.5 MHz  
Figure 45. FFT Plot for AD8051 Driving the AD9201 at  
1 MHz  
–14–  
REV. B  
AD8051/AD8052/AD8054  
Sync Stripper  
goes high with a duty cycle that is a small fraction of a percent.  
The opposite condition defines the other extreme.  
Synchronizing pulses are sometimes carried on video signals so  
as not to require a separate channel to carry the synchronizing  
information. However, for some functions, like A/D conversion,  
it is not desirable to have the sync pulses on the video signal.  
These pulses will reduce the dynamic range of the video signal  
and do not provide any useful information for such a function.  
The worst case of composite video is not quite this demanding.  
One bounding condition is a signal that is mostly black for an  
entire frame, but has a white (full amplitude) minimum width  
spike at least once in a frame.  
The other extreme is for a full white video signal. The blanking  
intervals and sync tips of such a signal will have negative-going  
excursions is compliance with the composite video specifica-  
tions. The combination of horizontal and vertical blanking inter-  
vals limit such a signal to being at the highest (white) level for a  
maximum of about 75% of the time.  
A sync stripper will remove the synchronizing pulses from a  
video signal while passing all the useful video information. Fig-  
ure 47 shows a practical single supply circuit that uses only a  
single AD8051. It is capable of directly driving a reverse termi-  
nated video line.  
As a result of the duty cycles between the two extremes pre-  
sented above, a 1 V p-p composite video signal that is multiplied  
by a gain of two requires about 3.2 V p-p of dynamic voltage  
swing at the output for an op amp to pass a composite video  
signal of arbitrary varying duty cycle without distortion.  
VIDEO WITHOUT SYNC  
VIDEO WITH SYNC  
V
GROUND  
+0.4V  
BLANK  
Some circuits use a sync tip clamp to hold the sync tips at a  
relatively constant level in order to lower the amount of dynamic  
signal swing required. However, these circuits can have artifacts  
like sync tip compression unless they are driven by a source with  
a very low output impedance. The AD8051/AD8052/AD8054  
have adequate signal swing when running on a single +5 V  
supply to handle an ac coupled composite video signal.  
GROUND  
+3V OR +5V  
+
0.1F  
10F  
100⍀  
V
IN  
TO A/D  
AD8051  
R2  
1k⍀  
The input to the circuit in Figure 48 is a standard composite  
(1 V p-p) video signal that has the blanking level at ground. The  
input network level shifts the video signal by means of ac cou-  
pling. The noninverting input of the op amp is biased to half of  
the supply voltage.  
R1  
1k⍀  
+0.8V  
(OR 2 
؋
 V  
)
BLANK  
Figure 47. Sync Stripper  
The feedback circuit provides unity gain for the dc biasing of the  
input, and provides a gain of two for any signals that are in the  
video bandwidth. The output is ac coupled and terminated to  
drive the line.  
The video signal plus sync is applied to the noninverting input  
with the proper termination. The amplifier gain is set equal to  
two via the two 1 kresistors in the feedback circuit. A bias  
voltage must be applied to R1 in order that the input signal has  
the sync pulses stripped at the proper level.  
The capacitor values were selected for providing minimum “tilt”  
or field time distortion of the video signal. These values would  
be required for video that is considered to be studio or broad-  
cast quality. However, if a lower consumer grade of video,  
sometimes referred to as “consumer video” is all that is desired,  
the values and the cost of the capacitors can be reduced by as  
much as a factor of five with minimum visible degradation in the  
picture.  
The blanking level of the input video pulse is the desired place  
to remove the sync information. This level is multiplied by two  
by the amplifier. This level must be at ground at the output in  
order for the sync stripping action to take place. Since the gain  
of the amplifier from the input of R1 to the output is –1, a volt-  
age equal to 2 × VBLANK must be applied to make the blanking  
level come out at ground.  
+5V  
4.99k⍀  
Single Supply Composite Video Line Driver  
+
10F  
4.99k⍀  
+
Many composite video signals have their blanking level at  
ground and have video information that is both positive and  
negative. Such signals require dual supply amplifiers to pass  
them. However, by ac level shifting a single supply amplifier can  
be used to pass these signals. The following complications may  
arise from such techniques.  
0.1F  
10F  
COMPOSITE  
VIDEO  
47F  
+
R
BT  
IN  
1000F  
75⍀  
R
+
T
V
OUT  
10F  
AD8051  
75⍀  
R
L
75⍀  
0.1F  
R
F
1k⍀  
Signals of bounded peak-to-peak amplitude that vary in duty  
cycle require larger dynamic swing capacity than their (bounded)  
peak to peak amplitude after they are ac coupled. As a worst  
case, the dynamic signal swing will approach twice the peak-  
to-peak value. The two conditions that define the maximum  
dynamic wing requirements are a signal that is mostly low, but  
R
1k⍀  
G
220F  
Figure 48. Single Supply Composite Video Line Driver  
REV. B  
–15–  
AD8051/AD8052/AD8054  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
8-Lead SOIC  
(SO-8)  
14-Lead SOIC  
(R-14)  
0.1968 (5.00)  
0.1890 (4.80)  
0.3444 (8.75)  
0.3367 (8.55)  
8
1
5
4
14  
1
8
7
0.1574 (4.00)  
0.1497 (3.80)  
0.1574 (4.00)  
0.1497 (3.80)  
0.2440 (6.20)  
0.2284 (5.80)  
0.2440 (6.20)  
0.2284 (5.80)  
PIN 1  
0.0688 (1.75)  
0.0532 (1.35)  
0.0688 (1.75)  
0.0532 (1.35)  
PIN 1  
0.0196 (0.50)  
0.0196 (0.50)  
0.0099 (0.25)  
x 45°  
x 45°  
0.0098 (0.25)  
0.0040 (0.10)  
0.0098 (0.25)  
0.0040 (0.10)  
0.0099 (0.25)  
8°  
0°  
8°  
0°  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
SEATING  
PLANE  
SEATING  
PLANE  
0.0098 (0.25)  
0.0075 (0.19)  
0.0500 (1.27)  
0.0160 (0.41)  
0.0500 (1.27)  
0.0160 (0.41)  
0.0098 (0.25)  
0.0075 (0.19)  
8-Lead SOIC  
14-Lead TSSOP  
(RU-14)  
(RM-8)  
0.122 (3.10)  
0.114 (2.90)  
0.201 (5.10)  
0.193 (4.90)  
14  
8
7
5
4
8
1
0.199 (5.05)  
0.187 (4.75)  
0.122 (3.10)  
0.114 (2.90)  
0.177 (4.50)  
0.256 (6.50)  
0.246 (6.25)  
0.169 (4.30)  
1
PIN 1  
0.0256 (0.65) BSC  
0.120 (3.05)  
0.112 (2.84)  
0.120 (3.05)  
0.112 (2.84)  
PIN 1  
0.006 (0.15)  
0.002 (0.05)  
0.043 (1.09)  
0.037 (0.94)  
0.006 (0.15)  
0.002 (0.05)  
0.0433  
(1.10)  
MAX  
33°  
27°  
0.018 (0.46)  
0.028 (0.70)  
0.020 (0.50)  
8°  
0°  
0.011 (0.28)  
0.003 (0.08)  
0.028 (0.71)  
0.016 (0.41)  
SEATING  
PLANE  
0.0118 (0.30)  
0.0075 (0.19)  
0.0256  
(0.65)  
BSC  
0.008 (0.20)  
SEATING  
PLANE  
0.0079 (0.20)  
0.0035 (0.090)  
5-Lead Plastic Surface Mount  
(RT-5)  
0.1220 (3.100)  
0.1063 (2.700)  
5
1
4
0.1181 (3.000)  
0.0709 (1.800)  
0.0590 (1.500)  
0.0984 (2.500)  
2
3
PIN 1  
0.0374 (0.950) REF  
0.0748 (1.900)  
REF  
0.0079 (0.200)  
0.0035 (0.090)  
0.0512 (1.300)  
0.0354 (0.900)  
0.0571 (1.450)  
0.0354 (0.900)  
10°  
0°  
SEATING  
PLANE  
0.0197 (0.500)  
0.0118 (0.300)  
0.0590 (0.150)  
0.0000 (0.000)  
0.0236 (0.600)  
0.0039 (0.100)  
REV. B  
–16–  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY