AD8129_05 [ADI]

Low Cost 270 MHz Differential Receiver Amplifiers; 低成本的270 MHz差分接收器放大器
AD8129_05
型号: AD8129_05
厂家: ADI    ADI
描述:

Low Cost 270 MHz Differential Receiver Amplifiers
低成本的270 MHz差分接收器放大器

放大器
文件: 总40页 (文件大小:634K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Cost 270 MHz  
Differential Receiver Amplifiers  
AD8129/AD8130  
CONNECTION DIAGRAM  
FEATURES  
High speed  
AD8129/  
AD8130  
AD8130: 270 MHz, 1090 V/μs @ G = +1  
AD8129: 200 MHz, 1060 V/μs @ G = +10  
High CMRR  
94 dB min, dc to 100 kHz  
80 dB min @ 2 MHz  
1
2
3
4
8
7
6
5
–IN  
+V  
+IN  
V
S
S
+
OUT  
FB  
PD  
REF  
70 dB @ 10 MHz  
High input impedance: 1 MΩ differential  
Input common-mode range 10.5 V  
Low noise  
AD8130: 12.5 nV/√Hz  
AD8129: 4.5 nV/√Hz  
Low distortion, 1 V p-p @ 5 MHz  
AD8130, −79 dBc worst harmonic @ 5 MHz  
AD8129, −74 dBc worst harmonic @ 5 MHz  
User-adjustable gain  
No external components for G = +1  
Power supply range +4.5 V to 12.6 V  
Power-down  
Figure 1.  
The AD8129/AD8130 are differential-to-single-ended amplifiers  
with extremely high CMRR at high frequency. Therefore, they  
can also be effectively used as high speed instrumentation amps  
or for converting differential signals to single-ended signals.  
The AD8129 is a low noise, high gain (10 or greater) version  
intended for applications over very long cables, where signal  
attenuation is significant. The AD8130 is stable at a gain of 1  
and can be used for applications where lower gains are required.  
Both have user-adjustable gain to help compensate for losses in  
the transmission line. The gain is set by the ratio of two resistor  
values. The AD8129/AD8130 have very high input impedance  
on both inputs, regardless of the gain setting.  
APPLICATIONS  
High speed differential line receivers  
Differential-to-single-ended converters  
High speed instrumentation amps  
Level shifting  
GENERAL DESCRIPTION  
The AD8129/AD8130 have excellent common-mode rejection  
(70 dB @ 10 MHz), allowing the use of low cost, unshielded  
twisted-pair cables without fear of corruption by external noise  
sources or crosstalk. The AD8129/AD8130 have a wide power  
supply range from single +5 V to 12 V, allowing wide common-  
mode and differential-mode voltage ranges while maintaining  
signal integrity. The wide common-mode voltage range enables  
the driver-receiver pair to operate without isolation transformers  
in many systems where the ground potential difference between  
drive and receive locations is many volts. The AD8129/AD8130  
have considerable cost and performance improvements over  
op amps and other multiamplifier receiving solutions.  
The AD8129/AD8130 are designed as receivers for the  
transmission of high speed signals over twisted-pair cables to  
work with the AD8131 or AD8132 drivers. Either can be used  
for analog or digital video signals and for high speed data  
transmission.  
120  
110  
100  
90  
80  
70  
60  
+V  
S
PD  
3
1
8
V
IN  
7
2
50  
40  
30  
V
6
OUT  
4
5
10k  
100k  
1M  
10M  
100M  
R
R
G
F
FREQUENCY (Hz)  
–V  
Figure 2. AD8129 CMRR vs. Frequency  
S
V
= V [1+(R /R )]  
IN  
OUT  
F
G
Figure 3. Typical Connection Configuration  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
 
AD8129/AD8130  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 32  
Op Amp Configuration............................................................. 32  
Applications..................................................................................... 33  
Basic Gain Circuits..................................................................... 33  
Applications....................................................................................... 1  
Connection Diagram ....................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
AD8129/AD8130 Specifications..................................................... 3  
5 V Specifications ......................................................................... 3  
5 V Specifications....................................................................... 5  
12 V Specifications..................................................................... 7  
Absolute Maximum Ratings............................................................ 9  
Thermal Resistance ...................................................................... 9  
ESD Caution.................................................................................. 9  
Typical Performance Characteristics ........................................... 10  
AD8130 Frequency Response Characteristics........................ 10  
AD8129 Frequency Response Characteristics........................ 13  
AD8130 Harmonic Distortion Characteristics ...................... 16  
AD8129 Harmonic Distortion Characteristics ...................... 18  
AD8130 Transient Response Characteristics.......................... 23  
AD8129 Transient Response Characteristics.......................... 26  
Twisted-Pair Cable, Composite Video Receiver with  
Equalization Using an AD8130................................................... 33  
Output Offset/Level Translator ................................................ 34  
Resistorless Gain of 2................................................................. 35  
Summer ....................................................................................... 35  
Cable-Tap Amplifier .................................................................. 35  
Power-Down ............................................................................... 36  
Extreme Operating Conditions................................................ 36  
Power Dissipation....................................................................... 37  
Layout, Grounding, and Bypassing.......................................... 38  
Outline Dimensions....................................................................... 39  
Ordering Guide .......................................................................... 40  
REVISION HISTORY  
11/05—Rev. B to Rev. C  
3/05—Rev. 0 to Rev. A  
Changes to 5 V Specifications......................................................... 3  
Changes to Table 4 and Maximum Power Dissipation Section.. 9  
Changes to Figure 16...................................................................... 11  
Changes to Figure 17...................................................................... 12  
Changes to Specifications.................................................................2  
Replaced Figure 3 ..............................................................................5  
Changes to Ordering Guide.............................................................6  
Updated Outline Dimensions....................................................... 27  
Revision 0: Initial Version  
9/05—Rev. A to Rev. B  
Extended Temperature Range...........................................Universal  
Deleted Figure 5................................................................................ 5  
Added Thermal Resistance Section ............................................... 9  
Updated Outline Dimensions....................................................... 39  
Changes to Ordering Guide .......................................................... 40  
Rev. C | Page 2 of 40  
 
AD8129/AD8130  
AD8129/AD8130 SPECIFICATIONS  
5 V SPECIFICATIONS  
PD  
AD8129 G = +10, AD8130 G = +1, TA = 25°C, +VS = 5 V, VS = 0 V, REF = 2.5 V,  
TMIN to TMAX = −40°C to +125°C, unless otherwise noted.  
≥ VIH, RL = 1 kΩ, CL = 2 pF, unless otherwise noted.  
Table 1.  
Model  
Parameter  
AD8129  
Typ  
AD8130  
Typ  
Conditions  
Min  
Max  
Min  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
VOUT ≤ 0.3 V p-p  
VOUT = 1 V p-p  
VOUT ≤ 0.3 V p-p,  
SOIC/MSOP  
160  
160  
185  
185  
25/40  
220  
180  
250  
205  
25  
MHz  
MHz  
MHz  
Bandwidth for 0.1 dB  
Flatness  
Slew Rate  
VOUT = 2 V p-p, 25%  
to 75%  
810  
930  
810  
930  
V/μs  
Settling Time  
Rise and Fall Times  
VOUT = 2 V p-p, 0.1%  
VOUT ≤ 1 V p-p, 10%  
to 90%  
20  
1.8  
20  
1.5  
ns  
ns  
Output Overdrive Recovery  
NOISE/DISTORTION  
20  
30  
ns  
Second Harmonic/Third  
Harmonic  
V
OUT = 1 V p-p, 5 MHz  
−68/−75  
−72/−79  
dBc  
VOUT = 2 V p-p, 5 MHz  
VOUT = 1 V p-p, 10 MHz  
VOUT = 2 V p-p, 10 MHz  
VOUT = 2 V p-p, 10 MHz  
VOUT = 2 V p-p, 10 MHz  
f ≥ 10 kHz  
−62/−64  
−63/−70  
−56/−58  
−67  
25  
4.5  
−65/−71  
−60/−62  
−68/−68  
−70  
26  
12.3  
dBc  
dBc  
dBc  
dBc  
IMD  
Output IP3  
Input Voltage Noise (RTI)  
dBm  
nV/√Hz  
pA/√Hz  
pA/√Hz  
Input Current Noise (+IN, −IN) f ≥ 100 kHz  
1
1.4  
1
1.4  
Input Current Noise  
(REF, FB)  
f ≥ 100 kHz  
Differential Gain Error  
Differential Phase Error  
INPUT CHARACTERISTICS  
AD8130, G = +2, NTSC  
100 IRE, RL ≥ 150 Ω  
AD8130, G = +2, NTSC  
100 IRE, RL ≥ 150 Ω  
0.3  
0.1  
0.13  
0.15  
%
Degrees  
Common-Mode Rejection  
Ratio  
DC to 100 kHz,  
VCM = 1.5 V to 3.5 V  
86  
96  
86  
80  
96  
dB  
VCM = 1 V p-p @ 1 MHz 80  
VCM = 1 V p-p @ 10 MHz  
dB  
dB  
dB  
70  
80  
70  
72  
CMRR with VOUT = 1 V p-p  
VCM = 1 V p-p @ 1 kHz,  
VOUT = 0.5 V dc  
Common-Mode Voltage  
Range  
V+IN − V−IN = 0 V  
1.25 to  
3.7  
1.25 to  
3.8  
V
Differential Operating Range  
Differential Clipping Level  
Resistance  
0.5  
0.75  
1
4
3
2.5  
2.8  
6
4
3
V
V
MΩ  
MΩ  
pF  
pF  
0.6  
0.85  
2.3  
3.3  
Differential  
Common mode  
Differential  
Capacitance  
Common mode  
4
4
Rev. C | Page 3 of 40  
 
 
AD8129/AD8130  
Model  
Parameter  
AD8129  
Typ  
AD8130  
Typ  
Conditions  
Min  
Max  
1.25  
Min  
Max  
Unit  
DC PERFORMANCE  
Closed-Loop Gain Error  
VOUT = 1 V, RL ≥ 150 Ω  
TMIN to TMAX  
0.25  
20  
0.1  
20  
0.6  
%
ppm/°C  
dB  
ppm  
mV  
μV/°C  
mV  
Open-Loop Gain  
Gain Nonlinearity  
Input Offset Voltage  
VOUT = 1 V  
VOUT = 1 V  
86  
71  
250  
0.2  
2
200  
0.4  
20  
0.8  
1.8  
TMIN to TMAX  
TMIN to TMAX  
1.4  
3.5  
Input Offset Voltage vs.  
Supply  
+VS = 5 V, −VS = −0.5 V  
to +0.5 V  
−VS = 0 V, +VS = +4.5 V  
to +5.5 V  
−88  
−100  
0.5  
1
−80  
−74  
−90  
0.5  
1
−70  
dB  
−86  
2
−76  
2
dB  
Input Bias Current  
(+IN, −IN)  
Input Bias Current  
(REF, FB)  
μA  
3.5  
3.5  
μA  
TMIN to TMAX (+IN, −IN,  
REF, FB)  
5
5
nA/°C  
Input Offset Current  
(+IN, −IN, REF, FB)  
TMIN to TMAX  
0.08  
0.2  
0.4  
3.9  
0.08  
0.2  
0.4  
3.9  
μA  
nA/°C  
OUTPUT PERFORMANCE  
Voltage Swing  
RLOAD ≥ 150 Ω  
1.1  
1.1  
V
Output Current  
Short-Circuit Current  
35  
35  
mA  
mA  
μA/°C  
pF  
To common  
TMIN to TMAX  
PD  
≤ VIL, in power-  
−60/+55  
−240  
10  
−60/+55  
−240  
10  
Output Impedance  
down mode  
POWER SUPPLY  
Operating Voltage Range  
Quiescent Supply Current  
Total supply voltage  
TMIN to TMAX  
2.25  
12.6  
10.6  
2.25  
12.6  
10.6  
V
9.9  
33  
0.65  
9.9  
33  
0.65  
mA  
μA/°C  
mA  
mA  
PD  
PD  
0.85  
1
0.85  
1
≤ VIL  
≤ VIL, TMIN to TMAX  
PD  
PIN  
VIH  
+VS − 1.5  
+VS − 1.5  
V
VIL  
IIH  
+VS − 2.5  
−30  
+VS − 2.5  
−30  
V
PD  
PD  
PD  
PD  
μA  
μA  
kΩ  
kΩ  
μs  
°C  
= min VIH  
IIL  
−50  
−50  
= max VIL  
Input Resistance  
12.5  
100  
0.5  
12.5  
100  
0.5  
≤ +VS − 3 V  
≥ +VS − 2 V  
Enable Time  
OPERATING TEMPERATURE  
RANGE  
−40  
+125  
−40  
+125  
Rev. C | Page 4 of 40  
AD8129/AD8130  
5 V SPECIFICATIONS  
PD  
AD8129 G = +10, AD8130 G = +1, TA = 25°C, VS = 5 V, REF = 0 V,  
= −40°C to +125°C, unless otherwise noted.  
≥ VIH, RL = 1 kΩ, CL = 2 pF, unless otherwise noted. TMIN to TMAX  
Table 2.  
AD8129  
Typ  
AD8130  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
VOUT ≤ 0.3 V p-p  
VOUT = 2 V p-p  
VOUT ≤ 0.3 V p-p,  
SOIC/MSOP  
175  
170  
200  
190  
30/50  
240  
140  
270  
155  
45  
MHz  
MHz  
MHz  
Bandwidth for 0.1 dB  
Flatness  
Slew Rate  
VOUT = 2 V p-p,  
25% to 75%  
925  
1060  
950  
1090  
V/μs  
Settling Time  
Rise and Fall Times  
VOUT = 2 V p-p, 0.1%  
VOUT ≤ 1 V p-p,  
10% to 90%  
20  
1.7  
20  
1.4  
ns  
ns  
Output Overdrive Recovery  
NOISE/DISTORTION  
30  
40  
ns  
Second Harmonic/Third  
Harmonic  
V
OUT = 1 V p-p, 5 MHz  
−74/−84  
−79/−86  
dBc  
VOUT = 2 V p-p, 5 MHz  
VOUT = 1 V p-p, 10 MHz  
VOUT = 1 V p-p, 10 MHz  
VOUT = 2 V p-p, 10 MHz  
VOUT = 2 V p-p, 10 MHz  
f ≥ 10 kHz  
−68/−74  
−67/−81  
−61/−70  
−67  
25  
4.5  
−74/−81  
−74/−80  
−74/−76  
−70  
26  
12.5  
dBc  
dBc  
dBc  
dBc  
dBm  
nV/√Hz  
pA/√Hz  
IMD  
Output IP3  
Input Voltage Noise (RTI)  
Input Current Noise  
(+IN, −IN)  
f ≥ 100 kHz  
1
1
Input Current Noise  
(REF, FB)  
f ≥ 100 kHz  
1.4  
0.3  
0.1  
1.4  
pA/√Hz  
%
Differential Gain Error  
Differential Phase Error  
INPUT CHARACTERISTICS  
AD8130, G = +2, NTSC  
200 IRE, RL ≥ 150 Ω  
AD8130, G = +2, NTSC  
200 IRE, RL ≥ 150 Ω  
0.13  
0.15  
Degrees  
Common-Mode Rejection  
Ratio  
DC to 100 kHz,  
VCM = −3 V to +3.5 V  
VCM = 1 V p-p @ 2 MHz  
VCM = 1 V p-p @ 10 MHz  
VCM = 2 V p-p @ 1 kHz,  
VOUT = 0.5 V dc  
94  
80  
110  
90  
80  
110  
dB  
dB  
dB  
dB  
70  
100  
70  
83  
CMRR with VOUT = 1 V p-p  
Common-Mode Voltage  
Range  
Differential Operating  
Range  
V+IN − V−IN = 0 V  
3.5  
0.5  
3.8  
2.5  
V
V
Differential Clipping Level  
Resistance  
0.6  
0.75  
0.85  
2.3  
2.8  
3.3  
V
Differential  
Common mode  
Differential  
1
4
3
4
6
4
3
4
MΩ  
MΩ  
pF  
pF  
Capacitance  
Common mode  
Rev. C | Page 5 of 40  
 
AD8129/AD8130  
AD8129  
Typ  
AD8130  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Unit  
DC PERFORMANCE  
Closed-Loop Gain Error  
VOUT = 1 V, RL ≥ 150 Ω  
TMIN to TMAX  
VOUT = 1 V  
0.4  
20  
88  
250  
0.2  
2
1.5  
0.15  
10  
74  
200  
0.4  
20  
0.6  
%
ppm/°C  
dB  
ppm  
mV  
μV/°C  
mV  
Open-Loop Gain  
Gain Nonlinearity  
Input Offset Voltage  
VOUT = 1 V  
0.8  
1.8  
TMIN to TMAX  
TMIN to TMAX  
1.4  
3.5  
Input Offset Voltage vs.  
Supply  
+VS = +5 V, −VS = −4.5 V  
to −5.5 V  
−VS = −5 V, +VS = +4.5 V  
to +5.5 V  
−90  
−94  
0.5  
−84  
−78  
−80  
0.5  
−74  
dB  
−86  
2
−74  
2
dB  
μA  
Input Bias Current  
(+IN, −IN)  
Input Bias Current (REF, FB)  
1
5
3.5  
1
5
3.5  
μA  
nA/°C  
TMIN to TMAX (+IN, −IN,  
REF, FB)  
Input Offset Current  
(+IN, −IN, REF, FB)  
TMIN to TMAX  
0.08  
0.2  
0.4  
0.08  
0.2  
0.4  
μA  
nA/°C  
OUTPUT PERFORMANCE  
Voltage Swing  
RLOAD = 150 Ω/1 kΩ  
3.6/4.0  
3.6/4.0  
V
Output Current  
Short-Circuit Current  
40  
40  
mA  
mA  
μA/°C  
pF  
To common  
TMIN to TMAX  
PD  
≤ VIL, in power-  
−60/+55  
−240  
10  
−60/+55  
−240  
10  
Output Impedance  
down mode  
POWER SUPPLY  
Operating Voltage Range  
Quiescent Supply Current  
Total supply voltage  
TMIN to TMAX  
2.25  
12.6  
11.6  
2.25  
12.6  
11.6  
V
10.8  
36  
0.68  
10.8  
36  
0.68  
mA  
μA/°C  
mA  
mA  
PD  
PD  
0.85  
1
0.85  
1
≤ VIL  
≤ VIL, TMIN to TMAX  
PD  
PIN  
VIH  
+VS − 1.5  
+VS − 1.5  
V
VIL  
IIH  
+VS − 2.5  
−30  
+VS − 2.5  
−30  
V
PD  
PD  
PD  
PD  
μA  
μA  
kΩ  
kΩ  
μs  
°C  
= min VIH  
IIL  
−50  
−50  
= max VIL  
Input Resistance  
12.5  
100  
0.5  
12.5  
100  
0.5  
≤ +VS − 3 V  
≥ +VS − 2 V  
Enable Time  
OPERATING TEMPERATURE  
RANGE  
−40  
+125  
−40  
+125  
Rev. C | Page 6 of 40  
AD8129/AD8130  
12 V SPECIFICATIONS  
PD  
AD8129 G = +10, AD8130 G = +1, TA = 25°C, VS = 12 V, REF = 0 V,  
TMAX = −40°C to +85°C, unless otherwise noted.  
≥ VIH, RL = 1 kΩ, CL = 2 pF, unless otherwise noted. TMIN to  
Table 3.  
AD8129  
Typ  
AD8130  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
VOUT ≤ 0.3 V p-p  
VOUT = 2 V p-p  
175  
170  
200  
195  
50/70  
250  
150  
290  
175  
110  
MHz  
MHz  
MHz  
Bandwidth for 0.1 dB Flatness VOUT ≤ 0.3 V p-p,  
SOIC/MSOP  
Slew Rate  
VOUT = 2 V p-p, 25%  
to 75%  
935  
1070  
960  
1100  
V/μs  
Settling Time  
Rise and Fall Times  
VOUT = 2 V p-p, 0.1%  
VOUT ≤ 1 V p-p, 10%  
to 90%  
20  
1.7  
20  
1.4  
ns  
ns  
Output Overdrive Recovery  
NOISE/DISTORTION  
40  
40  
ns  
Second Harmonic/Third  
Harmonic  
V
OUT = 1 V p-p, 5 MHz  
−71/−84  
−79/−86  
dBc  
VOUT = 2 V p-p, 5 MHz  
VOUT = 1 V p-p, 10 MHz  
VOUT = 2 V p-p, 10 MHz  
VOUT = 2 V p-p, 10 MHz  
VOUT = 2 V p-p, 10 MHz  
f ≥ 10 kHz  
−65/−74  
−65/−82  
−59/−70  
−67  
25  
4.6  
−74/−81  
−74/−80  
−74/−74  
−70  
26  
13  
dBc  
dBc  
dBc  
dBc  
dBm  
nV/√Hz  
pA/√Hz  
IMD  
Output IP3  
Input Voltage Noise (RTI)  
Input Current Noise  
(+IN, −IN)  
f ≥ 100 kHz  
1
1
Input Current Noise  
(REF, FB)  
f ≥ 100 kHz  
1.4  
0.3  
0.1  
1.4  
pA/√Hz  
%
Differential Gain Error  
Differential Phase Error  
INPUT CHARACTERISTICS  
AD8130, G = +2, NTSC  
200 IRE, RL ≥ 150 Ω  
AD8130, G = +2, NTSC  
200 IRE, RL ≥ 150 Ω  
0.13  
0.2  
Degrees  
Common-Mode Rejection  
Ratio  
DC to 100 kHz,  
VCM = 10 V  
VCM = 1 V p-p @ 2 MHz  
VCM = 1 V p-p @ 10 MHz  
VCM = 4 V p-p @ 1 kHz,  
VOUT = 0.5 V dc  
92  
80  
105  
88  
80  
105  
dB  
dB  
dB  
dB  
70  
93  
70  
80  
CMRR with VOUT = 1 V p-p  
Common-Mode Voltage  
Range  
V+IN − V–IN = 0 V  
10.3  
10.5  
V
Differential Operating Range  
Differential Clipping Level  
Resistance  
0.5  
0.75  
1
4
3
2.5  
2.8  
6
4
3
V
V
MΩ  
MΩ  
pF  
pF  
0.6  
0.85  
2.3  
3.3  
Differential  
Common mode  
Differential  
Capacitance  
Common mode  
4
4
Rev. C | Page 7 of 40  
 
AD8129/AD8130  
AD8129  
Typ  
AD8130  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Unit  
DC PERFORMANCE  
Closed-Loop Gain Error  
VOUT = 1 V, RL ≥ 150 Ω  
TMIN to TMAX  
VOUT = 1 V  
0.8  
20  
87  
250  
0.2  
2
1.8  
0.15  
10  
73  
200  
0.4  
20  
0.6  
%
ppm/°C  
dB  
ppm  
mV  
μV/°C  
mV  
Open-Loop Gain  
Gain Nonlinearity  
Input Offset Voltage  
VOUT = 1 V  
0.8  
1.8  
TMIN to TMAX  
TMIN to TMAX  
1.4  
3.5  
Input Offset Voltage vs. Supply +VS = +12 V, −VS =  
–11.0 V to −13.0 V  
−88  
−92  
−82  
−77  
−88  
−70  
dB  
−VS = −12 V, +VS =  
+11.0 V to +13.0 V  
−84  
−70  
dB  
Input Bias Current (+IN, −IN)  
Input Bias Current (REF, FB)  
0.25  
0.5  
2
3.5  
0.25  
0.5  
2
3.5  
μA  
μA  
TMIN to TMAX  
2.5  
2.5  
nA/°C  
(+IN, −IN, REF, FB)  
Input Offset Current  
(+IN, −IN, REF, FB)  
TMIN to TMAX  
0.08  
0.2  
0.4  
0.08  
0.2  
0.4  
μA  
nA/°C  
OUTPUT PERFORMANCE  
Voltage Swing  
RLOAD = 700 Ω  
10.8  
10.8  
V
Output Current  
Short-Circuit Current  
40  
40  
mA  
mA  
μA/°C  
pF  
To common  
TMIN to TMAX  
PD  
≤ VIL, in power-  
−60/+55  
−240  
10  
−60/+55  
−240  
10  
Output Impedance  
down mode  
POWER SUPPLY  
Operating Voltage Range  
Quiescent Supply Current  
Total supply voltage  
TMIN to TMAX  
2.25  
12.6  
13.9  
2.25  
12.6  
13.9  
V
13  
43  
0.73  
13  
43  
0.73  
mA  
μA°C  
mA  
mA  
PD  
PD  
0.9  
1.1  
0.9  
1.1  
≤ VIL  
≤ VIL, TMIN to TMAX  
PD  
PIN  
VIH  
+VS − 1.5  
+VS − 1.5  
V
VIL  
IIH  
+VS − 2.5  
−30  
+VS − 2.5  
−30  
V
PD  
PD  
PD  
PD  
μA  
μA  
kΩ  
kΩ  
μs  
°C  
= min VIH  
IIL  
−50  
−50  
= max VIL  
Input Resistance  
3
3
≤ +VS − 3 V  
≥ +VS − 2 V  
100  
0.5  
100  
0.5  
Enable Time  
OPERATING TEMPERATURE  
RANGE  
−40  
+85  
−40  
+85  
Rev. C | Page 8 of 40  
AD8129/AD8130  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
Parameter  
The power dissipated in the package (PD) is the sum of the  
quiescent power dissipation and the power dissipated in the  
package due to the load drive. The quiescent power is the  
voltage between the supply pins (VS) times the quiescent  
current (IS). The power dissipated due to the load drive  
depends upon the particular application. The power due to  
load drive is calculated by multiplying the load current by the  
associated voltage drop across the device. RMS voltages and  
currents must be used in these calculations.  
Rating  
Supply Voltage  
Power Dissipation  
26.4 V  
Refer to Figure 4  
−VS − 0.3 V to +VS + 0.3 V  
Input Voltage (Any Input)  
Differential Input Voltage (AD8129)  
VS ≥ 11.5 V  
Differential Input Voltage (AD8129)  
VS < 11.5 V  
Differential Input Voltage (AD8130)  
Storage Temperature Range  
Lead Temperature (Soldering, 10 sec)  
Junction Temperature  
0.5 V  
6.2 V  
8.4 V  
−65°C to +150°C  
300°C  
150°C  
Airflow reduces θJA. In addition, more metal directly in contact  
with the package leads from metal traces through holes, ground,  
and power planes reduces the θJA.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Figure 4 shows the maximum safe power dissipation in the  
package vs. the ambient temperature for the 8-lead SOIC  
(121°C/W) and MSOP (θJA = 142°C/W) packages on a JEDEC  
standard 4-layer board. θJA values are approximations.  
1.75  
1.50  
1.25  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, θJA is  
specified for the device soldered in a circuit board in still air.  
1.00  
SOIC  
Table 5. Thermal Resistance  
Package Type  
0.75  
MSOP  
θJA  
Unit  
°C/W  
°C/W  
0.50  
8-Lead SOIC/4-Layer  
8-Lead MSOP/4-Layer  
121  
142  
0.25  
0
Maximum Power Dissipation  
–4030 –20 –10  
0
10 20 30 40 50 60 70 80 90 100 110120  
AMBIENT TEMPERATURE (°C)  
The maximum safe power dissipation in the AD8129/AD8130  
packages is limited by the associated rise in junction temp-  
erature (TJ) on the die. At approximately 150°C, which is the  
glass transition temperature, the plastic changes its properties.  
Even temporarily exceeding this temperature limit can change  
the stresses that the package exerts on the die, permanently  
shifting the parametric performance of the AD8129/AD8130.  
Exceeding a junction temperature of 150°C for an extended  
period can result in changes in the silicon devices, potentially  
causing failure.  
Figure 4. Maximum Power Dissipation vs. Temperature  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. C | Page 9 of 40  
 
 
AD8129/AD8130  
TYPICAL PERFORMANCE CHARACTERISTICS  
AD8130 FREQUENCY RESPONSE CHARACTERISTICS  
G = +1, RL = 1 kΩ, CL = 2 pF, VOUT = 0.3 V p-p, TA = 25°C, unless otherwise noted.  
3
6
V
= 0.3V p-p  
V
= ±5V  
OUT  
C
= 20pF  
S
L
V
= ±2.5V  
2
S
5
4
3
2
1
1
0
C
= 10pF  
= 5pF  
L
V
= ±5V  
S
C
L
–1  
–2  
V
= ±12V  
S
–3  
–4  
–5  
0
–1  
C
= 2pF  
L
–2  
–3  
–6  
–7  
–4  
1
10  
FREQUENCY (MHz)  
100  
300  
1
10  
FREQUENCY (MHz)  
100  
400  
Figure 5. AD8130 Frequency Response vs. Supply, VOUT = 0.3 V p-p  
Figure 8. AD8130 Frequency Response vs. Load Capacitance  
3
0.7  
V
= 1V p-p  
V
= ±2.5V  
R = 1kΩ  
L
OUT  
S
2
1
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
= ±5V  
S
V
= ±2.5V  
S
0
V
= ±5V  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
S
V
= ±12V  
S
–0.1  
–0.2  
–0.3  
V
= ±12V  
S
1
10  
FREQUENCY (MHz)  
100  
300  
1
10  
FREQUENCY (MHz)  
100  
300  
Figure 9. AD8130 Fine Scale Response vs. Supply, RL = 1 kΩ  
Figure 6. AD8130 Frequency Response vs. Supply, VOUT = 1 V p-p  
3
0.5  
0.4  
0.3  
0.2  
R
= 150Ω  
V
= 2V p-p  
L
OUT  
2
V
= ±5V  
S
V
= ±2.5V  
S
1
0
V
= ±2.5V  
= ±5V  
S
V
S
0.1  
–1  
–2  
V
= ±12V  
S
0
–0.1  
–3  
–4  
–5  
–6  
–7  
–0.2  
–0.3  
–0.4  
–0.5  
V
= ±12V  
S
1
10  
FREQUENCY (MHz)  
100  
300  
1
10  
FREQUENCY (MHz)  
100  
300  
Figure 7. AD8130 Frequency Response vs. Supply, VOUT = 2 V p-p  
Figure 10. AD8130 Fine Scale Response vs. Supply, RL = 150 Ω  
Rev. C | Page 10 of 40  
 
AD8129/AD8130  
3
2
3
2
G = +2  
= ±5V  
R
= 150Ω  
R
= R = 1kΩ  
L
F
G
V
S
V
= ±2.5V  
S
R
= R = 750Ω  
G
F
1
1
0
0
–1  
–2  
–1  
–2  
R
= R = 499Ω  
V
= ±5V  
F
G
S
V
= ±12V  
S
–3  
–4  
–5  
R
= R = 250Ω  
–3  
–4  
–5  
–6  
–7  
F
G
–6  
–7  
1
10  
FREQUENCY (MHz)  
100  
400  
1
10  
FREQUENCY (MHz)  
100  
300  
Figure 11. AD8130 Frequency Response vs. Supply, RL = 150 Ω  
Figure 14. AD8130 Frequency Response for Various RF/RG  
3
0.3  
G = +2  
G = +2  
= 1kΩ  
V
= 0.3V p-p  
R
V
= ±2.5V  
OUT  
L
S
2
1
0.2  
0.1  
V
= ±2.5V  
S
0
0
V
= ±5V  
S
–1  
–0.1  
V
= ±12V  
S
–2  
–3  
–4  
–5  
–6  
–7  
–0.2  
–0.3  
V
= ±5V  
S
–0.4  
–0.5  
–0.6  
–0.7  
V
= ±12V  
S
1
10  
FREQUENCY (MHz)  
100  
300  
1
10  
FREQUENCY (MHz)  
100  
Figure 12. AD8130 Frequency Response vs. Supply,  
G = +2, VOUT = 0.3 V p-p  
Figure 15. AD8130 Fine Scale Response vs. Supply,  
G = +2, RL = 1 kΩ  
0.3  
0.2  
0.1  
0
3
2
G = +2  
G = +2  
= 2V p-p  
R
= 150Ω  
V
L
OUT  
V
= ±2.5V  
S
1
V
= ±2.5V  
S
0
–0.1  
–0.2  
V
= ±5V  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
S
V
= ±5V  
S
V
= ±12V  
S
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
V
= ±12V  
S
1
10  
FREQUENCY (MHz)  
100  
1
10  
FREQUENCY (MHz)  
100  
300  
Figure 16. AD8130 Fine Scale Response vs. Supply,  
G = +2, RL = 150 Ω  
Figure 13. AD8130 Frequency Response vs. Supply,  
G = +2, VOUT = 2 V p-p  
Rev. C | Page 11 of 40  
AD8129/AD8130  
3
3
2
G = +2  
R
= 150Ω  
L
R
= 150Ω  
L
2
1
V
= ±2.5V  
S
1
0
V
= ±5V, ±12V  
G = +5  
S
V
= ±5V  
S
0
–1  
–2  
–1  
–2  
–3  
–4  
–5  
G = +10  
V
= ±12V  
S
V
= ±2.5V  
S
–3  
–4  
–5  
V
= ±5V, ±12V  
S
–6  
–7  
–6  
–7  
1
10  
FREQUENCY (MHz)  
100  
300  
0.1  
1
10  
100  
FREQUENCY (MHz)  
Figure 17. AD8130 Frequency Response vs. Supply,  
G = +2, RL = 150 Ω  
Figure 20. AD8130 Frequency Response vs. Supply,  
G = +5, G = +10, RL = 150 Ω  
0.3  
0.2  
12  
6
V
= 2V p-p  
0dB = 1V rms  
OUT  
V
= ±2.5V  
V
= ±5V  
S
S
0.1  
0
0
–6  
–0.1  
–0.2  
–0.3  
–12  
–18  
–24  
–30  
–36  
–42  
V
= ±12V  
S
V
S
= ±2.5V  
S
V
= ±5V, ±12V  
–0.4  
–0.5  
G = +10  
G = +5  
–0.6  
–0.7  
V
= ±5V  
S
–48  
0.1  
1
FREQUENCY (MHz)  
10  
30  
10  
100  
400  
FREQUENCY (MHz)  
Figure 18. AD8130 Fine Scale Response vs. Supply,  
G = +5, G = +10, VOUT = 2 V p-p  
Figure 21. AD8130 Frequency Response for Various Output Levels  
3
2
1
V
= 2V p-p  
OUT  
1
8
TEK P6245  
FET PROBE  
50Ω  
6
0
4
5
R
C
L
–1  
L
–2  
–3  
–4  
–5  
–6  
–7  
V
= ±12V  
R
R
F
S
G = +5  
G
V
= ±5V, ±12V  
S
G
R
R
G
F
V
= ±2.5V  
S
1
2
5
0Ω  
499Ω  
8.06kΩ  
4.99kΩ  
499Ω  
2kΩ  
549Ω  
G = +10  
10  
10  
0.1  
1
100  
FREQUENCY (MHz)  
Figure 19. AD8130 Frequency Response vs. Supply,  
G = +5, G = +10, VOUT = 2 V p-p  
Figure 22. AD8130 Basic Frequency Response Test Circuit  
Rev. C | Page 12 of 40  
AD8129/AD8130  
AD8129 FREQUENCY RESPONSE CHARACTERISTICS  
G = +10, RL = 1 kΩ, CL = 2 pF, VOUT = 0.3 V p-p, TA = 25°C, unless otherwise noted.  
3
4
V
= 0.3V p-p  
C
= 20pF  
V
= ±5V  
OUT  
L
S
2
3
V
= ±2.5V  
S
V = ±5V  
S
C
= 10pF  
L
1
2
0
1
–1  
–2  
0
V
= ±12V  
S
C
= 5pF  
L
–1  
C
= 2pF  
L
–3  
–4  
–5  
–6  
–7  
–2  
–3  
–4  
–5  
–6  
1
10  
FREQUENCY (MHz)  
100  
300  
1
10  
FREQUENCY (MHz)  
100  
300  
Figure 23. AD8129 Frequency Response vs. Supply, VOUT = 0.3 V p-p  
Figure 26. AD8129 Frequency Response vs. Load Capacitance  
3
0.5  
V
= ±2.5V  
V
= 1V p-p  
S
OUT  
R
= 1kΩ  
V
= ±5V  
L
S
2
0.4  
0.3  
V
= ±2.5V  
S
1
0
V
= ±5V  
S
0.2  
V
= ±12V  
0.1  
–1  
–2  
S
0
V
= ±12V  
S
–3  
–4  
–5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–6  
–7  
1
10  
FREQUENCY (MHz)  
100  
300  
1
10  
FREQUENCY (MHz)  
100  
300  
Figure 24. AD8129 Frequency Response vs. Supply, VOUT = 1 V p-p  
Figure 27. AD8129 Fine Scale Response vs. Supply, RL = 1 kΩ  
3
0.3  
V
= 2V p-p  
R
= 150Ω  
OUT  
L
V
= ±2.5V  
S
V
= ±2.5V  
0.2  
0.1  
2
S
1
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
–1  
–2  
V
= ±5V  
S
V
= ±5V  
S
V
= ±12V  
S
V
= ±12V  
S
–3  
–4  
–5  
–6  
–7  
1
10  
FREQUENCY (MHz)  
100  
300  
1
10  
FREQUENCY (MHz)  
100  
300  
Figure 25. AD8129 Frequency Response vs. Supply, VOUT = 2 V p-p  
Figure 28. AD8129 Fine Scale Response vs. Supply, RL = 150 Ω  
Rev. C | Page 13 of 40  
 
AD8129/AD8130  
0.8  
0.6  
0.4  
0.2  
0
3
G = +10  
= ±5V  
R
= 150Ω  
2k  
Ω
/221  
Ω
L
V
S
2
1
909  
Ω
/100  
Ω
V
= ±2.5V  
S
499  
Ω
/54.9  
Ω
0
SOIC  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
V
= ±5V  
499  
Ω/54.9  
Ω
S
–0.2  
0.2  
0
909  
Ω
/100Ω  
V
= ±12V  
S
μ
SOIC  
–0.2  
–0.4  
–0.6  
2kΩ/221Ω  
10  
100  
FREQUENCY (MHz)  
300  
1
10  
FREQUENCY (MHz)  
100  
300  
Figure 29. AD8129 Frequency Response vs. Supply, RL = 150 Ω  
Figure 32. AD8129 Fine Scale Response vs. SOIC and MSOP  
for Various RF/RG  
0.2  
3
G = +20  
G = +20  
V
= 0.3V p-p  
R = 1kΩ  
OUT  
L
0.1  
0
2
1
V
= ±5V  
S
V
= ±5V, ±12V  
S
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
–0.8  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
V
= ±12V  
S
V
= ±2.5V  
S
V
= ±2.5V  
S
1
10  
30  
1
10  
FREQUENCY (MHz)  
100  
300  
FREQUENCY (MHz)  
Figure 30. AD8129 Frequency Response vs. Supply,  
G = +20, VOUT = 0.3 V p-p  
Figure 33. AD8129 Fine Scale Response vs. Supply  
0.3  
0.2  
3
2
G = +20  
G = +20  
R
= 150Ω  
V
= 2V p-p  
L
OUT  
0.1  
1
V
= ±5V, ±12V  
S
V
= ±5V, ±12V  
S
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
V
= ±2.5V  
S
V
= ±2.5V  
S
0.1  
1
10  
30  
1
10  
FREQUENCY (MHz)  
100  
300  
FREQUENCY (MHz)  
Figure 31. AD8129 Frequency Response vs. Supply,  
G = +20, VOUT = 2 V p-p  
Figure 34. AD8129 Fine Scale Response vs. Supply  
Rev. C | Page 14 of 40  
AD8129/AD8130  
3
2
3
2
G = +20  
= 150  
R
= 150Ω  
L
R
Ω
L
1
1
0
0
V
= ±5V, ±12V  
S
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
G = +100  
G = +50  
V
= ±2.5V  
S
V
= ±5V  
S
V
= ±2.5V  
S
V
±12V  
S =  
0.1  
1
10  
50  
1
10  
FREQUENCY (MHz)  
100  
300  
FREQUENCY (MHz)  
Figure 38. AD8129 Frequency Response vs. Supply,  
G = +50, G = +100, RL = 150 Ω  
Figure 35. AD8129 Frequency Response vs. Supply,  
G = +20, RL = 150 Ω  
12  
0.2  
0dB = 1V rms  
V
= 2V p-p  
OUT  
6
0
V
= ±12V  
0.1  
0
S
–6  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
–0.8  
G = +100  
G = +50  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
V
= ±2.5V  
S
V
S
= ±5V  
V
= ±12V  
S
V
= ±5V  
S
10  
100  
400  
0.1  
1
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 36. AD8129 Fine Scale Response vs. Supply,  
G = +50, G = +100, VOUT = 2 V p-p  
Figure 39. AD8129 Frequency Response for Various Output Levels  
3
2
V
= 2V p-p  
OUT  
1
1
8
TEK P6245  
FET PROBE  
0
50Ω  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
G = +50  
6
G = +100  
4
5
R
C
L
L
V
= ±2.5V  
S
R
R
F
G
V
= ±5V  
S
R
R
G
G
F
V
±12V  
S =  
10  
20  
50  
2kΩ  
2kΩ  
2kΩ  
2kΩ  
221Ω  
105Ω  
41.2Ω  
20Ω  
0.1  
1
10  
50  
100  
FREQUENCY (MHz)  
Figure 37. AD8129 Frequency Response vs. Supply,  
G = +50, G = +100, VOUT = 2 V p-p  
Figure 40. AD8129 Basic Frequency Response Test Circuit  
Rev. C | Page 15 of 40  
AD8129/AD8130  
AD8130 HARMONIC DISTORTION CHARACTERISTICS  
RL = 1 kΩ, CL = 2 pF, TA = 25°C, unless otherwise noted.  
–60  
–51  
–57  
–63  
–69  
–75  
–81  
–87  
–93  
–99  
V
= 1V p-p  
V
= 1V p-p  
OUT  
OUT  
G = +1  
= ±5V  
V
S
G = +1  
–66  
–72  
–78  
–84  
–90  
V
= ±12V  
S
V
= ±12V  
S
V
= ±5V  
S
G = +1  
V
V
= ±12V  
S
G = +1  
V
= ±5V  
= ±12V  
S
S
G = +2  
G = +2  
1
10  
FREQUENCY (MHz)  
40  
1
10  
40  
FREQUENCY (MHz)  
Figure 41. AD8130 Second Harmonic Distortion vs. Frequency  
Figure 44. AD8130 Third Harmonic Distortion vs. Frequency  
–54  
–45  
–51  
–57  
–63  
–69  
–75  
–81  
–87  
–93  
V
= 2V p-p  
V
= 2V p-p  
OUT  
OUT  
G = +2, V = ±12V  
S
G = +2, V = ±5V  
S
G = +1  
= ±5V  
–60  
–66  
–72  
–78  
–84  
V
S
V
= ±12V  
S
V
= ±5V  
S
G = +1  
V
= ±12V  
S
G = +1  
V = ±12V  
S
G = +2  
V
= ±5V  
G = +2  
S
1
10  
FREQUENCY (MHz)  
40  
1
10  
40  
FREQUENCY (MHz)  
Figure 42. AD8130 Second Harmonic Distortion vs. Frequency  
Figure 45. AD8130 Third Harmonic Distortion vs. Frequency  
–46  
–52  
–58  
–64  
–70  
–76  
–82  
–88  
–94  
–55  
fC = 5MHz  
f = 5MHz  
C
V
= ±12V  
V
= ±12V  
= ±5V  
S
S
V
= ±5V  
S
–61  
–67  
–73  
–79  
–85  
–91  
V
S
G = +1  
G = +1  
G = +2  
V
= ±12V  
S
V
= ±12V  
S
G = +2  
V
= ±5V  
S
V
= ±5V  
S
0.5  
1
10  
0.5  
1
10  
V
(V p-p)  
V
(V p-p)  
OUT  
OUT  
Figure 43. AD8130 Second Harmonic Distortion vs. Output Voltage  
Figure 46. AD8130 Third Harmonic Distortion vs. Output Voltage  
Rev. C | Page 16 of 40  
 
AD8129/AD8130  
–43  
–49  
–55  
–61  
–67  
–73  
–79  
–46  
–52  
–58  
–64  
–70  
–76  
–82  
–88  
–94  
V
= ±2.5V  
V = ±2.5V  
S
fC = 5MHz  
S
G = +2, HD3  
G = +1, HD3  
G = +1  
V
= 2V p-p  
OUT  
G = +1, HD2  
G = +2, HD2  
G = +2  
G = +2, HD2  
G = +2, HD3  
G = +1  
V
= 1V p-p  
OUT  
G = +2  
1
10  
FREQUENCY (MHz)  
40  
0
0.5  
1.0  
1.5  
(V p-p)  
2.0  
2.5  
3.0  
V
OUT  
Figure 49. AD8130 Harmonic Distortion vs. Output Voltage  
Figure 47. AD8130 Second Harmonic Distortion vs. Frequency  
–42  
V
= ±2.5V  
S
–48  
–54  
–60  
–66  
–72  
–78  
–84  
–90  
–96  
V
= 2V p-p  
OUT  
G = +2  
G = +1  
G = +1  
G = +2  
V
= 1V p-p  
OUT  
1
10  
FREQUENCY (MHz)  
40  
Figure 48. AD8130 Third Harmonic Distortion vs. Frequency  
Rev. C | Page 17 of 40  
AD8129/AD8130  
AD8129 HARMONIC DISTORTION CHARACTERISTICS  
RL = 1 kΩ, CL = 2 pF, TA = 25°C, unless otherwise noted.  
–51  
–54  
–60  
–66  
–72  
–78  
–84  
–90  
–96  
V
= 1V p-p  
V
= 1V p-p  
OUT  
OUT  
G = +10,  
= ±5V  
V
S
–57  
–63  
–69  
–75  
–81  
–87  
G = +10,  
= ±12V  
V
S
G = +10,  
= ±12V  
V
S
G = +10,  
= ±5V  
G = +20,  
= ±5V  
V
S
V
S
G = +20,  
= ±12V  
V
S
G = +20,  
= ±12V  
G = +20,  
= ±5V  
V
S
V
S
1
10  
FREQUENCY (MHz)  
40  
1
10  
FREQUENCY (MHz)  
40  
Figure 50. AD8129 Second Harmonic Distortion vs. Frequency  
Figure 53. AD8129 Third Harmonic Distortion vs. Frequency  
–42  
–45  
–51  
–57  
–63  
–69  
–75  
–81  
–87  
V
= 2V p-p  
V
= 2V p-p  
OUT  
OUT  
G = +10,  
= ±5V  
V
S
–48  
–54  
–60  
–66  
–72  
–78  
–84  
G = +10  
G = +20  
G = +10,  
= ±12V  
V
S
G = +10,  
= ±12V  
V
S
G = +10,  
= ±12V  
V
G = +20,  
= ±12V  
S
V
S
G = +20,  
= ±5V  
G = +10,  
= ±5V  
G = +10,  
V
S
V
S
V
= ±5V  
S
G = +20,  
G = +20,  
V = ±12V  
S
V
= ±5V  
S
1
10  
FREQUENCY (MHz)  
40  
1
10  
40  
FREQUENCY (MHz)  
Figure 54. AD8129 Third Harmonic Distortion vs. Frequency  
Figure 51. AD8129 Second Harmonic Distortion vs. Frequency  
–48  
–50  
fC = 5MHz  
fC = 5MHz  
G = +10,  
= ±12V  
–54  
V
S
–56  
G = +10,  
= ±5V  
–60  
–66  
–72  
–78  
–84  
–90  
–96  
V
S
–62  
G = +10,  
V
= ±12V  
S
–68  
–74  
–80  
–86  
G = +10,  
= ±5V  
V
S
G = +20,  
= ±5V  
V
G = +20,  
= ±5V  
S
V
S
G = +20,  
= ±12V  
V
G = +20,  
= ±12V  
S
V
S
0.5  
1
10  
0.5  
1
10  
V
(V p-p)  
OUT  
V
(V p-p)  
OUT  
Figure 55. AD8129 Third Harmonic Distortion vs. Output Voltage  
Figure 52. AD8129 Second Harmonic Distortion vs. Output Voltage  
Rev. C | Page 18 of 40  
 
AD8129/AD8130  
–44  
–50  
–56  
–62  
–68  
–74  
–80  
–39  
–45  
–51  
–57  
–63  
–69  
–75  
–81  
–87  
V
= ±2.5V  
S
G = +1  
V
V
= 2V p-p  
OUT  
= ±5V  
V
= 2V p-p  
OUT  
S
R
= 1kΩ  
L
f
= 5MHz  
C
G = +20  
V
= 1V p-p  
OUT  
HD2  
HD3  
0
G = +10  
1
10  
FREQUENCY (MHz)  
40  
–5  
–4  
–3  
–2  
–1  
1
2
3
4
V
(V)  
CM  
Figure 56. AD8129 Second Harmonic Distortion vs. Frequency  
Figure 59. AD8130 Harmonic Distortion vs. Common-Mode Voltage  
–42  
–61  
V
= ±2.5V  
G = +1  
S
V
= 1V p-p  
HD2  
OUT  
f
= 5MHz  
C
–48  
–54  
–60  
–66  
–72  
–78  
–84  
–90  
–67  
–73  
–79  
–85  
–91  
–97  
V
= 2V p-p  
OUT  
V
= ±2.5V  
S
HD2  
= ±5V, ±12V  
V
S
G = +20  
V
= 1V p-p  
OUT  
HD3  
= ±5V  
V
S
G = +10  
HD3  
= ±12V  
V
S
HD3  
= ±2.5V  
V
S
1
10  
FREQUENCY (MHz)  
40  
100  
R
(Ω)  
L
Figure 60. AD8130 Harmonic Distortion vs. Load Resistance  
Figure 57. AD8129 Third Harmonic Distortion vs. Frequency  
–50  
–50  
G = +1  
= 5MHz  
V
= ±2.5V  
S
V
= 2V p-p  
OUT  
f
C
fC = 5MHz  
–56  
–62  
–68  
–74  
–80  
–86  
–56  
–62  
–68  
–74  
–80  
–86  
HD2  
= ±2.5V  
V
S
G = +20  
HD2  
G = +20  
HD3  
HD2  
= ±5V, ±12V  
G = +10  
HD2  
V
S
G = +10  
HD3  
HD3  
= ±2.5V  
V
S
HD3  
= ±5V, ±12V  
V
S
0
0.5  
1.0  
1.5  
(V p-p)  
2.0  
2.5  
3.0  
100  
V
R (Ω)  
L
OUT  
Figure 58. AD8129 Harmonic Distortion vs. Output Voltage  
Figure 61. AD8130 Harmonic Distortion vs. Load Resistance  
Rev. C | Page 19 of 40  
AD8129/AD8130  
–36  
G = +10  
V
V
R
= 2V p-p  
–42  
–48  
–54  
–60  
–66  
–72  
–78  
OUT  
= ±5V  
S
V
CM  
= 1kΩ  
L
fC = 5MHz  
200Ω  
R
L
1:2  
R
L
C
L
HD2  
R
R
G
F
HD3  
1
G
R
R
G
F
®
MINI-CIRCUITS  
# T4-6T, fC 10MHz  
# TC4-1W, fC > 10MHz  
:
1
2
0Ω  
499Ω  
2kΩ  
2kΩ  
499Ω  
221Ω  
105Ω  
–5  
–4  
–3  
–2  
–1  
0
2
3
4
20  
V
(V)  
CM  
Figure 65. AD8129/AD8130 Basic Distortion Test Circuit,  
VCM = 0 V, Unless Otherwise Noted  
Figure 62. AD8129 Harmonic Distortion vs. Common-Mode Voltage  
100  
10  
–48  
G = +10  
V
= 1V p-p  
OUT  
fC = 5MHz  
–54  
–60  
–68  
–72  
–78  
–84  
–90  
V
V
V
= ±2.5V  
= ±12V  
= ±5V  
S
S
S
HD2  
V
= ±12V  
S
V
= ±5V  
S
1.0  
0.1  
HD3  
V
= ±2.5V  
S
10  
100  
1k  
10k  
100k  
1M  
10M  
100  
R
(Ω)  
FREQUENCY (Hz)  
L
Figure 66. AD8129/AD8130 Input Current Noise vs. Frequency  
Figure 63. AD8129 Harmonic Distortion vs. Load Resistance  
100  
–44  
G = +10  
V
= 2V p-p  
OUT  
fC = 5MHz  
V
V
V
= ±2.5V  
S
S
S
–50  
–56  
–62  
–68  
–74  
–80  
= ±12V  
= ±5V  
AD8130  
10  
V
= ±2.5V  
S
AD8129  
V
= ±12V  
HD3  
S
V
= ±5V  
S
1
10  
100  
100  
1k  
10k  
100k  
1M  
10M  
R
(Ω)  
L
FREQUENCY (Hz)  
Figure 67. AD8129/AD8130 Input Voltage Noise vs. Frequency  
Figure 64. AD8129 Harmonic Distortion vs. Load Resistance  
Rev. C | Page 20 of 40  
AD8129/AD8130  
–30  
–40  
–30  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
V
= ±2.5V  
–80  
S
V
= ±2.5V  
–90  
S
–90  
–100  
–110  
–120  
–100  
–110  
–120  
V
= ±5V, ±12V  
1M  
S
V = ±5V, ±12V  
S
10k  
100k  
10M  
100M  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 68. AD8130 Common-Mode Rejection vs. Frequency  
Figure 71. AD8139 Common-Mode Rejection vs. Frequency  
0
0
–10  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
V
= ±12V  
S
V
= ±12V  
S
V
= ±2.5V  
V
= ±5V  
S
S
V
= ±2.5V  
S
V
= ±5V  
S
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 69. AD8130 Positive Power Supply Rejection vs. Frequency  
Figure 72. AD8129 Positive Power Supply Rejection vs. Frequency  
0
–10  
–20  
–30  
–40  
–50  
–60  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
V
= ±2.5V  
S
–70  
–80  
V
= ±5V  
100k  
S
–80  
–90  
V
= ±12V  
10k  
S
–90  
V
= ±5V  
S
V
= ±12V  
S
V
= ±2.5V  
1M  
S
–100  
–100  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 70. AD8130 Negative Power Supply Rejection vs. Frequency  
Figure 73. AD8129 Negative Power Supply Rejection vs. Frequency  
Rev. C | Page 21 of 40  
AD8129/AD8130  
80  
70  
60  
50  
40  
100  
10  
V
= ±5V  
S
180  
135  
90  
45  
0
GAIN  
1
AD8130, G = +1  
30  
PHASE  
+
100m  
10m  
1m  
VOUT  
20  
10  
+
2pF  
1k  
Ω
100  
Ω
1kΩ  
0
VIN  
φ
= 58°  
M
AD8129, G = +10  
100k  
–10  
1k  
10k  
100k  
1M  
10M  
100M 300M  
1k  
10k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 74. AD8130 Open-Loop Gain and Phase vs. Frequency  
Figure 76. Closed-Loop Output Impedance vs. Frequency  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
180  
GAIN  
135  
90  
45  
0
PHASE  
= 56°  
VOUT  
2pF  
1M  
1k  
Ω
100  
Ω
1k  
Ω
φ
M
VIN  
1k  
10k  
100k  
10M  
100M  
300M  
FREQUENCY (Hz)  
Figure 75. AD8129 Open-Loop Gain and Phase vs. Frequency  
Rev. C | Page 22 of 40  
AD8129/AD8130  
AD8130 TRANSIENT RESPONSE CHARACTERISTICS  
G = +1, RL = 1 kΩ, CL = 2 pF, VS = 5 V, TA = 25°C, unless otherwise noted.  
V
= ±2.5V  
S
V
= 0.2V p-p  
OUT  
V
V
= 1V p-p  
OUT  
= ±2.5V  
V = ±5V  
S
S
V
= ±12V  
S
50mV  
5.00ns  
250mV  
5.00ns  
Figure 77. AD8130 Transient Response, VS = 2.5 V, VOUT = 1 V p-p  
Figure 80. AD8130 Transient Response vs. Supply, VOUT = 0.2 V p-p  
V
V
= 1V p-p  
V
C
= 1V p-p  
OUT  
= ±5V  
OUT  
= 5pF  
V
= ±2.5V  
S
V
= ±5V  
S
L
S
V
= ±12V  
S
250mV  
5.00ns  
250mV  
5.00ns  
Figure 78. AD8130 Transient Response, VS = 5 V, VOUT = 1 V p-p  
Figure 81. AD8130 Transient Response vs. Supply, VOUT = 1 V p-p, CL = 5 pF  
V
V
= 1V p-p  
OUT  
= ±12V  
V
= 2V p-p  
OUT  
C = 5pF  
L
V
= ±2.5V  
S
S
V
= ±5V  
S
V
= ±12V  
S
250mV  
5.00ns  
500mV  
5.00ns  
Figure 82. AD8130 Transient Response vs. Supply, VOUT = 2 V p-p, CL = 5 pF  
Figure 79. AD8130 Transient Response, VS = 12 V, VOUT = 1 V p-p  
Rev. C | Page 23 of 40  
 
AD8129/AD8130  
V
= 1V p-p  
C
= 10pF  
V
= 0.2 V p-p  
OUT  
G = +2  
L
OUT  
C
= 5pF  
L
V
= ±5V, C = 10pF  
L
S
C
= 2pF  
L
V
= ±5V, C = 2pF  
L
S
50mV  
10.00ns  
250mV  
5.00ns  
Figure 83. AD8130 Transient Response vs. Load Capacitance,  
VOUT = 0.2 V p-p  
Figure 86. AD8130 Transient Response vs. Load Capacitance,  
VOUT = 1 V p-p, G = +2  
V
= 2V p-p  
OUT  
G = +2  
V
= ±5V  
S
2V p-p  
1V p-p  
V
= ±12V  
S
0.5V p-p  
500mV  
5.00ns  
5.00ns  
500mV  
Figure 84. AD8130 Transient Response vs. Output Amplitude,  
VOUT = 0.5 V p-p, 1 V p-p, 2 V p-p  
Figure 87. AD8130 Transient Response vs. Supply, VOUT = 2 V p-p, G = +2  
V
= 8V p-p  
G = +2  
OUT  
V
= ±5V  
S
4V p-p  
2V p-p  
C
= 10pF  
L
C
= 2pF  
L
1V p-p  
1.00V  
5.00ns  
5.00ns  
2.00V  
Figure 85. AD8130 Transient Response vs. Output Amplitude,  
VOUT = 1 V p-p, 2 V p-p, 4 V p-p  
Figure 88. AD8130 Transient Response vs. Load Capacitance,  
VOUT = 8 V p-p  
Rev. C | Page 24 of 40  
AD8129/AD8130  
G = +5  
V
= ±5V  
S
C
= 10pF  
L
4V p-p  
2V p-p  
V
IN  
V
OUT  
1V p-p  
1.00V  
10.0ns  
5.00ns  
1.00V  
Figure 89. AD8130 Transient Response with +3 V Common-Mode Input  
Figure 92. AD8130 Transient Response vs. Output Amplitude  
V
= 8V p-p  
G = +5  
OUT  
V
= ±5V  
S
C
= 10pF  
L
V
OUT  
V
IN  
2.00V  
10.0ns  
5.00ns  
1.00V  
Figure 90. AD8130 Transient Response with −3 V Common-Mode Input  
Figure 93. AD8130 Transient Response, VOUT = 8 V p-p, G = +5, VS = 5 V  
G = +2  
S
G = +5  
V
= 10V p-p  
V
= 20V p-p  
OUT  
OUT  
V
= ±12V  
V
= ±12V  
= 10pF  
S
C
L
5.00ns  
2.50V  
10.0ns  
5.00V  
Figure 94. AD8130 Transient Response, VOUT = 20 V p-p, G = +5, VS = 12 V  
Figure 91. AD8130 Transient Response, VOUT = 10 V p-p, G = +2, VS = 12 V  
Rev. C | Page 25 of 40  
AD8129/AD8130  
AD8129 TRANSIENT RESPONSE CHARACTERISTICS  
G = +10, RF = 2 kΩ, RG = 221 Ω, RL = 1 kΩ, CL = 1 pF, VS = 5 V, TA = 25°C, unless otherwise noted.  
V
= ±2.5V  
V = ±5V  
S
S
V
= 0.4V p-p  
V
= 1V p-p  
OUT  
OUT  
V
= ±2.5V  
S
V
= ±12V  
S
100mV  
5.00ns  
250mV  
5.00ns  
Figure 95. AD8129 Transient Response, VS = 2.5 V, VOUT = 1 V p-p  
Figure 98. AD8129 Transient Response vs. Supply, VOUT = 0.4 V p-p  
V
C
= 1V p-p  
V
= ±5V  
OUT  
= 5pF  
S
V
= 1V p-p  
OUT  
V
= ±5V  
S
L
V
= ±2.5V  
S
V
= ±12V  
S
5.00ns  
250mV  
5.00ns  
250mV  
Figure 99. AD8129 Transient Response vs. Supply, VOUT = 1 V p-p, CL = 5 pF  
Figure 96. AD8129 Transient Response, VS = 5 V, VOUT = 1 V p-p  
V
C
= 2V p-p  
OUT  
= 5pF  
V
= ±2.5V  
V
= ±12V  
V
= 1V p-p  
OUT  
S
S
L
V
= ±5V  
S
V
= ±12V  
S
5.00ns  
250mV  
250mV  
5.00ns  
Figure 97. AD8129 Transient Response, VS = 12 V, VOUT = 1 V p-p  
Figure 100. AD8129 Transient Response vs. Supply, VOUT = 2 V p-p, CL = 5 pF  
Rev. C | Page 26 of 40  
 
AD8129/AD8130  
G = +20  
L
V
= 0.4V p-p  
C
= 5pF  
OUT  
V
= 1V p-p  
L
OUT  
C
= 20pF  
C
= 10pF  
L
C
= 2pF  
L
5.00ns  
100mV  
250mV  
5.00ns  
Figure 101 Transient Response vs. Load Capacitance, VOUT = 0.4 V p-p  
Figure 104. AD8129 Transient Response, VOUT = 1 V p-p, VS = 2.5 V to 12 V  
G = +20  
V
= 2V p-p  
OUT  
C
= 20pF  
V
= 2V p-p  
L
O
V
= 1V p-p  
O
V
= 0.5V p-p  
O
5.00ns  
500mV  
5.00ns  
500mV  
Figure 102. Transient Response vs. Output Amplitude,  
VOUT = 0.5 V p-p, 1 V p-p, 2 V p-p  
Figure 105. AD8129 Transient Response, VOUT = 2 V p-p, VS = 5 V  
G = +20  
V
= 8V p-p  
OUT  
C
= 20pF  
L
V
= 4V p-p  
O
V
= 2V p-p  
O
V
= 1V p-p  
O
5.00ns  
1.00V  
2.00V  
5.00ns  
Figure 106. AD8129 Transient Response, VOUT = 8 V p-p, VS = 5 V  
Figure 103. Transient Response vs. Output Amplitude,  
VOUT = 1 V p-p, 2 V p-p, 4 V p-p  
Rev. C | Page 27 of 40  
AD8129/AD8130  
G = +50  
V
C
= ±5V  
= 20pF  
S
V
IN  
4V p-p  
L
2V p-p  
V
OUT  
1V p-p  
1.00V  
5.00ns  
12.5ns  
1.00V  
Figure 107. AD8129 Transient Response  
with +3.5 V Common-Mode Input  
Figure 110. AD8129 Transient Response vs. Output Amplitude,  
VOUT = 1 V p-p, 2 V p-p, 4 V p-p  
V
= 8V p-p  
G = +50  
OUT  
V
= ±5V  
S
C
= 20pF  
L
V
OUT  
V
IN  
12.5ns  
2.00V  
Figure 111. AD8129 Transient Response, VOUT = 8 V p-p, G = +50, VS = 5 V  
Figure 108. AD8129 Transient Response  
with −3.5 V Common-Mode Input  
G = +20  
V
= 20V p-p  
G = +50  
= ±12V  
OUT  
V
= 10V p-p  
OUT  
V
= ±12V  
= 20pF  
V
S
S
C
C
= 10pF  
L
L
2.50V  
5.00ns  
12.5ns  
5.00V  
Figure 109. AD8129 Transient Response, VOUT = 10 V p-p, G = +20  
Figure 112. AD8129 Transient Response, VOUT = 20 V p-p, G = +50, VS = 12 V  
Rev. C | Page 28 of 40  
AD8129/AD8130  
23  
20  
17  
14  
11  
G = +1  
G = +1  
= ±5V  
V
= ±5V  
V
S
S
R
= 1kΩ  
L
–1.0 –0.8 –0.6 –0.4 –0.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
OUTPUT VOLTAGE (V)  
DIFFERENTIAL INPUT (V)  
Figure 116. AD8130 Gain Nonlinearity, VOUT = 2 V p-p  
Figure 113. AD8130 DC Power Supply Current vs. Differential Input Voltage  
37  
G = +1  
G = +1  
V
= ±5V  
S
V
= ±10V  
S
R
= 1kΩ  
L
31  
25  
19  
13  
–2.5 –2.0 –1.5 –1.0 –0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
–1.0 –0.8 –0.6 –0.4 –0.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
OUTPUT VOLTAGE (V)  
DIFFERENTIAL INPUT (V)  
Figure 114. AD8129 DC Power Supply Current vs. Differential Input Voltage  
Figure 117. AD8130 Gain Nonlinearity, VOUT = 5 V p-p  
4
3
3.0  
V
= ±5V  
S
AD8130  
2.0  
V
= 100mV AC @ 1kHz  
OUT  
2
1.0  
0
1
AD8129  
AD8129  
0
–1  
–2  
–3  
–4  
–1.0  
–2.0  
–3.0  
AD8130  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
–50 –35 –20  
–5  
10  
25  
40  
55  
70  
85  
100  
DIFFERENTIAL INPUT (V)  
TEMPERATURE(°C)  
Figure 118. AD8130 Differential Input Clipping Level  
Figure 115. AD8129/AD8130 Input Differential Voltage Range vs.  
Temperature, 1% Gain Compression  
Rev. C | Page 29 of 40  
 
 
AD8129/AD8130  
15  
14  
13  
12  
11  
G = +10  
V
= ±5V  
S
R
= 1kΩ  
L
10  
9
–1.0 –0.8 –0.6 –0.4 –0.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
5
10  
15  
20  
25  
30  
OUTPUT VOLTAGE (V)  
TOTAL SUPPLY VOLTAGE (V)  
Figure 122. Quiescent Power Supply Current vs. Total Supply Voltage  
Figure 119. AD8129 Gain Nonlinearity, VOUT = 2 V p-p  
17  
16  
15  
G = +10  
V
= ±12V  
S
R
= 1kΩ  
L
V
= ±12  
S
14  
13  
12  
11  
10  
9
V
= ±5  
S
V
= ±2.5  
S
8
7
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
–50 –35 –20 –5 10 25 40 55 70 85 100  
115  
125  
OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 120. AD8129 Gain Nonlinearity, VOUT = 10 V p-p  
Figure 123. Quiescent Power Supply Current vs. Temperature  
8
6
4
2
0
40  
0.60  
0.45  
0.30  
0.15  
V
= ±10V  
S
I
B
30  
20  
10  
I
OS  
–2  
–4  
–6  
–8  
–1.0 –0.8 –0.6 –0.4 –0.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
–50 –35 –20  
–5  
10  
25  
40  
55  
70  
85  
100  
DIFFERENTIAL INPUT (V)  
TEMPERATURE (°C)  
Figure 121. AD8129 Differential Input Clipping Level  
Figure 124. Input Bias Current and Input Offset Current vs. Temperature  
Rev. C | Page 30 of 40  
AD8129/AD8130  
4.00  
3.75  
3.50  
3.25  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
4.0  
3.5  
3.0  
2.0  
1.5  
1.0  
V
= 5V  
S
AD8130  
AD8129  
= 5V  
SOURCING  
+100°C  
V
S
–40°C  
+25°C  
V
= 100mV  
OUT  
AC AT 1kHz  
SINKING  
AD8129  
AD8130  
70  
V
= 100mV  
OUT  
AC AT 1kHz  
–50 –35 –20  
–5  
10  
25  
40  
55  
85  
100  
0
5
10  
15  
20  
25  
30 35  
40  
40  
40  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
Figure 125. Common-Mode Voltage Range vs. Temperature,  
Typical 1% Gain Compression  
Figure 128. Output Voltage Range vs. Output Current,  
Typical 1% Gain Compression  
4.00  
4.0  
3.5  
V
= ±5V  
S
3.75  
AD8130  
3.50  
3.25  
= ±5V  
V
AD8129  
S
3.00  
2.75  
3.0  
+100°C  
–40°C  
+25°C  
V
= 100mV  
OUT  
AC AT 1kHz  
–3.00  
–3.25  
–3.50  
–3.75  
–4.00  
–3.0  
–3.5  
–4.0  
AD8129  
AD8130  
V
= 100mV  
AC AT 1kHz  
OUT  
–50 –35 –20  
–5  
10  
25  
40  
55  
70  
85  
100  
0
5
10  
15  
20  
25  
30 35  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
Figure 126. Common-Mode Voltage Range vs. Temperature,  
Typical 1% Gain Compression  
Figure 129. Output Voltage Range vs. Output Current,  
Typical 1% Gain Compression  
11.0  
11  
10  
V
= ±12V  
S
10.5  
AD8130  
10.0  
V
= ±12V  
S
AD8129  
9.5  
9.0  
9
V
= 100mV  
+100°C  
–40°C  
+25°C  
OUT  
AC AT 1kHz  
8.5  
–9.0  
–9.5  
–10.0  
–10.5  
–11.0  
–9  
AD8129  
40  
–10  
–11  
AD8130  
70  
–50 –35 –20  
–5  
10  
25  
55  
85  
100  
0
5
10  
15  
20  
25  
30  
35  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
Figure 127. Common-Mode Voltage Range vs. Temperature,  
Typical 1% Gain Compression  
Figure 130. Output Voltage Range vs. Output Current,  
Typical 1% Gain Compression  
Rev. C | Page 31 of 40  
AD8129/AD8130  
THEORY OF OPERATION  
The AD8129/AD8130 use an architecture called active feedback,  
which differs from that of conventional op amps. The most  
obvious differentiating feature is the presence of two separate  
pairs of differential inputs compared with a conventional op  
amp’s single pair. Typically, for the active feedback architecture,  
one of these input pairs is driven by a differential input signal,  
while the other is used for the feedback. This active stage in the  
feedback path is where the term active feedback is derived.  
Therefore, the input dynamic ranges are limited to about  
2.5 V for the AD8130 and 0.5 V for the AD8129 (see the  
AD8129/AD8130 Specifications section for more detail). For  
this and other reasons, it is not recommended to reverse the  
input and feedback stages of the AD8129/AD8130, even though  
some apparently normal functionality may be observed under  
some conditions. A few simple circuits can illustrate how the  
active feedback architecture of the AD8129/AD8130 operates.  
The active feedback architecture offers several advantages over a  
conventional op amp in many types of applications. Among these  
are excellent common-mode rejection, wide input common-mode  
range, and a pair of inputs that are high impedance and completely  
balanced in a typical application. In addition, while an external  
feedback network establishes the gain response as in a conventional  
op amp, its separate path makes it completely independent of  
the signal input. This eliminates any interaction between the  
feedback and input circuits, which traditionally causes problems  
with CMRR in conventional differential-input op amp circuits.  
OP AMP CONFIGURATION  
If only one of the input stages of the AD8129/AD8130 is used, it  
functions very much like a conventional op amp (see Figure 131).  
Classical inverting and noninverting op amps circuits can be  
created, and the basic governing equations are the same as for a  
conventional op amp. The unused input pins form the second  
input and should be shorted together and tied to ground or a  
midsupply voltage when they are not used.  
+V  
Another advantage is the ability to change the polarity of the  
gain merely by switching the differential inputs. A high input-  
impedance inverting amplifier can be made. Besides a high  
input impedance, a unity-gain inverter with the AD8130 has  
a noise gain of unity. This produces lower output noise and  
higher bandwidth than op amps that have noise gain equal  
to 2 for a unity-gain inverter.  
10μF  
0.1μF  
3
7
1
8
+
+
PD +V  
S
6
V
OUT  
4
5
V
IN  
–V  
S
2
R
F
R
G
The two differential input stages of the AD8129/AD8130 are  
each transconductance stages that are well matched. These stages  
convert the respective differential input voltages to internal  
currents. The currents are then summed and converted to a  
voltage, which is buffered to drive the output. The compensation  
capacitor is in the summing circuit.  
10μF  
0.1μF  
–V  
NOTES  
1. THIS CIRCUIT IS PROVIDED TO DEMONSTRATE  
DEVICE OPERATION. IT IS NOT RECOMMENDED  
TO USE THIS CIRCUIT IN PLACE OF AN OP AMP.  
Figure 131. With Both Inputs Grounded, the Feedback Stage Functions like  
an Op Amp: VOUT = VIN (1 + RF/RG).  
When the feedback path is closed around the part, the output  
drives the feedback input to the voltage that causes the internal  
currents to sum to 0. This occurs when the two differential  
inputs are equal and opposite; that is, their algebraic sum is 0.  
With the unused pair of inputs shorted, there is no differential  
voltage between them. This dictates that the differential input  
voltage of the used inputs is also 0 for closed-loop applications.  
Because this is the governing principle of conventional op amp  
circuits, an active feedback amplifier can function as a  
conventional op amp under these conditions.  
In a closed-loop application, a conventional op amp has its  
differential input voltage driven to near 0 under nontransient  
conditions. The AD8129/AD8130 generally has differential  
input voltages at each of its input pairs, even under equilibrium  
conditions. As a practical consideration, it is necessary to limit  
the differential input voltage internally with a clamp circuit.  
Note that this circuit is presented only for illustration purposes  
to show the similarities of the active feedback architecture  
functionality to conventional op amp functionality. If it is  
desired to design a circuit that can be created from a conven-  
tional op amp, it is recommended to choose a conventional  
op amp with specifications that are better suited to that application.  
These op amp principles are the basis for offsetting the output,  
as described in the Output Offset/Level Translator section.  
Rev. C | Page 32 of 40  
 
 
AD8129/AD8130  
APPLICATIONS  
BASIC GAIN CIRCUITS  
TWISTED-PAIR CABLE, COMPOSITE VIDEO  
RECEIVER WITH EQUALIZATION USING AN AD8130  
The gain of the AD8129/AD8130 can be set with a pair of  
feedback resistors. The basic configuration is shown in Figure 132.  
The gain equation is the same as that of a conventional op amp:  
G = 1 + RF/RG. For unity-gain applications using the AD8130,  
RF can be set to 0 (short circuit), and RG can be removed (see  
Figure 133). The AD8129 is compensated to operate at gains of  
10 and higher; therefore, shorting the feedback path to obtain  
unity gain causes oscillation.  
The AD8130 has excellent common-mode rejection at its  
inputs. This makes it an ideal candidate for a receiver for signals  
that are transmitted over long distances on twisted-pair cables.  
Category 5 cables are very common in office settings and are  
extensively used for data transmission. These cables can also be  
used for the analog transmission of signals such as video.  
These long cables pick up noise from the environment they pass  
through. This noise does not favor one conductor over another  
and therefore is a common-mode signal. A receiver that rejects  
the common-mode signal on the cable can greatly enhance the  
signal-to-noise ratio performance of the link.  
+V  
AD8129/  
AD8130  
10μF  
0.1μF  
3
7
1
8
+V  
+
+
PD  
S
V
IN  
The AD8130 is also very easy to use as a differential receiver,  
because the differential inputs and the feedback inputs are  
entirely separate. This means that there is no interaction  
between the feedback network and the termination network,  
as there would be in conventional op amp types of receivers.  
6
V
OUT  
4
5
–V  
S
2
R
F
R
G
10μF  
0.1μF  
–V  
Another issue with long cables is that there is more attenuation  
of the signal at longer distances. Attenuation is also a function  
of frequency; it increases to roughly the square root of frequency.  
Figure 132. Basic Gain Circuit: VOUT = VIN (1 + RF/RG)  
+V  
For good fidelity of video circuits, the overall frequency  
response of the transmission channel should be flat vs.  
frequency. Because the cable attenuates the high frequencies, a  
frequency-selective boost circuit can be used to undo this effect.  
These circuits are called equalizers.  
AD8130  
10μF  
0.1μF  
3
7
+V  
1
8
+
+
PD  
S
V
IN  
6
V
OUT  
4
5
–V  
An equalizer uses frequency-dependent elements (Ls and Cs) to  
create a frequency response that is the opposite of the rest of the  
channel’s response to create an overall flat response. There are  
many ways to create such circuits, but a common technique is to  
put the frequency-selective elements in the feedback path of an  
op amp circuit. The AD8130 in particular makes this easier  
than other circuits, because, once again, the feedback path is  
completely independent of the input path and there is no  
interaction.  
S
2
10μF  
0.1μF  
–V  
Figure 133. An AD8130 with Unity Gain  
The input signal can be applied either differentially or in a  
single-ended fashion—all that matters is the magnitude of the  
differential signal between the two inputs. For single-ended  
input applications, applying the signal to the +IN with −IN  
grounded creates a noninverting gain, while reversing these  
connections creates an inverting gain. Because the two inputs  
are high impedance and matched, both of these conditions  
provide the same high input impedance. Thus, an advantage of  
the active feedback architecture is the ability to make a high  
input impedance inverting op amp. If conventional op amps are  
used, a high impedance buffer followed by an inverting stage is  
needed. This requires two op amps.  
The circuit in Figure 134 was developed as a receiver/equalizer  
for transmitting composite video over 300 meters of Category 5  
cable. This cable has an attenuation of approximately 20 dB at  
10 MHz for 300 meters. At 100 MHz, the attenuation is  
approximately 60 dB (see Figure 135).  
Rev. C | Page 33 of 40  
 
 
 
AD8129/AD8130  
+V  
7
It is difficult to calculate the exact component values via strictly  
mathematical means, because the equations for the cable  
attenuation are approximate and have functions that are not  
simply related to the responses of RC networks. The method  
used in this design was to approximate the required response  
via graphical means from the frequency response and then  
select components that would approximate this response. The  
circuit was then built, measured, and finally adjusted to obtain  
an acceptable response—in this case, flat to 9 MHz to within  
approximately 1 dB (see Figure 137).  
AD8130  
10μF  
0.1μF  
3
+V  
1
8
+
+
PD  
S
V
100  
Ω
IN  
6
V
OUT  
4
5
–V  
S
2
R
1k  
F
Ω
R1  
R
G
100  
Ω
10μF  
0.1μF  
499Ω  
–V  
C1  
200pF  
20  
Figure 134. An Equalizer Circuit for Composite Video Transmissions  
over 300 Meters of Category-5 Cable  
10  
0
20  
10  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 137. Combined Response of Cable Plus Equalizer  
10k  
100k  
1M  
10M  
100M  
OUTPUT OFFSET/LEVEL TRANSLATOR  
FREQUENCY (Hz)  
The circuit in Figure 133 has the reference input (Pin 4) tied to  
ground, which produces a ground-referenced output signal. If it  
is desired to offset the output voltage from ground, the REF  
input can be used (see Figure 138). The level VOFFSET appears at  
the output with unity gain.  
Figure 135. Transmission Response of 300 Meters of Category-5 Cable  
The feedback network is between Pin 6 and Pin 5 and from  
Pin 5 to ground. C1 and RF create a corner frequency of about  
800 kHz. The gain increases to provide about 15 dB of boost  
at 8 MHz. The response of this circuit is shown in Figure 136.  
+V  
20  
10  
AD8130  
10μF  
0.1μF  
0
3
7
+V  
1
8
+
+
PD  
S
V
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
IN  
V
= V +V  
IN OFFSET  
OUT  
6
V
4
5
OFFSET  
–V  
S
2
0.1  
μ
F
10μF  
–V  
Figure 138. The Voltage Applied to Pin 4 to the Unity-Gain Output Voltage  
Produced by VIN  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
If the circuit has a gain higher than unity, the gain must be  
factored in. If RG is connected to ground, the voltage applied to  
REF is multiplied by the gain of the circuit and appears at the  
output—just like a noninverting conventional op amp. This  
situation is not always desirable; the user may want VOFFSET to  
appear at the output with unity gain.  
Figure 136. Frequency Response of Equalizer Circuit  
Rev. C | Page 34 of 40  
 
 
 
 
 
 
 
AD8129/AD8130  
+V  
One way to accomplish this is to drive both REF and RG with  
the desired offset signal (see Figure 139). Superposition can be  
used to solve this circuit. First, break the connection between  
AD8130  
0.1  
μF  
10μF  
3
7
VOFFSET and RG. With RG grounded, the gain from Pin 4 to VOUT  
V
1
8
+V  
IN  
+
+
PD  
S
is 1 + RF/RG. With Pin 4 grounded, the gain though RG to VOUT  
is −RF/RG. The sum of these is 1. If VREF is delivered from a low  
impedance source, this works fine. However, if the delivered  
offset voltage is derived from a high impedance source, such as  
a voltage divider, its impedance affects the gain equation. This  
makes the circuit more complicated because it creates an  
interaction between the gain and offset voltage.  
6
V
OUT  
4
5
–V  
S
2
10μF  
0.1μF  
–V  
+V  
Figure 141. Gain-of-2 Connections with No Resistors  
AD8129/  
AD8130  
SUMMER  
10μF  
0.1μF  
3
7
A general summing circuit can be made by the previous  
technique. A unity-gain configured AD8130 has one signal  
applied to +IN, while the other signal is applied to REF. The  
output is the sum of the two input signals (see Figure 142).  
+V  
1
8
+
+
PD  
S
V
IN  
V
V
=
OUT  
6
V
4
5
× (1 + R /R ) + V  
F G OFFSET  
OFFSET  
IN  
–V  
S
R
G
2
+V  
R
F
10μF  
0.1  
μ
F
AD8130  
0.1  
μ
F
10μF  
–V  
3
7
V1  
V2  
1
8
+V  
+
+
PD  
S
Figure 139. In this Circuit, VOFFSET Appears at the Output with Unity Gain. This  
Circuit Works Well if the VOFFSET Source Impedance Is Low.  
6
V
= V1 + V2  
OUT  
4
5
–V  
A way around this is to apply the offset voltage to a voltage  
divider whose attenuation factor matches the gain of the  
amplifier and then apply this voltage to the high impedance  
REF input. This circuit first divides the desired offset voltage  
by the gain, and the amplifier multiplies it back up to unity (see  
Figure 140).  
S
2
10μF  
0.1μF  
–V  
Figure 142. A Summing Circuit that is Noninverting  
with High Input Impedance  
+V  
This circuit offers several advantages over a conventional op  
amp inverting summing circuit. First, the inputs are both high  
impedance and the circuit is noninverting. It would require  
significant additional circuitry to make an op amp summing  
circuit that has high input impedance and is noninverting.  
AD8129/  
AD8130  
0.1  
μ
F
10μF  
3
7
1
8
+V  
+
+
PD  
S
V
IN  
V
V
=
OUT  
6
R
F
V
4
5
× (1 + R /R ) + V  
OFFSET  
OFFSET  
IN  
F
G
–V  
R
S
G
Another advantage is that the AD8130 circuit still preserves the  
full bandwidth of the part. In a conventional summing circuit,  
the noise gain is increased for each additional input, so the  
bandwidth response decreases accordingly. By this technique,  
four signals can be summed by applying them to two AD8130s  
and then summing the two outputs by a third AD8130.  
2
R
F
R
G
10μF  
0.1μF  
–V  
Figure 140. Adding an Attenuator at the Offset Input Causes It to Appear at  
the Output with Unity Gain.  
CABLE-TAP AMPLIFIER  
RESISTORLESS GAIN OF 2  
It is often desirable to have a video signal drive several pieces of  
equipment. However, the cable should only be terminated once at  
its endpoint; therefore, it is not appropriate to have a termination  
at each device. A loop-through connection allows a device to tap  
the video signal while not disturbing it by any excessive loading.  
The voltage applied to the REF input (Pin 4) can also be a high  
bandwidth signal. If a unity-gain AD8130 has both +IN and  
REF driven with the same signal, there is unity gain from VIN  
and unity gain from VREF. Thus, the circuit has a gain of 2 and  
requires no resistors (see Figure 141).  
Rev. C | Page 35 of 40  
 
 
 
 
 
AD8129/AD8130  
Such a connection, also referred to as a cable-tap amplifier, can  
be simply made with an AD8130 (see Figure 143). The circuit is  
configured with unity gain, and if no output offset is desired,  
the REF pin is grounded. The negative differential input is  
connected directly to the shield of the cable (or an associated  
connector) at the point at which it wants to be tapped.  
EXTREME OPERATING CONDITIONS  
The AD8129/AD8130 are designed to provide high  
performance over a wide range of supply voltages. However,  
there are some extremes of operating conditions that have  
been observed to produce suboptimal results. One of these  
conditions occurs when the AD8130 is operated at unity gain  
with low supply voltage—less than approximately 4 V.  
+V  
AD8130  
At unity gain, the output drives FB directly. With supplies of  
VS less than approximately 4 V at unity gain, the output can  
drive FB’s voltage too close to the rail for the circuit to stay  
properly biased. This can lead to a parasitic oscillation.  
75Ω  
0.1  
μ
F
10μF  
3
7
1
8
+V  
+
+
PD  
S
6
V
OUT  
4
5
A way to prevent this is to limit the input signal swing with  
clamp diodes. Common silicon-junction signal diodes like the  
1N4148 have a forward bias of approximately 0.7 V when about  
1 mA of current flows through them. Two series pairs of such  
diodes connected antiparallel across the differential inputs can  
be used to clamp the input signal and prevent this condition. It  
should be noted that the REF input can also shift the output  
signal; therefore, this technique only works when REF is at  
ground or close to it (see Figure 145).  
–V  
S
2
VIDEO  
IN  
10μF  
0.1μF  
–V  
75Ω  
Figure 143. The AD8130 Can Tap the Video Signal at Any Point Along the  
Cable Without Loading the Signal.  
The center conductor connects to the positive differential input  
of the AD8130. The amplitude of the video signal at this point is  
unity, because it is between the two termination resistors. The  
AD8130 provides a high impedance to this signal so that the  
signal is not disturbed. A buffered unity-gain version of the  
video signal appears at the output.  
+V  
AD8130  
0.1  
μF  
10μF  
V
V
3
7
IN  
1N4148  
1
8
+V  
+
+
PD  
S
6
POWER-DOWN  
V
OUT  
4
5
IN  
–V  
The AD8129/AD8130 have a power-down pin that can be used  
to lower the quiescent current when the amplifier is not being  
S
2
PD  
used. A logic low level on the  
pin causes the part to power  
down. Because there is no ground pin on the AD8129/AD8130,  
there is no logic reference to interface to standard logic levels.  
10μF  
0.1μF  
–V  
PD  
For this reason, the reference level for the  
input is VS. If  
Figure 145. Clamping Diodes at the Input Limits the Input Swing Amplitude  
the AD8129/AD8130 are run with VS = 5 V, there is direct  
compatibility with logic families. However, if VS is higher than  
this, a level-shift circuit is needed to interface to conventional  
logic levels. A simple level-shifting circuit that is compatible  
with common logic families is presented in Figure 144.  
+V  
S
7
1kΩ  
+V  
S
3
PD  
4.99kΩ  
2N2222  
OR EQ  
LOW =  
POWER-DOWN  
AD8129/  
AD8130  
Figure 144. Circuit that Shifts the Logic Level When VS Is Not Equal to  
Approximately 5 V.  
Rev. C | Page 36 of 40  
 
 
 
 
AD8129/AD8130  
The power dissipation is a function of several operating  
conditions, including the supply voltage, the input differential  
voltage, the output load, and the signal frequency.  
Another problem can occur with the AD8129 operating  
at a supply voltage of greater than or equal to 12 V. The  
architecture causes the supply current to increase as the input  
differential voltage increases. If the AD8129 differential inputs  
are overdriven too far, excessive current can flow into the device  
and potentially cause permanent damage.  
A basic starting point is to calculate the quiescent power  
dissipation with no signal and no differential input voltage.  
This is just the product of the total supply voltage and the  
quiescent operating current. The maximum operating supply  
voltage is 26.4 V, and the quiescent current is 13 mA. This  
causes a quiescent power dissipation of 343 mW. For the  
MSOP package, the θJA specification is 142°C/W. Therefore,  
the quiescent power causes about a 49°C rise above ambient  
in the MSOP package.  
A practical means to prevent this from occurring is to clamp the  
inputs differentially with a pair of antiparallel Schottky diodes  
(see Figure 146). These diodes have a lower forward voltage of  
approximately 0.4 V. If the differential voltage across the inputs  
is restricted to these conditions, no excess current is drawn by  
the AD8129 under these operating conditions.  
The current consumption is also a function of the differential  
input voltage (see Figure 113 and Figure 114). This current  
should be added onto the quiescent current and then multiplied  
by the total supply voltage to calculate the power.  
If the supply voltage is restricted to less than 11 V, the internal  
clamping circuit limits the differential voltage and excessive  
supply current is not drawn. The external clamp circuit is not  
needed.  
+V  
The AD8129/AD8130 can directly drive loads of as low as  
100 Ω, such as a terminated 50 Ω cable. The worst-case power  
dissipation in the output stage occurs when the output is at  
midsupply. As an example, for a 12 V supply with the output  
driving a 250 Ω load to ground, the maximum power dissipation  
in the output occurs when the output voltage is 6 V. The load  
current is 6 V/250 Ω = 24 mA. This same current flows through  
the output across a 6 V drop from VS. It dissipates 144 mW. For  
the 8-lead MSOP package, this causes a temperature rise of  
20°C above ambient. Although this is a worst-case number, it is  
apparent that this can be a considerable additional amount of  
power dissipation.  
AD8129  
0.1  
μ
F
10μF  
V
IN  
3
7
3
1
8
+V  
+
+
PD  
S
AGILENT  
HSMS 2822  
6
V
OUT  
1
2
4
5
V
IN  
–V  
S
2
10μF  
0.1μF  
–V  
Figure 146. Schottky Diodes Across the Inputs  
Limits the Input Differential Voltage  
Several changes can be made to alleviate this. One is to use the  
standard 8-lead SOIC package. This lowers the thermal impedance  
to 121°C/W, which is a 15% improvement. Another is to use a  
lower supply voltage unless absolutely necessary.  
In both circuits, the input series resistors function to limit the  
current through the diodes when they are forward biased. As a  
practical matter, these resistors must be matched so that the  
CMRR is preserved at high frequencies. These resistors have  
minimal effect on the CMRR at low frequency.  
Finally, do not use the AD8129/AD8130 when it is operating on  
high supply voltages to directly drive a heavy load. It is best to  
use a second op amp after the output stage. Some of the gain  
can be shifted to this stage so that the signal swing at the output  
of the AD8129/AD8130 is not too large.  
POWER DISSIPATION  
The AD8129/AD8130 can operate with supply voltages from  
+5 V to 12 V. The major reason for such a wide supply range is  
to provide a wide input common-mode range for systems that  
can require this. This would be encountered when significant  
common-mode noise couples into the input path. For applications  
that do not require a wide dynamic range for the input or output, it  
is recommended to operate with lower supply voltages.  
The AD8129/AD8130 is also available in a very small 8-lead  
MSOP package. This package has higher thermal impedance  
than larger packages and operates at a higher temperature with  
the same amount of power dissipation. Certain operating  
conditions that are within the specifications range of the parts can  
cause excess power dissipation. Caution should be exercised.  
Rev. C | Page 37 of 40  
 
 
AD8129/AD8130  
LAYOUT, GROUNDING, AND BYPASSING  
The AD8129/AD8130 are very high speed parts that can be  
sensitive to the PCB environment in which they operate.  
Realizing their superior specifications requires attention to  
various details of standard high speed PCB design practice.  
The first requirement is for a good solid ground plane that  
covers as much of the board area around the AD8129/AD8130  
as possible. The only exception to this is that the ground plane  
around the FB pin should be kept a few millimeters away, and  
the ground should be removed from the inner layers and the  
opposite side of the board under this pin. This minimizes the  
stray capacitance on this node and helps preserve the gain  
flatness vs. frequency.  
The power supply pins should be bypassed as close as possible  
to the device to the nearby ground plane. Good high frequency  
ceramic chip capacitors should be used, and the bypassing  
should be done with a capacitance value of 0.01 μF to 0.1 μF for  
each supply. Farther away, low frequency bypassing should be  
provided with 10 μF tantalum capacitors from each supply to  
ground.  
The signal routing should be short and direct to avoid parasitic  
effects. Where possible, signals should be run over ground  
planes to avoid radiating or to avoid being susceptible to other  
radiation sources.  
Rev. C | Page 38 of 40  
 
AD8129/AD8130  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 147. 8-Lead Standard Small Outline Package [SOIC]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
0.65 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 148. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
Rev. C | Page 39 of 40  
 
AD8129/AD8130  
ORDERING GUIDE  
Model  
AD8129AR  
AD8129AR-REEL  
AD8129AR-REEL7  
AD8129ARZ2  
AD8129ARZ-REEL2  
AD8129ARZ-REEL72  
AD8129ARM  
AD8129ARM-REEL  
AD8129ARM-REEL7  
AD8129ARMZ2  
AD8129ARMZ-REEL2  
AD8129ARMZ-REEL72  
AD8130AR  
AD8130AR-REEL  
AD8130AR-REEL7  
AD8130ARZ2  
AD8130ARZ-REEL2  
AD8130ARZ-REEL72  
AD8130ARM  
Temperature Range1  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
R-8  
R-8  
R-8  
R-8  
Branding  
8-Lead SOIC  
8-Lead SOIC, 13" Tape and Reel  
8-Lead SOIC, 7" Tape and Reel  
8-Lead SOIC  
8-Lead SOIC, 13" Tape and Reel  
8-Lead SOIC, 7" Tape and Reel  
8-Lead MSOP  
8-Lead MSOP, 13" Tape and Reel  
8-Lead MSOP, 7" Tape and Reel  
8-Lead MSOP  
8-Lead MSOP, 13" Tape and Reel  
8-Lead MSOP, 7" Tape and Reel  
8-Lead SOIC  
8-Lead SOIC, 13" Tape and Reel  
8-Lead SOIC, 7" Tape and Reel  
8-Lead SOIC  
8-Lead SOIC, 13" Tape and Reel  
8-Lead SOIC, 7" Tape and Reel  
8-Lead MSOP  
8-Lead MSOP, 13" Tape and Reel  
8-Lead MSOP, 7" Tape and Reel  
8-Lead MSOP  
8-Lead MSOP, 13" Tape and Reel  
8-Lead MSOP, 7" Tape and Reel  
R-8  
R-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
R-8  
R-8  
R-8  
R-8  
R-8  
HQA  
HQA  
HQA  
HQA#  
HQA#  
HQA#  
R-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
HPA  
HPA  
HPA  
HPA#  
HPA#  
HPA#  
AD8130ARM-REEL  
AD8130ARM-REEL7  
AD8130ARMZ2  
AD8130ARMZ-REEL2  
AD8130ARMZ-REEL72  
1 Operating temperature range for 5 V or +5 V operation is −40°C to +125°C.  
2 Z = Pb-free part; # indicates lead-free, may be top or bottom marked.  
©
2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C02464–0–11/05(C)  
Rev. C | Page 40 of 40  
 
 
 
 

相关型号:

AD812AN

Dual, Current Feedback Low Power Op Amp
ADI

AD812ANZ

Dual, Current Feedback Low Power Op Amp
ADI

AD812AR

Dual, Current Feedback Low Power Op Amp
ADI

AD812AR-8

Current-Feedback Operational Amplifier
ETC

AD812AR-REEL

Dual, Current Feedback Low Power Op Amp
ADI

AD812AR-REEL7

Dual, Current Feedback Low Power Op Amp
ADI

AD812ARZ

Dual, Current Feedback Low Power Op Amp
ADI

AD812ARZ-REEL7

Dual, Current Feedback Low Power Op Amp
ADI

AD813

Single Supply, Low Power Triple Video Amplifier
ADI

AD8130

Low-Cost 270 MHz Differential Receiver Amplifiers
ADI

AD8130-EVAL

Low-Cost 270 MHz Differential Receiver Amplifiers
ADI

AD8130AR

Low-Cost 270 MHz Differential Receiver Amplifiers
ADI