AD8062ARMZ-REEL [ADI]

IC DUAL OP-AMP, 6000 uV OFFSET-MAX, PDSO8, ROHS COMPLIANT, MO-187AA, MSOP-8, Operational Amplifier;
AD8062ARMZ-REEL
型号: AD8062ARMZ-REEL
厂家: ADI    ADI
描述:

IC DUAL OP-AMP, 6000 uV OFFSET-MAX, PDSO8, ROHS COMPLIANT, MO-187AA, MSOP-8, Operational Amplifier

文件: 总24页 (文件大小:924K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual, Current-Output,  
Serial-Input, 16-/14-Bit DACs  
Data Sheet  
AD5545/AD5555  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
B
REF  
V
A
V
REF  
16-bit resolution AD5545  
14-bit resolution AD5555  
1 LSB DNL monotonic  
16 OR 14  
V
DD  
R
I
A
FB  
D0..DX  
INPUT  
REGISTER  
DAC A  
REGISTER  
SDI  
A
DAC A  
DAC B  
OUT  
1 LSB INL  
R
R
R
R
A
A
GND  
2 mA full-scale current 20%, with VREF = 10 V  
0.5 µs settling time  
2Q multiplying reference-input 6.9 MHz BW  
Zero or midscale power-up preset  
Zero or midscale dynamic reset  
3-wire interface  
R
I
B
FB  
CS  
INPUT  
REGISTER  
DAC B  
REGISTER  
B
OUT  
EN  
CLK  
A
B
GND  
DAC A  
B
POWER-  
ON  
RESET  
ADDR  
DECODE  
AD5545/  
AD5555  
Compact 16-lead TSSOP package  
02918-0-001  
DGND  
RS MSB  
LDAC  
Figure 1.  
APPLICATIONS  
Automatic test equipment  
Instrumentation  
Digitally controlled calibration  
Industrial control PLCs  
Programmable attenuator  
PRODUCT OVERVIEW  
The AD5545/AD5555 are 16-bit/14-bit, current-output, digital-  
to-analog converters designed to operate from a 4.5 V to 5.5 V  
supply range.  
An external reference is needed to establish the full-scale  
output-current. An internal feedback resistor (RFB) enhances  
the resistance and temperature tracking when combined  
with an external op amp to complete the I-to-V conversion.  
A serial data interface offers high speed, 3-wire microcontroller  
compatible inputs using serial data in (SDI), clock (CLK), and  
CS  
LDAC  
chip select ( ). Additional  
function allows  
simultaneous update operation. The internal reset logic allows  
power-on preset and dynamic reset at either zero or midscale,  
depending on the state of the MSB pin.  
The AD5545/AD5555 are packaged in the compact TSSOP-16  
package and can be operated from −40°C to +85°C.  
Rev. G  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2003–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD5545/AD5555  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Grounding................................................................................... 11  
Applications Information .............................................................. 12  
Stability ........................................................................................ 12  
Positive Voltage Output............................................................. 12  
Bipolar Output............................................................................ 12  
Programmable Current Source ................................................ 13  
DAC with Programmable Input Reference Range................ 14  
Reference Selection .................................................................... 15  
Amplifier Selection .................................................................... 15  
Evaluation Board for the AD5545................................................ 17  
System Demonstration Platform.............................................. 17  
Operating the Evaluation Board .............................................. 17  
Evaluation Board Schematics ................................................... 18  
Evaluation Board Layout........................................................... 21  
Outline Dimensions....................................................................... 23  
Ordering Guide .......................................................................... 23  
Applications....................................................................................... 1  
Product Overview............................................................................. 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Timing Diagrams.......................................................................... 4  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
Theory of Operation ........................................................................ 9  
Digital-to-Analog Converter ...................................................... 9  
Serial Data Interface................................................................... 10  
Power-Up Sequence ................................................................... 11  
Layout and Power Supply Bypassing ....................................... 11  
REVISION HISTORY  
4/13—Rev. F to Rev. G  
3/11—Rev. B to Rev. C  
Changes to Product Overview Section.......................................... 1  
Changes to Ordering Guide .......................................................... 23  
Change to Equation 4, Bipolar Output Section.......................... 12  
4/10—Rev. A to Rev. B  
2/13—Rev. E to Rev. F  
Changes to 2Q Multiplying Reference Input .................................1  
Changes to AC Characteristics and Endnote 3 in Table 1 ...........4  
Changes to Figure 13 and Figure 15 ...............................................8  
Added Reference Selection Section, Amplifier Selection Section,  
and Table 10 .................................................................................... 15  
Added Table 11 and Table 12........................................................ 16  
Changes to Ordering Guide.......................................................... 17  
Change to VDD Pin Description, Table 3........................................ 6  
Changed ADA4899 to ADA4899-1, Table 12............................. 16  
Changes to Ordering Guide .......................................................... 23  
12/11—Rev. D to Rev. E  
Added Figure 13; Renumbered Sequentially ................................ 8  
5/11—Rev. C to Rev. D  
9/09—Rev. 0 to Rev. A  
Added Evaluation Board for the AD5545 Section, System  
Demonstration Platform Section, and Operating the Evaluation  
Board Section .................................................................................. 17  
Added Figure 25 and Figure 26; Renumbered Sequentially ..... 17  
Added Evaluation Board Schematics Section, Figure 27 .......... 18  
Added Figure 28.............................................................................. 19  
Added Figure 29.............................................................................. 20  
Added Evaluation Board Layout Section, Figure 30, and  
Changes to Features Section ............................................................1  
Changes to Static Performance, Relative Accuracy, AD5545C  
Parameter, Table 1 .............................................................................3  
Moved ESD Caution..........................................................................5  
Changes to Ordering Guide.......................................................... 16  
7/03—Revision 0: Initial Version  
Figure 31, ......................................................................................... 21  
Added Figure 32.............................................................................. 22  
Changes to Ordering Guide .......................................................... 23  
Rev. G | Page 2 of 24  
 
Data Sheet  
AD5545/AD5555  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
VDD = 5 V 10%, IOUT = virtual GND, GND = 0 V, VREF = 10 V, TA = full operating temperature range, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
N
Conditions  
Min Typ  
Max  
Unit  
STATIC PERFORMANCE1  
Resolution  
AD5545, 1 LSB = VREF/216 = 153 µV when VREF = 10 V  
AD5555, 1 LSB = VREF/214 = 610 µV when VREF = 10 V  
AD5545B  
AD5555C  
AD5545C  
Monotonic  
Data = 0x0000, TA = 25°C  
Data = 0x0000, TA = TA Max  
Data = full scale  
16  
14  
2
1
1
Bits  
Bits  
LSB  
LSB  
LSB  
LSB  
nA  
nA  
mV  
ppm/°C  
Relative Accuracy  
INL  
Differential Nonlinearity  
Output Leakage Current  
DNL  
IOUT  
1
10  
20  
4
Full-Scale Gain Error  
Full-Scale Temperature Coefficient2  
REFERENCE INPUT  
GFSE  
TCVFS  
1
1
VREF Range  
Input Resistance  
Input Capacitance2  
VREF  
RREF  
CREF  
–12  
5
+12  
V
kΩ3  
5
pF  
ANALOG OUTPUT  
Output Current  
IOUT  
COUT  
Data = full scale  
Code dependent  
2
200  
mA  
pF  
Output Capacitance2  
LOGIC INPUTS AND OUTPUT  
Logic Input Low Voltage  
Logic Input High Voltage  
Input Leakage Current  
Input Capacitance2  
INTERFACE TIMING2, 4  
Clock Input Frequency  
Clock Width High  
VIL  
VIH  
IIL  
0.8  
V
V
2.4  
10  
10  
50  
µA  
pF  
MHz  
ns  
ns  
ns  
ns  
CIL  
10  
10  
0
fCLK  
tCH  
tCL  
Clock Width Low  
CS to Clock Setup  
tCSS  
tCSH  
tDS  
10  
5
ns  
Clock to CS Hold  
Data Setup  
Data Hold  
ns  
10  
5
ns  
tDH  
ns  
LDAC Setup  
Hold  
LDAC Width  
10  
10  
tLDS  
tLDH  
tLDAC  
ns  
50  
MHz  
SUPPLY CHARACTERISTICS  
Power Supply Range  
Positive Supply Current  
Power Dissipation  
VDD range  
IDD  
PDISS  
4.5  
5.5  
10  
0.055  
0.006  
V
µA  
mW  
%/%  
Logic inputs = 0 V  
Logic inputs = 0 V  
∆VDD = 5%  
Power Supply Sensitivity  
PSS  
Rev. G | Page 3 of 24  
 
 
AD5545/AD5555  
Data Sheet  
Parameter  
Symbol  
Conditions  
Min Typ  
Max  
Unit  
AC CHARACTERISTICS  
Output Voltage Setting Time  
tS  
To ±±.ꢀ1 full scale, data = zero scale to  
full scale to zero scale  
±.5  
μs  
Reference Multiplying BW  
DAC Glitch Impulse  
Feedthrough Error  
BW  
Q
VOUT/VREF  
VREF = ꢀ±± mV rms, data = full scale, Cꢀ = 5.6 pF  
VREF = ± V, data = midscale minus ꢀ to midscale  
Data = zero scale, VREF = ꢀ±± mV rms,  
f = ꢀ kHz, same channel  
6.9  
–2  
–8ꢀ  
MHz  
nV-s  
dB  
Digital Feedthrough  
Total Harmonic Distortion  
Analog Crosstalk  
Q
CS  
nV-s  
dB  
dB  
= logic high and fCLK = ꢀ MHz  
7
THD  
CTA  
VREF = 5 V p-p, data = full scale, f = ꢀ kHz to ꢀ± kHz  
VREFB = ± V, measure VOUTB with VREFA = 5 V p-p  
sine wave, data = full scale, f = ꢀ kHz to ꢀ± kHz  
–ꢀ±4  
–95  
Output Spot Noise Voltage  
eN  
f = ꢀ kHz, BW = ꢀ Hz  
ꢀ2  
nV/√Hz  
All static performance tests (except IOUT) are performed in a closed-loop system using an external precision OPꢀꢀ77 I-to-V converter amplifier. The AD5545 RFB terminal  
is tied to the amplifier output. Typical values represent average readings measured at 25°C.  
2 These parameters are guaranteed by design and not subject to production testing.  
3 All ac characteristic tests are performed in a closed-loop system using an AD8±38 I-to-V converter amplifier and the AD8±65 for the THD specification.  
4 All input control signals are specified with tR = tF = 2.5 ns (ꢀ±1 to 9±1 of 3 V) and timed from a voltage level of ꢀ.5 V.  
TIMING DIAGRAMS  
SDI  
A1  
A0  
D15  
D14  
D13  
D12  
D11  
D10  
D1  
D0  
INPUT REG LD  
CLK  
tDS  
tDH  
tCH  
tCL  
CS  
tCSS  
tCSH  
LDAC  
tLDH  
tLDS  
tLDAC  
02918-0-003  
Figure 2. AD5545 18-Bit Data Word Timing Diagram  
SDI  
A1  
A0  
D13  
D12  
D11  
D10  
D09  
D08  
D1  
D0  
INPUT REG LD  
CLK  
tDS  
tDH  
tCH  
tCL  
CS  
tCSS  
tCSH  
LDAC  
tLDH  
tLDS  
tLDAC  
02918-0-004  
Figure 3. AD5555 16-Bit Data Word Timing Diagram  
Rev. G | Page 4 of 24  
 
 
Data Sheet  
AD5545/AD5555  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only and functional operation of the device at these or  
any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
VDD to GND  
VREF to GND  
Logic Inputs to GND  
V(IOUT) to GND  
Input Current to Any Pin except  
Supplies  
–0.3 V to +8 V  
–18 V to +18 V  
–0.3 V to +8 V  
–0.3 V to VDD + 0.3 V  
50 mA  
ESD CAUTION  
Package Power Dissipation  
Thermal Resistance θJA  
16-Lead TSSOP  
Maximum Junction Temperature  
(TJ max)  
(TJ max – TA)/θJA  
150°C/W  
150°C  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature  
–40°C to +85°C  
–65°C to +150°C  
RU-16 (Vapor Phase, 60 sec)  
RU-16 (Infrared, 15 sec)  
215°C  
220°C  
Rev. G | Page 5 of 24  
 
 
 
AD5545/AD5555  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
R
A
A
A
A
B
B
B
B
16 CLK  
15 LDAC  
14 MSB  
1
2
3
4
5
6
7
8
FB  
V
REF  
OUT  
I
AD5545/  
A
A
V
DD  
13  
12  
11  
10  
9
GND  
GND  
AD5555  
DGND  
CS  
TOP VIEW  
(Not to Scale)  
I
OUT  
V
RS  
REF  
R
SDI  
FB  
02918-0-002  
Figure 4. 16-Lead TSSOP  
Table 3. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
RFBA  
Establish voltage output for DAC A by connecting this pin to an external amplifier output.  
DAC A Reference Voltage Input Terminal. Establishes DAC A full-scale output voltage. This pin can  
be tied to the VDD pin.  
VREFA  
3
4
5
6
7
IOUT  
AGND  
AGND  
IOUT  
VREF  
A
A
B
B
B
DAC A Current Output.  
DAC A Analog Ground.  
DAC B Analog Ground.  
DAC B Current Output.  
DAC B Reference Voltage Input Terminal. Establishes DAC B full-scale output voltage.  
This pin can be tied to the VDD pin.  
8
9
10  
RFBB  
SDI  
RS  
Establish voltage output for DAC B by the RFBB pin connecting to an external amplifier output.  
Serial Data Input. Input data loads directly into the shift register.  
Reset Pin, Active Low Input. Input registers and DAC registers are set to all 0s or midscale. Register  
Data = 0x0000 when MSB = 0. Register Data = 0x8000 for AD5545 and 0x2000 for AD5555 when  
MSB = 1.  
11  
CS  
Chip Select, Active Low Input. Disables shift register loading when high. Transfers serial register  
data to the input register when CS/LDAC returns high. This does not affect LDAC operation.  
12  
13  
14  
DGND  
VDD  
MSB  
Digital Ground Pin.  
Positive Power Supply Input. Specified range of operation 5 V 10%.  
MSB bit sets output to either 0 or midscale during a RESET pulse (RS) or at system power-on.  
Output equals zero scale when MSB = 0 and midscale when MSB = 1. MSB pin can also be tied  
permanently to ground or VDD  
.
15  
16  
LDAC  
CLK  
Load DAC Register Strobe, Level Sensitive Active Low. Transfers all input register data to DAC  
registers. Asynchronous active low input. See Table 7 and Table 8 for operation.  
Clock Input. Positive edge clocks data into shift register.  
Rev. G | Page 6 of 24  
 
Data Sheet  
AD5545/AD5555  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
8192 16384 24576 32768 40960 49152 57344 65536  
0
0248 4096  
6144  
8192 10240 12288 14336 16384  
CODE (Decimal)  
CODE (Decimal)  
02918-0-009  
02918-0-012  
Figure 5. AD5545 Integral Nonlinearity Error  
Figure 8. AD5555 Differential Nonlinearity Error  
1.0  
0.8  
1.5  
V
= 2.5V  
REF  
= 25°C  
T
A
1.0  
0.5  
0.6  
0.4  
0.2  
INL  
0
0
DNL  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
GE  
0
8192 16384 24576 32768 40960 49152 57344 65536  
2
4
6
8
10  
CODE (Decimal)  
SUPPLY VOLTAGE V (V)  
DD  
02918-0-010  
02918-0-013  
Figure 6. AD5545 Differential Nonlinearity Error  
Figure 9. Linearity Errors vs. VDD  
1.0  
0.8  
5
4
3
2
V
= 5V  
DD  
= 25°C  
T
A
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
1
0
0
2048 4096  
6144  
8192 10240 12288 14336 16384  
0
0.5  
1.0 1.5  
2.0  
2.5 3.0  
3.5  
IH  
4.0  
4.5 5.0  
CODE (Decimal)  
LOGIC INPUT VOLTAGE V (V)  
02918-0-014  
02918-0-011  
Figure 10. Supply Current vs. Logic Input Voltage  
Figure 7. AD5555 Integral Nonlinearity Error  
Rev. G | Page 7 of 24  
 
AD5545/AD5555  
Data Sheet  
2
0
3.0  
2.5  
2.0  
–2  
–4  
0x5555  
0x8000  
–6  
1.5  
–8  
1.0  
0.5  
0xFFFF  
0x0000  
–10  
–12  
–14  
0
10k  
100k  
1M  
CLOCK FREQUENCY (Hz)  
10M  
100M  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
02918-0-117  
02918-0-015  
Figure 11. Supply Current vs. Clock Frequency  
Figure 14. Reference Multiplying Bandwidth  
90  
V
V
= 5V ± 10%  
DD  
80  
70  
= 10V  
REF  
CS  
60  
50  
40  
30  
20  
10  
0
V
OUT  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
02918-0-016  
02918-0-018  
Figure 12. Power Supply Rejection Ration vs. Frequency  
Figure 15. Settling Time  
–3.70  
–3.75  
–3.80  
–3.85  
–3.90  
–3.95  
–4.00  
–4.05  
20  
0
–20  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
–200  
–100  
0
100  
200  
300  
400  
0
5
10  
15  
20  
25  
TIME (ns)  
02918-0-119  
FREQUENCY (Hz)  
02918-0-113  
Figure 13. AD5545/AD5555 Analog THD  
Figure 16. Midscale Transition and Digital Feedthrough  
Rev. G | Page 8 of 24  
Data Sheet  
AD5545/AD5555  
THEORY OF OPERATION  
The AD5545/AD5555 contain a 16-/14-bit, current-output,  
digital-to-analog converter, a serial-input register, and a DAC  
register. Both parts require a minimum of a 3-wire serial data  
These DACs are also designed to accommodate ac reference input  
signals. The AD5545/AD5555 accommodate input reference  
voltages in the range of –12 V to +12 V. The reference voltage  
inputs exhibit a constant nominal input-resistance value of  
5 kΩ, 30%. The DAC output (IOUT) is code dependent, pro-  
ducing various output resistances and capacitances. When  
choosing an external amplifier, the user should take into  
account the variation in impedance generated by the AD5545/  
AD5555 on the amplifiers inverting input node. The feedback  
resistance in parallel with the DAC ladder resistance dominates  
output voltage noise.  
LDAC  
interface with an additional  
update.  
for dual channel simultaneous  
DIGITAL-TO-ANALOG CONVERTER  
The DAC architecture uses a current-steering R-2R ladder  
design. Figure 17 shows the typical equivalent DAC. The DAC  
contains a matching feedback resistor for use with an external  
I-to-V converter amplifier. The RFB pin is connected to the  
output of the external amplifier. The IOUT terminal is connected  
to the inverting input of the external amplifier. These DACs are  
designed to operate with either negative or positive reference  
voltages. The VDD power pin is used only by the logic to drive  
the DAC switches on and off. Note that a matching switch is  
used in series with the internal 5 kΩ feedback resistor. If users  
attempt to measure the RFB value, power must be applied to VDD  
to achieve continuity. The VREF input voltage and the digital data  
(D) loaded into the corresponding DAC register, according to  
Equation 1 and Equation 2, determine the DAC output voltage.  
5V  
V
IN  
V
2.500V  
OUT  
ADR03  
GND  
V
DD  
R
R
R
R
A
FB  
V
A
REF  
2R  
2R  
2R  
R
5k  
+3V  
S2  
S1  
I
A
OUT  
V
CC  
V
OUT  
AD8628  
V
EE  
AD5545/AD5555  
VOUT = VREF × D/65,536  
(1)  
(2)  
LOAD  
–3V  
A
A
GND  
VOUT = VREF × D/16,384  
DIGITAL INTERFACE CONNECTIONS OMITTED FOR CLARITY:  
SWITCHES S1 AND S2 ARE CLOSED, V MUST BE POWERED  
02918-0-006  
DD  
Note that the output full-scale polarity is the opposite of the  
Figure 18. Recommended System Connections  
V
REF polarity for dc reference voltages.  
V
DD  
R
R
R
V
R
REF  
FB  
2R  
2R  
2R  
R
5k  
S2  
S1  
I
OUT  
GND  
DIGITAL INTERFACE CONNECTIONS OMITTED FOR CLARITY:  
SWITCHES S1 AND S2 ARE CLOSED, V MUST BE POWERED  
DD  
02918-0-005  
Figure 17. Equivalent R-2R DAC Circuit  
Rev. G | Page 9 of 24  
 
 
 
AD5545/AD5555  
Data Sheet  
to the DAC A register. At this time, the output is not updated. To  
SERIAL DATA INTERFACE  
CS  
load DAC B data, pull  
DAC B with the proper address and data, then pull  
LDAC  
low for an 18-bit duration and program  
CS  
The AD5545/AD5555 use a minimum 3-wire ( , SDI, CLK)  
serial data interface for single channel update operation. With  
Table 7 as an example (AD5545), users can tie  
CS  
high to  
latch data to the DAC B register. Finally, pull  
low and then  
LDAC  
low  
high to update both the DAC A and DAC B outputs  
simultaneously.  
RS CS  
and  
high, and then pull  
low for an 18-bit duration. New  
serial data is then clocked into the serial-input register in an 18-  
bit data-word format with the MSB bit loaded first. Table 8  
defines the truth table for the AD5555. Data is placed on the  
SDI pin and clocked into the register on the positive clock edge  
of CLK. For the AD5545, only the last 18-bits clocked into the  
Table 6 shows that each DAC A and DAC B can be individually  
loaded with a new data value. In addition, a common new data  
value can be loaded into both DACs simultaneously by setting Bit  
A1 = A0 = high. This command enables the parallel combination  
of both DACs, with IOUTA and IOUTB tied together, to act as one  
DAC with significant improved noise performance.  
CS  
serial register are interrogated when the  
pin is strobed high,  
transferring the serial register data to the DAC register and  
updating the output. If the applied microcontroller outputs  
serial data in different lengths than the AD5545, such as 8-bit  
bytes, three right justified data bytes can be written to the  
AD5545. The AD5545 ignores the six MSB and recognizes the  
18 LSB as valid data. After loading the serial register, the rising  
ESD Protection Circuits  
All logic input pins contain back-biased ESD protection Zeners  
connected to digital ground (DGND) and VDD as shown in  
Figure 19.  
V
DD  
CS  
edge of  
transfers the serial register data to the DAC register  
DIGITAL  
INPUTS  
CS  
and updates the output; during the  
not be toggled.  
strobe, the CLK should  
5k  
If users want to program each channel separately but update them  
LDAC RS  
DGND  
simultaneously, program  
and high initially, then  
low for an 18-bit duration and program DAC A with the  
CS  
02918-0-007  
CS  
pull  
proper address and data bits.  
Figure 19. Equivalent ESD Protection Circuits  
is then pulled high to latch data  
Table 4. AD5545 Serial Input Register Data Format, Data Is Loaded in the MSB-First Format1  
MSB  
LSB  
Bit Position  
Data Word  
B17  
A1  
B16 B15  
A0 D15  
B14  
D14  
B13  
D13  
B12  
D12 D11  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
1
CS  
Note that only the last 18 bits of data clocked into the serial register (address + data) are inspected when the line’s positive edge  
returns to logic high. At this point, an internally generated load strobe transfers the serial register data contents (Bit D15 to Bit D0) to the  
decoded DAC input register address determined by Bit A1 and Bit A0. Any extra bits clocked into the AD5545 shift register are ignored; only the last 18 bits clocked in  
LDAC  
are used. If double-buffered data is not needed, the  
pin can be tied logic low to disable the DAC registers.  
Table 5. AD5555 Serial Input Register Data Format, Data Is Loaded in the MSB-First Format1  
MSB  
LSB  
B0  
D0  
Bit Position  
Data Word  
B15  
A1  
B14  
A0  
B13  
D13  
B12  
D12  
B11  
D11  
B10  
D10  
B9  
D9  
B8  
D8  
B7  
D7  
B6  
D6  
B5  
D5  
B4  
D4  
B3  
D3  
B2  
D2  
B1  
D1  
1
CS  
Note that only the last 16 bits of data clocked into the serial register (address + data) are inspected when the line’s positive edge  
returns to logic high. At this point, an internally generated load strobe transfers the serial register data contents (Bit D13 to Bit D0) to the  
decoded DAC input register address determined by Bit A1 and Bit A0. Any extra bits clocked into the AD5555 shift register are ignored; only the last 16 bits clocked in  
LDAC  
are used. If double-buffered data is not needed, the  
pin can be tied logic low to disable the DAC registers.  
Table 6. Address Decode  
A1  
A0  
DAC Decoded  
None  
0
0
0
1
DAC A  
1
0
DAC B  
1
1
DAC A and DAC B  
Rev. G | Page 10 of 24  
 
 
 
 
 
Data Sheet  
AD5545/AD5555  
Table 7. AD5545 Control Logic Truth Table1, 2  
CS  
LDAC  
RS  
CLK  
X
L
MSB  
Serial Shift Register Function  
Input Register Function  
Latched  
Latched  
DAC Register  
Latched  
Latched  
H
L
L
H
H
H
H
H
H
H
H
H
H
X
X
X
X
X
No effect  
No effect  
Shift register data advanced one bit  
Latched  
Latched  
+  
H
L
L
No effect  
No effect  
Latched  
Selected DAC updated  
with current SR current  
Latched  
Latched  
+  
H
H
H
H
H
X
X
X
X
X
L
H
H
H
H
L
X
X
X
0
No effect  
No effect  
No effect  
No effect  
No effect  
Latched  
Latched  
Latched  
Transparent  
Latched  
Latched  
+  
H
H
Latched data = 0x0000  
Latched data = 0x8000  
Latched data = 0x0000  
Latched data = 0x8000  
L
H
1 SR = shift register, + = positive logic transition, and X = don’t care.  
2 At power-on, both the input register and the DAC register are loaded with all 0s.  
Table 8. AD5555 Control Logic Truth Table1, 2  
CS  
CLK  
LDAC  
RS MSB  
Serial Shift Register Function  
Input Register Function  
DAC Register  
H
L
L
X
L
H
H
H
H
H
H
H
H
H
H
X
X
X
X
X
No effect  
No effect  
Shift register data advanced one bit  
Latched  
Latched  
Latched  
Latched  
Selected DAC updated  
with current SR current  
Latched  
Latched  
Latched  
Latched  
Latched  
+  
H
L
L
No effect  
No effect  
+  
H
H
H
H
H
X
X
X
X
X
L
H
H
H
H
L
X
X
X
0
No effect  
No effect  
No effect  
No effect  
No effect  
Latched  
Latched  
Latched  
Transparent  
Latched  
Latched  
+  
H
H
Latched data = 0x0000  
Latched data = 0x2000  
Latched data = 0x0000  
Latched data = 0x2000  
L
H
1 SR = shift register, + = positive logic transition, and X = don’t care.  
2 At power-on, both the input register and the DAC register are loaded with all 0s.  
(see Figure 20). Users should not apply switching regulators for  
DD due to the power supply rejection ratio degradation over  
frequency.  
POWER-UP SEQUENCE  
V
It is recommended to power-up VDD and ground prior to any  
reference voltages. The ideal power-up sequence is AGNDx,  
DGND, VDD, VREFx, and digital inputs. A noncompliance  
power-up sequence can elevate reference current, but the device  
will resume normal operation once VDD is powered.  
AD5545/  
AD5555  
V
V
DD  
DD  
C2  
+
C1  
10F 0.1F  
A
X
GND  
LAYOUT AND POWER SUPPLY BYPASSING  
It is a good practice to employ compact, minimum lead length  
layout design. The input leads should be as direct as possible  
with a minimum conductor length. Ground paths should have  
low resistance and low inductance.  
DGND  
02918-0-008  
Figure 20. Power Supply Bypassing and Grounding Connection  
Similarly, it is also good practice to bypass the power supplies  
with quality capacitors for optimum stability. Supply leads to  
the device should be bypassed with 0.01 μF to 0.1 μF disc or  
chip ceramic capacitors. Low ESR 1 μF to 10 μF tantalum or  
electrolytic capacitors should also be applied at VDD to minimize  
any transient disturbance and to filter any low frequency ripple  
GROUNDING  
The DGND and AGNDx pins of the AD5545/AD5555 refer to the  
digital and analog ground references. To minimize the digital  
ground bounce, the DGND terminal should be joined remotely  
at a single point to the analog ground plane (see Figure 20).  
Rev. G | Page 11 of 24  
 
 
 
 
 
 
 
 
AD5545/AD5555  
Data Sheet  
APPLICATIONS INFORMATION  
STABILITY  
BIPOLAR OUTPUT  
V
DD  
The AD5545/AD5555 is inherently a 2-quadrant multiplying  
DAC. It can easily be set up for unipolar output operation. The  
full-scale output polarity is the inverse of the reference input  
voltage.  
U1  
C1  
V
R
DD  
FB  
V
V
I
OUT  
REF  
REF  
V
O
AD8628  
In some applications, it may be necessary to generate the full  
4-quadrant multiplying capability or a bipolar output swing. This  
is easily accomplished by using an additional external amplifier,  
U4, configured as a summing amplifier (see Figure 23). In this  
circuit, the second amplifier, U4, provides a gain of 2, which  
increases the output span magnitude to 5 V. Biasing the external  
amplifier with a 2.5 V offset from the reference voltage results in a  
full 4-quadrant multiplying circuit. The transfer equation of this  
circuit shows that both negative and positive output voltages are  
created because the input data (D) is incremented from code zero  
GND  
AD5545/AD5555  
U2  
02918-0-020  
Figure 21. Operational Compensation Capacitor for Gain Peaking  
Prevention  
In the I-to-V configuration, the IOUT of the DAC and the  
inverting node of the op amp must be connected as close as  
possible, and proper PCB layout techniques must be employed.  
Because every code change corresponds to a step function, gain  
peaking may occur if the op amp has limited GBP, and if there  
is excessive parasitic capacitance at the inverting node.  
(VOUT = −2.5 V) to midscale (VOUT = 0 V) to full scale (VOUT  
+2.5 V).  
=
An optional compensation capacitor, C1, can be added for  
stability as shown in Figure 21. C1 should be found empirically,  
but 6 pF is generally more than adequate for the compensation.  
V
OUT = (D/32,768 − 1) × VREF (AD5545)  
OUT = (D/8192 − 1) × VREF (AD5555)  
(3)  
(4)  
V
For the AD5545, the external resistance tolerance becomes the  
dominant error that users should be aware of.  
POSITIVE VOLTAGE OUTPUT  
To achieve the positive voltage output, an applied negative  
reference to the input of the DAC is preferred over the output  
inversion through an inverting amplifier because of the  
resistors’ tolerance errors. To generate a negative reference, the  
reference can be level shifted by an op amp such that the VOUT  
and GND pins of the reference become the virtual ground and  
−2.5 V, respectively (see Figure 22).  
R1  
R2  
10kΩ±0.01% 10kΩ±0.01%  
C2  
U4  
+5V  
+5V  
U1  
5kΩ±0.01%  
V
V+  
1/2  
AD8620  
O
R3  
ADR03  
C1  
OUT  
V
R
FB  
V–  
DD  
5V  
V
V
I
OUT IN  
V
+5V  
REF  
GND  
–5V  
1/2  
AD8620  
ADR03  
GND  
–2.5 < V < +2.5  
O
U3  
V
V
OUT IN  
U4  
+5V  
U1  
AD5545/AD5555  
Figure 23. Four-Quadrant Multiplying Application Circuit  
U2  
02918-0-022  
GND  
U3  
C1  
OUT  
V
R
DD  
FB  
V+  
1/2  
AD8620  
V–  
I
V
REF  
V
O
–2.5V  
1/2  
AD8628  
GND  
–5V  
0 < V < +2.5  
AD5545/AD5555  
U2  
O
02918-0-021  
Figure 22. Positive Voltage Output Configuration  
Rev. G | Page 12 of 24  
 
 
 
 
 
 
 
Data Sheet  
AD5545/AD5555  
If the resistors are perfectly matched, ZO is infinite, which is  
desirable, and the resistors behave as an ideal current source.  
On the other hand, if they are not matched, ZO can be either  
positive or negative. The latter can cause oscillation. As a result,  
C1 is needed to prevent the oscillation. For critical applications,  
C1 could be found empirically but typically falls in the range of  
a few picofarads.  
PROGRAMMABLE CURRENT SOURCE  
Figure 24 shows a versatile V-to-I conversion circuit using  
improved Howland Current Pump. In addition to the precision  
current conversion it provides, this circuit enables a bidirec-  
tional current flow and high voltage compliance. This circuit  
can be used in a 4 mA to 20 mA current transmitter with up to  
a 500 Ω of load. In Figure 24, it shows that if the resistor  
network is matched, the load current is  
V
DD  
U1  
(
R2 + R3)  
R1  
R3  
V
R
FB  
DD  
IL =  
×VREF ×D  
(5)  
I
V
V
R1'  
R2'  
OUT  
REF  
REF  
GND  
150k15kΩ  
AD8628  
R3, in theory, can be made small to achieve the current needed  
within the U3 output current driving capability. This circuit is  
versatile such that the AD8510 can deliver 20 mA in both  
directions, and the voltage compliance approaches 15 V, which  
is mainly limited by the supply voltages of U3. However, users  
must pay attention to the compensation. Without C1, it can be  
shown that the output impedance becomes  
C1  
10pF  
AD5545/AD5555  
U2  
V
DD  
U3  
R3'  
50Ω  
V+  
AD8510  
V–  
R3  
50Ω  
V
SS  
V
L
R1 R3  
(
R1+ R2)  
ZO =  
(6)  
R1  
150kΩ  
R2  
15kΩ  
R1  
(
R2 + R3  
)
R1  
(
R2 + R3  
)
I
LOAD  
L
02918-0-023  
Figure 24. Programmable Current Source with Bidirectional  
Current Control and High Voltage Compliance Capabilities  
Rev. G | Page 13 of 24  
 
 
AD5545/AD5555  
Data Sheet  
By putting Equations 7 through 10 together, the following  
results:  
DAC WITH PROGRAMMABLE INPUT  
REFERENCE RANGE  
Because high voltage references can be costly, users may  
consider using one of the DACs, a digital potentiometer, and a  
low voltage reference to form a single-channel DAC with a  
programmable input reference range. This approach optimizes  
the programmable range as well as facilitates future system  
upgrades with just software changes. Figure 25 shows this  
implementation. VREFAB is in the feedback network, therefore,  
DC  
128 DC  
1  
VREF AB VREF   
(11)  
DA  
2N  
DC  
1  
128 DC  
Table 9 shows a few examples of VREFAB of the 14-bit AD5555.  
Table 9. VREFABvs. DB and DC of the AD5555  
DC  
DA  
VREFAB  
RWB  
RWA  
DA RWB  
VREF AB VREF 1  
VREF_AB   
(7)  
2N  
0
X
0
8192  
0
8192  
0
VREF  
RWA  
32  
32  
64  
64  
96  
96  
1.33 VREF  
1.6 VREF  
2 VREF  
4 VREF  
4 VREF  
where:  
VREFAB = reference voltage of VREFA and VREF  
REF = external reference voltage  
DA = DAC A digital code in decimal  
N = number of bits of DAC  
B
V
8192  
–8 VREF  
R
WB and RWA are digital potentiometer 128-step programmable  
The output of DAC B is, therefore,  
resistances and are given by  
DB  
VOB  VREF AB  
(12)  
DC  
128  
RWB  
WA   
RWB  
RAB  
(8)  
(9)  
2N  
where DB is the DAC B digital code in decimal.  
128 DC  
R
RAB  
The accuracy of VREFAB is affected by the matching of the input  
and feedback resistors and, therefore, a digital potentiometer is  
used for U4 because of its inherent resistance matching. The  
AD7376 is a 30 V or 15 V, 128-step digital potentiometer. If  
15 V or 7.5 V is adequate for the application, a 256-step  
AD5260 digital potentiometer can be used instead.  
128  
DC  
(10)  
RWA 128 DC  
where DC = digital potentiometer digital code in decimal  
(0 ≤ DC ≤ 127).  
+5V  
C1  
+15V  
R
A
V
FB  
DD  
I
A
OUT  
V+  
OP4177  
V–  
U4  
A
B
V
A
REF  
U1A  
A
AD7376  
A
W
C2  
GND  
+15V  
2
2.2p  
–15V  
U2A  
U3  
V
IN  
3
5
6
OP4177  
TEMP TRIM  
AD5555  
V
V
REF_AB  
REF  
V
OUT  
GND  
U2C  
4
ADR03  
C3  
R
B
FB  
POT  
I
B
OUT  
V
B
O
V
REF  
B
OP4177  
U1B  
A
B
GND  
U2B  
02918-0-024  
Figure 25. DAC with Programmable Input Reference Range  
Rev. G | Page 14 of 24  
 
 
 
Data Sheet  
AD5545/AD5555  
The input bias current of an op amp also generates an offset at  
the voltage output because of the bias current flowing in the  
feedback resistor, RFB.  
REFERENCE SELECTION  
When selecting a reference for use with the AD55xx series  
of current output DACs, pay attention to the output voltage,  
temperature coefficient specification of the reference. Choosing  
a precision reference with a low output temperature coefficient  
minimizes error sources. Table 10 lists some of the references  
available from Analog Devices, Inc., that are suitable for use  
with this range of current output DACs.  
Common-mode rejection of the op amp is important in voltage-  
switching circuits because it produces a code-dependent error  
at the voltage output of the circuit.  
Provided that the DAC switches are driven from true wideband  
low impedance sources (VIN and AGND), they settle quickly.  
Consequently, the slew rate and settling time of a voltage-switching  
DAC circuit is determined largely by the output op amp. To obtain  
minimum settling time in this configuration, minimize capacitance  
at the VREF node (the voltage output node in this application) of  
the DAC. This is done by using low input capacitance buffer  
amplifiers and careful board design.  
AMPLIFIER SELECTION  
The primary requirement for the current-steering mode is an  
amplifier with low input bias currents and low input offset voltage.  
Because of the code-dependent output resistance of the DAC,  
the input offset voltage of an op amp is multiplied by the variable  
gain of the circuit. A change in this noise gain between two  
adjacent digital fractions produces a step change in the output  
voltage due to the amplifiers input offset voltage. This output  
voltage change is superimposed upon the desired change in  
output between the two codes and gives rise to a differential  
linearity error, which, if large enough, can cause the DAC to be  
nonmonotonic.  
Analog Devices offers a wide range of amplifiers for both precision  
dc and ac applications, as listed in Table 11 and Table 12.  
Table 10. Suitable Analog Devices Precision References  
Maximum Temperature  
Part No. Output Voltage (V) Initial Tolerance (%) Drift (ppm/°C)  
ISS (mA) Output Noise (µV p-p) Package(s)  
ADR01  
ADR01  
ADR02  
ADR02  
ADR03  
ADR03  
ADR06  
ADR06  
ADR420 2.048  
ADR421 2.50  
ADR423 3.00  
ADR425 5.00  
ADR431 2.500  
ADR435 5.000  
ADR391 2.5  
ADR395 5.0  
10  
10  
0.05  
0.05  
0.06  
0.06  
0.1  
0.1  
0.1  
0.1  
0.05  
0.04  
0.04  
0.04  
0.04  
0.04  
0.16  
0.10  
3
9
3
9
3
9
3
9
3
3
3
3
3
3
9
9
1
1
1
1
1
1
1
1
0.5  
0.5  
0.5  
0.5  
0.8  
0.8  
0.12  
0.12  
20  
20  
10  
10  
6
SOIC-8  
TSOT-5, SC70-5  
SOIC-8  
TSOT-5, SC70-5  
SOIC-8  
TSOT-5, SC70-5  
SOIC-8  
TSOT-5, SC70-5  
SOIC-8, MSOP-8  
SOIC-8, MSOP-8  
SOIC-8, MSOP-8  
SOIC-8, MSOP-8  
SOIC-8, MSOP-8  
SOIC-8, MSOP-8  
TSOT-5  
5.0  
5.0  
2.5  
2.5  
3.0  
3.0  
6
10  
10  
1.75  
1.75  
2
3.4  
3.5  
8
5
8
TSOT-5  
Rev. G | Page 15 of 24  
 
 
 
AD5545/AD5555  
Data Sheet  
Table 11. Suitable Analog Devices Precision Op Amps  
V
OS Maximum IB Maximum 0.1 Hz to 10 Hz  
Part No.  
OP97  
OP1177  
AD8675  
AD8671  
Supply Voltage (V) (μV)  
(nA)  
Noise (μV p-p)  
Supply Current (μA)  
Package(s)  
±2 ꢀo ±2±  
±2.5 ꢀo ±15  
±5 ꢀo ±18  
±5 ꢀo ±15  
25  
6±  
75  
75  
125  
5±  
5±  
65  
65  
65  
±.1  
2
2
12  
±.5  
±.4  
±.1  
±.±77  
±.1  
2.3  
2.3  
2.3  
2.4  
2.4  
6±±  
5±±  
23±±  
3±±±  
2±±±  
4±  
SOIC-8 , PDIP-8  
MSOP-8, SOIC-8  
MSOP-8, SOIC-8  
MSOP-8, SOIC-8  
SOIC-8, SOT-23-5  
TSOT-5  
ADA4±±4-1 ±5 ꢀo ±15  
9±  
AD86±3  
AD86±7  
AD86±5  
AD8615  
AD8616  
1.8 ꢀo 5  
1.8 ꢀo 5  
2.7 ꢀo 5  
2.7 ꢀo 5  
2.7 ꢀo 5  
±.±±1  
±.±±1  
±.±±1  
±.±±1  
±.±±1  
4±  
MSOP-8, SOIC-8  
WLCSP-5, SOT-23-5  
TSOT-5  
1±±±  
2±±±  
2±±±  
MSOP-8, SOIC-8  
Table 12. Suitable Analog Devices High Speed Op Amps  
Part No.  
AD8±65  
AD8±66  
AD8±21  
AD8±38  
Supply Voltage (V) BW @ ACL (MHz)  
Slew Rate (V/μs)  
VOS (Max) (μV)  
IB (Max) (nA)  
±.±±6  
±.±±6  
1±,5±±  
75±  
1±±  
5±±  
5±±  
35±  
Package(s)  
5 ꢀo 24  
5 ꢀo 24  
5 ꢀo 24  
3 ꢀo 12  
145  
145  
49±  
35±  
6±±  
325  
325  
32±  
32±  
32±  
18±  
18±  
12±  
425  
31±  
1±±±  
85±  
65±  
65±  
13±±  
15±±  
15±±  
1±±±  
3±±±  
35  
5±±±  
5±±±  
6±±±  
6±±±  
1±,±±±  
SOIC-8, SOT-23-5  
SOIC-8, MSOP-8  
SOIC-8, MSOP-8  
SOIC-8, SC7±-5  
LFCSP-8, SOIC-8  
SOT-23-5, SOIC-8  
SOIC-8, MSOP-8  
SOT-23-5, SOIC-8  
SOIC-8, MSOP-8  
SOIC-8, PDIP-8  
ADA4899-1 5 ꢀo 12  
AD8±57  
AD8±58  
AD8±61  
AD8±62  
AD9631  
3 ꢀo 12  
3 ꢀo 12  
2.7 ꢀo 8  
2.7 ꢀo 8  
±3 ꢀo ±6  
35±  
7±±±  
Rev. G | Page 16 of 24  
 
 
Data Sheet  
AD5545/AD5555  
EVALUATION BOARD FOR THE AD5545  
The EVAL-AD5545SDZ is used in conjunction with an SDP1Z  
system demonstration platform board available from Analog  
Devices, which is purchased separately from the evaluation  
board. The USB-to-SPI communication to the AD5545 is  
completed using this Blackfin®-based demonstration board.  
SYSTEM DEMONSTRATION PLATFORM  
The system demonstration platform (SDP) is a hardware and  
software evaluation tool for use in conjunction with product  
evaluation boards. The SDP board is based on the Blackfin  
ADSP-BF527 processor with USB connectivity to the PC  
through a USB 2.0 high speed port. For more information about  
this device, see the system demonstration platform web page.  
OPERATING THE EVALUATION BOARD  
The evaluation board requires 12 V and +5 V supplies.  
The +12 V VDD and −12 V VSS are used to power the output  
amplifier, and the +5 V is used to power the DAC (DVDD).  
Figure 27. Evaluation Board Software—AD5545 Dual DAC  
Figure 26. Evaluation Board Software – Device Selection Window  
Rev. G | Page 17 of 24  
 
 
 
AD5545/AD5555  
Data Sheet  
EVALUATION BOARD SCHEMATICS  
0 2 0 8 -  
0
Figure 28. EVAL-AD5545SDZ Schematic Part A  
Rev. G | Page 18 of 24  
 
Data Sheet  
AD5545/AD5555  
0 2 0 9 -  
0
Figure 29. EVAL-AD5545SDZ Schematic Part B  
Rev. G | Page 19 of 24  
AD5545/AD5555  
Data Sheet  
0 3 0 0 -  
0
Figure 30. EVAL-AD5545SDZ Schematic Part B  
Rev. G | Page 20 of 24  
Data Sheet  
AD5545/AD5555  
EVALUATION BOARD LAYOUT  
Figure 31. Silkscreen  
Figure 32. Component Side  
Rev. G | Page 21 of 24  
 
AD5545/AD5555  
Data Sheet  
Figure 33. Solder Side  
Rev. G | Page 22 of 24  
Data Sheet  
AD5545/AD5555  
OUTLINE DIMENSIONS  
5.10  
5.00  
4.90  
16  
9
8
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
Figure 34. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Dimensions shown in millimeters  
ORDERING GUIDE  
INL  
LSB  
DNL  
LSB  
Resolution Temperature  
Package  
Description  
Package  
Ordering  
Qty  
Model1, 2  
(Bits)  
Range  
Option  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
AD5545BRUZ  
AD5545BRUZ-REEL7  
AD5545CRUZ  
AD5545CRUZ-REEL7  
AD5555CRU  
AD5555CRU-REEL7  
AD5555CRUZ  
2
2
1
1
1
1
1
1
1
1
1
1
16  
16  
16  
16  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Evaluation Board  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
96  
1000  
96  
1000  
96  
1000  
96  
1
1
1
1
14  
14  
14  
14  
AD5555CRUZ-REEL7  
EV-AD5544/45SDZ  
1000  
1 The AD5545/AD5555 contain 3131 transistors. The die size measures 71 mil. × 96 mil., 6816 sq. mil.  
2 Z = RoHS Compliant Part.  
Rev. G | Page 23 of 24  
 
 
 
AD5545/AD5555  
NOTES  
Data Sheet  
©2003–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D02918-0-4/13(G)  
Rev. G | Page 24 of 24  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY