AD8065AR-EBZ [ADI]

High Performance, 145 MHz FastFET Op Amps; 高性能, 145 MHz的FastFET运算放大器
AD8065AR-EBZ
型号: AD8065AR-EBZ
厂家: ADI    ADI
描述:

High Performance, 145 MHz FastFET Op Amps
高性能, 145 MHz的FastFET运算放大器

运算放大器
文件: 总29页 (文件大小:617K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Performance, 145 MHz  
FastFET Op Amps  
AD8065/AD8066  
FEATURES  
APPLICATIONS  
Automotive driver assistance systems  
Photodiode preamps  
Filters  
A/D drivers  
Level shifting  
Qualified for automotive applications  
FET input amplifier  
1 pA input bias current  
Low cost  
High speed: 145 MHz, −3 dB bandwidth (G = +1)  
180 V/μs slew rate (G = +2)  
Low noise  
Buffering  
CONNECTION DIAGRAMS  
AD8065  
AD8065  
7 nV/√Hz (f = 10 kHz)  
0.6 fA/√Hz (f = 10 kHz)  
V
+V  
1
2
3
5
OUT  
NC  
–IN  
+IN  
1
2
3
4
8
7
6
5
NC  
S
–V  
S
+V  
V
S
Wide supply voltage range: 5 V to 24 V  
Single-supply and rail-to-rail output  
Low offset voltage 1.5 mV maximum  
High common-mode rejection ratio: −100 dB  
Excellent distortion specifications  
SFDR −88 dBc @ 1 MHz  
Low power: 6.4 mA/amplifier typical supply current  
No phase reversal  
Small packaging: SOIC-8, SOT-23-5, and MSOP-8  
4
+IN  
–IN  
OUT  
TOP VIEW  
(Not to Scale)  
–V  
S
NC  
TOP VIEW  
(Not to Scale)  
AD8066  
1
2
3
4
8
7
6
5
+V  
S
V
OUT1  
V
–IN1  
+IN1  
OUT2  
–IN2  
+IN2  
–V  
S
TOP VIEW  
(Not to Scale)  
Figure 1.  
The AD8065/AD8066 are high performance, high speed, FET  
input amplifiers available in small packages: SOIC-8, MSOP-8,  
and SOT-23-5. They are rated to work over the industrial  
temperature range of −40°C to +85°C.  
GENERAL DESCRIPTION  
The AD8065/AD80661 FastFET™ amplifiers are voltage feedback  
amplifiers with FET inputs offering high performance and ease  
of use. The AD8065 is a single amplifier, and the AD8066 is a  
dual amplifier. These amplifiers are developed in the Analog  
Devices, Inc. proprietary XFCB process and allow exceptionally  
low noise operation (7.0 nV/√Hz and 0.6 fA/Hz) as well as  
very high input impedance.  
The AD8065WARTZ-REEL7 is fully qualified for automotive  
applications. It is rated to operate over the extended temperature  
range (−40°C to +105°C), up to a maximum supply voltage  
range of +5V only.  
24  
With a wide supply voltage range from 5 V to 24 V, the ability to  
operate on single supplies, and a bandwidth of 145 MHz, the  
AD8065/AD8066 are designed to work in a variety of applications.  
For added versatility, the amplifiers also contain rail-to-rail outputs.  
21  
18  
15  
12  
9
G = +10  
G = +5  
V
= 200mV p-p  
O
Despite the low cost, the amplifiers provide excellent overall  
performance. The differential gain and phase errors of 0.02%  
and 0.02°, respectively, along with 0.1 dB flatness out to 7 MHz,  
make these amplifiers ideal for video applications. Additionally,  
they offer a high slew rate of 180 V/μs, excellent distortion (SFDR  
of −88 dBc @ 1 MHz), extremely high common-mode rejection  
of −100 dB, and a low input offset voltage of 1.5 mV maximum  
under warmed up conditions. The AD8065/AD8066 operate  
using only a 6.4 mA/amplifier typical supply current and are  
capable of delivering up to 30 mA of load current.  
G = +2  
G = +1  
6
3
0
–3  
–6  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
Figure 2. Small Signal Frequency Response  
1 Protected by U. S. Patent No. 6,262,633.  
Rev. J  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2002–2010 Analog Devices, Inc. All rights reserved.  
 
IMPORTANT LINKS for the AD8065_8066*  
Last content update 08/20/2013 06:24 pm  
DOCUMENTATION  
PARAMETRIC SELECTION TABLES  
Find Similar Products By Operating Parameters  
High Speed Amplifiers Selection Table  
AN-649: Using the Analog Devices Active Filter Design Tool  
AN-581: Biasing and Decoupling Op Amps in Single Supply  
Applications  
AN-402: Replacing Output Clamping Op Amps with Input Clamping  
Amps  
AN-417: Fast Rail-to-Rail Operational Amplifiers Ease Design  
DESIGN TOOLS, MODELS, DRIVERS & SOFTWARE  
dBm/dBu/dBv Calculator  
Constraints in Low Voltage High Speed Systems  
MT-060: Choosing Between Voltage Feedback and Current Feedback  
Op Amps  
Analog Filter Wizard 2.0  
MT-059: Compensating for the Effects of Input Capacitance on VFB  
Power Dissipation vs Die Temp  
ADIsimOpAmp™  
and CFB Op Amps Used in Current-to-Voltage Converters  
MT-058: Effects of Feedback Capacitance on VFB and CFB Op Amps  
MT-056: High Speed Voltage Feedback Op Amps  
OpAmp Stability  
AD8065 SPICE Macro-Model  
AD8066 SPICE Macro-Model  
MT-053: Op Amp Distortion: HD, THD, THD + N, IMD, SFDR, MTPR  
MT-052: Op Amp Noise Figure: Don’t Be Mislead  
MT-050: Op Amp Total Output Noise Calculations for Second-Order  
System  
MT-049: Op Amp Total Output Noise Calculations for Single-Pole  
EVALUATION KITS & SYMBOLS & FOOTPRINTS  
View the Evaluation Boards and Kits page for the AD8065  
View the Evaluation Boards and Kits page for the AD8066  
Symbols and Footprints for AD8065  
System  
MT-048: Op Amp Noise Relationships: 1/f Noise, RMS Noise, and  
Equivalent Noise Bandwidth  
MT-033: Voltage Feedback Op Amp Gain and Bandwidth  
MT-032: Ideal Voltage Feedback (VFB) Op Amp  
A Stress-Free Method for Choosing High-Speed Op Amps  
FOR THE AD8065  
Symbols and Footprints for AD8066  
DESIGN SUPPORT  
AN-108: JFET-Input Amps are Unrivaled for Speed and Accuracy  
Submit your support request here:  
Linear and Data Converters  
AN-356: User's Guide to Applying and Measuring Operational  
Amplifier Specifications  
Embedded Processing and DSP  
CN-0272: 2 MHz Bandwidth PIN Photodiode Preamp with Dark  
Current Compensation  
Telephone our Customer Interaction Centers toll free:  
Americas:  
Europe:  
China:  
1-800-262-5643  
00800-266-822-82  
4006-100-006  
1800-419-0108  
8-800-555-45-90  
CN-0055: Programmable Gain Element Using the  
AD5450/AD5451/AD5452/AD5453 Current Output DAC Family  
CN-0034: Unipolar, Precision DC Digital-to-Analog Conversion Using  
the AD5426/AD5432/AD5443 8-Bit to12-Bit DACs  
India:  
Russia:  
UG-127: Universal Evaluation Board for High Speed Op Amps in  
Quality and Reliability  
Lead(Pb)-Free Data  
SOT-23-5/SOT-23-6 Packages  
UG-101: Evaluation Board User Guide  
FOR THE AD8066  
CN-0053: Precision, Bipolar, Configuration for the AD5450/1/2/3  
8-14bit Multiplying DACs  
SAMPLE & BUY  
AD8065  
CN-0036: Precision, Bipolar Configuration for the  
AD5426/AD5432/AD5443 8-Bit to12-Bit DACs  
AD8066  
MT-047: Op Amp Noise  
View Price & Packaging  
Request Evaluation Board and Samples  
Check Inventory & Purchase  
UG-128: Universal Evaluation Board for Dual High Speed Op Amps in  
SOIC Packages  
UG-129: Evaluation Board User Guide  
Find Local Distributors  
* This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet.  
Note: Dynamic changes to the content on this page (labeled 'Important Links') does not  
constitute a change to the revision number of the product data sheet.  
This content may be frequently modified.  
AD8065/AD8066  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Wideband Operation................................................................. 21  
Input Protection ......................................................................... 21  
Thermal Considerations............................................................ 22  
Input and Output Overload Behavior ..................................... 22  
Layout, Grounding, and Bypassing Considerations .................. 23  
Power Supply Bypassing............................................................ 23  
Grounding................................................................................... 23  
Leakage Currents........................................................................ 23  
Input Capacitance ...................................................................... 23  
Output Capacitance ................................................................... 23  
Input-to-Output Coupling........................................................ 24  
Wideband Photodiode Preamp................................................ 24  
High Speed JFET Input Instrumentation Amplifier.............. 25  
Video Buffer................................................................................ 26  
Outline Dimensions....................................................................... 27  
Ordering Guide .......................................................................... 28  
Automotive Products................................................................. 28  
Applications....................................................................................... 1  
Connection Diagrams...................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 3  
Specifications 5 V........................................................................... 4  
Specifications 12 V......................................................................... 6  
Specifications +5 V........................................................................... 7  
Absolute Maximum Ratings............................................................ 9  
Maximum Power Dissipation ..................................................... 9  
Output Short Circuit.................................................................... 9  
ESD Caution.................................................................................. 9  
Typical Performance Characteristics ........................................... 10  
Test Circuits..................................................................................... 17  
Theory of Operation ...................................................................... 20  
Closed-Loop Frequency Response........................................... 20  
Noninverting Closed-Loop Frequency Response.................. 20  
Inverting Closed-Loop Frequency Response ......................... 20  
Rev. J | Page 2 of 28  
AD8065/AD8066  
REVISION HISTORY  
8/10—Rev. I to Rev. J  
12/05—Rev. E to Rev. F  
Changes to Features Section, Applications Section, and General  
Description Section...........................................................................1  
Change to Table 1..............................................................................4  
Change to Table 3..............................................................................7  
Changes to Table 4 ............................................................................9  
Changes to Figure 9.........................................................................10  
Changes to Inverting Closed-Loop Frequency Response  
Section ..............................................................................................20  
Moved Leakage Currents Section, Input Capacitance Section,  
and Output Capacitance Section...................................................23  
Moved Input-to-Input Coupling Section, Wideband  
Photodiode Preamp Section, and Figure 59 ................................24  
Changes to Table 5 ..........................................................................25  
Moved Figure 60 and High Speed JFET Input Instrumentation  
Amplifier Section ............................................................................25  
Updated Outline Dimensions........................................................27  
Changes to Ordering Guide...........................................................28  
Added Automotive Products Section ...........................................28  
Updated Format ................................................................. Universal  
Changes to Features..........................................................................1  
Changes to General Description.....................................................1  
Changes to Figure 22 through Figure 27......................................11  
Updated Outline Dimensions........................................................25  
Changes to Ordering Guide...........................................................26  
2/04—Rev. D to Rev. E.  
Updated Format ................................................................Universal  
Updated Figure 56......................................................................... 21  
Updated Outline Dimensions...................................................... 25  
Updated Ordering Guide ............................................................. 26  
11/03—Rev. C to Rev. D.  
Changes to Features.........................................................................1  
Changes to Connection Diagrams.................................................1  
Updated Ordering Guide ................................................................5  
Updated Outline Dimensions...................................................... 22  
4/03—Rev. B to Rev. C.  
Added SOIC-8 (R) for the AD8065...............................................4  
3/09—Rev. H to Rev. I  
Changes to High Speed JFET Input Instrumentation Amplifier  
Section ..............................................................................................23  
Updated Outline Dimensions........................................................24  
2/03—Rev. A to Rev. B.  
Changes to Absolute Maximum Ratings.......................................4  
Changes to Test Circuit 10 ........................................................... 14  
Changes to Test Circuit 11 ........................................................... 15  
Changes to Noninverting Closed-Loop Frequency Response 16  
Changes to Inverting Closed-Loop Frequency Response ....... 16  
Updated Figure 6 .......................................................................... 18  
Changes to Figure 7 ...................................................................... 19  
Changes to Figure 10 .................................................................... 21  
Changes to Figure 11 .................................................................... 22  
Changes to High Speed JFET Instrumentation Amplifier ...... 22  
Changes to Video Buffer .............................................................. 22  
9/08—Rev. G to Rev. H  
Deleted Usable Range Parameter, Table 1......................................3  
Deleted Usable Range Parameter, Table 2......................................4  
Deleted Usable Range Parameter, Table 3......................................5  
Changes to Layout.............................................................................6  
Changes to Input and Output Overload Behavior Section........19  
Changes to Table 5 Expressions Column.....................................22  
1/06—Rev. F to Rev. G  
Changes to Ordering Guide...........................................................26  
8/02—Rev. 0 to Rev. A.  
Added AD8066..................................................................Universal  
Added SOIC-8 (R) and MSOP-8 (RM).........................................1  
Edits to General Description..........................................................1  
Edits to Specifications......................................................................2  
New Figure 2.....................................................................................5  
Changes to Ordering Guide............................................................5  
Edits to TPCs 18, 25, and 28...........................................................8  
New TPC 36................................................................................... 11  
Added Test Circuits 10 and 11 .................................................... 14  
MSOP (RM-8) Added .................................................................. 23  
Rev. J | Page 3 of 28  
 
AD8065/AD8066  
SPECIFICATIONS 5 ꢀ  
@ TA = 25°C, VS = 5 V, RL = 1 kΩ, unless otherwise noted.  
Table 1.  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
G = +1, VO = 0.2 V p-p (AD8065)  
AD8065WARTZ only: TMIN − TMAX  
G = +1, VO = 0.2 V p-p (AD8066)  
G = +2, VO = 0.2 V p-p  
G = +2, VO = 2 V p-p  
G = +2, VO = 0.2 V p-p  
G = +1, −5.5 V to +5.5 V  
G = −1, −5.5 V to +5.5 V  
G = +2, VO = 4 V step  
AD8065WARTZ only: TMIN − TMAX  
G = +2, VO = 2 V step  
100  
88  
100  
145  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
ns  
120  
50  
42  
Bandwidth for 0.1 dB Flatness  
Input Overdrive Recovery Time  
Output Recovery Time  
Slew Rate  
7
175  
170  
180  
ns  
130  
155  
V/μs  
V/μs  
ns  
Settling Time to 0.1%  
55  
G = +2, VO = 8 V step  
205  
ns  
NOISE/HARMONIC PERFORMANCE  
SFDR  
fC = 1 MHz, G = +2, VO = 2 V p-p  
fC = 5 MHz, G = +2, VO = 2 V p-p  
fC = 1 MHz, G = +2, VO = 8 V p-p  
fC = 10 MHz, RL = 100 Ω  
f = 10 kHz  
f = 10 kHz  
NTSC, G = +2, RL = 150 Ω  
NTSC, G = +2, RL = 150 Ω  
−88  
−67  
−73  
24  
7
0.6  
dBc  
dBc  
dBc  
dBm  
nV/√Hz  
fA/√Hz  
%
Third-Order Intercept  
Input Voltage Noise  
Input Current Noise  
Differential Gain Error  
Differential Phase Error  
DC PERFORMANCE  
0.02  
0.02  
Degrees  
Input Offset Voltage  
VCM = 0 V, SOIC package  
AD8065WARTZ only: TMIN − TMAX  
0.4  
1
1.5  
2.6  
17  
17  
6
mV  
mV  
μV/°C  
μV/°C  
pA  
Input Offset Voltage Drift  
Input Bias Current  
AD8065WARTZ only: TMIN − TMAX  
SOIC package  
2
TMIN to TMAX  
25  
1
125  
10  
pA  
pA  
Input Offset Current  
Open-Loop Gain  
TMIN to TMAX  
VO = 3 V, RL = 1 kΩ  
AD8065WARTZ only: TMIN − TMAX  
1
113  
125  
pA  
dB  
dB  
100  
100  
INPUT CHARACTERISTICS  
Common-Mode Input Impedance  
Differential Input Impedance  
Input Common-Mode Voltage Range  
FET Input Range  
1000 || 2.1  
1000 || 4.5  
GΩ || pF  
GΩ || pF  
−5 to +1.7  
−5 to +1.7  
−85  
−82  
−82  
−5.0 to +2.4  
V
V
dB  
dB  
dB  
AD8065WARTZ only: TMIN − TMAX  
VCM = −1 V to +1 V  
VCM = −1 V to +1 V (SOT-23)  
AD8065WARTZ only: TMIN − TMAX  
Common-Mode Rejection Ratio  
−100  
−91  
Rev. J | Page 4 of 28  
 
AD8065/AD8066  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
RL = 1 kΩ  
AD8065WARTZ only: TMIN − TMAX  
RL = 150 Ω  
−4.88 to +4.90  
−4.88 to +4.90  
−4.94 to +4.95  
V
V
V
−4.8 to +4.7  
Output Current  
Short-Circuit Current  
Capacitive Load Drive  
POWER SUPPLY  
VO = 9 V p-p, SFDR ≥ −60 dBc, f = 500 kHz  
35  
90  
20  
mA  
mA  
pF  
30% overshoot G = +1  
Operating Range  
5
5
24  
10  
V
V
AD8065WARTZ only: TMIN − TMAX  
Quiescent Current per Amplifier  
Power Supply Rejection Ratio  
6.4  
7.2  
7.2  
mA  
mA  
dB  
dB  
AD8065WARTZ only: TMIN − TMAX  
PSRR  
AD8065WARTZ only: TMIN − TMAX  
−85  
−85  
−100  
Rev. J | Page 5 of 28  
AD8065/AD8066  
SPECIFICATIONS 1ꢁ ꢀ  
@ TA = 25°C, VS = 12 V, RL = 1 kΩ, unless otherwise noted.  
Table 2.  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
G = +1, VO = 0.2 V p-p (AD8065)  
G = +1, VO = 0.2 V p-p (AD8066)  
G = +2, VO = 0.2 V p-p  
G = +2, VO = 2 V p-p  
G = +2, VO = 0.2 V p-p  
G = +1, −12.5 V to +12.5 V  
G = −1, −12.5 V to +12.5 V  
G = +2, VO = 4 V step  
100  
100  
145  
115  
50  
40  
7
175  
170  
180  
55  
MHz  
MHz  
MHz  
MHz  
MHz  
ns  
ns  
V/μs  
ns  
Bandwidth for 0.1 dB Flatness  
Input Overdrive Recovery  
Output Overdrive Recovery  
Slew Rate  
130  
Settling Time to 0.1%  
G = +2, VO = 2 V step  
G = +2, VO = 10 V step  
250  
ns  
NOISE/HARMONIC PERFORMANCE  
SFDR  
fC = 1 MHz, G = +2, VO = 2 V p-p  
fC = 5 MHz, G = +2, VO = 2 V p-p  
fC = 1 MHz, G = +2, VO = 10 V p-p  
fC = 10 MHz, RL = 100 Ω  
f = 10 kHz  
f = 10 kHz  
NTSC, G = +2, RL = 150 Ω  
NTSC, G = +2, RL = 150 Ω  
−100  
−67  
−85  
24  
7
1
dBc  
dBc  
dBc  
dBm  
nV/√Hz  
fA/√Hz  
%
Third-Order Intercept  
Input Voltage Noise  
Input Current Noise  
Differential Gain Error  
Differential Phase Error  
DC PERFORMANCE  
0.04  
0.03  
Degrees  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
VCM = 0 V, SOIC package  
0.4  
1
3
25  
2
1.5  
17  
7
mV  
μV/°C  
pA  
pA  
pA  
SOIC package  
TMIN to TMAX  
Input Offset Current  
10  
TMIN to TMAX  
2
pA  
Open-Loop Gain  
VO = 10 V, RL = 1 kΩ  
103  
114  
dB  
INPUT CHARACTERISTICS  
Common-Mode Input Impedance  
Differential Input Impedance  
Input Common-Mode Voltage Range  
FET Input Range  
1000 || 2.1  
1000 || 4.5  
GΩ || pF  
GΩ || pF  
−12 to +8.5  
−85  
−82  
−12.0 to +9.5  
−100  
−91  
V
dB  
dB  
Common-Mode Rejection Ratio  
VCM = −1 V to +1 V  
VCM = −1 V to +1 V (SOT-23)  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
RL = 1 kΩ  
−11.8 to +11.8 −11.9 to +11.9  
V
RL = 350 Ω  
−11.25 to +11.5  
V
Output Current  
VO = 22 V p-p, SFDR ≥ −60 dBc, f = 500 kHz  
30  
120  
25  
mA  
mA  
pF  
Short-Circuit Current  
Capacitive Load Drive  
POWER SUPPLY  
30% overshoot G = +1  
Operating Range  
5
24  
V
Quiescent Current per Amplifier  
Power Supply Rejection Ratio  
6.6  
−93  
7.4  
mA  
dB  
PSRR  
−84  
Rev. J | Page 6 of 28  
 
AD8065/AD8066  
SPECIFICATIONS +5 ꢀ  
@ TA = 25°C, VS = 5 V, RL = 1 kΩ, unless otherwise noted.  
Table 3.  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
G = +1, VO = 0.2 V p-p (AD8065)  
AD8065WARTZ only: TMIN − TMAX  
G = +1, VO = 0.2 V p-p (AD8066)  
G = +2, VO = 0.2 V p-p  
G = +2, VO = 2 V p-p  
G = +2, VO = 0.2 V p-p  
G = +1, −0.5 V to +5.5 V  
G = −1, −0.5 V to +5.5 V  
G = +2, VO = 2 V step  
AD8065WARTZ only: TMIN − TMAX  
G = +2, VO = 2 V step  
125  
90  
110  
155  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
ns  
130  
50  
43  
Bandwidth for 0.1 dB Flatness  
Input Overdrive Recovery Time  
Output Recovery Time  
Slew Rate  
6
175  
170  
160  
ns  
105  
123  
V/μs  
V/μs  
ns  
Settling Time to 0.1%  
NOISE/HARMONIC PERFORMANCE  
SFDR  
60  
fC = 1 MHz, G = +2, VO = 2 V p-p  
fC = 5 MHz, G = +2, VO = 2 V p-p  
fC = 10 MHz, RL = 100 Ω  
f = 10 kHz  
f = 10 kHz  
NTSC, G = +2, RL = 150 Ω  
NTSC, G = +2, RL = 150 Ω  
−65  
−50  
22  
7
0.6  
dBc  
dBc  
dBm  
nV/√Hz  
fA/√Hz  
%
Third-Order Intercept  
Input Voltage Noise  
Input Current Noise  
Differential Gain Error  
Differential Phase Error  
DC PERFORMANCE  
0.13  
0.16  
Degrees  
Input Offset Voltage  
VCM = 1.0 V, SOIC package  
AD8065WARTZ only: TMIN − TMAX  
0.4  
1
1.5  
2.6  
17  
17  
5
mV  
mV  
μV/ºC  
μV/ºC  
pA  
Input Offset Voltage Drift  
Input Bias Current  
AD8065WARTZ only: TMIN − TMAX  
SOIC package  
1
TMIN to TMAX  
25  
1
125  
5
pA  
pA  
Input Offset Current  
Open-Loop Gain  
TMIN to TMAX  
1
113  
125  
pA  
dB  
dB  
dB  
VO = 1 V to 4 V (AD8065)  
AD8065WARTZ only: TMIN − TMAX  
VO = 1 V to 4 V (AD8066)  
100  
100  
90  
103  
INPUT CHARACTERISTICS  
Common-Mode Input Impedance  
Differential Input Impedance  
Input Common-Mode Voltage Range  
FET Input Range  
1000 || 2.1  
1000 || 4.5  
GΩ || pF  
GΩ || pF  
0 to 1.7  
0 to 1.7  
−74  
−78  
−76  
0 to 2.4  
V
V
dB  
dB  
dB  
AD8065WARTZ only: TMIN − TMAX  
VCM = 0.5 V to 1.5 V  
VCM = 1 V to 2 V (SOT-23)  
AD8065WARTZ only: TMIN-TMAX  
Common-Mode Rejection Ratio  
−100  
−91  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
RL = 1 kΩ  
AD8065WARTZ only: TMIN − TMAX  
RL = 150 Ω  
0.1 to 4.85  
0.1 to 4.85  
0.03 to 4.95  
V
V
V
0.07 to 4.83  
Output Current  
Short-Circuit Current  
Capacitive Load Drive  
VO = 4 V p-p, SFDR ≥ −60 dBc, f = 500 kHz  
35  
75  
5
mA  
mA  
pF  
30% overshoot G = +1  
Rev. J | Page 7 of 28  
 
AD8065/AD8066  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
POWER SUPPLY  
Operating Range  
5
5
24  
10  
V
V
AD8065WARTZ only: TMIN − TMAX  
Quiescent Current per Amplifier  
Power Supply Rejection Ratio  
5.8  
6.4  
7.0  
7.0  
mA  
mA  
dB  
dB  
AD8065WARTZ only: TMIN − TMAX  
PSRR  
AD8065WARTZ only: TMIN − TMAX  
−78  
−78  
−100  
Rev. J | Page 8 of 28  
AD8065/AD8066  
ABSOLUTE MAXIMUM RATINGS  
RMS output voltages should be considered. If RL is referenced to  
VS−, as in single-supply operation, then the total drive power is  
Table 4.  
Parameter  
Rating  
VS × IOUT  
.
Supply Voltage  
26.4 V  
Power Dissipation  
See Figure 3  
VEE − 0.5 V to VCC + 0.5 V  
1.8 V  
−65°C to +125°C  
−40°C to +85°C  
−40°C to +105°C  
300°C  
If the rms signal levels are indeterminate, then consider the  
worst case, when VOUT = VS/4 for RL to midsupply.  
Common-Mode Input Voltage  
Differential Input Voltage  
Storage Temperature Range  
Operating Temperature Range  
AD8065WARTZ Only  
2
(
VS/4  
RL  
)
PD =  
(
VS × IS  
)
+
In single-supply operation with RL referenced to VS−, worst case  
is VOUT = VS/2.  
Lead Temperature  
(Soldering, 10 sec)  
2.0  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
1.5  
MSOP-8  
SOIC-8  
1.0  
SOT-23-5  
MAXIMUM POWER DISSIPATION  
0.5  
The maximum safe power dissipation in the AD8065/AD8066  
packages is limited by the associated rise in junction temperature  
(TJ) on the die. The plastic encapsulating the die locally reaches  
the junction temperature. At approximately 150°C, which is the  
glass transition temperature, the plastic changes its properties.  
Even temporarily exceeding this temperature limit can change  
the stresses that the package exerts on the die, permanently  
shifting the parametric performance of the AD8065/AD8066.  
Exceeding a junction temperature of 175°C for an extended  
time can result in changes in the silicon devices, potentially  
causing failure.  
0
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
AMBIENT TEMPERATURE (°C)  
Figure 3. Maximum Power Dissipation vs. Temperature for a 4-Layer Board  
Airflow increases heat dissipation, effectively reducing θJA. Also,  
more metal directly in contact with the package leads from  
metal traces, through holes, ground, and power planes reduce  
the θJA. Care must be taken to minimize parasitic capacitances  
at the input leads of high speed op amps as discussed in the  
Layout, Grounding, and Bypassing Considerations section.  
The still air thermal properties of the package and PCB (θJA),  
ambient temperature (TA), and total power dissipated in the  
package (PD) determine the junction temperature of the die.  
The junction temperature can be calculated by  
Figure 3 shows the maximum safe power dissipation in the  
package vs. the ambient temperature for the SOIC (125°C/W),  
SOT-23 (180°C/W), and MSOP (150°C/W) packages on a  
JEDEC standard 4-layer board. θJA values are approximations.  
TJ = TA + (PD × θJA)  
OUTPUT SHORT CIRCUIT  
The power dissipated in the package (PD) is the sum of the  
quiescent power dissipation and the power dissipated in the  
package due to the load drive for all outputs. The quiescent  
power is the voltage between the supply pins (VS) times the  
quiescent current (IS). Assuming the load (RL) is referenced to  
midsupply, then the total drive power is VS /2 × IOUT, some of  
Shorting the output to ground or drawing excessive current for  
the AD8065/AD8066 will likely cause catastrophic failure.  
ESD CAUTION  
which is dissipated in the package and some in the load (VOUT  
OUT). The difference between the total drive power and the load  
power is the drive power dissipated in the package.  
×
I
PD = Quiescent Power +  
(
Total Drive Power Load Power  
)
2
V
VOUT  
RL  
VOUT  
RL  
S
PD =  
(
VS × IS  
)
+
×
2
Rev. J | Page 9 of 28  
 
 
 
AD8065/AD8066  
TYPICAL PERFORMANCE CHARACTERISTICS  
Default Conditions: 5 V, CL = 5 pF, RL = 1 kΩ, VOUT = 2 V p-p, Temperature = 25°C.  
24  
21  
18  
15  
12  
9
6.9  
6.8  
6.7  
6.6  
6.5  
6.4  
6.3  
6.2  
6.1  
6.0  
5.9  
R
= 150Ω  
L
G = +10  
G = +5  
G = +2  
V
V
= 0.2V p-p  
= 0.7V p-p  
V
= 200mV p-p  
OUT  
O
OUT  
V
= 1.4V p-p  
OUT  
G = +2  
G = +1  
6
3
0
–3  
–6  
0.1  
1
10  
100  
1000  
0.1  
1
10  
FREQUENCY (MHz)  
100  
FREQUENCY (MHz)  
Figure 4. Small Signal Frequency Response for Various Gains  
Figure 7. 0.1 dB Flatness Frequency Response (See Figure 43)  
6
4
9
8
7
6
5
4
3
V
= 200mV p-p  
V = 200mV p-p  
O
O
G = +1  
G = +2  
V
= +5V  
S
V
= +5V  
S
2
V
= ±5V  
S
V
= ±5V  
S
0
V
= ±12V  
S
V
= ±12V  
S
–2  
–4  
–6  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
Figure 5. Small Signal Frequency Response for Various Supplies  
(See Figure 42)  
Figure 8. Small Signal Frequency Response for Various Supplies  
(See Figure 43)  
8
2
V
= 2V p-p  
O
V
= 2V p-p  
O
G = +2  
G = +1  
7
6
5
4
3
2
1
0
V
= +5V  
1
0
S
V
= ±5V  
S
V
= ±12V  
S
V
= ±5V  
S
–1  
–2  
–3  
–4  
–5  
V
= ±12V  
S
0.1  
1
10  
100  
1000  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
FREQUENCY (MHz)  
Figure 9. Large Signal Frequency Response for Various Supplies  
(See Figure 43)  
Figure 6. Large Signal Frequency Response for Various Supplies  
(See Figure 42)  
Rev. J | Page 10 of 28  
 
 
AD8065/AD8066  
9
6
8
6
V
= 200mV p-p  
O
C
R
= 25pF  
L
G = +1  
= 20Ω  
SNUB  
C
C
= 25pF  
= 20pF  
C
= 55pF  
= 25pF  
L
L
L
C
= 5pF  
L
4
C
L
3
2
0
0
C
= 5pF  
L
–2  
–4  
–6  
–8  
–3  
–6  
–9  
V
= 200mV p-p  
O
G = +2  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
Figure 10. Small Signal Frequency Response for Various CLOAD (See Figure 42)  
Figure 13. Small Signal Frequency Response for Various CLOAD (See Figure 43)  
8
8
V
= 0.2V p-p  
OUT  
R
= 100Ω  
6
4
7
6
5
4
3
2
1
0
L
V
= 2V p-p  
= 4V p-p  
G = +2  
OUT  
R
= 1kΩ  
L
2
V
OUT  
0
–2  
–4  
–6  
–8  
V
= 200mV p-p  
O
G = +2  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 11. Frequency Response for Various Output Amplitudes  
(See Figure 43)  
Figure 14. Small Signal Frequency Response for Various RLOAD (See Figure 43)  
80  
60  
40  
20  
0
120  
60  
14  
12  
10  
8
V
= 200mV p-p  
O
G = +2  
PHASE  
R
R
= R = 1kΩ,  
F
S
G
= 500Ω  
R
R
= R = 500Ω,  
F
S
G
0
= 250Ω  
6
GAIN  
R
R
C
= R = 500Ω,  
F
S
F
G
4
= 250Ω,  
–60  
–120  
–180  
R
= R = 1kΩ,  
G
F
= 2.2pF  
R
= 500Ω,  
S
2
C
= 3.3pF  
F
0
–2  
–4  
–20  
0.01  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 12. Small Signal Frequency Response for Various RF/CF (See Figure 43)  
Figure 15. Open-Loop Response  
Rev. J | Page 11 of 28  
 
 
AD8065/AD8066  
–40  
–50  
–30  
–40  
–50  
G = +2  
–60  
HD2 G = +2  
–60  
HD3 G = +2  
–70  
–70  
HD2 R = 150Ω  
L
HD2 R = 1kΩ  
HD2 G = +1  
L
–80  
–80  
HD3 R = 1kΩ  
L
–90  
–90  
HD3 R = 150Ω  
L
HD3 G = +1  
–100  
–110  
–120  
–100  
–110  
0.1  
1
10  
FREQUENCY (MHz)  
100  
0.1  
1
10  
FREQUENCY (MHz)  
100  
Figure 19. Harmonic Distortion vs. Frequency for Various Gains  
(See Figure 42 and Figure 43)  
Figure 16. Harmonic Distortion vs. Frequency for Various Loads  
(See Figure 43)  
–20  
–30  
–30  
V
= ±12V  
S
–40  
–50  
G = +2  
= ±12V  
F = 1MHz  
G = +2  
HD2 V = 20V p-p  
V
O
S
–40  
HD3 V = 20V p-p  
–50  
O
–60  
–60  
HD2 V = 10V p-p  
O
HD2 R = 150Ω  
–70  
L
–70  
HD3 R = 150Ω  
L
–80  
HD3 V = 10V p-p  
–80  
O
–90  
HD2 R = 300Ω  
–90  
L
–100  
–110  
–120  
HD2 V = 2V p-p  
–100  
–110  
–120  
O
HD3 R = 300Ω  
L
HD3 V = 2V p-p  
O
0.1  
1.0  
10.0  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
OUTPUT AMPLITUDE (V p-p)  
FREQUENCY (MHz)  
Figure 17. Harmonic Distortion vs. Amplitude for Various Loads VS = 12 V  
(See Figure 43)  
Figure 20. Harmonic Distortion vs. Frequency for Various Amplitudes  
(See Figure 43)  
50  
100  
10  
1
R
= 100Ω  
L
V
= ±12V  
S
45  
40  
35  
30  
25  
20  
15  
V
= ±5V  
S
V
= +5V  
S
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
1
10  
FREQUENCY (Hz)  
FREQUENCY (MHz)  
Figure 21. Voltage Noise  
Figure 18. Third-Order Intercept vs. Frequency and Supply Voltage  
Rev. J | Page 12 of 28  
 
 
AD8065/AD8066  
G = +1  
C
= 20pF  
G = +1  
L
C
= 5pF  
L
25ns/DIV  
50mV/DIV  
25ns/DIV  
50mV/DIV  
Figure 22. Small Signal Transient Response 5 V Supply (See Figure 42)  
Figure 25. Small Signal Transient Response 5 V (See Figure 42)  
G = +1  
G = +2  
5µs  
V
= 10V p-p  
= 4V p-p  
OUT  
V
= ±12V  
S
V
= ±12V  
S
V
= 10V p-p  
= 2V p-p  
OUT  
V
OUT  
V
OUT  
V
= 2V p-p  
OUT  
50ns/DIV  
2V/DIV  
50ns/DIV  
2V/DIV  
Figure 23. Large Signal Transient Response (See Figure 42)  
Figure 26. Large Signal Transient Response (See Figure 43)  
G = –1  
G = +1  
V
= ±5V  
S
V
= ±5V  
S
2.0V/DIV  
100ns/DIV  
2.0V/DIV  
100ns/DIV  
Figure 24. Output Overdrive Recovery (See Figure 44)  
Figure 27. Input Overdrive Recovery (See Figure 42)  
Rev. J | Page 13 of 28  
 
AD8065/AD8066  
V
= 140mV/DIV  
IN  
V
= 500mV/DIV  
IN  
V
– 2V  
IN  
OUT  
+0.1%  
+0.1%  
–0.1%  
–0.1%  
t = 0  
t = 0  
V
– 2V  
IN  
OUT  
2mV/DIV  
10ns/DIV  
2mV/DIV  
64μs/DIV  
Figure 28. Long-Term Settling Time (See Figure 49)  
Figure 31. 0.1% Short-Term Settling Time (See Figure 49)  
0
–5  
42  
36  
30  
24  
18  
12  
6
+I  
b
–I  
b
–I  
b
–10  
–15  
–20  
–25  
–30  
0
10  
5
–I  
b
+I  
0
b
–5  
+I  
b
–10  
–15  
–20  
–25  
–30  
25  
35  
45  
55  
65  
75  
85  
–12 –10 –8 –6 –4 –2  
0
2
4
6
8
10 12  
COMMON-MODEVOLTAGE (V)  
TEMPERATURE (°C)  
Figure 32. Input Bias Current vs. Common-Mode Voltage Range  
(See the Input and Output Overload Behavior Section)  
Figure 29. Input Bias Current vs. Temperature  
0.3  
0.2  
40  
N = 299  
SD = 0.388  
MEAN = –0.069  
35  
30  
0.1  
25  
20  
15  
10  
5
V
= +5V  
S
V
= ±5V  
S
0
–0.1  
–0.2  
–0.3  
V
= ±12V  
S
0
–2.0  
–14 –12 –10 –8 –6 –4 –2  
0
2
4
6
8
10 12 14  
–1.5  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
COMMON-MODE VOLTAGE (V)  
INPUT OFFSET VOLTAGE (mV)  
Figure 30. Input Offset Voltage vs. Common-Mode Voltage  
Figure 33. Input Offset Voltage  
Rev. J | Page 14 of 28  
 
AD8065/AD8066  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
100  
10  
1
G = +1  
G = +2  
V
= ±12V  
S
0.1  
0.01  
0
V
= ±5V  
S
100  
1k  
10k  
100k  
1M  
10M  
100M  
0.1  
1
10  
FREQUENCY (MHz)  
100  
FREQUENCY (Hz)  
Figure 37. Output Impedance vs. Frequency (See Figure 45 and Figure 47)  
Figure 34. CMRR vs. Frequency (See Figure 46)  
80  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
70  
V
– V  
OH  
CC  
V
– V  
OH  
CC  
60  
50  
40  
30  
V
– V  
EE  
OL  
V
– V  
EE  
OL  
25  
35  
45  
55  
65  
75  
85  
0
10  
20  
30  
40  
TEMPERATURE (°C)  
I
(mA)  
LOAD  
Figure 38. Output Saturation Voltage vs. Temperature  
Figure 35. Output Saturation Voltage vs. Output Load Current  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0
V
= 2V p-p  
IN  
G = +1  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–PSRR  
+PSRR  
B TO A  
A TO B  
0.1  
1
10  
FREQUENCY (MHz)  
100  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
Figure 36. PSRR vs. Frequency (See Figure 48 and Figure 50)  
Figure 39. Crosstalk vs. Frequency (See Figure 51)  
Rev. J | Page 15 of 28  
AD8065/AD8066  
6.60  
125  
120  
115  
110  
105  
100  
95  
V
= ±12V  
S
6.55  
6.50  
6.45  
6.40  
6.35  
6.30  
6.25  
V
= ±5V  
S
V
= ±12V  
S
V
= +5V  
S
V
= +5V  
S
V
= ±5V  
S
90  
85  
80  
–40  
–20  
0
20  
40  
60  
80  
0
10  
20  
(mA)  
30  
40  
TEMPERATURE (°C)  
I
LOAD  
Figure 40. Quiescent Supply Current vs. Temperature for Various  
Supply Voltages  
Figure 41. Open-Loop Gain vs. Load Current for Various Supply Voltages  
Rev. J | Page 16 of 28  
AD8065/AD8066  
TEST CIRCUITS  
SOIC-8 Pinout  
+V  
CC  
+V  
CC  
4.7μF  
0.1μF  
4.7μF  
0.1μF  
2.2pF  
24.9Ω  
499Ω  
499Ω  
V
IN  
49.9Ω  
FET PROBE  
FET PROBE  
R
SNUB  
AD8065  
AD8065  
V
IN  
249Ω  
C
LOAD  
1kΩ  
1kΩ  
49.9Ω  
0.1μF  
4.7μF  
0.1μF  
4.7μF  
–V  
EE  
–V  
EE  
Figure 44. G = −1  
Figure 42. G = +1  
+V  
CC  
+V  
CC  
4.7μF  
0.1μF  
4.7μF  
0.1μF  
2.2pF  
24.9Ω  
499Ω  
499Ω  
FET PROBE  
R
SNUB  
AD8065  
AD8065  
V
NETWORK ANALYZER S22  
IN  
249Ω  
C
1kΩ  
LOAD  
0.1μF  
4.7μF  
49.9Ω  
0.1μF  
4.7μF  
–V  
EE  
–V  
EE  
Figure 43. G = +2  
Figure 45. Output Impedance G = +1  
Rev. J | Page 17 of 28  
 
 
 
 
AD8065/AD8066  
+V  
CC  
V
IN  
1V p-p  
4.7μF  
0.1μF  
+V  
CC  
49.9Ω  
24.9Ω  
499Ω  
499Ω  
V
IN  
FET PROBE  
FET PROBE  
AD8065  
AD8065  
49.9Ω  
499Ω  
1kΩ  
1kΩ  
0.1μF  
4.7μF  
0.1μF  
4.7μF  
499Ω  
–V  
EE  
–V  
EE  
Figure 46. CMRR  
Figure 48. Positive PSRR  
+V  
CC  
+V  
CC  
4.7μF  
4.7μF  
0.1μF  
0.1μF  
2.2pF  
499Ω  
499Ω  
499Ω  
499Ω  
AD8065  
249Ω  
NETWORK ANALYZER  
S22  
976Ω  
TO SCOPE  
AD8065  
249Ω  
V
0.1μF  
IN  
49.9Ω  
0.1μF  
49.9Ω  
4.7μF  
4.7μF  
–V  
EE  
–V  
EE  
Figure 49. Settling Time  
Figure 47. Output Impedance G = +2  
Rev. J | Page 18 of 28  
 
 
AD8065/AD8066  
2.2pF  
+V  
CC  
4.7μF  
0.1μF  
499Ω  
499Ω  
5V  
4.7μF  
1.5V  
24.9Ω  
0.1μF  
FET PROBE  
AD8065  
249Ω  
FET PROBE  
V
IN  
AD8065  
1kΩ  
49.9Ω  
1kΩ  
49.9Ω  
1.5V  
1.5V  
V
IN  
1V p-p  
–V  
EE  
Figure 50. Negative PSRR  
Figure 52. Single Supply  
24.9Ω  
FET PROBE  
24.9Ω  
AD8066  
+5V  
1kΩ  
4.7μF  
0.1μF  
RECEIVE SIDE  
AD8066  
V
IN  
0.1μF  
1kΩ  
49.9Ω  
4.7μF  
–5V  
DRIVE SIDE  
Figure 51. Crosstalk—AD8066  
Rev. J | Page 19 of 28  
 
 
AD8065/AD8066  
THEORY OF OPERATION  
The AD8065/AD8066 are voltage feedback operational amplifiers  
that combine a laser-trimmed JFET input stage with the Analog  
Devices eXtra Fast Complementary Bipolar (XFCB) process,  
resulting in an outstanding combination of precision and speed.  
The supply voltage range is from 5 V to 24 V. The amplifiers feature  
a patented rail-to-rail output stage capable of driving within 0.5 V  
of either power supply while sourcing or sinking up to 30 mA.  
Also featured is a single-supply input stage that handles common-  
mode signals from below the negative supply to within 3 V of the  
positive rail. Operation beyond the JFET input range is possible  
because of an auxiliary bipolar input stage that functions with  
input voltages up to the positive supply. The amplifiers operate as  
if they have a rail-to-rail input and exhibit no phase reversal  
behavior for common-mode voltages within the power supply.  
NONINVERTING CLOSED-LOOP FREQUENCY  
RESPONSE  
Solving for the transfer function  
2π× fcrossover  
(
RG + RF  
)
VO  
VI  
=
(
RF + RG s +2π× fcrossover × RG  
)
where fcrossover is the frequency where the amplifiers open-loop  
gain equals 0 db  
VO RF + RG  
At dc  
=
VI  
RG  
Closed-loop −3 dB frequency  
RG  
RF + RG  
f3dB = fcrossover  
×
With voltage noise of 7 nV/√Hz and −88 dBc distortion for  
1 MHz, 2 V p-p signals, the AD8065/AD8066 are a great choice  
for high resolution data acquisition systems. Their low noise,  
sub-pA input current, precision offset, and high speed make  
them superb preamps for fast photodiode applications. The  
speed and output drive capability of the AD8065/AD8066 also  
make them useful in video applications.  
INVERTING CLOSED-LOOP FREQUENCY  
RESPONSE  
2π× fcrossover × RF  
RF + RG +2π× fcrossover × RG  
VO  
VI  
=
s
(
)
VO  
VI  
RF  
RG  
At dc  
= −  
CLOSED-LOOP FREQUENCY RESPONSE  
Closed-loop −3 dB frequency  
The AD8065/AD8066 are classic voltage feedback amplifiers  
with an open-loop frequency response that can be approximated as  
the integrator response shown in Figure 53. Basic closed-loop  
frequency response for inverting and noninverting configurations  
can be derived from the schematics shown.  
RG  
f3dB = fcrossover  
×
RF + RG  
R
F
R
F
R
G
R
G
V
I
V
V
O
O
V
E
A
A
V
E
V
I
80  
A = (2π × fcrossover)/s  
60  
40  
20  
0
fcrossover = 65MHz  
0.01  
0.1  
1
10  
100  
FREQUENCY (MHz)  
Figure 53. Open-Loop Gain vs. Frequency and Basic Connections  
Rev. J | Page 20 of 28  
 
 
AD8065/AD8066  
The closed-loop bandwidth is inversely proportional to the noise  
gain of the op amp circuit, (RF + RG )/RG. This simple model is  
accurate for noise gains above 2. The actual bandwidth of circuits  
with noise gains at or below 2 is higher than those predicted  
with this model due to the influence of other poles in the  
frequency response of the real op amp.  
Actual distortion performance depends on a number of  
variables:  
The closed-loop gain of the application  
Whether it is inverting or noninverting  
Amplifier loading  
Signal frequency and amplitude  
Board layout  
R
F
+V  
Also see Figure 16 to Figure 20. The lowest distortion is obtained  
with the AD8065 used in low gain inverting applications,  
because this eliminates common-mode effects. Higher closed-  
loop gains result in worse distortion performance.  
OS  
R
G
V
O
I
I
A
b
R
S
V
I
b+  
INPUT PROTECTION  
The inputs of the AD8065/AD8066 are protected with back-to-  
back diodes between the input terminals as well as ESD diodes  
to either power supply. This results in an input stage with picoamps  
of input current that can withstand up to 1500 V ESD events  
(human body model) with no degradation.  
Figure 54. Voltage Feedback Amplifier DC Errors  
Figure 54 shows a voltage feedback amplifiers dc errors. For  
both inverting and noninverting configurations  
R + R  
RG  
R + R  
RG  
G
F
G
F
VO  
(
error  
)
= Ib+ × RS  
I × RF +VOS  
b−  
Excessive power dissipation through the protection devices  
destroys or degrades the performance of the amplifier. Differ-  
ential voltages greater than 0.7 V result in an input current of  
approximately (|V+ − V| 0.7 V)/RI, where RI is the resistance in  
series with the inputs.  
The voltage error due to Ib+ and Ib– is minimized if RS = RF || RG  
(though with the AD8065 input currents at typically less than  
20 pA over temperature, this is likely not a concern). To include  
common-mode and power supply rejection effects, total VOS can be  
modeled  
For input voltages beyond the positive supply, the input current  
is approximately (VI − VCC − 0.7)/RI. Beyond the negative supply,  
the input current is about (VI − VEE + 0.7)/RI. If the inputs of the  
amplifier are to be subjected to sustained differential voltages  
greater than 0.7 V, or to input voltages beyond the amplifier  
power supply, input current should be limited to 30 mA by an  
appropriately sized input resistor (RI), as shown in Figure 55.  
ΔVS ΔVCM  
PSR CMR  
VOS =VOS  
+
+
nom  
VOS  
is the offset voltage specified at nominal conditions,  
nom  
ΔVS is the change in power supply from nominal conditions,  
PSR is the power supply rejection, ΔVCM is the change in common-  
mode voltage from nominal conditions, and CMR is the common-  
mode rejection.  
(V – V – 0.7V)  
(| V – V | – 0.7V)  
I
EE  
+
R >  
I
R >  
I
30mA  
30mA  
(V – V + 0.7V)  
I
EE  
FOR LARGE | V – V  
+
|
R >  
I
WIDEBAND OPERATION  
30mA  
FOR V BEYOND  
SUPPLY VOLTAGES  
AD8065  
I
R
Figure 42 through Figure 44 show the circuits used for wideband  
characterization for gains of +1, +2, and −1. Source impedance at  
the summing junction (RF || RG) forms a pole in the amplifiers loop  
response with the amplifiers input capacitance of 6.6 pF. This  
can cause peaking and ringing if the time constant formed is too  
low. Feedback resistances of 300 Ω to 1 kΩ are recommended,  
because they do not unduly load down the amplifier, and the  
time constant formed will not be too low. Peaking in the  
frequency response can be compensated for with a small  
capacitor (CF) in parallel with the feedback resistor, as  
illustrated in Figure 12. This shows the effect of different  
feedback capacitances on the peaking and bandwidth for a  
noninverting G = +2 amplifier.  
I
V
I
V
O
Figure 55. Current-Limiting Resistor  
For the best settling times and the best distortion, the impedances  
at the AD8065/AD8066 input terminals should be matched. This  
minimizes nonlinear common-mode capacitive effects that can  
degrade ac performance.  
Rev. J | Page 21 of 28  
 
 
 
AD8065/AD8066  
THERMAL CONSIDERATIONS  
INPUT AND OUTPUT OVERLOAD BEHAVIOR  
With 24 V power supplies and 6.5 mA quiescent current, the  
AD8065 dissipates 156 mW with no load. The AD8066 dissipates  
312 mW. This can lead to noticeable thermal effects, especially  
in the small SOT-23-5 (thermal resistance of 160°C/W). VOS  
temperature drift is trimmed to guarantee a maximum drift of  
17 μV/°C, so it can change up to 0.425 mV due to warm-up  
effects for an AD8065/AD8066 in a SOT-23-5 package on 24 V.  
A simplified schematic of the AD8065/AD8066 input stage is  
shown in Figure 56. This shows the cascoded N-channel JFET  
input pair, the ESD and other protection diodes, and the  
auxiliary NPN input stage that eliminates any phase inversion  
behavior. When the common-mode input voltage to the amplifier  
is driven to within approximately 3 V of the positive power supply,  
the input JFETs bias current turns off and the bias of the NPN  
pair turns on, taking over control of the amplifier. The NPN  
differential pair now sets the amplifiers offset, and the input  
bias current is now in the range of several tens of microamps.  
This behavior is shown in Figure 32. Normal operation resumes  
when the common-mode voltage goes below the 3 V from the  
positive supply threshold.  
Ib increases by a factor of 1.7 for every 10°C rise in temperature.  
Ib is close to five times higher at 24 V supplies as opposed to a  
single 5 V supply.  
Heavy loads increase power dissipation and raise the chip  
junction temperature as described in the Maximum Power  
Dissipation section. Care should be taken not to exceed the  
rated power dissipation of the package.  
The output transistors of the rail-to-rail output stage have  
circuitry to limit the extent of their saturation when the output  
is overdriven. This helps output recovery time. Output recovery  
from a 0.5 V output overdrive on a 5 V supply is shown in  
Figure 24.  
V
CC  
R1  
R5  
TO REST OF AMP  
Q2  
Q5  
V
THRESHOLD  
VBIAS  
D1  
D2  
R6  
R3  
Q1  
Q6  
V
V
N
P
D3  
D4  
Q3  
Q4  
S
S
R4  
R7  
R2  
R8  
Q7  
I
I
T2  
T1  
–V  
EE  
Figure 56. Simplified Input Stage  
Rev. J | Page 22 of 28  
 
 
 
AD8065/AD8066  
LAYOUT, GROUNDING, AND BYPASSING CONSIDERATIONS  
inputs and surrounding area to set up any leakage currents.  
For the guard ring to be completely effective, it must be driven  
by a relatively low impedance source and should completely  
surround the input leads on all sides, above and below, using  
a multilayer board.  
POWER SUPPLY BYPASSING  
Power supply pins are actually inputs and care must be taken so  
that a noise-free stable dc voltage is applied. The purpose of bypass  
capacitors is to create low impedances from the supply to ground at  
all frequencies, thereby shunting or filtering most of the noise.  
Another effect that can cause leakage currents is the charge  
absorption of the insulator material itself. Minimizing the  
amount of material between the input leads and the guard ring  
helps to reduce the absorption. Also, low absorption materials,  
such as Teflon® or ceramic, could be necessary in some instances.  
Decoupling schemes are designed to minimize the bypassing  
impedance at all frequencies with a parallel combination of  
capacitors. 0.1 μF (X7R or NPO) chip capacitors are critical  
and should be as close as possible to the amplifier package.  
The 4.7 μF tantalum capacitor is less critical for high frequency  
bypassing, and, in most cases, only one is needed per board at  
the supply inputs.  
INPUT CAPACITANCE  
Along with bypassing and ground, high speed amplifiers can be  
sensitive to parasitic capacitance between the inputs and ground.  
A few pF of capacitance reduces the input impedance at high  
frequencies, in turn increasing the amplifiers gain, causing peaking  
of the frequency response or even oscillations, if severe enough.  
It is recommended that the external passive components connected  
to the input pins be placed as close as possible to the inputs to  
avoid parasitic capacitance. The ground and power planes must  
be kept at a small distance from the input pins on all layers of  
the board.  
GROUNDING  
A ground plane layer is important in densely packed PC boards  
to spread the current minimizing parasitic inductances. However,  
an understanding of where the current flows in a circuit is critical  
to implementing effective high speed circuit design. The length  
of the current path is directly proportional to the magnitude of  
parasitic inductances and, therefore, the high frequency impedance  
of the path. High speed currents in an inductive ground return  
create unwanted voltage noise.  
OUTPUT CAPACITANCE  
The length of the high frequency bypass capacitor leads is most  
critical. A parasitic inductance in the bypass grounding works  
against the low impedance created by the bypass capacitor. Place  
the ground leads of the bypass capacitors at the same physical  
location. Because load currents flow from the supplies as well,  
the ground for the load impedance should be at the same physical  
location as the bypass capacitor grounds. For the larger value  
capacitors, which are effective at lower frequencies, the current  
return path distance is less critical.  
To a lesser extent, parasitic capacitances on the output can cause  
peaking and ringing of the frequency response. There are two  
methods to effectively minimize their effect:  
As shown in Figure 57, put a small value resistor (RS) in  
series with the output to isolate the load capacitor from the  
amp’s output stage. A good value to choose is 20 Ω (see  
Figure 10).  
Increase the phase margin with higher noise gains or add  
a pole with a parallel resistor and capacitor from −IN to  
the output.  
LEAKAGE CURRENTS  
Poor PC board layout, contaminants, and the board insulator  
material can create leakage currents that are much larger than  
the input bias current of the AD8065/AD8066. Any voltage  
differential between the inputs and nearby runs sets up leakage  
currents through the PC board insulator, for example, 1 V/100 GΩ  
= 10 pA. Similarly, any contaminants on the board can create  
significant leakage (skin oils are a common problem). To reduce  
leakage significantly, put a guard ring (shield) around the inputs  
and input leads that are driven to the same voltage potential as  
the inputs. This way there is no voltage potential between the  
R
= 20Ω  
S
V
AD8065  
O
C
V
L
I
Figure 57. Output Isolation Resistor  
Rev. J | Page 23 of 28  
 
 
 
AD8065/AD8066  
C
F
R
F
11  
= 10 Ω  
SH  
C
C
I
R
M
PHOTO  
C
S
C
D
V
M
O
V
B
C
+ C  
S
F
R
F
Figure 58. Wideband Photodiode Preamp  
The frequency response in this case shows about 2 dB of  
peaking and 15% overshoot. Doubling CF and cutting the  
bandwidth in half results in a flat frequency response with  
about 5% transient overshoot.  
INPUT-TO-OUTPUT COUPLING  
To minimize capacitive coupling between the inputs and output,  
the output signal traces should not be parallel with the inputs.  
WIDEBAND PHOTODIODE PREAMP  
The preamp’s output noise over frequency is shown in Figure 59.  
Figure 58 shows an I/V converter with an electrical model of a  
photodiode. The basic transfer function is  
1
f1  
=
2πR (C + C + C + 2C  
)
F
F
S
M
D
IPHOTO × RF  
1+ sCF RF  
VOUT  
=
1
f2  
f3  
=
=
2πR C  
F
F
fCR  
where IPHOTO is the output current of the photodiode, and the  
parallel combination of RF and CF sets the signal bandwidth.  
(C + C + 2C + C )/C  
F
S
M
D
F
The stable bandwidth attainable with this preamp is a function  
of RF, the gain bandwidth product of the amplifier, and the total  
capacitance at the amplifiers summing junction, including CS  
and the amplifier input capacitance. RF and the total capacitance  
produce a pole in the amplifiers loop transmission that can  
result in peaking and instability. Adding CF creates a 0 in the  
loop transmission that compensates for the poles effect and  
reduces the signal bandwidth. It can be shown that the signal  
bandwidth resulting in a 45° phase margin (f(45)) is defined by  
R
NOISE  
F
f3  
f2  
VEN (C + C + C + 2C )/C  
F
F
S
M
D
f1  
VEN  
NOISE DUE TO AMPLIFIER  
FREQUENCY (Hz)  
Figure 59. Photodiode Voltage Noise Contributions  
fCR  
The pole in the loop transmission translates to a 0 in the  
amplifiers noise gain, leading to an amplification of the input  
voltage noise over frequency. The loop transmission 0  
introduced by CF limits the amplification. The noise gain  
bandwidth extends past the preamp signal bandwidth and is  
eventually rolled off by the decreasing loop gain of the  
amplifier. Keeping the input terminal impedances matched is  
recommended to eliminate common-mode noise peaking  
effects, which adds to the output noise.  
f(  
=
)
45  
2π× RF ×CS  
where fCR is the amplifier crossover frequency, RF is the feedback  
resistor, and CS is the total capacitance at the amplifier summing  
junction (amplifier + photodiode + board parasitics).  
The value of CF that produces f(45) can be shown to be  
CS  
CF =  
2π× RF × fCR  
Integrating the square of the output voltage noise spectral  
density over frequency and then taking the square root allows  
users to obtain the total rms output noise of the preamp. Table 5  
summarizes approximations for the amplifier and feedback and  
source resistances. Noise components for an example preamp  
with RF = 50 kΩ, CS = 15 pF, and CF = 2 pF (bandwidth of about  
1.6 MHz) are also listed.  
Rev. J | Page 24 of 28  
 
 
 
AD8065/AD8066  
Table 5. RMS Noise Contributions of Photodiode Preamp  
Contributor  
Expression  
RMS Noise with RF = 50 kΩ, CS = 15 pF, CF = 2 pF  
RF (×2)  
64.5 μV  
2.4 μV  
31 μV  
2 × 4 kT × RF × f2 ×1.57  
Amp to f1  
VEN × f1  
Amp (f2 – f1)  
CS +CM +CF +2CD  
VEN ×  
×
×
f2 f1  
CF  
Amp to (past f2)  
260 μV  
CS + CM + 2CD + CF  
VEN ×  
f3 ×1.57  
CF  
270 μV (Total)  
V
CC  
4.7μF  
0.1μF  
R
S1  
1
/
2
V
2.2pF  
N
AD8066  
4.7μF  
R2  
0.1μF  
500Ω  
V
V
CC  
EE  
4.7μF  
0.1μF  
R1  
500Ω  
R
= 500Ω  
F
V
O
AD8065  
R
G
4.7μF  
0.1μF  
R3  
V
R
= 500Ω  
500Ω  
EE  
F
V
CC  
4.7μF  
0.1μF  
R4  
500Ω  
2.2pF  
1
/
2
AD8066  
R
S2  
V
4.7μF  
P
0.1μF  
V
EE  
Figure 60. High Speed Instrumentation Amplifier  
Common-mode rejection of the in-amp is primarily  
determined by the match of the resistor ratios R1:R2 to R3:R4.  
It can be estimated  
HIGH SPEED JFET INPUT INSTRUMENTATION  
AMPLIFIER  
Figure 60 shows an example of a high speed instrumentation  
amplifier with high input impedance using the  
AD8065/AD8066. The dc transfer function is  
VO  
VCM  
(
δ1δ2  
)
=
(
1+ δ1  
)
δ2  
The summing junction impedance for the preamps is equal to  
RF || 0.5(RG). This is the value to be used for matching purposes.  
1000  
RG  
VOUT  
=
(
VN VP  
)
1+  
For G = +1, it is recommended that the feedback resistors for  
the two preamps be set to a low value (for instance 50 Ω for  
50 Ω source impedance). The bandwidth for G = +1 is 50 MHz.  
For higher gains, the bandwidth is set by the preamp, equaling  
Inamp3dB  
=
(
fCR × RG  
)
/
(
2 × RF  
)
Rev. J | Page 25 of 28  
 
 
 
AD8065/AD8066  
+V  
S
VIDEO BUFFER  
The output current capability and speed of the AD8065 make it  
useful as a video buffer, shown in Figure 61.  
4.7μF  
4.7μF  
0.1μF  
249Ω  
75Ω  
+
AD8065  
V
The G = +2 configuration compensates for the voltage division  
of the signal due to the signal termination. This buffer maintains  
0.1 dB flatness for signals up to 7 MHz, from low amplitudes up  
to 2 V p-p (see Figure 7). Differential gain and phase have been  
measured to be 0.02% and 0.028°, respectively, at 5 V supplies.  
I
+
V
75Ω  
O
0.1μF  
–V  
S
2.2pF  
499Ω  
499Ω  
Figure 61. Video Buffer  
Rev. J | Page 26 of 28  
 
 
AD8065/AD8066  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 62. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-8)  
Dimensions shown in millimeters and (inches)  
3.00  
2.90  
2.80  
5
1
4
3
3.00  
2.80  
2.60  
1.70  
1.60  
1.50  
2
0.95 BSC  
1.90  
BSC  
1.30  
1.15  
0.90  
0.20 MAX  
0.08 MIN  
1.45 MAX  
0.95 MIN  
0.55  
0.45  
0.35  
0.15 MAX  
0.05 MIN  
10°  
5°  
0°  
SEATING  
PLANE  
0.20  
BSC  
0.50 MAX  
0.35 MIN  
COMPLIANT TO JEDEC STANDARDS MO-178-AA  
Figure 63. 5-Lead Small Outline Transistor Package [SOT-23]  
(RJ-5)  
Dimensions shown in millimeters  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
IDENTIFIER  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.80  
0.55  
0.40  
0.15  
0.05  
0.23  
0.09  
6°  
0°  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 64. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
Rev. J | Page 27 of 28  
 
AD8065/AD8066  
ORDERING GUIDE  
Model1, 2  
AD8065AR  
AD8065AR-REEL  
AD8065AR-REEL7  
AD8065ARZ  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +105°C  
Package Description  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
Package Option  
Branding  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
AD8065ARZ-REEL  
AD8065ARZ-REEL7  
AD8065ART-R2  
AD8065ART-REEL  
AD8065ART-REEL7  
AD8065ARTZ-R2  
AD8065ARTZ-REEL  
AD8065ARTZ-REEL7  
AD8065WARTZ-REEL7  
AD8065ART-EBZ  
AD8065AR-EBZ  
AD8066AR  
AD8066AR-REEL7  
AD8066ARZ  
AD8066ARZ-RL  
AD8066ARZ-R7  
AD8066ARM  
HRA  
HRA  
HRA  
HRA #  
HRA #  
HRA #  
H2F#  
5-Lead SOT-23  
Evaluation Board (8-Lead SOIC_N)  
Evaluation Board (5-Lead SOT-23)  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
Evaluation Board (8-Lead SOIC_N)  
Evaluation Board (5-Lead SOT-23)  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
R-8  
R-8  
R-8  
R-8  
R-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
H1B  
H1B  
H1B  
H7C  
H7C  
AD8066ARM-REEL  
AD8066ARM-REEL7  
AD8066ARMZ  
AD8066ARMZ-REEL7  
AD8066AR-EBZ  
AD8066ARM-EBZ  
1 Z = RoHS Compliant Part, # denotes RoHS compliant product may be top or bottom marked.  
2 W = Qualified for Automotive Applications.  
AUTOMOTIVE PRODUCTS  
The AD8065W model is available with controlled manufacturing to support the quality and reliability requirements of automotive  
applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers  
should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in  
automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to  
obtain the specific Automotive Reliability reports for these models.  
©2002–2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D02916-0-8/10(J)  
Rev. J | Page 28 of 28  
 
 
 

相关型号:

AD8065AR-REEL

High Performance, 145 MHz FastFET⑩ Op Amps
ADI

AD8065AR-REEL7

High Performance, 145 MHz FastFET⑩ Op Amps
ADI

AD8065ART-EBZ

High Performance, 145 MHz FastFET Op Amps
ADI

AD8065ART-R2

High Performance, 145 MHz FastFET⑩ Op Amps
ADI

AD8065ART-REEL

High Performance, 145 MHz FastFET⑩ Op Amps
ADI

AD8065ART-REEL7

High Performance, 145 MHz FastFET⑩ Op Amps
ADI

AD8065ARTZ-R2

High Performance, 145 MHz FastFET⑩ Op Amps
ADI

AD8065ARTZ-REEL

High Performance, 145 MHz FastFET⑩ Op Amps
ADI

AD8065ARTZ-REEL7

High Performance, 145 MHz FastFET⑩ Op Amps
ADI

AD8065ARZ

High Performance, 145 MHz FastFET⑩ Op Amps
ADI

AD8065ARZ-REEL

High Performance, 145 MHz FastFET⑩ Op Amps
ADI

AD8065ARZ-REEL7

High Performance, 145 MHz FastFET⑩ Op Amps
ADI