AD8057_15 [ADI]

Low Cost, High Performance Voltage Feedback, 325 MHz Amplifier;
AD8057_15
型号: AD8057_15
厂家: ADI    ADI
描述:

Low Cost, High Performance Voltage Feedback, 325 MHz Amplifier

文件: 总16页 (文件大小:352K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Cost, High Performance  
Voltage Feedback, 325 MHz Amplifier  
AD8057/AD8058  
Data Sheet  
FEATURES  
CONNECTION DIAGRAMS  
Low cost single (AD8057) and dual (AD8058)  
High speed  
325 MHz, −3 dB bandwidth (G = +1)  
1000 V/μs slew rate  
Gain flatness: 0.1 dB to 28 MHz  
Low noise  
7 nV/√Hz  
AD8057  
V
1
2
3
+V  
S
5
OUT  
–V  
S
4
–IN  
+IN  
(Not to Scale)  
Figure 1. RT-5 (SOT-23)  
AD8057  
Low power  
1
2
3
4
8
7
6
5
NC  
–IN  
+IN  
NC  
+V  
5.4 mA/amplifier typical supply current at 5 V  
Low distortion  
−85 dBc at 5 MHz, RL = 1 kΩ  
Wide supply range from 3 V to 12 V  
Small packaging  
S
V
OUT  
–V  
NC  
S
(Not to Scale)  
NC = NO CONNECT  
AD8057 is available in an 8-lead SOIC and 5-lead SOT-23  
AD8058 is available in an 8-lead SOIC and an 8-lead MSOP  
Figure 2. R-8 (SOIC)  
AD8058  
OUT1  
1
2
3
4
+V  
S
8
APPLICATIONS  
–IN1  
+IN1  
7
6
5
OUT2  
–IN2  
Imaging  
DVD/CD  
Photodiode preamp  
Analog-to-digital driver  
Professional cameras filters  
+IN2  
–V  
S
(Not to Scale)  
Figure 3. RM-8 (MSOP) and R-8 (SOIC)  
GENERAL DESCRIPTION  
5
4
The AD8057 (single) and AD8058 (dual) are very high perfor-  
mance amplifiers with a very low cost. The balance between  
cost and performance make them ideal for many applications.  
The AD8057 and AD8058 reduce the need to qualify a variety  
of specialty amplifiers. The AD8057 and AD8058 are voltage  
feedback amplifiers with the bandwidth and slew rate normally  
found in current feedback amplifiers. The AD8057 and AD8058  
are low power amplifiers having low quiescent current and a wide  
supply range from 3 V to 12 V. They have noise and distortion  
performance required for high end video systems as well as dc  
performance parameters rarely found in high speed amplifiers.  
3
2
1
G = +1  
0
–1  
–2  
–3  
–4  
–5  
G = +5  
G = +2  
G = +10  
The AD8057 and AD8058 are available in standard SOIC  
packaging as well as tiny 5-lead SOT-23 (AD8057) and 8-lead  
MSOP (AD8058) packages. These amplifiers are available in the  
industrial temperature range of −40°C to +85°C.  
1
10  
100  
1000  
FREQUENCY (MHz)  
Figure 4. Small Signal Frequency Response  
Rev. E  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2010–2014 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD8057/AD8058  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................6  
Test Circuits..................................................................................... 12  
Applications Information.............................................................. 13  
Driving Capacitive Loads.......................................................... 13  
Video Filter.................................................................................. 13  
Differential Analog-to-Digital Driver ..................................... 14  
Layout .......................................................................................... 14  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 15  
Applications....................................................................................... 1  
Connection Diagrams...................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Maximum Power Dissipation ..................................................... 5  
ESD Caution.................................................................................. 5  
REVISION HISTORY  
3/14—Rev. D to Rev. E  
8/03—Rev. A to Rev. B  
Change to Figure 48 .........................................................................14  
Renumbered Figures and TPCs........................................Universal  
Changes to Ordering Guide.............................................................4  
Change to Figure 8 ......................................................................... 12  
Update Outline Dimensions ......................................................... 14  
9/13—Rev. C to Rev. D  
Changes to Output Voltage Swing Parameter, Table 3 .................4  
Updated Outline Dimensions ........................................................15  
Changes to Ordering Guide ...........................................................16  
10/10—Rev. B to Rev. C  
Updated Format..................................................................Universal  
Change to Third-Order Intercept Parameter, Table 1 ................. 3  
Changes to Input Common-Mode Voltage Range Parameter,  
Table 2 ................................................................................................ 4  
Changes to Figure 32...................................................................... 10  
Changes to Figure 35...................................................................... 11  
Changes to Figure 41 and Figure 42............................................. 12  
Changes to Figure 44 and Figure 45............................................. 13  
Changes to Ordering Guide .......................................................... 16  
Rev. E | Page 2 of 16  
 
Data Sheet  
AD8057/AD8058  
SPECIFICATIONS  
At TA = 25°C, VS = 5 V, RL = 100 Ω, RF = 0 Ω, gain = +1, unless otherwise noted.  
Table 1.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth  
G = +1, VO = 0.2 V p-p  
G = –1, VO = 0.2 V p-p  
G = +1, VO = 2 V p-p  
G = +1, VO = 0.2 V p-p  
G = +1, VO = 2 V step, RL = 2 kΩ  
G = +1, VO = 4 V step, RL = 2 kΩ  
G = +2, VO = 2 V step  
325  
95  
175  
30  
850  
1150  
30  
MHz  
MHz  
MHz  
MHz  
V/µs  
V/µs  
ns  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Settling Time to 0.1%  
NOISE/HARMONIC PERFORMANCE  
Total Harmonic Distortion  
fC = 5 MHz, VO = 2 V p-p, RL = 1 kΩ  
fC = 20 MHz, VO = 2 V p-p, RL = 1 kΩ  
f = 5 MHz, VO = 2 V p-p, RL = 150 Ω  
f = 5 MHz, VO = 2 V p-p  
f = 5 MHz, G = +2  
–85  
–62  
–68  
−35  
−60  
7
dBc  
dBc  
dB  
dBm  
dB  
nV/√Hz  
pA/√Hz  
%
SFDR  
Third-Order Intercept  
Crosstalk, Output to Output  
Input Voltage Noise  
Input Current Noise  
Differential Gain Error  
f = 100 kHz  
f = 100 kHz  
0.7  
NTSC, G = +2, RL = 150 Ω  
NTSC, G = +2, RL = 1 kΩ  
NTSC, G = +2, RL = 150 Ω  
NTSC, G = +2, RL = 1 kΩ  
VIN = 200 mV p-p, G = +1  
0.01  
0.02  
0.15  
0.01  
30  
%
Differential Phase Error  
Degrees  
Degrees  
ns  
Overload Recovery  
DC PERFORMANCE  
Input Offset Voltage  
1
2.5  
3
0.5  
3.0  
5
mV  
mV  
μV/°C  
µA  
TMIN to TMAX  
Input Offset Voltage Drift  
Input Bias Current  
2.5  
TMIN to TMAX  
µA  
Input Offset Current  
Open-Loop Gain  
0.75 µA  
VO = 2.5 V, RL = 2 kΩ  
VO = 2.5 V, RL = 150 Ω  
50  
50  
55  
52  
dB  
dB  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
10  
2
MΩ  
pF  
V
+Input  
RL = 1 kΩ  
−4.0  
48  
+4.0  
+4.0  
VCM  
=
2.5 V  
60  
dB  
RL = 2 kΩ  
−4.0  
V
RL = 150 Ω  
30% overshoot  
3.9  
30  
V
pF  
Capacitive Load Drive  
POWER SUPPLY  
Operating Range  
1.5  
54  
5.0  
6.0  
14.0  
59  
6
7.5  
15  
V
Quiescent Current for AD8057  
Quiescent Current for AD8058  
Power Supply Rejection Ratio  
mA  
mA  
dB  
VS = 5 V to 1.5 V  
Rev. E | Page 3 of 16  
 
AD8057/AD8058  
Data Sheet  
At TA = 25°C, VS = 5 V, R L = 100 Ω, RF = 0 Ω, gain = +1, unless otherwise noted.  
Table 2.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth  
G = +1, VO = 0.2 V p-p  
G = +1, VO = 2 V p-p  
VO = 0.2 V p-p  
G = +1, VO = 2 V step, RL = 2 kΩ  
G = +2, VO = 2 V step  
300  
155  
28  
700  
35  
MHz  
MHz  
MHz  
V/µs  
ns  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Settling Time to 0.1%  
NOISE/HARMONIC PERFORMANCE  
Total Harmonic Distortion  
fC = 5 MHz, VO = 2 V p-p, RL = 1 kΩ  
fC = 20 MHz, VO = 2 V p-p, RL = 1 kΩ  
f = 5 MHz, G = +2  
f = 100 kHz  
f = 100 kHz  
NTSC, G = +2, RL = 150 Ω  
NTSC, G = +2, RL = 1 kΩ  
NTSC, G = +2, RL = 150 Ω  
NTSC, G = +2, RL = 1 kΩ  
–75  
–54  
−60  
7
dBc  
dBc  
dB  
nV/√Hz  
pA/√Hz  
%
Crosstalk, Output to Output  
Input Voltage Noise  
Input Current Noise  
0.7  
Differential Gain Error  
0.05  
0.05  
0.10  
0.02  
%
Differential Phase Error  
Degrees  
Degrees  
DC PERFORMANCE  
Input Offset Voltage  
1
2.5  
3
0.5  
3.0  
5
mV  
mV  
μV/°C  
µA  
TMIN to TMAX  
Input Offset Voltage Drift  
Input Bias Current  
2.5  
TMIN to TMAX  
µA  
Input Offset Current  
Open-Loop Gain  
0.75  
µA  
dB  
VO = 1.5 V, RL = 2 kΩ to midsupply  
50  
55  
52  
VO = 1.5 V, RL = 150 Ω to midsupply 45  
dB  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
10  
2
0.9 to 3.4  
60  
MΩ  
pF  
V
+Input  
RL = 1 kΩ  
VCM  
=
2.5 V  
48  
dB  
RL = 2 kΩ  
RL = 150 Ω  
30% overshoot  
0.9 to 3.8  
1.2 to 3.4  
30  
V
V
pF  
Capacitive Load Drive  
POWER SUPPLY  
Operating Range  
3
5.0  
5.4  
13.5  
58  
10  
7.0  
14  
V
Quiescent Current for AD8057  
Quiescent Current for AD8058  
Power Supply Rejection Ratio  
mA  
mA  
dB  
54  
Rev. E | Page 4 of 16  
Data Sheet  
AD8057/AD8058  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
MAXIMUM POWER DISSIPATION  
The maximum power that can be safely dissipated by the  
AD8057/AD8058 is limited by the associated rise in junction  
temperature. Exceeding a junction temperature of 175°C for  
an extended period can result in device failure. Although the  
AD8057/AD8058 is internally short-circuit protected, this may  
not be sufficient to guarantee that the maximum junction temper-  
ature (150°C) is not exceeded under all conditions. To ensure  
proper operation, it is necessary to observe the maximum power  
derating curves.  
Parameter  
Rating  
Supply Voltage (+VS to –VS)  
Internal Power Dissipation1  
SOIC Package (R)  
SOT-23-5 Package (RT)  
MSOP Package (RM)  
Input Voltage (Common Mode)  
Differential Input Voltage  
Output Short-Circuit Duration  
12.6 V  
0.8 W  
0.5 W  
0.6 W  
VS  
4.0 V  
Observe power  
derating curves  
2.0  
T
= 150°C  
J
Storage Temperature Range (R)  
−65°C to +125°C  
Operating Temperature Range (A Grade) −40°C to +85°C  
1.5  
1.0  
0.5  
0
Lead Temperature (Soldering 10sec)  
300°C  
8-LEAD SOIC  
8-LEAD MSOP  
1 Specification is for device in free air:  
8-lead SOIC package: θJA = 160°C/W  
5-lead SOT-23-5 package: θJA = 240°C/W  
8-Lead MSOP package: θJA = 200°C/W  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
SOT-23-5  
–50 –40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
AMBIENT TEMPERATURE (°C)  
Figure 5. Maximum Power Dissipation vs. Ambient Temperature  
ESD CAUTION  
Rev. E | Page 5 of 16  
 
 
 
AD8057/AD8058  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
4.5  
–1.5V SWING R = 150Ω  
L
(+) OUTPUT  
VOLTAGE  
4.0  
3.5  
–2.5V SWING R = 150Ω  
L
ABS (–)  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
OUTPUT  
–5V SWING R = 150Ω  
L
10  
100  
1k  
LOAD RESISTANCE (Ω)  
10k  
100k  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 8085  
TEMPERATURE (°C)  
Figure 6. Output Swing vs. Load Resistance  
Figure 9. Negative Output Voltage Swing vs. Temperature  
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
–5.5  
–6.0  
–6.5  
–7.0  
–7.5  
–8.0  
6
4
2
0
V
@ ±1.5V  
–I  
SUPPLY  
@ ±1.5V  
OS  
V
@ ±5V  
OS  
–I  
@ ±5V  
SUPPLY  
–2  
–4  
–6  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 8085  
TEMPERATURE (°C)  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 8085  
TEMPERATURE (°C)  
Figure 7. −ISUPPLY vs. Temperature  
Figure 10. VOS vs. Temperature  
5.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
A
@ ±5V  
VOL  
+5V SWING R = 150Ω  
L
A
@ ±2.5V  
VOL  
+2.5V SWING R = 150Ω  
L
+1.5V SWING R = 150Ω  
L
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 8085  
TEMPERATURE (°C)  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 8085  
TEMPERATURE (°C)  
Figure 11. Open-Loop Gain vs. Temperature  
Figure 8. Positive Output Voltage Swing vs. Temperature  
Rev. E | Page 6 of 16  
 
Data Sheet  
AD8057/AD8058  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
100mV  
20mV/DIV  
+I @ ±5V  
B
+I @ ±2.5V  
B
–I @ ±2.5V  
B
–I @ ±5V  
B
+I @ ±1.5V  
B
–I @ ±1.5V  
B
–0.7  
–0.8  
–100mV  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 8085  
TEMPERATURE (°C)  
4ns/DIV  
Figure 15. Small Signal Step Response G = +1, RL = 1 kΩ, VS = 5 V,  
See Figure 41 for Test Circuit  
Figure 12. Input Bias Current vs. Temperature  
4
3
2
1
0
5V  
PSRR @ ±1.5V ±5V  
1V/DIV  
–5V  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 8085  
TEMPERATURE (°C)  
4ns/DIV  
Figure 16. Large Signal Step Response G = +1,RL = 1 kΩ, VS = 5.0 V,  
See Figure 41 for Test Circuit  
Figure 13. PSRR vs. Temperature  
0
–10  
–20  
–30  
–40  
–50  
–60  
100mV  
20mV/DIV  
0V  
–PSRR V = ±2.5V  
S
+PSRR V = ±2.5V  
S
–100mV  
0.1  
1
10  
100  
1000  
4ns/DIV  
FREQUENCY (MHz)  
Figure 14. PSRR vs. Frequency  
Figure 17. Small Signal Step Response G = –1, RL = 1 kΩ,  
See Figure 42 for Test Circuit  
Rev. E | Page 7 of 16  
AD8057/AD8058  
Data Sheet  
5
4
5V  
3
2
1
1V/DIV  
G = –2  
G = –1  
0
–1  
–2  
–3  
–4  
–5  
G = –5  
G = –10  
10  
–5V  
1
100  
FREQUENCY (MHz)  
1000  
4ns/DIV  
Figure 21. Large Signal Frequency Response  
Figure 18. Large Signal Step Response G = –1, RL = 1 kΩ ,  
See Figure 42 for Test Circuit  
5
4
0.5  
0.4  
V
= 0.2V  
OUT  
G = +2  
R
R
= 1.0kΩ  
= 1.0kΩ  
L
F
3
0.3  
2
0.2  
1
0.1  
G = +1  
0
0
–1  
–2  
–3  
–4  
–5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
G = +5  
G = +2  
G = +10  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 19. Small Signal Frequency Response, VOUT = 0.2 V p-p  
Figure 22. 0.1 dB Flatness G = +2  
5
4
3
2
1
–50  
–60  
THD  
–70  
SECOND  
G = +1  
0
–1  
–80  
THIRD  
G = +5  
–90  
–2  
–3  
–4  
–5  
G = +2  
–100  
–110  
G = +10  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 20. Large Signal Frequency Response, VOUT = 2 V p-p  
Figure 23. Distortion vs. Frequency, RL = 150 Ω  
Rev. E | Page 8 of 16  
Data Sheet  
AD8057/AD8058  
–40  
V
= –1V TO + 1V OR +1V TO –1V  
OUT  
0.4%  
0.3%  
0.2%  
0.1%  
0%  
G = +2  
= 100Ω/1kΩ  
R
L
–50  
–60  
–70  
–80  
20MHz  
–0.1%  
–0.2%  
–0.3%  
–0.4%  
5MHz  
0
10  
20  
30  
40  
50  
60  
0
0.4  
0.8  
1.2  
1.6  
V
2.0  
2.4  
2.8  
3.2  
3.6  
4.0  
TIME (ns)  
(V p-p)  
OUT  
Figure 24. Distortion vs. VOUT at 20 MHz, 5 MHz, RL = 150 Ω, VS = 5.0 V  
Figure 27. Settling Time  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
V
R
= ±2.5V  
= 1kΩ  
S
L
INPUT SIGNAL  
G = +1  
2.5V  
OUTPUT RESPONSE  
500mV/  
DIV  
2.0  
0V  
FALL TIME  
1.5  
1.0  
RISE TIME  
0.5  
0
20ns/DIV  
0
1
2
3
4
V
(V p-p)  
OUT  
Figure 28. Input Overload Recovery, VS = 2.5 V  
Figure 25. Rise Time and Fall Time vs. VOUT, G = +1, RL = 1 kΩ, RF = 0 Ω  
5
V
= ±5.0V  
S
R
= 1kΩ  
L
G = +1  
4
3
INPUT SIGNAL 5V  
5.0V  
1V/DIV  
OUTPUT SIGNAL = 4.0V  
RISE TIME  
2
FALL TIME  
0V  
1
0
20ns/DIV  
0
1
2
3
4
V
(V p-p)  
OUT  
Figure 29. Output Overload Recovery, VS = 5.0 V  
Figure 26. Rise Time and Fall Time vs. VOUT, G = +2, RL = 100 Ω, RF = 402 Ω  
Rev. E | Page 9 of 16  
AD8057/AD8058  
Data Sheet  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–20  
–40  
–60  
–80  
SIDE B DRIVEN  
SIDE A DRIVEN  
–100  
–120  
0.1  
1
10  
FREQUENCY (MHz)  
100  
0.1  
1
10  
FREQUENCY (MHz)  
100  
Figure 30. CMRR vs. Frequency  
Figure 33. Crosstalk (Output-to-Output) vs. Frequency  
1.8V  
DIFFERENTIAL GAIN (%)  
0.015  
OUTPUT SIGNAL 1.7V  
V
= ±2.5V  
S
R1 = 1kΩ  
G = +4  
0.010  
0.005  
0
V
R
= ±5.0V  
= 150Ω  
S
L
–0.005  
–0.010  
–0.015  
200mV/  
DIV  
INPUT SIGNAL = 0.6V  
DIFFERENTIAL PHASE (Degrees)  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
V
R
= ± 5.0V  
= 150Ω  
S
L
20ns/DIV  
–0.02  
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th  
DIFFERENTIAL GAIN (%)  
Figure 31. Output Overload Recovery, VS = 2.5 V  
0.015  
0.010  
0.005  
0
V
= ±5.0V  
S
4.5V  
R
= 1kΩ  
L
V
= ±5V  
S
R1 = 1kΩ  
G = +4  
–0.005  
–0.010  
–0.015  
500mV/  
DIV  
DIFFERENTIAL PHASE (Degrees)  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
V
R
= ±5.0V  
= 1kΩ  
S
L
–0.02  
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th  
20ns/DIV  
Figure 32. Output Overload Recovery, VS = 5.0 V  
Figure 34. Differential Gain and Differential Phase One Back Terminated  
Load (150 Ω) (Video Op Amps Only)  
Rev. E | Page 10 of 16  
Data Sheet  
AD8057/AD8058  
180  
100  
10  
1
80  
60  
40  
20  
0
135  
90  
45  
GAIN  
0
–45  
–90  
0.1  
–20  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
100M  
1000  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (Hz)  
FREQUENCY (MHz)  
Figure 35. Open-Loop Gain and Phase vs. Frequency  
Figure 38. Voltage Noise vs. Frequency  
DIFFERENTIAL GAIN (%)  
100  
10  
1
0.01  
V
R
= +5V  
0
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
S
= 150Ω  
L
DIFFERENTIAL PHASE (Degrees)  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
V
= +5V  
S
R
= 150Ω  
L
0.1  
10  
100  
1k  
10k  
100k  
1M  
10M  
–0.02  
FREQUENCY (Hz)  
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th  
Figure 36. Differential Gain and Differential Phase, RL = 150 Ω  
Figure 39. Current Noise vs. Frequency  
DIFFERENTIAL GAIN (%)  
0.01  
100  
10  
1
V
R
= +5V  
= 1kΩ  
0
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
S
L
DIFFERENTIAL PHASE (Degrees)  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
V
R
= +5V  
= 1kΩ  
S
L
0.1  
0.1  
1
10  
100  
–0.02  
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th  
FREQUENCY (MHz)  
Figure 37. Differential Gain and Differential Phase, RL = 1 kΩ  
Figure 40. Output Impedance vs. Frequency  
Rev. E | Page 11 of 16  
AD8057/AD8058  
TEST CIRCUITS  
Data Sheet  
1kΩ  
+V  
S
4.7µF  
+V  
S
4.7µF  
0.01µF  
0.01µF  
HP8130A  
PULSE  
GENERATOR  
0.001µF  
V
0.001µF  
IN  
HP8130A  
PULSE  
GENERATOR  
V
IN  
1kΩ  
V
OUT  
AD8057  
AD8058  
50Ω  
V
T
/T = 1ns  
OUT  
AD8057  
AD8058  
R
F
50Ω  
T
/T = 1ns  
R
F
0.001µF  
1kΩ  
0.001µF  
1kΩ  
0.01µF  
4.7µF  
0.01µF  
4.7µF  
–V  
S
–V  
S
Figure 42. Test Circuit, G = −1, RL = 1 kΩ  
Figure 41. Test Circuit, G = +1, RL = 1 kΩ  
Rev. E | Page 12 of 16  
 
 
 
Data Sheet  
AD8057/AD8058  
APPLICATIONS INFORMATION  
DRIVING CAPACITIVE LOADS  
Table 4. Recommended Value for Resistors RS, RF, RG vs.  
Capacitive Load, CL, Which Results in 30% Overshoot  
When driving a capacitive load, most op amps exhibit overshoot in  
their pulse response. Figure 43 shows the relationship between  
the capacitive load that results in 30% overshoot and the closed-  
loop gain of an AD8058. It can be seen that, under the gain = +2  
condition, the device is stable with capacitive loads of up to 69 pF.  
Gain  
RF  
RG  
CL (RS = 0 Ω)  
CL (RS = 2.4 Ω)  
1
2
3
4
5
10  
100 Ω  
100 Ω  
100 Ω  
100 Ω  
100 Ω  
100 Ω  
11 pF  
51 pF  
104 pF  
186 pF  
245 pF  
870 pF  
13 pF  
69 pF  
153 pF  
270 pF  
500 pF  
1580 pF  
100 Ω  
50 Ω  
33.2 Ω  
25 Ω  
In general, to minimize peaking or to ensure device stability for  
larger values of capacitive loads, a small series resistor (RS) can  
be added between the op amp output and the load capacitor  
(CL) as shown in Figure 44.  
11 Ω  
+OVERSHOOT  
29.0%  
For the setup shown in Figure 44, the relationship between RS  
and CL was empirically derived and is shown in Table 4.  
200mV  
100mV  
500  
400  
300  
200  
–100mV  
–200mV  
100mV/DIV  
R
= 2.4Ω  
50ns/DIV  
S
100  
0
Figure 45. Typical Pulse Response with CL = 65 pF, Gain = +2, and VS = 2.5  
R
= 0Ω  
S
VIDEO FILTER  
1
2
3
4
5
Some composite video signals that are derived from a digital  
source contain some clock feedthrough that can cause problems  
with downstream circuitry. This clock feedthrough is usually at  
27 MHz, which is a standard clock frequency for both NTSC  
and PAL video systems. A filter that passes the video band and  
rejects frequencies at 27 MHz can be used to remove these fre-  
quencies from the video signal.  
CLOSED-LOOP GAIN  
Figure 43. Capacitive Load Drive vs. Closed-Loop Gain  
R
F
+2.5V  
0.1µF  
10µF  
R
G
Figure 46 shows a circuit that uses an AD8057 to create a single  
5 V supply, 3-pole Sallen-Key filter. This circuit uses a single RC  
pole in front of a standard 2-pole active section. To shift the dc  
operating point to midsupply, ac coupling is provided by R4, R5,  
and C4.  
FET PROBE  
R
S
V
OUT  
AD8058  
V
= 200mV p-p  
IN  
C
L
0.1µF  
10µF  
C2  
680pF  
–2.5V  
R
F
1kΩ  
Figure 44. Capacitive Load Drive Circuit  
+5V  
7
+
10µF  
0.1µF  
6
+5V  
R4  
2
3
C4  
0.1µF  
R1  
200Ω  
R2  
499Ω  
R3  
49.9Ω  
10kΩ  
AD8057  
4
C3  
36pF  
C1  
100pF  
R5  
10kΩ  
Figure 46. Low-Pass Filter for Video  
Rev. E | Page 13 of 16  
 
 
 
 
 
 
 
AD8057/AD8058  
Data Sheet  
+2.5V  
+
1kΩ  
Figure 47 shows a frequency sweep of this filter. The response is  
down 3 dB at 5.7 MHz; therefore, it passes the video band with  
little attenuation. The rejection at 27 MHz is 42 dB, which  
provides more than a factor of 100 in suppression of the clock  
components at this frequency.  
+5V  
0.1µF  
10µF  
+5V  
+
0.1µF  
10µF  
8
1kΩ  
1kΩ  
3
2
REF  
50Ω  
1
V
IN  
VINA  
AD8058  
0V  
10  
1kΩ  
1kΩ  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
AD9225  
1kΩ  
1kΩ  
6
5
50Ω  
7
VINB  
AD8058  
4
0.1µF  
10µF  
+
1kΩ  
–5V  
Figure 48. Schematic Circuit for Driving AD9225  
In this circuit, one of the op amps is configured in the inverting  
mode whereas the other is in the noninverting mode. However,  
to provide better bandwidth matching, each op amp is configured  
for a noise gain of +2. The inverting op amp is configured for a  
gain of −1 and the noninverting op amp is configured for a gain  
of +2. Each of these produces a noise gain of +2, which is deter-  
mined only by the inverse of the feedback ratio. The input signal to  
the noninverting op amp is divided by two to normalize its level  
and make it equal to the inverting output.  
For 0 V input, the outputs of the op amps want to be at 2.5 V,  
which is the midsupply level of the ADCs. This is accomplished by  
first taking the 2.5 V reference output of the ADC and dividing it  
by two by a pair of 1 kΩ resistors. The resulting 1.25 V is applied to  
the positive input of each op amp. This voltage is then multiplied by  
the gain of +2 of the op amps to provide a 2.5 V level at each output.  
The assumption for this circuit is that the input signal is bipolar  
with respect to ground and the circuit must be dc-coupled thereby  
implying the existence of a negative supply elsewhere in the system.  
This circuit uses −5 V as the negative supply for the AD8058.  
Tying the negative supply of the AD8058 to ground causes a  
problem at the input of the noninverting op amp. The input  
common-mode voltage can only go to within 1 V of the negative  
rail. Because this circuit requires that the positive inputs operate  
with a 1.25 V bias, there is not enough room to swing this voltage  
in the negative direction. The inverting stage does not have this  
problem because its common-mode input voltage remains fixed  
at 1.25 V. If dc coupling is not required, various ac coupling  
techniques can be used to eliminate this problem.  
100k  
1M  
10M  
100M  
FREQUENCY (MHz)  
Figure 47. Video Filter Response  
DIFFERENTIAL ANALOG-TO-DIGITAL DRIVER  
As system supply voltages are dropping, many ADCs provide  
differential analog inputs to increase the dynamic range of the  
input signal while still operating on a low supply voltage.  
Differential driving can also reduce second and other even-  
order distortion products.  
Analog Devices, Inc., offers an assortment of 12- and 14-bit  
high speed converters that have differential inputs and can be  
run from a single 5 V supply. These include the AD9220, AD9221,  
AD9223, AD9224, and AD9225 at 12 bits, and the AD9240,  
AD9241, and AD9243 at 14 bits. Although these devices can  
operate over a range of common-mode voltages at their analog  
inputs, they work best when the common-mode voltage at the  
input is at the midsupply or 2.5 V.  
Op amp architectures that require upwards of 2 V of headroom  
at the output have significant problems when trying to drive  
such ADCs while operating with a 5 V positive supply. The low  
headroom output design of the AD8057 and AD8058 make  
them ideal for driving these types of ADCs.  
The AD8058 can be used to make a dc-coupled, single-ended-  
to-differential driver for one of these ADCs. Figure 48 is a  
schematic of such a circuit for driving an AD9225, 12-bit,  
25 MSPS ADC.  
LAYOUT  
The AD8057 and AD8058 are high speed op amps for use in a  
board layout that follows standard high speed design rules. Make  
all signal traces as short and direct as possible. In particular, keep  
the parasitic capacitance on the inverting input of each device  
to a minimum to avoid excessive peaking and other undesirable  
performance. Bypass the power supplies very close to the power pins  
of the package with a 0.1 µF capacitor in parallel with a larger  
(approximately 10 µF) tantalum capacitor. Connect these capacitors  
to a ground plane that either is on an inner layer or fills the area  
of the board that is not used for other signals.  
Rev. E | Page 14 of 16  
 
 
 
 
Data Sheet  
AD8057/AD8058  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
IDENTIFIER  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.80  
0.55  
0.40  
0.15  
0.05  
0.23  
0.09  
6°  
0°  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 49. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 50. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-8)  
Dimensions shown in millimeters and (inches)  
Rev. E | Page 15 of 16  
 
 
AD8057/AD8058  
Data Sheet  
3.00  
2.90  
2.80  
5
1
4
3
3.00  
2.80  
2.60  
1.70  
1.60  
1.50  
2
0.95 BSC  
1.90  
BSC  
1.30  
1.15  
0.90  
0.20 MAX  
0.08 MIN  
1.45 MAX  
0.95 MIN  
0.55  
0.45  
0.35  
0.15 MAX  
0.05 MIN  
10°  
5°  
0°  
SEATING  
PLANE  
0.60  
BSC  
0.50 MAX  
0.35 MIN  
COMPLIANT TO JEDEC STANDARDS MO-178-AA  
Figure 51. 5-Lead Small Outline Transistor Package [SOT-23]  
(RJ-5)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
Range  
Package  
Option  
Model1  
Notes  
Package Description  
Branding  
AD8057AR  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
8-Lead SOIC_N  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
Waffle Pak  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
AD8057AR-REEL  
AD8057AR-REEL7  
AD8057ARZ  
8-Lead SOIC_N, 13”Tape and Reel  
8-Lead SOIC_N, 7”Tape and Reel  
8-Lead SOIC_N  
8-Lead SOIC_N, 13”Tape and Reel  
8-Lead SOIC_N, 7”Tape and Reel  
Die  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
AD8057ARZ-REEL  
AD8057ARZ-REEL7  
AD8057ACHIPS  
AD8057ART-R2  
AD8057ART-REEL7  
AD8057ARTZ-R2  
AD8057ARTZ-REEL  
AD8057ARTZ-REEL7  
AD8057AR-EBZ  
AD8057ART-EBZ  
AD8058AR  
AD8058AR-REEL7  
AD8058ARZ  
AD8058ARZ-REEL  
AD8058ARZ-REEL7  
AD8058ACHIPS  
AD8058ARM  
H7A  
H7A  
H08  
H08  
H08  
5-Lead SOT-23  
8-Lead SOIC_N Evaluation Board  
5-Lead SOT-23 Evaluation Board  
8-Lead SOIC_N  
8-Lead SOIC_N, 7”Tape and Reel  
8-Lead SOIC_N  
8-Lead SOIC_N, 13”Tape and Reel  
8-Lead SOIC_N, 7”Tape and Reel  
Die  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
R-8  
R-8  
R-8  
R-8  
R-8  
Waffle Pak  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
H8A  
H8A  
H8A  
H8A  
H8A  
AD8058ARM-REEL7  
AD8058ARMZ-REEL7  
AD8058ARMZ  
AD8058ARMZ-REEL  
AD8058AR-EBZ  
AD8058ARM-EBZ  
2
2
2
8-Lead MSOP  
8-Lead SOIC_N Evaluation Board  
8-Lead MSOP Evaluation Board  
1 Z = RoHS Compliant Part.  
2 Bottom mark has # sign before date code.  
©2010–2014 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D01064-0-3/14(E)  
Rev. E | Page 16 of 16  
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY