AD807A-155BRRL7 [ADI]

Fiber Optic Receiver with Quantizer and Clock Recovery and Data Retiming; 光纤接收器与量化器和时钟恢复和数据重定时
AD807A-155BRRL7
型号: AD807A-155BRRL7
厂家: ADI    ADI
描述:

Fiber Optic Receiver with Quantizer and Clock Recovery and Data Retiming
光纤接收器与量化器和时钟恢复和数据重定时

光纤 电信集成电路 光电二极管 异步传输模式 ATM 时钟
文件: 总12页 (文件大小:228K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Fiber Optic Receiver with Quantizer and  
Clock Recovery and Data Retiming  
a
AD807  
FEATURES  
Meets CCITT G.958 Requirem ents  
for STM-1 RegeneratorType A  
frequency acquisition without false lock. T his eliminates a reli-  
ance on external components such as a crystal or a SAW filter,  
to aid frequency acquisition.  
Meets Bellcore TR-NWT-000253 Requirem ents for OC-3  
Output J itter: 2.0 Degrees RMS  
155 Mbps Clock Recovery and Data Retim ing  
Accepts NRZ Data, No Pream ble Required  
Phase-Locked Loop Type Clock Recovery—  
No Crystal Required  
T he AD807 acquires frequency and phase lock on input data  
using two control loops that work without requiring external  
control. T he frequency acquisition control loop initially acquires  
the frequency of the input data, acquiring frequency lock on  
random or scrambled data without the need for a preamble. At  
frequency lock, the frequency error is zero and the frequency  
detector has no further effect. T he phase acquisition control  
loop then works to ensure that the output phase tracks the input  
phase. A patented phase detector has virtually eliminated pat-  
tern jitter throughout the AD807.  
Quantizer Sensitivity: 2 m V  
Level Detect Range: 2.0 m V to 30 m V  
Single Supply Operation: +5 V or –5.2 V  
Low Pow er: 170 m W  
10 KH ECL/ PECL Com patible Output  
Package: 16-Pin Narrow 150 m il SOIC  
T he device VCO uses a ring oscillator architecture and patented  
low noise design techniques. Jitter is 2.0 degrees rms. T his low  
jitter results from using a fully differential signal architecture,  
Power Supply Rejection Ratio circuitry and a dielectrically  
isolated process that provides immunity from extraneous signals  
on the IC. T he device can withstand hundreds of millivolts of  
power supply noise without an effect on jitter performance.  
P RO D UCT D ESCRIP TIO N  
T he AD807 provides the receiver functions of data quantiza-  
tion, signal level detect, clock recovery and data retiming for  
155 Mbps NRZ data. T he device, together with a PIN  
diode/preamplifier combination, can be used for a highly inte-  
grated, low cost, low power SONET OC-3 or SDH ST M-1  
fiber optic receiver.  
T he user sets the jitter peaking and acquisition time of the PLL  
by choosing a damping factor capacitor whose value determines  
loop damping. CCIT T G.958 T ype A jitter transfer require-  
ments can easily be met with a damping factor of 5 or greater.  
T he receiver front end signal level detect circuit indicates when  
the input signal level has fallen below a user adjustable thresh-  
old. T he threshold is set with a single external resistor. T he sig-  
nal level detect circuit 3 dB optical hysteresis prevents chatter at  
the signal level detect output.  
Device design guarantees that the clock output frequency will  
drift by less than 20% in the absence of input data transitions.  
Shorting the damping factor capacitor, CD, brings the clock out-  
put frequency to the VCO center frequency.  
T he AD807 consumes 140 mW and operates from a single  
power supply at either +5 V or –5.2 V.  
T he PLL has a factory trimmed VCO center frequency and a  
frequency acquisition control loop that combine to guarantee  
FUNCTIO NAL BLO CK D IAGRAM  
CF1 CF2  
QUANTIZER  
PIN  
COMPENSATING  
ZERO  
LOOP  
FILTER  
Φ
DET  
NIN  
PHASE-LOCKED LOOP  
VCO  
SIGNAL  
THRADJ  
LEVEL  
F
CLKOUTP  
CLKOUTN  
DET  
DETECTOR  
LEVEL  
DATAOUTP  
DATAOUTN  
RETIMING  
DEVICE  
DETECT  
COMPARATOR/  
BUFFER  
AD807  
SDOUT  
REV. A  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700  
Fax: 617/ 326-8703  
World Wide Web Site: http:/ / w w w .analog.com  
© Analog Devices, Inc., 1997  
AD807–SPECIFICATIONS (T = T to T , V = V to V , C = 0.1 F, unless otherwise noted)  
A
MIN  
MAX  
S
MIN  
MAX  
D
P aram eter  
Condition  
Min  
Typ  
Max  
Units  
QUANT IZER–DC CHARACT ERIST ICS  
Input Voltage Range  
Input Sensitivity, VSENSE  
Input Overdrive, VOD  
Input Offset Voltage  
Input Current  
Input RMS Noise  
Input Pk-Pk Noise  
@ PIN or NIN  
2.5  
2
0.001  
VS  
V
mV  
V
µV  
µA  
µV  
µV  
PINNIN, Figure 1, BER = 1 × 10–10  
Figure 1, BER = 1 × 10–10  
2.5  
500  
10  
50  
5
50  
650  
BER = 1 × 10–10  
BER = 1 × 10–10  
QUANT IZER–AC CHARACT ERIST ICS  
Upper –3 dB Bandwidth  
Input Resistance  
180  
1
2
MHz  
MΩ  
pF  
Input Capacitance  
Pulse Width Distortion  
100  
ps  
LEVEL DET ECT  
Level Detect Range  
RT HRESH = INFINIT E  
RT HRESH = 49.9 kΩ  
RT HRESH = 3.4 kΩ  
DC Coupled  
RT HRESH = INFINIT E  
RT HRESH = 49.9 kΩ  
RT HRESH = 3.4 kΩ  
Load = +4 mA  
0.8  
4
14  
0.1  
2.3  
3.0  
3.0  
3.6  
2
5
20  
4.0  
7.4  
25  
1.5  
10.0  
9.0  
10.0  
mV  
mV  
mV  
µs  
dB  
dB  
dB  
V
Response T ime  
Hysteresis (Electrical)  
4.0  
5.0  
7.0  
SDOUT Output Logic High  
SDOUT Output Logic Low  
Load = –1.2 mA  
0.4  
V
PHASE-LOCKED LOOP NOMINAL  
CENT ER FREQUENCY  
155.52  
MHz  
MHz  
MHz  
Degrees  
ns  
CAPT URE RANGE  
155  
155  
156  
156  
20  
T RACKING RANGE  
ST AT IC PHASE ERROR  
27–1 PRN Sequence  
Figure 2  
4
SET UP T IME (tSU  
HOLD T IME (tH )  
PHASE DRIFT  
JIT T ER  
)
3.0  
3.0  
3.2  
3.1  
3.5  
3.3  
40  
Figure 2  
ns  
240 Bits, No T ransitions  
Degrees  
27–1 PRN Sequence  
2.0  
2.0  
Degrees RMS  
Degrees RMS  
223–1 PRN Sequence  
2.7  
JIT T ER T OLERANCE  
f = 10 Hz  
3000  
7.6  
1.0  
Unit Intervals  
Unit Intervals  
Unit Intervals  
Unit Intervals  
f = 6.5 kHz  
f = 65 kHz  
f = 1.3 MHz  
4.5  
0.45  
0.45  
0.67  
JIT T ER T RANSFER  
Peaking (Figure 20)  
CD = 0.15 µF  
CD = 0.33 µF  
0.08  
0.04  
92  
dB  
dB  
kHz  
Bandwidth  
65  
130  
Acquisition T ime  
CD = 0.1 µF  
CD = 0.33 µF  
223–1 PRN Sequence, T A = +25°C  
VCC = 5 V, VEE = GND  
4 × 105 2 × 106 Bit Periods  
2 × 106  
Bit Periods  
POWER SUPPLY VOLT AGE  
POWER SUPPLY CURRENT  
VMIN to VMAX  
4.5  
25  
5.5  
Volts  
VCC = 5.0 V, VEE = GND,  
T A = +25°C  
34.5  
39.5  
mA  
PECL OUT PUT VOLT AGE LEVELS  
Output Logic High, VOH  
Output Logic Low, VOL  
–1.2  
–2.0  
–1.0  
–1.8  
–0.7  
–1.7  
Volts  
Volts  
Referenced to VCC  
SYMMET RY (Duty Cycle)  
ρ = 1/2, T A = +25°C,  
Recovered Clock Output, Pin 5  
VCC = 5 V, VEE = GND  
50.1  
54.1  
%
OUT PUT RISE / FALL T IMES  
Rise T ime (tR)  
Fall T ime (tF)  
20%–80%  
80%–20%  
1.1  
1.1  
1.5  
1.5  
ns  
ns  
Specifications subject to change without notice.  
–2–  
REV. A  
AD807  
P IN FUNCTIO N D ESCRIP TIO NS  
ABSO LUTE MAXIMUM RATINGS1  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +12 V  
Input Voltage (Pin 12 or Pin 13) . . . . . . . . . . . . . . VCC + 0.6 V  
Maximum Junction T emperature . . . . . . . . . . . . . . . . . +165°C  
Storage T emperature Range . . . . . . . . . . . . . –65°C to +150°C  
Lead T emperature Range (Soldering 10 sec) . . . . . . . . +300°C  
ESD Rating (Human Body Model) . . . . . . . . . . . . . . . . . 500 V  
P in  
No.  
Mnem onic  
D escription  
1
DAT AOUT N  
DAT AOUT P  
VCC2  
Differential Retimed Data Output  
Differential Retimed Data Output  
Digital VCC for ECL Outputs  
Differential Recovered Clock Output  
Differential Recovered Clock Output  
Digital VCC for Internal Logic  
Loop Damping Capacitor  
Loop Damping Capacitor  
Analog VEE  
2
NOT ES  
3
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. T his is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
T hermal Characteristics:  
4
CLKOUT N  
CLKOUT P  
VCC1  
5
6
7
CF1  
16-Pin Narrow Body SOIC Package: θJA = 110°C/Watt.  
8
CF2  
OUTPUT  
9
AVEE  
NOISE  
1
10  
11  
12  
13  
14  
15  
16  
T HRADJ  
AVCC1  
Level Detect T hreshold Adjust  
Analog VCC for PLL  
NIN  
Quantizer Differential Input  
Quantizer Differential Input  
Analog VCC for Quantizer  
Signal Detect Output  
0
PIN  
INPUT (V)  
OFFSET  
AVCC2  
OVERDRIVE  
SENSITIVITY  
SDOUT  
VEE  
Digital VEE for Internal Logic  
Figure 1. Input Sensitivity, Input Overdrive  
SETUP  
t SU  
HOLD  
t H  
P IN CO NFIGURATIO N  
DATAOUTP  
(PIN 2)  
DATAOUTN  
DATAOUTP  
V
1
2
3
16  
V
EE  
15 SDOUT  
14 AV  
CC2  
CLKOUTP  
(PIN 5)  
2
CC  
AD807  
TOP VIEW  
CLKOUTN  
CLKOUTP  
13 PIN  
12 NIN  
4
5
6
7
8
(NOT TO SCALE)  
Figure 2. Setup and Hold Tim e  
V
CC  
11 AV  
CC1  
1
CF1  
CF2  
10 THRADJ  
9
AV  
EE  
O RD ERING GUID E  
Tem perature Range  
Model  
P ackage D escription  
P ackage O ption  
AD807-155BR or AD807A-155BR  
AD807-155BR-REEL7 or AD807A-155BRRL7  
AD807-155BR-REEL or AD807A-155BRRL  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
16-Pin Narrowbody SOIC  
750 Pieces, 7" Reel  
2500 Pieces, 13" Reel  
R-16A  
R-16A  
R-16A  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD807 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. T herefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. A  
–3–  
AD807  
Tr acking Range  
D EFINITIO N O F TERMS  
T his is the range of input data rates over which the AD807 will  
remain in lock.  
Maxim um , Minim um and Typical Specifications  
Specifications for every parameter are derived from statistical  
analyses of data taken on multiple devices from multiple wafer  
lots. T ypical specifications are the mean of the distribution of  
the data for that parameter. If a parameter has a maximum (or a  
minimum), that value is calculated by adding to (or subtracting  
from) the mean six times the standard deviation of the distribu-  
tion. T his procedure is intended to tolerate production varia-  
tions: if the mean shifts by 1.5 standard deviations, the remaining  
4.5 standard deviations still provide a failure rate of only 3.4 parts  
per million. For all tested parameters, the test limits are guard-  
banded to account for tester variation to thus guarantee that no  
device is shipped outside of data sheet specifications.  
Captur e Range  
T his is the range of input data rates over which the AD807 will  
acquire lock.  
Static P hase Er r or  
T his is the steady-state phase difference, in degrees, between the  
recovered clock sampling edge and the optimum sampling in-  
stant, which is assumed to be halfway between the rising and  
falling edges of a data bit. Gate delays between the signals that  
define static phase error, and IC input and output signals pro-  
hibit direct measurement of static phase error.  
D ata Tr ansition D ensity, ρ  
Input Sensitivity and Input O ver dr ive  
T his is a measure of the number of data transitions, from “0” to  
“1” and from “1” to “0,” over many clock periods. ρ is the ratio  
(0 ≤ ρ ≤ 1) of data transitions to bit periods.  
Sensitivity and Overdrive specifications for the Quantizer in-  
volve offset voltage, gain and noise. T he relationship between  
the logic output of the quantizer and the analog voltage input is  
shown in Figure 1.  
Jitter  
T his is the dynamic displacement of digital signal edges from  
their long term average positions, measured in degrees rms or  
Unit Intervals (UI). Jitter on the input data can cause dynamic  
phase errors on the recovered clock sampling edge. Jitter on the  
recovered clock causes jitter on the retimed data.  
For sufficiently large positive input voltage the output is always  
Logic 1 and similarly, for negative inputs, the output is always  
Logic 0. However, the transitions between output Logic Levels  
1 and 0 are not at precisely defined input voltage levels, but oc-  
cur over a range of input voltages. Within this Zone of Confu-  
sion, the output may be either 1 or 0, or it may even fail to attain  
a valid logic state. T he width of this zone is determined by the  
input voltage noise of the quantizer (650 µV at the 1 × 10–10  
confidence level). T he center of the Zone of Confusion is the  
quantizer input offset voltage (±500 µV maximum). Input Over-  
drive is the magnitude of signal required to guarantee correct  
logic level with 1 × 10–10 confidence level.  
O utput Jitter  
T his is the jitter on the retimed data, in degrees rms, due to a  
specific pattern or some pseudorandom input data sequence  
(PRN Sequence).  
Jitter Toler ance  
Jitter T olerance is a measure of the AD807’s ability to track a  
jittery input data signal. Jitter on the input data is best thought  
of as phase modulation, and is usually specified in unit intervals.  
With a single-ended PIN-T IA (Figure 3), ac coupling is used  
and the inputs to the Quantizer are dc biased at some common-  
mode potential. Observing the Quantizer input with an oscillo-  
scope probe at the point indicated shows a binary signal with  
average value equal to the common-mode potential and instan-  
taneous values both above and below the average value. It is  
convenient to measure the peak-to-peak amplitude of this signal  
and call the minimum required value the Quantizer Sensitivity.  
Referring to Figure 1, since both positive and negative offsets  
need to be accommodated, the Sensitivity is twice the Over-  
drive. T he AD807 Quantizer has 2 mV Sensitivity.  
T he PLL must provide a clock signal that tracks the phase  
modulation in order to accurately retime jittered data. In order  
for the VCO output to have a phase modulation that tracks the  
input jitter, some modulation signal must be generated at the  
output of the phase detector. T he modulation output from the  
phase detector can only be produced by a phase error between  
its data input and its clock input. Hence, the PLL can never  
perfectly track jittered data. However, the magnitude of the  
phase error depends on the gain around the loop. At low fre-  
quencies, the integrator of the AD807 PLL provides very high  
gain, and thus very large jitter can be tracked with small phase  
errors between input data and recovered clock. At frequencies  
closer to the loop bandwidth, the gain of the integrator is much  
smaller, and thus less input jitter can be tolerated. T he AD807  
output will have a bit error rate less than 1 × 10–10 when in lock  
and retiming input data that has the CCIT T G.958 specified  
jitter applied to it.  
With a differential T IA (Figure 3), Sensitivity seems to improve  
from observing the Quantizer input with an oscilloscope probe.  
T his is an illusion caused by the use of a single-ended probe. A  
1 mV peak-to-peak signal appears to drive the AD807 Quan-  
tizer. However, the single-ended probe measures only half the  
signal. T he true Quantizer input signal is twice this value since  
the other Quantizer input is a complementary signal to the sig-  
nal being observed.  
Jitter Tr ansfer (Refer to Figur e 20)  
T he AD807 exhibits a low-pass filter response to jitter applied  
to its input data.  
Response Tim e  
Response time is the delay between removal of the input signal  
and indication of Loss of Signal (LOS) at SDOUT . T he re-  
sponse time of the AD807 (1.5 µs maximum) is much faster  
Bandwidth  
T his describes the frequency at which the AD807 attenuates  
sinusoidal input jitter by 3 dB.  
than the SONET /SDH requirement (3 µs  
response time ≤  
100 µs). In practice, the time constant of the ac coupling at the  
Quantizer input determines the LOS response time.  
P eaking  
T his describes the maximum jitter gain of the AD807 in dB.  
Nom inal Center Fr equency  
T his is the frequency at which the VCO will oscillate with the  
loop damping capacitor, CD, shorted.  
–4–  
REV. A  
AD807  
AV  
CC2  
D am ping Factor , ζ  
400Ω  
400Ω  
Damping factor, ζ describes the compensation of the second or-  
der PLL. A larger value of ζ corresponds to more damping and  
less peaking in the jitter transfer function.  
DIFFERENTIAL  
INPUT  
V
0.8V  
BE  
CURRENT SOURCES  
HEADROOM 0.7V  
Acquisition Tim e  
T his is the transient time, measured in bit periods, required for  
the AD807 to lock onto input data from its free-running state.  
0.5mA  
1mA  
0.5mA  
AV  
EE  
Sym m etr y—Recover ed Clock D uty Cycle  
a. Quantizer Differential Input Stage  
Symmetry is calculated as (100 × on time)/period, where on  
time equals the time that the clock signal is greater than the  
midpoint between its “0” level and its “1” level.  
1.2V +V  
BE  
Bit Er r or Rate vs. Signal-to-Noise Ratio  
5.9kΩ  
AD807 Bit Error Rate vs. Signal-to-Noise Ratio performance is  
shown in Figure 11. Wideband amplitude noise is summed with  
the input data signal as shown in Figure 4. Performance is  
shown for input data levels of 5 mV and 10 mV.  
THRADJ  
94.6kΩ  
AV  
EE  
b. Threshold Adjust  
2mVp-p  
V
CM  
V
CC1  
EPITAXX ERM504  
SCOPE  
PROBE  
I
AD807 QUANTIZER  
OH  
150Ω  
BINARY  
OUTPUT  
SDOUT  
150Ω  
I
OL  
V
CM  
V
EE  
c. Signal Detect Output (SDOUT)  
a. Single-Ended Input Application  
V
CC2  
1mVp-p  
V
CM  
450Ω  
450Ω  
AD8015  
DIFFERENTIAL  
OUTPUT TIA  
SCOPE  
PROBE  
DIFFERENTIAL  
OUTPUT  
AD807 QUANTIZER  
+OUT  
BINARY  
OUTPUT  
2.5mA  
–OUT  
V
EE  
V
CM  
d. PLL Differential Output Stage—DATAOUT(N),  
CLKOUT(N)  
Figure 5. (a–d) Sim plified Schem atics  
b. Differential Input Application  
Figure 3. (a–b) Single-Ended and Differential Input  
Applications  
POWER COMBINER  
0.47µF  
+
PIN  
+
50Ω  
50Ω  
DIFFERENTIAL  
SIGNAL  
SOURCE  
D.U.T.  
AD807  
POWER  
COMBINER  
0.47µF  
+
NIN  
POWER  
SPLITTER  
751.0µF  
100Ω  
+5V  
100MHz FILTER  
GND  
NOISE  
SOURCE  
Figure 4. Bit Error Rate vs. Signal-to-Noise Ratio  
Test: Block Diagram  
REV. A  
–5–  
AD807–Typical Characteristic Curves  
200.0E+3  
180.0E+3  
160.0E+3  
35.000E–3  
30.000E–3  
25.000E–3  
20.000E–3  
15.000E–3  
R
= 0Ω  
THRESH  
140.0E+3  
120.0E+3  
100.0E+3  
80.0E+3  
60.0E+3  
40.0E+3  
10.000E–3  
5.000E–3  
R
= 49.9k  
= OPEN  
THRESH  
20.0E+3  
0.0E+0  
R
THRESH  
000.000E+0  
000.0E+0  
5.0E–3  
10.0E–3 15.0E–3  
20.0E–3 25.0E–3 30.0E–3 35.0E–3  
4.4  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
SIGNAL DETECT LEVEL – Volts  
SUPPLY VOLTAGE – Volts  
Figure 6. Signal Detect Level vs. RTHRESH  
Figure 9. Signal Detect Level vs. Supply Voltage  
35.0E–3  
30.0E–3  
25.0E–3  
20.0E–3  
15.0E–3  
8.00  
7.00  
R
= 0Ω  
THRESH  
R
= 0Ω  
THRESH  
6.00  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
R
= 49.9kΩ  
THRESH  
R
= OPEN  
THRESH  
10.0E–3  
5.0E–3  
R
= 49.9k  
THRESH  
R
= OPEN  
60  
THRESH  
000.0E+0  
–40  
–20  
0
20  
40  
80  
100  
4.4  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
TEMPERATURE – °C  
POWER SUPPLY – V  
Figure 7. Signal Detect Level vs. Tem perature  
Figure 10. Signal Detect Hysteresis vs. Power Supply  
9.00  
8.00  
1E-1  
5E-2  
3E-2  
2E-2  
R
= 0Ω  
THRESH  
7.00  
1E-2  
1
2
1
2 2  
S
N
erfc  
R
= 49.9k  
THRESH  
6.00  
5.00  
4.00  
3.00  
1E-3  
1E-4  
1278  
1E-5  
1E-6  
NSN  
R
= OPEN  
THRESH  
1279  
14  
1276  
1E-8  
1E-10  
1E-12  
1277  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE – °C  
10  
12  
16  
S/N – dB  
18  
20  
22  
24  
Figure 8. Signal Detect Hysteresis vs. Tem perature  
Figure 11. Bit Error Rate vs. Signal-to-Noise Ratio  
REV. A  
–6–  
AD807  
30  
25  
20  
15  
10  
5
XFCBs dielectric isolation allows the different blocks within  
this mixed-signal IC to be isolated from each other, hence the  
2 mV Sensitivity is achieved. T raditionally, high speed compara-  
tors are plagued by crosstalk between outputs and inputs, often  
resulting in oscillations when the input signal approaches 10 mV.  
T he AD807 quantizer toggles at ±650 µV (1.3 mV sensitivity) at  
the input without making bit errors. When the input signal is  
lowered below ±650 µV, circuit performance is dominated by  
input noise, and not crosstalk.  
TEST CONDITIONS  
WORST CASE:  
– 40°C, 4.5V  
0.1µF  
PIN 13  
500Ω  
500Ω  
QUANTIZER  
INPUT  
0.1µF  
0
NIN 12  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
10E+6  
1.0  
OPTIONAL FILTER  
FERRITE BEAD  
RMS JITTER – Degrees  
50Ω  
50Ω  
0.1µF  
309Ω  
0.1µF  
AD807  
311MHz  
NOISE  
INPUT  
3.65kΩ  
0.1µF  
Figure 12. Output J itter Histogram  
50Ω  
AV  
14  
11  
CC2  
1E+3  
100E+0  
10E+0  
1E+0  
CHOKE  
"BIAS TEE"  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
+5V  
AV  
CC1  
10µF  
V
CC  
V
CC  
6
3
1
2
AD807  
Figure 15. Power Supply Noise Sensitivity Test Circuit  
0.1µF  
PIN 13  
500Ω  
500Ω  
QUANTIZER  
INPUT  
SONET MASK  
0.1µF  
NIN 12  
100E–3  
10E+0  
100E+0  
10E+3  
100E+3  
1E+6  
1E+3  
50Ω  
50Ω  
0.1µF  
309Ω  
FREQUENCY – Hz  
AD807  
311MHz  
NOISE  
INPUT  
3.65kΩ  
50Ω  
CHOKE  
"BIAS TEE"  
Figure 13. J itter Tolerance  
0.1µF  
AV  
14  
11  
CC2  
3.0  
2.0  
1.0  
0
0.1µF  
0.1µF  
0.1µF  
0.1µF  
+5V  
AV  
CC1  
10µF  
V
CC  
V
CC  
6
3
1
2
PSR – NO FILTER  
CMR  
Figure 16. Com m on-Mode Rejection Test Circuit  
Signal D etect  
T he input to the signal detect circuit is taken from the first stage  
of the quantizer. T he input signal is first processed through a  
gain stage. T he output from the gain stage is fed to both a posi-  
tive and a negative peak detector. T he threshold value is sub-  
tracted from the positive peak signal and added to the negative  
peak signal. T he positive and negative peak signals are then  
compared. If the positive peak, POS, is more positive than the  
negative peak, NEG, the signal amplitude is greater than the  
threshold, and the output, SDOUT , will indicate the presence  
of signal by remaining low. When POS becomes more negative  
than NEG, the signal amplitude has fallen below the threshold,  
and SDOUT will indicate a loss of signal (LOS) by going high.  
T he circuit provides hysteresis by adjusting the threshold level  
higher by a factor of two when the low signal level is detected.  
T his means that the input data amplitude needs to reach twice  
the set LOS threshold before SDOUT will signal that the data is  
again valid. T his corresponds to a 3 dB optical hysteresis.  
PSR – WITH FILTER  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8 0.9  
NOISE – Vp-p @311MHz  
Figure 14. Output J itter vs. Supply Noise and  
Output J itter vs. Com m on Mode Noise  
TH EO RY O F O P ERATIO N  
Q uantizer  
T he quantizer (comparator) has three gain stages, providing a  
net gain of 350. T he quantizer takes full advantage of the Extra  
Fast Complementary Bipolar (XFCB) process. T he input stage  
uses a folded cascode architecture to virtually eliminate pulse  
width distortion, and to handle input signals with common-  
mode voltage as high as the positive supply. T he input offset  
voltage is factory trimmed and guaranteed to be less than 500 µV.  
REV. A  
–7–  
AD807  
A lower damping ratio allows a faster frequency acquisition;  
generally the acquisition time scales directly with the capacitor  
value. However, at damping ratios approaching one, the acquisi-  
tion time no longer scales directly with capacitor value. T he  
acquisition time has two components: frequency acquisition and  
phase acquisition. T he frequency acquisition always scales with  
capacitance, but the phase acquisition is set by the loop band-  
width of the PLL and is independent of the damping ratio.  
T hus, the 0.06% fractional loop bandwidth sets a minimum  
acquisition time of 2000 bit periods. Note the acquisition time  
for a damping factor of one is 15,000 bit periods. T his com-  
prises 13,000 bit periods for frequency acquisition and 2,000 bit  
periods for phase acquisition. Compare this to the 400,000 bit  
periods acquisition time specified for a damping ratio of 5; this  
consists entirely of frequency acquisition, and the 2,000 bit  
periods of phase acquisition is negligible.  
THRESHOLD  
BIAS  
AD807  
PIN  
NIN  
IHYS  
COMPARATOR STAGES  
& CLOCK RECOVERY PLL  
+
+
ITHR  
POSITIVE  
PEAK  
DETECTOR  
LEVEL  
SHIFT  
DOWN  
SDOUT  
NEGATIVE  
PEAK  
DETECTOR  
LEVEL  
SHIFT  
UP  
Figure 17. Signal Level Detect Circuit Block Diagram  
P hase-Locked Loop  
T he phase-locked loop recovers clock and retimes data from  
NRZ data. T he architecture uses a frequency detector to aid ini-  
tial frequency acquisition; refer to Figure 18 for a block dia-  
gram. Note the frequency detector is always in the circuit. When  
the PLL is locked, the frequency error is zero and the frequency  
detector has no further effect. Since the frequency detector is al-  
ways in the circuit, no control functions are needed to initiate  
acquisition or change mode after acquisition.  
While a lower damping ratio affords faster acquisition, it also al-  
lows more peaking in the jitter transfer response (jitter peaking).  
For example, with a damping ratio of 10, the jitter peaking is  
0.02 dB, but with a damping ratio of 1, the peaking is 2 dB.  
Center Fr equency Clam p (Figur e 19)  
An N-channel FET circuit can be used to bring the AD807  
VCO center frequency to within ±10% of 155 MHz when  
SDOUT indicates a Loss of Signal (LOS). T his effectively re-  
duces the frequency acquisition time by reducing the frequency  
error between the VCO frequency and the input data frequency  
at clamp release. T he N-FET can have “on” resistance as high  
as 1 kand still attain effective clamping. However, the chosen  
N-FET should have greater than 10 M“off” resistance and  
less than 100 nA leakage current (source and drain) so as not to  
alter normal PLL performance.  
1
S
Φ
DATA  
INPUT  
S + 1  
DET  
VCO  
F
RECOVERED CLOCK  
OUTPUT  
DET  
RETIMING  
DEVICE  
RETIMED DATA  
OUTPUT  
Figure 18. PLL Block Diagram  
T he frequency detector delivers pulses of current to the charge  
pump to either raise or lower the frequency of the VCO. During  
the frequency acquisition process the frequency detector output  
is a series of pulses of width equal to the period of the VCO.  
T hese pulses occur on the cycle slips between the data fre-  
quency and the VCO frequency. With a maximum density data  
pattern (1010 . . . ), every cycle slip will produce a pulse at the  
frequency detector output. However, with random data, not  
every cycle slip produces a pulse. T he density of pulses at the  
frequency detector output increases with the density of data  
transitions. T he probability that a cycle slip will produce a pulse  
increases as the frequency error approaches zero. After the fre-  
quency error has been reduced to zero, the frequency detector  
output will have no further pulses. At this point the PLL begins  
the process of phase acquisition, with a settling time of roughly  
2000 bit periods.  
1
2
3
DATAOUTN  
DATAOUTP  
V
16  
EE  
SDOUT 15  
AV  
CC2  
14  
V
CC2  
CLKOUTN  
CLKOUTP  
PIN 13  
NIN 12  
4
5
6
7
8
V
CC  
AV  
CC1  
11  
1
N_FET  
CF1  
CF2  
THRADJ 10  
C
D
AV  
EE  
9
AD807  
Figure 19. Center Frequency Clam p Schem atic  
CD PEAK  
0.1  
0.12  
Jitter caused by variations of density of data transitions (pattern  
jitter) is virtually eliminated by use of a new phase detector (pat-  
ented). Briefly, the measurement of zero phase error does not  
cause the VCO phase to increase to above the average run rate  
set by the data frequency. T he jitter created by a 27–1 pseudo-  
random code is 1/2 degree, and this is small compared to ran-  
dom jitter.  
0.15 0.08  
0.22 0.06  
0.33 0.04  
T he jitter bandwidth for the PLL is 0.06% of the center fre-  
quency. T his figure is chosen so that sinusoidal input jitter at  
92 kHz will be attenuated by 3 dB.  
10  
100  
1k  
FREQUENCY IN kHz  
10k  
20k  
T he damping ratio of the PLL is user programmable with a  
single external capacitor. At 155 MHz, a damping ratio of 5 is  
obtained with a 0.15 µF capacitor. More generally, the damping  
Figure 20. J itter Transfer vs. CD  
ratio scales as (fDAT A × CD)1/2  
.
–8–  
REV. A  
AD807  
C1 0.1µF  
R1  
J5  
TP7 TP8  
50STRIP LINE  
EQUAL LENGTH  
SDOUT  
R13  
R2  
R9  
R10  
100100Ω  
154Ω  
154Ω  
C12 0.1µF  
J1 C3 0.1µF  
R5 100Ω  
1
2
3
VEE 16  
DATAOUTN  
DATAOUTP  
DATAOUTN  
DATAOUTP  
R6 100Ω  
15  
14  
SDOUT  
R16 3.65kΩ  
J2  
C4 0.1µF  
C5 0.1µF  
301Ω  
AV  
R14  
R15  
49.9Ω  
CC2  
V
CC2  
C9  
C13 0.1µF  
J6  
J7  
49.9Ω  
C7  
J3  
CLKOUTN  
R7 100Ω  
R8 100Ω  
4
5
6
PIN 13  
NIN 12  
PIN  
NIN  
CLKOUTN  
CLKOUTP  
CLKOUTP  
J4  
C14 0.1µF  
C6 0.1µF  
11  
AV  
V
CC1  
CC1  
C8  
C10  
VECTOR PINS SPACED FOR RN55C  
TYPE RESISTOR; COMPONENT  
SHOWN FOR REFERENCE ONLY  
TP1  
R4  
R3  
100Ω  
TP5  
7
8
10  
9
R11  
154Ω  
CF1  
CF2  
THRADJ  
100Ω  
CD  
R
THRESH  
R12  
154Ω  
AV  
EE  
TP2  
AD807  
NOTE:  
C2  
0.1µF  
TP6  
NOTE: INTERCONNECT RUN  
UNDER DUT  
C7–C10 ARE 0.1µF BYPASS CAPACITORS  
RIGHT ANGLE SMA CONNECTOR  
OUTER SHELL TO GND PLANE  
VECTOR PINS SPACED THROUGH-HOLE  
CAPACITOR ON VECTOR CUPS; COMPONENT  
SHOWN FOR REFERENCE ONLY  
C11  
10µF  
ALL RESISTORS ARE 1% 1/8 WATT SURFACE MOUNT  
TP3  
TP4  
+5V  
GND  
TPx TEST POINTS ARE VECTORBOARD K24A/M PINS  
o
Figure 21. Evaluation Board Schem atic  
CIRCUIT SIDE  
08-002901-02  
REV A  
INT2  
08-002901-08  
REV A  
INT1  
08-002901-07  
REV A  
SILKSCREEN TOP  
08-002901-03  
REV A  
COMPONENT SIDE  
08-002901-01  
REV A  
SOLDERMASK TOP  
08-002901-04  
REV A  
Figure 22. Evaluation Board Pictorials  
REV. A  
–9–  
AD807  
C1 0.1µF  
SDOUT  
TP7  
C2  
0.1µF  
R1 R2  
R9 R10  
154 154  
R17  
C12  
R16  
301  
R5 100  
R6 100  
C13  
0.1µF  
100 100  
3.65k 2.2µF  
1
2
3
VEE 16  
DATAOUTN  
DATAOUTP  
DATAOUTN  
DATAOUTP  
C3  
0.1µF  
15  
14  
SDOUT  
C11  
C4  
0.1µF  
AV  
CC  
R14  
50  
R15  
50  
V
CC2  
C7  
R7 100  
R8 100  
4
5
6
PIN 13  
NIN 12  
CLKOUTN  
CLKOUTP  
CLKOUTN  
CLKOUTP  
C10  
TP6  
C5  
0.1µF  
11  
10  
9
AV  
CC  
V
CC1  
C8  
TP1  
R4  
100  
R3  
100  
7
8
CF1  
CF2  
THRADJ  
C15  
0.1µF 0.1µF  
C14  
CD  
R13  
THRADJ  
TP5  
R11  
154  
R12  
154  
AV  
EE  
TP2  
AD807  
C6  
0.1µF  
C9  
10µF  
0.1µF  
10µF  
GND  
TP4  
50Ω  
LINE  
50Ω  
LINE  
5V TP3  
1
2
NC  
IIN  
ABB HAFO 1A227  
FC HOUSING  
+VS  
8
7
6
5
150nH  
15pF  
NOTES  
1. ALL CAPS ARE CHIP,  
15pF ARE MICA.  
+OUT  
0.8 A/W, 0.7pF  
NC  
3
4
–OUT  
–VS  
2.5GHz  
2. 150nH ARE SMT  
150nH  
15pF  
VBYP  
AD8015  
NC = NO CONNECT  
0.1µF  
0.01µF  
Figure 23. Low Cost 155 Mbps Fiber Optic Receiver Schem atic  
Table I. AD 807—AD 8015 Fiber O ptic Receiver Circuit:  
O utput Bit Error Rate & O utput Jitter vs. Input P ower  
Average O ptical  
Input P ower  
(dBm )  
O utput Bit  
Error Rate  
O utput Jitter  
(ps rm s)  
–6.4  
–6.5  
–6.6  
–6.7  
Loses Lock  
7.5 × 10–3  
9.4 × 10–4  
0 × 10–14  
–7.0 to –35.5  
–36.0  
0 × 10–14  
3 × 10–12  
<40  
<40  
4.8 × 10–10  
2.8 × 10–8  
1.3 × 10–5  
1.0 × 10–3  
1.9 × 10–3  
Loses Lock  
Figure 24. Receiver Output (Data) Eye Diagram ,  
–7.0 dBm Optical Input  
–36.5  
–37.0  
–38.0  
–39.0  
–39.2  
–39.3  
AP P LICATIO NS  
Low Cost 155 Mbps Fiber O ptic Receiver  
T he AD807 and AD8015 can be used together for a complete  
155 Mbps Fiber Optic Receiver (Quantizer and Clock Recovery,  
and T ransimpedance Amplifier) as shown in Figure 23.  
T he PIN diode front end is connected to a single mode 1300 nm  
laser source. T he PIN diode has 3.3 V reverse bias, 0.8 A/W re-  
sponsively, 0.7 pF capacitance, and 2.5 GHz bandwidth.  
T he AD8015 outputs (POUT and NOUT ) drive a differential, con-  
stant impedance (50 ) low-pass filter with a 3 dB cutoff of  
100 MHz. T he outputs of the low-pass filter are ac coupled to  
the AD807 inputs (PIN and NIN). T he AD807 PLL damping  
factor is set at 7 using a 0.22 µF capacitor.  
Figure 25. Receiver Output (Data) Eye Diagram ,  
–36.0 dBm Optical Input  
–10–  
REV. A  
AD807  
C1 0.1µF  
SDOUT  
C12 0.1  
C2  
0.1µF  
R1 R2  
R9 R10  
154 154  
R5 100  
R6 100  
100 100  
1
2
3
VEE 16  
J1  
J2  
DATAOUTN  
DATAOUTP  
R16  
330  
C3  
0.1µF  
C13  
0.1  
15  
14  
SDOUT  
R17  
3.9k  
PIN TIA  
2
1µF  
R15  
47  
R14  
47  
C4  
0.1µF  
AV  
CC2  
EPITAXX  
ERM504  
V
CC2  
120nH  
1
C11 0.1  
R7 100  
R8 100  
C7 0.1µF  
4
5
6
PIN 13  
NIN 12  
CLKOUTN  
CLKOUTP  
J3  
J4  
C14  
0.1  
30pF  
30pF  
C10 0.1  
C5  
0.1µF  
V
CC1  
11  
AV  
CC1  
3
NOISE FILTER  
C8  
CD  
0.1µF  
R4  
100  
R3  
100  
CF1  
CF2  
7
8
10  
9
R11  
150  
THRADJ  
R12  
150  
NOTE  
R13  
THRADJ  
AVEE  
0.1µF  
PIN TIA PIN 4 (CASE)  
IS CONNECTED TO  
GROUND  
AD807  
C6  
0.1µF  
C9 10  
+5V  
Figure 26. AD807 Application with Epitaxx PIN—Transim pedance Am plifier Module  
T he entire circuit was enclosed in a shielded box. T able I sum-  
marizes results of tests performed using a 223-1 PRN Sequence,  
and varying the average power at the PIN diode.  
250mV  
T he circuit acquires and maintains lock with an average input  
power as low as –39.25 dBm.  
50mV/  
DIV  
Table II. AD 807—Epitaxx ERM504 P IN TIA 155 Mbps  
Fiber O ptic Receiver Circuit:  
O utput Bit Error Rate & Output Jitter vs. Average Input P ower  
Average O ptical  
Input P ower  
(dBm )  
O utput Bit  
Error Rate  
O utput Jitter  
(ps rm s)  
–250mV  
48.12ns  
1ns/DIV  
38.12ns  
0
–3  
0.0 × 10–10  
0.0 × 10–10  
0.0 × 10–10  
0.0 × 10–10  
0.0 × 10–10  
0.0 × 10–10  
0.0 × 10–10  
0.0 × 10–10  
0.0 × 10–10  
0.0 × 10–10  
0.0 × 10–10  
0.5 × 10–10  
4 × 10–6  
29  
35  
40  
37  
33  
35  
36  
39  
40  
41  
42  
43  
50  
Figure 27. Receiver Output (Data) Eye Diagram ,  
0 dBm Optical Input  
–10  
–20  
–30  
–32  
–34  
–35  
–35.5  
–36  
–37.0  
–37.6  
–38.0  
250mV  
50mV/  
DIV  
SO NET (O C-3)/SD H (STM-1) Fiber O ptic Receiver Cir cuit  
A light wave receiver circuit for SONET /SDH application at  
155 Mbps is shown in Figure 26, with test results given in T able  
II. T he circuit operates from a single +5 V supply, and uses two  
major components: an Epitaxx ERM504 PIN-T IA module with  
AGC, and the AD807 IC.  
–250mV  
48.12ns  
1ns/DIV  
38.12ns  
Figure 28. Receiver Output (Data) Eye Diagram ,  
–38 dBm Optical Input  
A 120 MHz, third order, low-pass Butterworth filter at the out-  
put of the PIN-T IA module provides adequate bandwidth (70%  
of the bit rate), and attenuates high frequency (out of band)  
noise.  
REV. A  
–11–  
AD807  
AD 807 O utput Squelch Cir cuit  
USING TH E AD 807  
A simple P-channel FET circuit can be used in series with the  
Output Signal ECL Supply (VCC2, Pin 3) to squelch clock and  
data outputs when SDOUT indicates a loss of signal (Figure  
29). T he VCC2 supply pin draws roughly 61 mA (14 mA for each  
of 4 ECL loads, plus 5 mA for all 4 ECL output stages). T his  
means that selection of a FET with ON RESIST ANCE of  
0.5 will affect the common mode of the ECL outputs by only  
31 mV.  
Gr ound P lanes  
Use of one ground plane for connections to both analog and  
digital grounds is recommended.  
P ower Supply Connections  
Use of a 10 µF capacitor between VCC and ground is recom-  
mended. Care should be taken to isolate the +5 V power trace  
to VCC2 (Pin 3). T he VCC2 pin is used inside the device to pro-  
vide the CLKOUT and DAT AOUT signals.  
TO V  
, AV , AV  
CC  
CC1  
CC2  
Use of 0.1 µF capacitors between IC power supply and ground  
is recommended. Power supply decoupling should take place as  
close to the IC as possible. Refer to the schematic, Figure 21,  
for recommended connections.  
5V  
P_FET  
1
2
3
DATAOUTN  
DATAOUTP  
V
16  
EE  
Tr ansm ission Lines  
Use of 50 transmission lines are recommended for PIN, NIN,  
CLKOUT , and DAT AOUT signals.  
SDOUT 15  
AV  
CC2  
14  
V
CC2  
BYPASS  
CAP  
CLKOUTN  
CLKOUTP  
PIN 13  
NIN 12  
4
5
6
7
8
Ter m inations  
T ermination resistors should be used for PIN, NIN, CLKOUT ,  
and DATAOUT signals. Metal, thick film, 1% tolerance resistors  
are recommended. T ermination resistors for the PIN, NIN sig-  
nals should be placed as close as possible to the PIN, NIN pins.  
V
AV  
11  
1
CC  
CC1  
CF1  
CF2  
THRADJ 10  
AV  
EE  
9
AD807  
Connections from +5 V to load resistors for PIN, NIN,  
CLKOUT , and DAT AOUT signals should be individual, not  
daisy chained. T his will avoid crosstalk on these signals.  
Figure 29. Squelch Circuit Schem atic  
Loop D am ping Capacitor , C D  
A ceramic capacitor may be used for the loop damping capaci-  
tor. Using a 0.15 µF, +20% capacitor for a damping factor of  
five provides < 0.1 dB jitter peaking.  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
16-Lead Sm all O utline IC P ackage  
(R-16A)  
16  
1
9
0.1574 (4.00)  
0.1497 (3.80)  
PIN 1  
0.2440 (6.20)  
0.2284 (5.80)  
8
0.3937 (10.00)  
0.3859 (9.80)  
0.0196 (0.50)  
0.0099 (0.25)  
x 45°  
0.0688 (1.75)  
0.0532 (1.35)  
8°  
0°  
0.0098 (0.25)  
0.0040 (0.10)  
0.0500 (1.27)  
0.0160 (0.41)  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
0.0099 (0.25)  
0.0075 (0.19)  
–12–  
REV. A  

相关型号:

AD807A-155BRZ

暂无描述
ADI

AD807A-155BRZRL

155 Mbps, Low Power, Post-Amp/Clock and Data Recovery IC
ADI

AD807A-155BRZRL7

ATM/SONET/SDH SUPPORT CIRCUIT, PDSO16, 0.150 INCH, SOIC-16
ROCHESTER

AD807_00

Fiber Optic Receiver with Quantizer and Clock Recovery and Data Retiming
ADI

AD808

Fiber Optic Receiver with Quantizer and Clock Recovery and Data Retiming
ADI

AD808-622BR

Fiber Optic Receiver with Quantizer and Clock Recovery and Data Retiming
ADI

AD808-622BRRL

Fiber Optic Receiver with Quantizer and Clock Recovery and Data Retiming
ADI

AD808-622BRRL7

Fiber Optic Receiver with Quantizer and Clock Recovery and Data Retiming
ADI

AD808-622BRZ

622 Mbps, Low Power, Post-Amp/Clock and Data Recovery IC
ADI

AD808-622BRZRL7

622 Mbps, Low Power, Post-Amp/Clock and Data Recovery IC
ADI

AD809

155.52 MHz Frequency Synthesizer
ADI

AD8091

Low-Cost, High-Speed Rail-to-Rail Amplifiers
ADI