AD8055AN [ADI]

Low Cost, 300 MHz Voltage Feedback Amplifiers; 低成本, 300 MHz电压反馈放大器
AD8055AN
型号: AD8055AN
厂家: ADI    ADI
描述:

Low Cost, 300 MHz Voltage Feedback Amplifiers
低成本, 300 MHz电压反馈放大器

放大器
文件: 总11页 (文件大小:208K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Cost, 300 MHz  
Voltage Feedback Amplifiers  
a
AD8055/AD8056  
FUNCTIONAL BLOCK DIAGRAMS  
FEATURES  
Low Cost Single (AD8055) and Dual (AD8056)  
Easy to Use Voltage Feedback Architecture  
High Speed  
300 MHz, –3 dB Bandwidth (G = +1)  
1400 V/s Slew Rate  
20 ns Settling to 0.1%  
Low Distortion: –72 dBc @ 10 MHz  
Low Noise: 6 nV/Hz  
N-8 and SO-8  
SOT-23-5 (RT)  
AD8055  
AD8055  
1
2
3
4
NC  
+V  
+V  
S
8
7
6
5
V
1
2
5
4
NC  
IN  
+IN  
OUT  
S
V  
S
V
OUT  
NC  
V  
3
IN  
+IN  
S
(Not to Scale)  
(Not to Scale)  
NC = NO CONNECT  
Low DC Errors: 5 mV Max VOS, 1.2 A Max IB  
Small Packaging  
N-8, SO-8, microSOIC (RM)  
AD8055 Available in SOT-23-5  
AD8056 Available in 8-Lead microSOIC  
Excellent Video Specifications (RL = 150 , G = +2)  
Gain Flatness 0.1 dB to 40 MHz  
0.01% Differential Gain Error  
AD8056  
1
2
3
4
+V  
S
OUT1  
IN1  
+IN1  
8
7
6
5
OUT  
IN2  
+IN2  
V  
S
0.02؇ Differential Phase Error  
(Not to Scale)  
Drives Four Video Loads (37.5 ) with 0.02% and  
0.1؇ Differential Gain and Differential Phase  
Low Power, ؎5 V Supplies  
5 mA Typ/Amplifier Power Supply Current  
High Output Drive Current: Over 60 mA  
The AD8055 and AD8056 require only 5 mA typ/amplifier of  
supply current and operate on dual 5 V or single +12 V power  
supply, while being capable of delivering over 60 mA of load  
current. All this is offered in a small 8-lead plastic DIP, 8-lead  
SOIC packages, 5-lead SOT-23-5 package (AD8055) and an  
8-lead microSOIC package (AD8056). These features make  
the AD8055/AD8056 ideal for portable and battery powered  
applications where size and power are critical. These amplifiers are  
available in the industrial temperature range of –40°C to +85°C.  
APPLICATIONS  
Imaging  
Photodiode Preamp  
Video Line Driver  
Differential Line Driver  
Professional Cameras  
Video Switchers  
Special Effects  
5
V
R
= 100mV p-p  
= 100  
R
C
OUT  
4
3
V
IN  
V
A-to-D Driver  
Active Filters  
OUT  
L
50  
G = +1  
R
L
R
R
= 0⍀  
= 100⍀  
F
R
F
2
R
S
C
G = +2  
= 402⍀  
1
R
PRODUCT DESCRIPTION  
F
0
The AD8055 (single) and AD8056 (dual) voltage feedback  
amplifiers offer bandwidth and slew rate typically found in cur-  
rent feedback amplifiers. Additionally, these amplifiers are easy  
to use and available at a very low cost.  
–1  
–2  
–3  
–4  
G = +10  
R
= 909⍀  
F
Despite their low cost, the AD8055 and AD8056 provide excel-  
lent overall performance. For video applications, their differen-  
tial gain and phase error are 0.01% and 0.02° into a 150 load,  
and 0.02% and 0.1° while driving four video loads (37.5 ).  
Their 0.1 dB flatness out to 40 MHz, wide bandwidth out to  
300 MHz, along with 1400 V/µs slew rate and 20 ns settling  
time, make them useful for a variety of high speed applications.  
G = +5  
R
= 1000⍀  
F
–5  
0.3M  
1M  
10M  
100M  
1G  
FREQUENCY – Hz  
Figure 1. Frequency Response  
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 2000  
(@ TA = +25؇C, VS = 65 V, RF = 402 , RL = 100 , Gain = +2,  
AD8055/AD8056–SPECIFICATIONS unless otherwise noted)  
Model  
AD8055A/AD8056A  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth  
G = +1, VO = 0.1 V p-p  
G = +1, VO = 2 V p-p  
G = +2, VO = 0.1 V p-p  
G = +2, VO = 2 V p-p  
VO = 100 mV p-p  
G = +1, VO = 4 V Step  
G = +2, VO = 4 V Step  
G = +2, VO = 2 V Step  
G = +1, VO = 0.5 V Step  
G = +1, VO = 4 V Step  
G = +2, VO = 0.5 V Step  
G = +2, VO = 4 V Step  
220  
125  
120  
125  
25  
1000  
750  
300  
150  
160  
150  
40  
1400  
840  
20  
MHz  
MHz  
MHz  
MHz  
MHz  
V/µs  
V/µs  
ns  
ns  
ns  
ns  
ns  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Settling Time to 0.1%  
Rise and Fall Time, 10% to 90%  
2
2.7  
2.8  
4
NOISE/HARMONIC PERFORMANCE  
Total Harmonic Distortion  
fC = 10 MHz, VO = 2 V p-p, RL = 1 kΩ  
fC = 20 MHz, VO = 2 V p-p, RL = 1 kΩ  
f = 5 MHz, G = +2  
f = 100 kHz  
f = 100 kHz  
NTSC, G = +2, RL = 150 Ω  
NTSC, G = +2, RL = 37.5 Ω  
NTSC, G = +2, RL = 150 Ω  
NTSC, G = +2, RL = 37.5 Ω  
–72  
–57  
–60  
6
dBc  
dBc  
dB  
nV/Hz  
pA/Hz  
%
%
Degree  
Crosstalk, Output to Output (AD8056)  
Input Voltage Noise  
Input Current Noise  
1
Differential Gain Error  
0.01  
0.02  
0.02  
0.1  
Differential Phase Error  
Degree  
DC PERFORMANCE  
Input Offset Voltage  
3
5
10  
mV  
mV  
µV/°C  
µA  
T
MIN–TMAX  
Offset Drift  
Input Bias Current  
6
0.4  
1
1.2  
TMIN–TMAX  
VO = 2.5 V  
TMIN–TMAX  
µA  
Open Loop Gain  
66  
64  
71  
dB  
dB  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
10  
2
3.2  
82  
MΩ  
pF  
V
VCM  
=
2.5 V  
dB  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
Output Current1  
RL = 150 Ω  
VO = 2.0 V  
2.9  
55  
3.1  
60  
110  
V
mA  
mA  
Short Circuit Current1  
POWER SUPPLY  
Operating Range  
Quiescent Current  
4.0  
5.0  
5.4  
6.0  
6.5  
7.3  
12  
13.3  
V
AD8055  
TMIN–TMAX  
AD8056  
mA  
mA  
mA  
mA  
dB  
dB  
10  
T
MIN–TMAX  
Power Supply Rejection Ratio  
+VS = +5 V to +6 V, –VS = –5 V  
–VS = –5 V to –6 V, +VS = +5 V  
66  
69  
72  
86  
OPERATING TEMPERATURE RANGE  
–40  
+85  
°C  
NOTES  
1Output current is limited by the maximum power dissipation in the package. See the power derating curves.  
Specifications subject to change without notice.  
REV. B  
–2–  
AD8055/AD8056  
ABSOLUTE MAXIMUM RATINGS1  
of the plastic, approximately +150°C. Exceeding this limit tem-  
porarily may cause a shift in parametric performance due to a  
change in the stresses exerted on the die by the package. Exceeding  
a junction temperature of +175°C for an extended period can  
result in device failure.  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.2 V  
Internal Power Dissipation2  
Plastic DIP Package (N) . . . . . . . . . . . . . . . . . . . . . . 1.3 W  
Small Outline Package (R) . . . . . . . . . . . . . . . . . . . . . 0.8 W  
SOT-23-5 Package (RT) . . . . . . . . . . . . . . . . . . . . . . 0.5 W  
microSOIC Package (RM) . . . . . . . . . . . . . . . . . . . . . 0.6 W  
Input Voltage (Common Mode) . . . . . . . . . . . . . . . . . . . VS  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . 2.5 V  
Output Short Circuit Duration  
. . . . . . . . . . . . . . . . . . . . . . Observe Power Derating Curves  
Storage Temperature Range N, R . . . . . . . . –65°C to +125°C  
Operating Temperature Range (A Grade) . . –40°C to +85°C  
Lead Temperature Range (Soldering 10 sec) . . . . . . . +300°C  
While the AD8055/AD8056 are internally short circuit protected,  
this may not be sufficient to guarantee that the maximum junc-  
tion temperature (+150°C) is not exceeded under all conditions.  
To ensure proper operation, it is necessary to observe the maxi-  
mum power derating curves.  
2.0  
8-LEAD PLASTIC DIP PACKAGE  
NOTES  
1.5  
8-LEAD SOIC  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2Specification is for device in free air:  
T = +150؇C  
J
PACKAGE  
1.0  
0.5  
0
8-Lead Plastic DIP Package: θJA = 90°C/W  
SOIC  
8-Lead SOIC Package: θJA = 155°C/W  
SOT-23-5  
5-Lead SOT-23-5 Package: θJA = 240°C/W  
8-Lead microSOIC Package: θJA = 200°C/W  
50 40 30 20 10  
0
10 20 30 40 50 60 70 80 90  
MAXIMUM POWER DISSIPATION  
AMBIENT TEMPERATURE ؇C  
The maximum power that can be safely dissipated by the AD8055/  
AD8056 is limited by the associated rise in junction temperature.  
The maximum safe junction temperature for plastic encapsu-  
lated devices is determined by the glass transition temperature  
Figure 2. Plot of Maximum Power Dissipation vs.  
Temperature for AD8055/AD8056  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option  
Brand Code  
AD8055AN  
AD8055AR  
AD8055AR-REEL  
AD8055AR-REEL7  
AD8055ART-REEL  
AD8055ART-REEL7  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
Plastic DIP  
N-8  
Small Outline Package (SOIC)  
13" Tape and Reel  
7" Tape and Reel  
13" Tape and Reel  
7" Tape and Reel  
SO-8  
SO-8  
SO-8  
RT-5  
RT-5  
H3A  
H3A  
AD8056AN  
AD8056AR  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
Plastic DIP  
N-8  
Small Outline Package (SOIC)  
13" Tape and Reel  
7" Tape and Reel  
microSOIC  
13" Tape and Reel  
7" Tape and Reel  
SO-8  
SO-8  
SO-8  
RM-8  
RM-8  
RM-8  
AD8056AR-REEL  
AD8056AR-REEL7  
AD8056ARM  
AD8056ARM-REEL  
AD8056ARM-REEL7  
H5A  
H5A  
H5A  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD8055/AD8056 features proprietary ESD protection circuitry, permanent dam-  
age may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper  
ESD precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. B  
–3–  
Typical Performance Characteristics  
AD8055/AD8056  
402⍀  
+V  
4.7F  
+V  
4.7F  
0.01F  
0.001F  
S
S
0.01F  
0.001F  
HP8130A  
PULSE  
HP8130A  
PULSE  
V
V
IN  
100⍀  
50⍀  
402⍀  
IN  
7
7
3
2
2
3
GENERATOR  
V
GENERATOR  
OUT  
T
/T = 0.67ns  
6
T
/T = 1ns  
R
F
6
AD8055  
57⍀  
AD8055  
R
F
V
OUT  
100⍀  
100⍀  
4
4
4.7F  
0.01F  
4.7F  
0.01F  
0.001F  
0.001F  
V  
V  
S
S
Figure 6. Test Circuit, G = –1, RL = 100  
Figure 7. Small Step Response, G = –1  
Figure 8. Large Step Response, G = –1  
Figure 3. Test Circuit, G = +1, RL = 100 Ω  
Figure 4. Small Step Response, G = +1  
Figure 5. Large Step Response, G = +1  
REV. B  
–4–  
AD8055/AD8056  
5
4
50  
60  
V
= 100mV p-p  
OUT  
R = 100  
L
RC  
VIN  
VOUT  
V
= 2V p-p  
50  
OUT  
3
G = +2  
= 402⍀  
G = +2  
= 100⍀  
R
R
F
L
RF  
RS  
RL  
2
G = +1  
= 0⍀  
R
2ND  
F
70  
1
R
= 100⍀  
C
0
80  
1  
2  
3  
3RD  
G = +10  
R
= 909⍀  
F
90  
G = +5  
R
= 1000⍀  
4  
5  
F
100  
0.3M  
1M  
10M  
100M  
1G  
10k  
100M  
100k  
1M  
10M  
FREQUENCY Hz  
FREQUENCY Hz  
Figure 9. Small Signal Frequency Response,  
G = +1, G = +2, G = +5, G = +10  
Figure 12. Distortion vs. Frequency  
5
4
50  
60  
70  
80  
V
= 2V p-p  
V
R
= 2V p-p  
= 100⍀  
OUT  
OUT  
3
2
G = +2  
= 1k⍀  
L
R
L
G = +1  
= 0⍀  
1
R
F
0
G = +2  
R
= 402⍀  
1  
2  
3  
F
2ND  
G = +10  
= 909⍀  
R
F
90  
3RD  
G = +5  
= 1000⍀  
4  
5  
R
F
100  
0.3M  
1M  
10M  
FREQUENCY Hz  
100M  
1G  
10k  
100k  
1M  
FREQUENCY Hz  
10M  
100M  
Figure 10. Large Signal Frequency Response,  
G = +1, G = +2, G = +5, G = +10  
Figure 13. Distortion vs. Frequency  
40  
0.5  
V
= 100mV  
OUT  
G = +2  
0.4  
0.3  
G = +2  
R
R
= 100  
= 402⍀  
L
F
50  
60  
R
= 1k  
L
0.2  
0.1  
0
2ND  
0.1  
0.2  
0.3  
0.4  
0.5  
70  
80  
90  
3RD  
0
0.4 0.8  
1.2  
1.6  
V
2.0 2.4  
V p-p  
2.8 3.2 3.6 4.0  
0.3M  
1M  
10M  
100M  
1G  
FREQUENCY Hz  
OUT  
Figure 11. 0.1 dB Flatness  
Figure 14. Distortion vs. VOUT @ 20 MHz  
REV. B  
–5–  
AD8055/AD8056  
10  
10  
9
8
7
6
5
4
3
2
1
0
G = +1  
G = +2  
R
R
= 100⍀  
= 0⍀  
9
8
7
6
5
4
3
2
1
0
L
F
R
R
= 100⍀  
= 402⍀  
L
F
FALLTIME  
RISETIME  
RISETIME  
FALLTIME  
0
0.2  
0.4  
0.6  
0.8  
V p-p  
1.0  
1.2  
1.4  
1.6  
0
0.5 1.0  
1.5 2.0  
2.5 3.0 3.5 4.0  
4.5 5.0  
V
V
V p-p  
IN  
IN  
Figure 15. Risetime and Falltime vs. VIN  
Figure 18. Risetime and Falltime vs. VIN  
10  
9
8
7
6
5
4
3
2
1
0
5.0  
G = +1  
G = +2  
R
R
= 1k⍀  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
R
R
= 1k⍀  
L
F
L
F
= 0⍀  
= 402⍀  
RISETIME  
FALLTIME  
FALLTIME  
RISETIME  
0
0.5 1.0  
1.5 2.0  
2.5  
3.0 3.5 4.0  
4.5 5.0  
0
0.2  
0.4  
0.6  
0.8  
V p-p  
1.0  
1.2  
1.4  
1.6  
V
V p-p  
V
IN  
IN  
Figure 19. Risetime and Falltime vs. VIN  
Figure 16. Risetime and Falltime vs. VIN  
0.7  
0.6  
10  
V
= 0V TO 2V OR  
0V TO 2V  
OUT  
G = +2  
0
R
= 402⍀  
F
G = +2  
R
0.5  
= 100⍀  
10  
20  
30  
40  
50  
60  
70  
80  
90  
L
0.4  
0.3  
0.2  
PSRR  
0.1  
0
+PSRR  
0.1  
0.2  
0.3  
0.4  
0.5  
0.1  
0
10  
20  
30  
TIME ns  
40  
50  
60  
1
10  
100  
500  
FREQUENCY MHz  
Figure 20. PSRR vs. Frequency  
Figure 17. Settling Time  
REV. B  
–6–  
AD8055/AD8056  
Figure 21. Overload Recovery  
Figure 24. Overload Recovery  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
20  
30  
V
= 0dBm  
IN  
G = +2  
R
R
R
= 100⍀  
L
= 100⍀  
= 402⍀  
L
F
40  
50  
60  
SIDE 2 DRIVEN  
70  
80  
SIDE 1 DRIVEN  
90  
100  
110  
120  
10  
0.01  
0.1  
0.1  
1
10  
100  
500  
1
10  
FREQUENCY MHz  
100 200  
FREQUENCY MHz  
Figure 22. Crosstalk (Output-to-Output) vs. Frequency  
Figure 25. Open Loop Gain vs. Frequency  
0
45  
402⍀  
402⍀  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
R
= 100⍀  
L
50⍀  
0
45  
402⍀  
58⍀  
402⍀  
90  
135  
180  
0.1  
1
10  
FREQUENCY MHz  
100  
500  
0.01  
0.1  
1
10  
100  
500  
FREQUENCY MHz  
Figure 23. CMRR vs. Frequency  
Figure 26. Phase vs. Frequency  
REV. B  
–7–  
AD8055/AD8056  
1000  
100  
0.04  
1 BACK TERMINATED LOAD (150)  
0.02  
0.00  
0.02  
0.04  
G = +2  
= 402⍀  
R
F
1ST 2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH 10TH 11TH  
IRE  
0.04  
0.02  
6nV/ Hz  
1 BACK TERMINATED LOAD (150)  
10  
1
0.00  
G = +2  
R
0.02  
= 402⍀  
F
0.04  
10  
100  
1k  
10k  
100k  
1M  
10M 15M  
1ST 2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH 10TH 11TH  
IRE  
FREQUENCY Hz  
Figure 27. Differential Gain and Differential Phase  
Figure 30. Voltage Noise vs. Frequency  
100  
0.04  
4 VIDEO LOADS (37.5)  
0.02  
0.00  
G = +2  
10  
1
0.02  
R
= 402⍀  
F
0.04  
1ST 2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH 10TH 11TH  
IRE  
0.15  
0.10  
0.05  
4 VIDEO LOADS (37.5)  
0.00  
0.05  
0.10  
0.15  
G = +2  
R
= 402⍀  
F
0.1  
10  
100  
1k  
10k  
100k  
1M  
10M 15M  
1ST 2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH 10TH 11TH  
IRE  
FREQUENCY Hz  
Figure 28. Differential Gain and Differential Phase  
Figure 31. Current Noise vs. Frequency  
5.0  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
= ؎5V  
S
G = +2  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
R
= 402  
F
R
= 1k⍀  
L
R
= 150⍀  
L
R
= 50⍀  
L
0
5  
0.01  
55 35  
15  
5
25  
45  
65  
85  
105  
125  
0.1  
1
10  
100  
500  
TEMPERATURE ؇C  
FREQUENCY MHz  
Figure 32. Output Impedance vs. Frequency  
Figure 29. Output Swing vs. Temperature  
REV. B  
–8–  
AD8055/AD8056  
APPLICATIONS  
Four-Line Video Driver  
The gain of this circuit from the input to Amp 1 output is RF/RI,  
while the gain to the output of Amp 2 is –RF/RI. The circuit  
thus creates a balanced differential output signal from a single-  
ended input. The advantage of this circuit is that the gain can be  
changed by changing a single resistor and still maintain the  
balanced differential outputs.  
The AD8055 is a useful low cost circuit for driving up to four  
video lines. For such an application, the amplifier is configured  
for a noninverting gain of 2 as shown in Figure 33. The input  
video source is terminated in 75 and applied to the high  
impedance noninverting input.  
R
F
Each output cable is connected to the op amp output via a 75 Ω  
series back termination resistor for proper cable termination.  
The terminating resistors at the other ends of the lines will  
divide the output signal by two, which is compensated for by  
the gain-of-two of the op amp stage.  
402  
+5V  
10F  
0.1F  
R
402⍀  
I
8
3
2
V
IN  
49.9⍀  
+V  
OUT  
1
AMP1  
For a single load, the differential gain error of this circuit was  
measured to be 0.01%, with a differential phase error of  
0.02 degrees. The two load measurements were 0.02% and  
0.03 degrees, respectively. For four loads, the differential gain  
error is 0.02%, while the differential phase increases to 0.1  
degrees.  
402⍀  
402⍀  
402⍀  
AD8056  
402⍀  
75⍀  
V
OUT1  
+5V  
75⍀  
75⍀  
402⍀  
6
5
49.9⍀  
V  
OUT  
7
AMP2  
75⍀  
10F  
10F  
0.1F  
4
V
402⍀  
75⍀  
OUT2  
75⍀  
2
7
10F  
6
0.1F  
AD8055  
5V  
3
V
4
IN  
75⍀  
75⍀  
V
V
OUT3  
Figure 34. Single-Ended to Differential Line Driver  
0.1F  
75⍀  
75⍀  
Low Noise, Low Power Preamp  
5V  
The AD8055 makes a good low cost, low noise, low power  
preamp. A gain of 10 preamp can be made with a feedback  
resistor of 909 ohms and a gain resistor of 100 ohms as shown  
in Figure 35. The circuit has a –3 dB bandwidth of 20 MHz.  
OUT4  
Figure 33. Four-Line Video Driver  
Single-Ended to Differential Line Driver  
909  
Creating differential signals from single-ended signals is  
required for driving balanced, twisted pair cables, differential  
input A/D converters and other applications that require differen-  
tial signals. This is sometimes accomplished by using an inverting  
and a noninverting amplifier stage to create the complementary  
signals.  
+5V  
+
0.1F  
10F  
100⍀  
2
3
7
6
V
OUT  
AD8055  
4
R
S
The circuit shown in Figure 34 shows how an AD8056 can be  
used to make a single-ended to differential converter that offers  
some advantages over the architecture mentioned above. Each  
op amp is configured for unity gain by the feedback resistors  
from the outputs to the inverting inputs. In addition, each out-  
put drives the opposite op amp with a gain of –1 by means of the  
crossed resistors. The result of this is that the outputs are comple-  
mentary and there is high gain in the overall configuration.  
10F  
0.1F  
5V  
Figure 35. Low Noise, Low Power Preamp with G = 10  
and BW = 20 MHz  
With a low source resistance (<approximately 100 ), the major  
contributors to the input referred noise of this circuit are the  
input voltage noise of the amplifier and the noise of the 100 Ω  
resistor. These are 6 nV/Hz and 1.2 nV/Hz, respectively.  
These values yield a total input referred noise of 6.1 nV/Hz.  
Feedback techniques similar to a conventional op amp are used  
to control the gain of the circuit. From the noninverting input  
of Amp 1 to the output of Amp 2, is an inverting gain. Between  
these points a feedback resistor can be used to close the loop.  
As in the case of a conventional op amp inverting gain stage, an  
input resistor is added to vary the gain.  
REV. B  
–9–  
AD8055/AD8056  
Power Dissipation Limits  
5
4
402⍀  
With a 10 V supply (total VCC – VEE), the quiescent power dissi-  
pation of the AD8055 in the SOT-23-5 package is 65 mW,  
while the quiescent power dissipation of the AD8056 in the  
microSOIC is 120 mW. This translates into a 15.6°C rise above  
the ambient for the SOT-23-5 package and a 24°C rise for the  
microSOIC package.  
402⍀  
C
= 30pF  
L
3
CL  
100⍀  
VIN = 0dBm  
2
50⍀  
1
0
The power dissipated under heavy load conditions is approxi-  
mately equal to the supply voltage minus the output voltage,  
times the load current, plus the quiescent power computed above.  
This total power dissipation is then multiplied by the thermal  
resistance of the package to find the temperature rise, above  
ambient, of the part. The junction temperature should be kept  
below 150°C.  
C
= 20pF  
= 10pF  
L
1  
2  
3  
4  
5  
C
L
C
= 0pF  
L
0.3  
1
10  
FREQUENCY MHz  
100  
500  
The AD8055 in the SOT-23-5 package can dissipate 270 mW  
while the AD8056 in the microSOIC package can dissipate  
325 mW (at 85°C ambient) without exceeding the maximum  
die temperature. In the case of the AD8056, this is greater than  
1.5 V rms into 50 , enough to accommodate a 4 V p-p sine-wave  
signal on both outputs simultaneously. But since each output of  
the AD8055 or AD8056 is capable of supplying as much as  
110 mA into a short circuit, a continuous short circuit condition  
will exceed the maximum safe junction temperature.  
Figure 36. Capacitive Load Drive  
In general, to minimize peaking or to ensure the stability for  
larger values of capacitive loads, a small series resistor, RS, can  
be added between the op amp output and the capacitor, CL. For  
the setup depicted in Figure 37, the relationship between RS and  
CL was empirically derived and is shown in Figure 38. RS was  
chosen to produce less than 1 dB of peaking in the frequency  
response. Note also that after a sharp rise RS quickly settles to  
about 25 .  
Resistor Selection  
The following table is provided as a guide to resistor selection  
for maintaining gain flatness vs. frequency for various values of  
gain.  
402  
+5V  
0.1F  
10F  
–3 dB  
Bandwidth  
(MHz)  
402⍀  
7
2
3
FET PROBE  
R
S
V
6
AD8055  
Gain  
RF ()  
RI ()  
OUT  
C
L
4
V
= 0dBm  
IN  
+1  
+2  
+5  
+10  
0
402  
1k  
300  
160  
45  
50⍀  
10F  
402  
249  
100  
0.1F  
5V  
909  
20  
Figure 37. Setup for RS vs. CL  
Driving Capacitive Loads  
40  
35  
30  
25  
20  
15  
10  
5
When driving a capacitive load, most op amps will exhibit peak-  
ing in the frequency response just before the frequency rolls off.  
Figure 36 shows the responses for an AD8056 running at a gain  
of +2, with a 100 load that is shunted by various values of  
capacitance. It can be seen that under these conditions, the part  
is still stable with capacitive loads of up to 30 pF.  
0
0
10  
20  
30  
40  
pF  
50  
60  
270  
C
L
Figure 38. RS vs. CL  
REV. B  
–10–  
AD8055/AD8056  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
8-Lead Plastic DIP  
(N-8)  
8-Lead microSOIC Package  
(RM-8)  
0.430 (10.92)  
0.348 (8.84)  
0.122 (3.10)  
0.114 (2.90)  
8
5
0.280 (7.11)  
0.240 (6.10)  
8
5
4
0.122 (3.10)  
0.114 (2.90)  
0.199 (5.05)  
0.187 (4.75)  
1
4
1
0.325 (8.25)  
0.300 (7.62)  
PIN 1  
0.100 (2.54)  
BSC  
0.060 (1.52)  
0.015 (0.38)  
PIN 1  
0.0256 (0.65) BSC  
0.210  
(5.33)  
MAX  
0.195 (4.95)  
0.115 (2.93)  
0.120 (3.05)  
0.112 (2.84)  
0.120 (3.05)  
0.112 (2.84)  
0.130  
(3.30)  
MIN  
0.160 (4.06)  
0.115 (2.93)  
0.043 (1.09)  
0.037 (0.94)  
0.006 (0.15)  
0.002 (0.05)  
0.015 (0.381)  
0.008 (0.204)  
33؇  
SEATING  
PLANE  
0.022 (0.558) 0.070 (1.77)  
0.014 (0.356) 0.045 (1.15)  
0.018 (0.46)  
0.008 (0.20)  
27؇  
0.028 (0.71)  
0.016 (0.41)  
0.011 (0.28)  
0.003 (0.08)  
SEATING  
PLANE  
8-Lead Small Outline SOIC  
(SO-8)  
5-Lead Plastic Surface Mount  
(RT-5)  
0.1220 (3.100)  
0.1063 (2.700)  
0.1968 (5.00)  
0.1890 (4.80)  
8
1
5
4
5
4
3
0.2440 (6.20)  
0.2284 (5.80)  
0.1574 (4.00)  
0.1497 (3.80)  
0.1181 (3.000)  
0.0984 (2.500)  
0.0709 (1.800)  
0.0590 (1.500)  
1
2
PIN 1  
PIN 1  
0.0196 (0.50)  
0.0099 (0.25)  
0.0500 (1.27)  
BSC  
0.0374 (0.950) REF  
؋
 45؇  
0.0688 (1.75)  
0.0532 (1.35)  
0.0748 (1.900)  
REF  
0.0098 (0.25)  
0.0040 (0.10)  
SEATING  
PLANE  
0.0079 (0.200)  
0.0035 (0.090)  
8؇  
0؇  
0.0500 (1.27)  
0.0160 (0.41)  
0.0192 (0.49)  
0.0138 (0.35)  
0.0512 (1.300)  
0.0354 (0.900)  
0.0571 (1.450)  
0.0354 (0.900)  
0.0098 (0.25)  
0.0075 (0.19)  
10؇  
0؇  
SEATING  
PLANE  
0.0197 (0.500)  
0.0118 (0.300)  
0.0059 (0.150)  
0.0000 (0.000)  
0.0236 (0.600)  
0.0039 (0.100)  
REV. B  
–11–  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY