AD8129 [ADI]

Low-Cost 270 MHz Differential Receiver Amplifiers; 低成本的270 MHz差分接收器放大器
AD8129
型号: AD8129
厂家: ADI    ADI
描述:

Low-Cost 270 MHz Differential Receiver Amplifiers
低成本的270 MHz差分接收器放大器

放大器
文件: 总28页 (文件大小:503K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low-Cost 270 MHz  
Differential Receiver Amplifiers  
a
AD8129/AD8130  
FEATURES  
High Speed  
CONNECTION DIAGRAM  
(Top View)  
AD8130: 270 MHz, 1090 V/s @ G = 1  
AD8129: 200 MHz, 1060 V/s @ G = 10  
High CMRR  
94 dB Min, DC to 100 kHz  
80 dB Min @ 2 MHz  
SO-8 (R) and Micro_SO-8 (RM)  
AD8129/  
AD8130  
1
2
3
4
8
7
6
5
–IN  
+V  
+IN  
–V  
S
S
+
70 dB @ 10 MHz  
OUT  
FB  
PD  
High-Input Impedance: 1 MDifferential  
Input Common-Mode Range 10.5 V  
Low Noise  
REF  
AD8130: 12.5 nV/Hz  
data transmission. The AD8129 and AD8130 are differential-  
to-single-ended amplifiers with extremely high CMRR at high  
frequency. Therefore, they can also be effectively used as  
high-speed instrumentation amps or for converting differential  
signals to single-ended signals.  
AD8129: 4.5 nV/Hz  
Low Distortion, 1 V p-p @ 5 MHz:  
AD8130, –79 dBc Worst Harmonic @ 5 MHz  
AD8129, –74 dBc Worst Harmonic @ 5 MHz  
User-Adjustable Gain  
The AD8129 is a low-noise high-gain (10 or greater) version  
intended for applications over very long cables where signal  
attenuation is significant. The AD8130 is stable at a gain of one  
and can be used for those applications where lower gains are  
required. Both have user adjustable gain to help compensate for  
losses in the transmission line. The gain is set by the ratio of  
two resistor values. The AD8129 and AD8130 have very high  
input impedance on both inputs regardless of the gain setting.  
No External Components for G = 1  
Power Supply Range +4.5 V to 12.6 V  
Power-Down  
APPLICATIONS  
High-Speed Differential Line Receiver  
Differential-to-Single-Ended Converter  
High-Speed Instrumentation Amp  
Level-Shifting  
The AD8129 and AD8130 have excellent common-mode rejec-  
tion (70 dB @ 10 MHz) allowing the use of low cost unshielded  
twisted-pair cables without fear of corruption by external noise  
sources or crosstalk.  
GENERAL DESCRIPTION  
The AD8129 and AD8130 are designed as receivers for the  
transmission of high-speed signals over twisted-pair cables to  
work with the AD8131 or AD8132 drivers. Either can be  
used for analog or digital video signals and for high-speed  
The AD8129 and AD8130 have a wide power supply range  
from single 5 V supply to 12 V, allowing wide common-mode  
and differential-mode voltage ranges while maintaining signal  
integrity. The wide common-mode voltage range will enable  
the driver receiver pair to operate without isolation transform-  
ers in many systems where the ground potential difference  
between drive and receive locations is many volts. The AD8129  
and AD8130 have considerable cost and performance improve-  
ments over op amps and other multi-amplifier receiving solutions.  
120  
110  
100  
90  
80  
70  
60  
+V  
S
PD  
V
IN  
50  
40  
30  
V
OUT  
10k  
100k  
1M  
10M  
100M  
FREQUENCY Hz  
R
R
G
F
Figure 1. AD8129 CMRR vs. Frequency  
V  
S
V
= V [1+(R /R )]  
IN  
OUT  
F
G
Figure 2. Typical Connection Configuration  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2001  
AD8129/AD8130–SPECIFICATIONS  
5 V SPECIFICATIONS (AD8129 G = 10, AD8130 G = 1, TA = 25C, VS = 5 V, REF = 0 V, PD VIH, RL = 1 k, CL = 2 pF, unless  
otherwise noted. TMIN to TMAX = –40C to +85C, unless otherwise noted.)  
Model  
Parameter  
AD8129A  
Typ  
AD8130A  
Typ  
Conditions  
Min  
Max  
Min  
Max  
Unit  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth  
VOUT 0.3 V p-p  
175  
170  
200  
190  
30/50  
1060  
20  
240  
140  
270  
155  
45  
1090  
20  
MHz  
MHz  
MHz  
V/µs  
ns  
VOUT = 2 V p-p  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Settling Time  
VOUT 0.3 V p-p, SOIC/µSOIC  
VOUT = 2 V p-p, 25% to 75%  
925  
950  
VOUT = 2 V p-p, 0.1%  
Rise and Fall Time  
Output Overdrive Recovery  
VOUT 1 V p-p, 10% to 90%  
1.7  
30  
1.4  
40  
ns  
ns  
NOISE/DISTORTION  
Second Harmonic/Third Harmonic  
VOUT = 1 V p-p, 5 MHz  
–74/–84  
–68/–74  
–67/–81  
–61/–70  
–67  
25  
4.5  
1
1.4  
0.3  
0.1  
–79/–86  
–74/–81  
–74/–80  
–74/–76  
–70  
26  
12.5  
1
1.4  
0.13  
0.15  
dBc  
dBc  
dBc  
dBc  
VOUT = 2 V p-p, 5 MHz  
VOUT = 1 V p-p, 10 MHz  
VOUT = 1 V p-p, 10 MHz  
VOUT = 2 V p-p, 10 MHz  
VOUT = 2 V p-p, 10 MHz  
f 10 kHz  
f 100 kHz  
f 100 kHz  
IMD  
Output IP3  
Input Voltage Noise (RTI)  
Input Current Noise (+IN, –IN)  
Input Current Noise (REF, FB)  
Differential Gain Error  
Differential Phase Error  
dBc  
dBm  
nV/Hz  
pA/Hz  
pA/Hz  
%
AD8130, G = 2, NTSC 200 IRE, RL 150 Ω  
AD8130, G = 2, NTSC 200 IRE, RL 150 Ω  
Degrees  
INPUT CHARACTERISTICS  
Common-Mode Rejection Ratio  
DC to 100 kHz, VCM = –3 V to +3.5 V  
94  
80  
110  
90  
80  
110  
dB  
dB  
dB  
dB  
V
V
V
MΩ  
MΩ  
pF  
pF  
VCM = 1 V p-p @ 2 MHz  
VCM = 1 V p-p @ 10 MHz  
VCM = 2 V p-p @ 1 kHz, VOUT = 0.5 V dc  
70  
100  
3.5  
0.5  
0.75  
1
4
3
4
70  
83  
3.8  
2.5  
2.8  
6
4
3
4
CMRR with VOUT = 1 V p-p  
Common-Mode Voltage Range  
Differential Operating Range  
Differential Clipping Level  
Resistance  
V+IN – V–IN = 0 V  
0.6  
0.85  
2.3  
3.3  
Differential  
Common-Mode  
Differential  
Capacitance  
Common-Mode  
DC PERFORMANCE  
Closed-Loop Gain Error  
VOUT  
=
1 V, RL 150 Ω  
0.4  
20  
88  
250  
0.2  
2
1.5  
0.8  
0.15  
10  
74  
200  
0.4  
10  
0.6  
1.8  
%
ppm/°C  
dB  
ppm  
mV  
µV/°C  
mV  
dB  
dB  
µA  
µA  
nA/°C  
µA  
nA/°C  
TMIN to TMAX  
Open-Loop Gain  
Gain Nonlinearity  
Input Offset Voltage  
VOUT  
VOUT  
=
=
1 V  
1 V  
TMIN to TMAX  
TMIN to TMAX  
+VS = +5 V, –VS = –4.5 V to –5.5 V  
–VS = –5 V, +VS = +4.5 V to +5.5 V  
1.4  
–84  
–86  
2
3.5  
–74  
–74  
2
Input Offset Voltage vs. Supply  
–90  
–94  
0.5  
1
–78  
–80  
0.5  
1
Input Bias Current (+IN, –IN)  
Input Bias Current (REF, FB)  
3.5  
3.5  
TMIN to TMAX (+IN, –IN, REF, FB)  
5
5
Input Offset Current  
(+IN, –IN, REF, FB)  
TMIN to TMAX  
0.08  
0.2  
0.4  
0.08  
0.2  
0.4  
OUTPUT PERFORMANCE  
Voltage Swing  
Output Current  
RLOAD = 150 /1 kΩ  
3.6/4.0  
2.25  
3.6/4.0  
2.25  
V
40  
40  
mA  
mA  
µA/°C  
pF  
Short Circuit Current  
To Common  
TMIN to TMAX  
PD VIL, In Power-Down Mode  
–60/+55  
–240  
10  
–60/+55  
–240  
10  
Output Impedance  
POWER SUPPLY  
Operating Voltage Range  
Quiescent Supply Current  
Total Supply Voltage  
12.6  
11.6  
12.6  
11.6  
V
10.8  
36  
0.68  
10.8  
36  
0.68  
mA  
µA/°C  
mA  
mA  
TMIN to TMAX  
PD VIL  
PD VIL, TMIN to TMAX  
0.85  
1
0.85  
1
PD PIN  
VIH  
+VS – 1.5  
+VS – 1.5  
V
VIL  
IIH  
IIL  
+VS – 2.5  
–30  
–50  
+VS – 2.5  
–30  
–50  
V
PD = Min VIH  
PD = Max VIL  
PD +VS – 3 V  
PD +VS – 2 V  
µA  
µA  
kΩ  
kΩ  
µs  
Input Resistance  
12.5  
100  
0.5  
12.5  
100  
0.5  
Enable Time  
Specifications subject to change without notice.  
–2–  
REV. 0  
AD8129/AD8130  
12 V SPECIFICATIONS (AD8129 G = 10, AD8130 G = 1, TA = 25C, VS = 12 V, REF = 0 V, PD VIH, RL = 1 k, CL = 2 pF,  
unless otherwise noted. TMIN to TMAX = –40C to +85C, unless otherwise noted.)  
Model  
Parameter  
AD8129A  
Typ  
AD8130A  
Typ  
Conditions  
Min  
Max  
Min  
Max  
Unit  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth  
VOUT 0.3 V p-p  
175  
170  
200  
195  
50/70  
1070  
20  
250  
150  
290  
175  
110  
1100  
20  
MHz  
MHz  
MHz  
V/µs  
ns  
VOUT = 2 V p-p  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Settling Time  
VOUT 0.3 V p-p, SOIC/µSOIC  
V
OUT = 2 V p-p, 25% to 75%  
935  
960  
VOUT = 2 V p-p, 0.1%  
Rise and Fall Time  
Output Overdrive Recovery  
VOUT 1 V p-p, 10% to 90%  
1.7  
40  
1.4  
40  
ns  
ns  
NOISE/DISTORTION  
Second Harmonic/Third Harmonic VOUT = 1 V p-p, 5 MHz  
VOUT = 2 V p-p, 5 MHz  
–71/–84  
–65/–74  
–65/–82  
–59/–70  
–67  
–79/–86  
–74/–81  
–74/–80  
–74/–74  
–70  
dBc  
dBc  
dBc  
dBc  
V
OUT = 1 V p-p, 10 MHz  
VOUT = 2 V p-p, 10 MHz  
VOUT = 2 V p-p, 10 MHz  
IMD  
dBc  
Output IP3  
V
OUT = 2 V p-p, 10 MHz  
25  
4.6  
1
1.4  
0.3  
0.1  
26  
13  
1
1.4  
0.13  
0.2  
dBm  
nV/Hz  
pA/Hz  
pA/Hz  
%
Input Voltage Noise (RTI)  
Input Current Noise (+IN, –IN)  
Input Current Noise (REF, FB)  
Differential Gain Error  
Differential Phase Error  
f 10 kHz  
f 100 kHz  
f 100 kHz  
AD8130, G = 2, NTSC 200 IRE, RL 150 Ω  
AD8130, G = 2, NTSC 200 IRE, RL 150 Ω  
Degrees  
INPUT CHARACTERISTICS  
Common-Mode Rejection Ratio  
DC to 100 kHz, VCM  
VCM = 1 V p-p @ 2 MHz  
VCM = 1 V p-p @ 10 MHz  
VCM = 4 V p-p @ 1 kHz, VOUT  
V+IN – V–IN = 0 V  
=
10 V  
92  
80  
105  
88  
80  
105  
dB  
dB  
dB  
dB  
V
V
V
MΩ  
MΩ  
pF  
pF  
70  
93  
10.3  
0.5  
0.75  
1
4
3
4
70  
80  
10.5  
2.5  
2.8  
6
4
3
4
CMRR with VOUT = 1 V p-p  
Common-Mode Voltage Range  
Differential Operating Range  
Differential Clipping Level  
Resistance  
= 0.5 V dc  
0.6  
0.85  
2.3  
3.3  
Differential  
Common-Mode  
Differential  
Capacitance  
Common-Mode  
DC PERFORMANCE  
Closed-Loop Gain Error  
VOUT  
TMIN to TMAX  
VOUT  
VOUT  
=
1 V, RL 150 Ω  
0.8  
20  
87  
250  
0.2  
2
1.8  
0.15  
10  
73  
200  
0.4  
10  
0.6  
1.8  
%
ppm/°C  
dB  
ppm  
mV  
µV/°C  
mV  
dB  
dB  
µA  
µA  
nA/°C  
µA  
nA/°C  
Open-Loop Gain  
Gain Nonlinearity  
Input Offset Voltage  
=
=
1 V  
1 V  
0.8  
T
MIN to TMAX  
TMIN to TMAX  
+VS = +12 V, –VS = –11.0 V to –13.0 V  
–VS = –12 V, +VS = +11.0 V to +13.0 V  
1.4  
–82  
–84  
2
3.5  
–70  
–70  
2
Input Offset Voltage vs. Supply  
–88  
–92  
0.25  
0.5  
2.5  
0.08  
0.2  
–77  
–88  
0.25  
0.5  
2.5  
0.08  
0.2  
Input Bias Current (+IN, –IN)  
Input Bias Current (REF, FB)  
3.5  
3.5  
T
MIN to TMAX (+IN, –IN, REF, FB)  
Input Offset Current  
(+IN, –IN, REF, FB)  
TMIN to TMAX  
0.4  
0.4  
OUTPUT PERFORMANCE  
Voltage Swing  
Output Current  
RLOAD = 700 Ω  
10.8  
10.8  
2.25  
V
40  
40  
mA  
mA  
µA/°C  
pF  
Short Circuit Current  
To Common  
TMIN to TMAX  
PD VIL, In Power-Down Mode  
–60/+55  
–240  
10  
–60/+55  
–240  
10  
Output Impedance  
POWER SUPPLY  
Operating Voltage Range  
Quiescent Supply Current  
Total Supply Voltage  
2.25  
12.6  
13.9  
12.6  
13.9  
V
13  
43  
0.73  
13  
43  
0.73  
mA  
µA/°C  
mA  
mA  
TMIN to TMAX  
PD VIL  
PD VIL, TMIN to TMAX  
0.9  
1.1  
0.9  
1.1  
PD PIN  
VIH  
+VS – 1.5  
+VS – 1.5  
V
VIL  
IIH  
IIL  
+VS – 2.5  
–30  
–50  
+VS – 2.5  
–30  
–50  
V
PD = Min VIH  
PD = Max VIL  
PD +VS – 3 V  
PD +VS – 2 V  
µA  
µA  
kΩ  
kΩ  
µs  
Input Resistance  
3
100  
0.5  
3
100  
0.5  
Enable Time  
Specifications subject to change without notice.  
–3–  
REV. 0  
AD8129/AD8130–SPECIFICATIONS  
5 V SPECIFICATIONS (AD8129 G = 10, AD8130 G = 1, TA = 25C, +VS = 5 V, –VS = 0 V, REF = 2.5 V, PD VIH, RL = 1 k, CL = 2 pF  
unless otherwise noted. TMIN to TMAX = –40C to +85C, unless otherwise noted.)  
Model  
Parameter  
AD8129A  
Typ  
AD8130A  
Typ  
Conditions  
Min  
Max  
Min  
Max  
Unit  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth  
VOUT 0.3 V p-p  
160  
160  
185  
185  
25/40  
930  
20  
220  
180  
250  
205  
25  
930  
20  
MHz  
MHz  
MHz  
V/µs  
ns  
V
OUT = 1 V p-p  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Settling Time  
VOUT 0.3 V p-p, SOIC/µSOIC  
VOUT = 2 V p-p, 25% to 75%  
VOUT = 2 V p-p, 0.1%  
810  
810  
Rise and Fall Time  
Output Overdrive Recovery  
VOUT 1 V p-p, 10% to 90%  
1.8  
20  
1.5  
30  
ns  
ns  
NOISE/DISTORTION  
Second Harmonic/Third Harmonic  
V
OUT = 1 V p-p, 5 MHz  
–68/–75  
–62/–64  
–63/–70  
–56/–58  
–67  
25  
4.5  
1
1.4  
0.3  
0.1  
–72/–79  
–65/–71  
–60/–62  
–68/–68  
–70  
26  
12.3  
1
1.4  
0.13  
0.15  
dBc  
dBc  
dBc  
dBc  
VOUT = 2 V p-p, 5 MHz  
VOUT = 1 V p-p, 10 MHz  
V
VOUT = 2 V p-p, 10 MHz  
VOUT = 2 V p-p, 10 MHz  
f 10 kHz  
f 100 kHz  
f 100 kHz  
OUT = 2 V p-p, 10 MHz  
IMD  
Output IP3  
Input Voltage Noise (RTI)  
Input Current Noise (+IN, –IN)  
Input Current Noise (REF, FB)  
Differential Gain Error  
Differential Phase Error  
dBc  
dBm  
nV/Hz  
pA/Hz  
pA/Hz  
%
AD8130, G = 2, NTSC 100 IRE, RL 150 Ω  
AD8130, G = 2, NTSC 100 IRE, RL 150 Ω  
Degrees  
INPUT CHARACTERISTICS  
Common-Mode Rejection Ratio  
DC to 100 kHz, VCM = 1.5 V to 3.5 V  
86  
80  
96  
86  
80  
96  
dB  
dB  
dB  
dB  
V
V
V
MΩ  
MΩ  
pF  
pF  
V
CM = 1 V p-p @ 1 MHz  
VCM = 1 V p-p @ 10 MHz  
VCM = 1 V p-p @ 1 kHz, VOUT  
70  
80  
70  
72  
CMRR with VOUT = 1 V p-p  
Common-Mode Voltage Range  
Differential Operating Range  
Differential Clipping Level  
Resistance  
=
0.5 V dc  
V
+IN – V–IN = 0 V  
1.25 to 3.7  
0.5  
1.25 to 3.8  
2.5  
2.8  
0.6  
0.75  
0.85  
2.3  
3.3  
Differential  
Common-Mode  
Differential  
1
4
3
4
6
4
3
4
Capacitance  
Common-Mode  
DC PERFORMANCE  
Closed-Loop Gain Error  
VOUT  
=
1 V, RL 150 Ω  
0.25  
20  
86  
250  
0.2  
2
1.25  
0.1  
20  
71  
200  
0.4  
10  
0.6  
1.8  
%
ppm/°C  
dB  
ppm  
mV  
µV/°C  
mV  
dB  
dB  
µA  
µA  
nA/°C  
µA  
nA/°C  
TMIN to TMAX  
Open-Loop Gain  
Gain Nonlinearity  
Input Offset Voltage  
VOUT  
VOUT  
=
=
1 V  
1 V  
0.8  
TMIN to TMAX  
TMIN to TMAX  
+VS = 5 V, –VS = –0.5 V to +0.5 V  
–VS = 0 V, +VS = +4.5 V to +5.5 V  
1.4  
–80  
–86  
2
3.5  
–70  
–76  
2
Input Offset Voltage vs. Supply  
–88  
–100  
0.5  
1
–74  
–90  
0.5  
Input Bias Current (+IN, –IN)  
Input Bias Current (REF, FB)  
3.5  
1
3.5  
T
MIN to TMAX (+IN, –IN, REF, FB)  
5
5
Input Offset Current  
(+IN, –IN, REF, FB)  
TMIN to TMAX  
0.08  
0.2  
0.4  
0.08  
0.2  
0.4  
3.9  
OUTPUT PERFORMANCE  
Voltage Swing  
Output Current  
RLOAD 150 Ω  
1.1  
3.9  
1.1  
V
35  
35  
mA  
mA  
µA/°C  
pF  
Short Circuit Current  
To Common  
TMIN to TMAX  
PD VIL, In Power-Down Mode  
–60/+55  
–240  
10  
–60/+55  
–240  
10  
Output Impedance  
POWER SUPPLY  
Operating Voltage Range  
Quiescent Supply Current  
Total Supply Voltage  
2.25  
12.6  
10.6  
2.25  
12.6  
10.6  
V
9.9  
33  
0.65  
9.9  
33  
0.65  
mA  
µA/°C  
mA  
mA  
TMIN to TMAX  
PD VIL  
PD VIL, TMIN to TMAX  
0.85  
1
0.85  
1
PD PIN  
VIH  
+VS – 1.5  
+VS – 1.5  
V
VIL  
IIH  
IIL  
+VS – 2.5  
–30  
–50  
+VS – 2.5  
–30  
–50  
V
PD = Min VIH  
PD = Max VIL  
PD +VS – 3 V  
PD +VS – 2 V  
µA  
µA  
kΩ  
kΩ  
µs  
Input Resistance  
12.5  
100  
0.5  
12.5  
100  
0.5  
Enable Time  
Specifications subject to change without notice.  
–4–  
REV. 0  
AD8129/AD8130  
ABSOLUTE MAXIMUM RATINGS1, 2  
2.0  
1.5  
1.0  
0.5  
0
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.4 V  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . Refer to Figure 3  
Input Voltage (Any Input) . . . . . . . –VS – 0.3 V to +VS + 0.3 V  
Differential Input Voltage (AD8129)3 VS 11.5 V . . . 0.5 V  
Differential Input Voltage (AD8129)3 VS < 11.5 V . . . 6.2 V  
Differential Input Voltage (AD8130) . . . . . . . . . . . . . . 8.4 V  
Storage Temperature . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature (Soldering 10 sec) . . . . . . . . . . . . . . 300°C  
T
(MAX) = 150C  
J
8-LEAD SOIC  
PACKAGE  
8-LEAD  
MICRO_SO  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other condition s above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
50 40 30 20 10  
0
10 20 30 40 50 60 70 80 90  
AMBIENT TEMPERATURE C  
2Thermal Resistance measured on SEMI standard 4-layer board.  
8-Lead SOIC: θJA= 121°C/W; 8-Lead Micro_SO: θJA = 142°C/W  
3Refer to Applications section, Extreme Operating Condition, and Power Dissipation.  
Figure 3. Maximum Power Dissipation vs. Temperature  
CONNECTION DIAGRAM  
(Top View)  
SO-8 (R) and Micro_SO-8 (RM)  
AD8129/  
AD8130  
1
2
3
4
8
7
6
5
IN  
+IN  
+V  
V  
S
S
+
OUT  
FB  
PD  
REF  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Option  
Branding  
Information  
Model  
AD8129AR  
–40ºC to +85ºC  
–40ºC to +85ºC  
–40ºC to +85ºC  
–40ºC to +85ºC  
–40ºC to +85ºC  
–40ºC to +85ºC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead Micro_SO  
8-Lead Micro_SO  
8-Lead Micro_SO  
Evaluation Board with SOIC  
SO-8  
AD8129AR-REEL1  
AD8129AR-REEL72  
AD8129ARM  
13" Tape and Reel  
7" Tape and Reel  
RM-8  
13" Tape and Reel  
7" Tape and Reel  
HQA  
HQA  
HQA  
AD8129ARM-REEL3  
AD8129ARM-REEL72  
AD8129-EVAL  
AD8130AR  
–40ºC to +85ºC  
–40ºC to +85ºC  
–40ºC to +85ºC  
–40ºC to +85ºC  
–40ºC to +85ºC  
–40ºC to +85ºC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead Micro_SO  
8-Lead Micro_SO  
8-Lead Micro_SO  
Evaluation Board with SOIC  
SO-8  
AD8130AR-REEL1  
AD8130AR-REEL72  
AD8130ARM  
13" Tape and Reel  
7" Tape and Reel  
RM-8  
13" Tape and Reel  
7" Tape and Reel  
HPA  
HPA  
HPA  
AD8130ARM-REEL3  
AD8130ARM-REEL72  
AD8130-EVAL  
NOTES  
113" Reel of 2500 each.  
27" Reel of 1000 each.  
313" Reel of 3000 each.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD8129/AD8130 features proprietary ESD protection circuitry, permanent damage may occur  
on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions  
are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. 0  
–5–  
AD8129/AD8130  
AD8130 Frequency Response Characteristics  
(G = 1, RL = 1 k, CL = 2 pF, VOUT = 0.3 V p-p, TA = 25C, unless otherwise noted.)  
3
2
3
2
3
2
V
= 2.5V  
V
= 2.5V  
V
= 0.3V p-p  
V
= 1V p-p  
S
V
= 2V p-p  
S
OUT  
OUT  
OUT  
V
= 2.5V  
S
1
1
1
0
0
0
V
= 5V  
V
= 5V  
S
S
1  
1  
1  
V
= 5V  
S
V
= 12V  
V
= 12V  
S
S
2  
3  
2  
3  
2  
3  
V
= 12V  
S
4  
5  
6  
7  
4  
5  
6  
7  
4  
5  
6  
7  
1
10  
FREQUENCY MHz  
100  
400  
1
10  
FREQUENCY MHz  
100  
300  
1
10  
FREQUENCY MHz  
100  
300  
TPC 3. AD8130 Frequency Response  
vs. Supply, VOUT = 2 V p-p  
TPC 1. AD8130 Frequency Response  
vs. Supply, VOUT = 0.3 V p-p  
TPC 2. AD8130 Frequency Response  
vs. Supply, VOUT = 1 V p-p  
6
0.5  
0.7  
C
= 20pF  
V
= 5V  
L
R
= 1kꢁ  
V
= 2.5V  
V = 2.5V  
S
S
R
= 150ꢁ  
L
S
L
5
4
3
2
0.4  
0.3  
0.2  
0.1  
0.6  
0.5  
0.4  
0.3  
C
= 10pF  
L
V
= 5V  
S
C
= 5pF  
L
V
= 5V  
S
1
0
0.0  
0.2  
0.1  
0.1  
V
= 12V  
S
1  
2  
3  
4  
0.2  
0.3  
0.4  
0.5  
0.0  
0.1  
0.2  
0.3  
C
= 2pF  
L
V
= 12V  
S
1
10  
FREQUENCY MHz  
100  
300  
1
10  
100  
300  
1
10  
FREQUENCY MHz  
100  
300  
FREQUENCY MHz  
TPC 4. AD8130 Frequency Response  
vs. Load Capacitance  
TPC 5. AD8130 Fine Scale Response  
vs. Supply, RL = 1 k  
TPC 6. AD8130 Fine Scale Response  
vs. Supply, RL = 150 Ω  
3
3
3
R
= 150ꢁ  
G = 2  
OUT  
G = 2  
OUT  
L
2
1
V
= 0.3V p-p  
V
= 2.5V  
V
= 2V p-p  
2
1
2
1
S
V
= 2.5V  
V
= 2.5V  
S
S
0
0
0
V
= 5V  
1  
S
1  
1  
V
= 5V  
V
= 5V  
S
S
2  
3  
2  
3  
2  
3  
V
= 12V  
V
= 12V  
V
= 12V  
S
S
S
4  
5  
6  
7  
4  
5  
6  
7  
4  
5  
6  
7  
1
10  
FREQUENCY MHz  
100  
400  
1
10  
FREQUENCY MHz  
100  
300  
1
10  
100  
300  
FREQUENCY MHz  
TPC 7. AD8130 Frequency Response  
vs. Supply, RL = 150 Ω  
TPC 8. AD8130 Frequency Response  
vs. Supply, G = 2, VOUT = 0.3 V p-p  
TPC 9. AD8130 Frequency Response  
vs. Supply, G = 2, VOUT = 2 V p-p  
–6–  
REV. 0  
AD8129/AD8130  
3
2
0.3  
0.2  
0.1  
0
0.3  
0.2  
0.1  
0
G = 2  
= 150ꢁ  
G = 2  
= 1kꢁ  
V
= 2.5V  
S
R
= R = 1kꢁ  
G
F
R
L
R
L
R
= R = 750ꢁ  
G
V
= 2.5V  
F
S
1
0
R
= R = 499ꢁ  
G
1  
0.1  
0.1  
F
V
= 5V  
V
= 5V  
S
S
2  
3  
0.2  
0.3  
0.2  
0.3  
R
= R = 250ꢁ  
G
F
V
= 12V  
S
V
= 12V  
S
4  
5  
6  
7  
0.4  
0.5  
0.6  
0.7  
0.4  
0.5  
0.6  
0.7  
G = 2  
= 5V  
V
S
1
10  
FREQUENCY MHz  
100  
300  
1
10  
100  
1
10  
100  
FREQUENCY MHz  
FREQUENCY MHz  
TPC 11. AD8130 Fine Scale Response  
vs. Supply, G = 2, RL = 1 kΩ  
TPC 10. AD8130 Frequency  
Response for Various RF/RG  
TPC 12. AD8130 Fine Scale Response  
vs. Supply, G = 2, RL = 150 Ω  
0.3  
3
2
3
V
= 2V p-p  
V
= 2V p-p  
G = 2  
L
OUT  
OUT  
0.2  
0.1  
0
R
= 150ꢁ  
2
1
V
= 5V  
V
= 2.5V  
S
S
V
= 2.5V  
1
S
0
0
V
= 5V  
S
G = 5  
0.1  
1  
1  
V
= 12V  
S
V
= 12V  
V
= 12V  
S
S
0.2  
0.3  
2  
3  
2  
3  
V
= 2.5V  
S
V
= 5V, 12V  
S
G = 5  
V
= 2.5V  
S
0.4  
0.5  
0.6  
0.7  
4  
5  
6  
7  
4  
5  
6  
7  
V
= 5V, 12V  
S
G = 10  
G = 10  
0.1  
1
10  
30  
1
10  
FREQUENCY MHz  
100  
300  
0.1  
1
10  
100  
FREQUENCY MHz  
FREQUENCY MHz  
TPC 14. AD8130 Fine Scale Response  
vs. Supply, G = 5, G = 10, VOUT = 2 V p-p  
TPC13. AD8130FrequencyResponse  
vs. Supply, G = 2, RL = 150 Ω  
TPC 15. AD8130 Frequency Response  
vs. Supply, G = 5, G = 10, VOUT = 2 V p-p  
12  
3
0dB = 1V RMS  
R
= 150ꢁ  
1
8
TEK P6245  
FET PROBE  
L
6
0
2
1
50ꢁ  
V
= 5V, 12V  
6
S
4
5
6  
12  
18  
24  
30  
36  
42  
0
R
C
L
L
1  
G = 5  
G = 10  
2  
3  
R
R
F
G
V
= 2.5V  
S
V
= 5V, 12V  
S
4  
5  
6  
7  
G
R
R
G
F
1
2
5
0ꢁ  
499ꢁ  
8.06kꢁ  
499ꢁ  
2kꢁ  
V
= 5V  
S
10 4.99k549ꢁ  
48  
10  
100  
400  
0.1  
1
10  
100  
FREQUENCY MHz  
FREQUENCY MHz  
TPC 18. AD8130 Basic Frequency  
Response Test Circuit  
TPC 17. AD8130 Frequency Response  
for Various Output Levels  
TPC16. AD8130FrequencyResponse  
vs. Supply, G = 5, G = 10, RL = 150 Ω  
REV. 0  
–7–  
AD8129/AD8130  
AD8129 Frequency Response Characteristics  
(G = 10, RL = 1 k, CL = 2 pF, VOUT = 0.3 V p-p, TA = 25C, unless otherwise noted.)  
3
2
3
2
3
2
V
= 2V p-p  
V
= 1V p-p  
V = 5V  
S
V
= 0.3V p-p  
OUT  
OUT  
OUT  
V
= 5V  
S
V
= 2.5V  
V
= 2.5V  
V = 2.5V  
S
S
S
1
1
1
0
0
0
V
= 5V  
S
1  
1  
1  
V
= 12V  
V = 12V  
S
S
V
= 12V  
S
2  
3  
2  
3  
2  
3  
4  
5  
6  
7  
4  
5  
6  
7  
4  
5  
6  
7  
1
10  
FREQUENCY MHz  
100  
300  
1
10  
FREQUENCY MHz  
100  
300  
1
10  
FREQUENCY MHz  
100  
300  
TPC 19. AD8129 Frequency Response  
vs. Supply, VOUT = 0.3 V p-p  
TPC 20. AD8129 Frequency Response  
vs. Supply, VOUT = 1 V p-p  
TPC21. AD8129FrequencyResponse  
vs. Supply, VOUT = 2 V p-p  
4
0.5  
0.3  
C
C
C
C
= 20pF  
= 10pF  
= 5pF  
V
= 5V  
R
= 1kꢁ  
V
V
= 2.5V  
= 5V  
R = 150ꢁ  
L
V
= 2.5V  
S
L
L
L
L
L
S
S
3
2
1
0
0.4  
0.3  
0.2  
0.1  
0.2  
0.1  
0
S
= 2pF  
V
= 5V  
0.1  
S
1  
2  
0
0.2  
0.3  
V
= 12V  
V
= 12V  
S
S
0.1  
3  
4  
5  
6  
0.2  
0.3  
0.4  
0.5  
0.4  
0.5  
0.6  
0.7  
1
10  
FREQUENCY MHz  
100  
300  
1
10  
FREQUENCY MHz  
100  
300  
1
10  
FREQUENCY MHz  
100  
300  
TPC 24. AD8129 Fine Scale Response  
vs. Supply, RL = 150 Ω  
TPC 22. AD8129 Frequency Response  
vs. Load Capacitance  
TPC 23. AD8129 Fine Scale Response  
vs. Supply, RL = 1 kΩ  
3
3
3
G = 20  
OUT  
G = 20  
OUT  
R
= 150ꢁ  
L
V
= 0.3V p-p  
2
1
V
= 2V p-p  
2
1
2
1
V
= 2.5V  
S
V
= 5V, 12V  
0
1  
2  
3  
4  
5  
6  
7  
0
0
S
V
= 5V, 12V  
S
1  
1  
V
= 5V  
S
2  
3  
2  
3  
V
= 12V  
S
V
= 2.5V  
4  
5  
6  
7  
4  
5  
6  
7  
S
V
= 2.5V  
S
1
10  
FREQUENCY MHz  
100  
300  
10  
100  
300  
1
10  
FREQUENCY MHz  
100  
300  
FREQUENCY MHz  
TPC 27. AD8129 Frequency Response  
vs. Supply, G = 20, VOUT = 2 V p-p  
TPC 25. AD8129 Frequency Response  
vs. Supply, RL = 150 Ω  
TPC 26. AD8129 Frequency Response  
vs. Supply, G = 20, VOUT = 0.3 V p-p  
–8–  
REV. 0  
AD8129/AD8130  
0.8  
0.6  
0.4  
0.2  
0
0.2  
0.1  
0
0.3  
0.2  
0.1  
0
2k/221ꢁ  
G = 20  
= 1kꢁ  
G = 20  
= 150ꢁ  
G = 10  
= 5V  
R
L
R
L
V
S
909/100ꢁ  
V
= 5V  
499/54.9ꢁ  
S
V
= 5V, 12V  
S
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
SOIC  
0.1  
0.2  
0.2  
0
0.2  
0.3  
499/54.9ꢁ  
909/100ꢁ  
V
= 12V  
S
SOIC  
0.4  
0.5  
0.6  
0.7  
V
= 2.5V  
V
= 2.5V  
S
S
2k/221ꢁ  
0.2  
0.4  
0.6  
1
10  
FREQUENCY MHz  
100  
300  
1
10  
FREQUENCY MHz  
30  
0.1  
1
10  
30  
FREQUENCY MHz  
TPC 28. AD8129 Fine Scale Response  
vs. SOIC and µSOIC for Various RF/RG  
TPC 30. AD8129 Fine Scale Response  
vs. Supply  
TPC 29. AD8129 Fine Scale Response  
vs. Supply  
3
3
0.2  
G = 20  
L
V
= 2V p-p  
V
= 2V p-p  
OUT  
OUT  
R
= 150ꢁ  
2
1
2
1
0.1  
0
V
= 12V  
S
0
0
0.1  
0.2  
G = 50  
G = 100  
1  
1  
G = 50  
G = 100  
V
= 5V, 12V  
S
V
= 2.5V  
S
2  
3  
2  
3  
0.3  
0.4  
V
= 5V  
S
V
= 2.5V  
S
4  
5  
6  
7  
4  
5  
6  
7  
0.5  
0.6  
0.7  
0.8  
V
= 2.5V  
S
V
= 5V  
S
V
= 12V  
S
V
= 12V  
S
1
10  
FREQUENCY MHz  
100  
300  
0.1  
1
10  
50  
0.1  
1
10  
FREQUENCY MHz  
FREQUENCY MHz  
TPC 33. AD8129 Frequency Response  
vs. Supply, G = 50, G = 100,  
VOUT = 2 V p-p  
TPC 31. AD8129 Frequency Response  
vs. Supply, G = 20, RL = 150 Ω  
TPC 32. AD8129 Fine Scale Response  
vs. Supply, G = 50, G = 100,  
VOUT = 2 V p-p  
3
12  
R
= 150ꢁ  
L
0dB = 1V RMS  
6
1
8
TEK P6245  
FET PROBE  
2
1
0
6  
50ꢁ  
6
4
5
0
R
C
L
L
1  
12  
18  
24  
30  
36  
42  
G = 50  
G = 100  
2  
3  
R
G
R
F
V
= 2.5V  
S
4  
5  
6  
7  
V
= 5V  
S
G
R
R
G
F
V
= 12V  
10  
20  
50  
2kꢁ  
2kꢁ  
2kꢁ  
2kꢁ  
221ꢁ  
105ꢁ  
41.2ꢁ  
20ꢁ  
S
V
= 5V  
S
100  
48  
10  
0.1  
1
10  
50  
100  
400  
FREQUENCY MHz  
FREQUENCY MHz  
TPC 36. AD8129 Basic Frequency  
Response Test Circuit  
TPC 35. AD8129 Frequency Response  
for Various Output Levels  
TPC 34. AD8129 Frequency Response  
vs. Supply, G = 50, G = 100,  
RL = 150 Ω  
REV. 0  
–9–  
AD8129/AD8130  
AD8130 Harmonic Distortion Characteristics  
(RL = 1 k, CL = 2 pF, TA = 25C, unless otherwise noted.)  
54  
55  
61  
67  
73  
79  
60  
V
= 2V p-p  
V
= 1V p-p  
OUT  
OUT  
V = 12V  
S
f
= 5MHz  
C
V
= 5V  
S
60  
66  
G = 1  
V
= 5V  
S
V
= 12V  
S
G = 1  
66  
72  
78  
84  
72  
78  
84  
90  
G = 1  
= 12V  
V
= 12V  
S
V
V
= 5V  
S
S
V
= 5V  
S
G = 1  
G = 2  
V
= 12V  
85  
91  
S
V
= 12V  
S
G = 2  
G = 2  
V
= 5V  
S
1
10  
40  
0.5  
1
10  
1
10  
FREQUENCY MHz  
40  
V
V p-p  
FREQUENCY MHz  
OUT  
TPC 38. AD8130 Second Harmonic  
Distortion vs. Frequency  
TPC 39. AD8130 Second Harmonic  
Distortion vs. Output Voltage  
TPC 37. AD8130 Second Harmonic  
Distortion vs. Frequency  
46  
51  
45  
G = 1  
V
= 2V p-p  
V
= 1V p-p  
fC = 5MHz  
52  
OUT  
G = 2,V = 12V  
OUT  
S
V
= 5V  
S
57  
51  
G = 2,V = 5V  
V
= 12V  
= 5V  
G = 1  
S
S
S
V
= 12V  
58  
64  
70  
76  
82  
88  
94  
63  
69  
75  
81  
87  
93  
99  
57  
63  
69  
75  
81  
87  
93  
V
S
V
S
= 12V  
G = 2  
G = 1  
V
= 5V  
S
V
= 12V  
V
= 5V  
S
S
V
= 12V  
G = 1  
G = 1  
S
V
= 5V  
S
G = 2  
G = 2  
0.5  
1
10  
1
10  
FREQUENCY MHz  
40  
1
10  
FREQUENCY MHz  
40  
V
V p-p  
OUT  
TPC 40. AD8130 Third Harmonic  
Distortion vs. Frequency  
TPC 41. AD8130 Third Harmonic  
Distortion vs. Frequency  
TPC 42. AD8130 Third Harmonic  
Distortion vs. Output Voltage  
46  
43  
42  
G = 2, HD3  
V
f
= 2.5V  
= 5MHz  
V
= 2.5V  
V
= 2.5V  
S
S
S
48  
52  
58  
64  
70  
76  
82  
88  
94  
C
G = 1, HD3  
49  
54  
60  
G = 1  
55  
61  
G = 1, HD2  
V
= 2V p-p  
V
= 2V p-p  
OUT  
OUT  
66  
72  
G = 2, HD2  
G = 2  
G = 2, HD2  
G = 2  
G = 1  
67  
73  
79  
78  
84  
90  
96  
G = 1  
G = 2  
G = 2, HD3  
G = 1  
V
= 1V p-p  
OUT  
V
= 1V p-p  
OUT  
G = 2  
0
0.5  
1.0  
V
1.5  
2.0  
2.5  
3.0  
1
10  
40  
1
10  
FREQUENCY MHz  
40  
V p-p  
OUT  
FREQUENCY MHz  
TPC 43. AD8130 Second Harmonic  
Distortion vs. Frequency  
TPC 44. AD8130 Third Harmonic  
Distortion vs. Frequency  
TPC 45. AD8130 Harmonic Distortion  
vs. Output Voltage  
–10–  
REV. 0  
AD8129/AD8130  
AD8129 Harmonic Distortion Characteristics  
(RL = 1 k, CL = 2 pF, TA = 25C, unless otherwise noted.)  
51  
57  
63  
69  
75  
81  
87  
50  
42  
48  
54  
60  
66  
72  
78  
V
= 1V p-p  
V
= 2V p-p  
OUT  
OUT  
f = 5MHz  
C
56  
62  
G = 10  
G = 20  
G = 10,  
V = 12V  
S
G = 10,  
= 12V  
G = 10,  
= 12V  
V
V
S
S
G = 20,  
= 12V  
68  
74  
V
G = 10,  
= 5V  
G = 10,  
= 5V  
S
V
V
S
S
G = 20,  
= 12V  
G = 10,  
G = 20,  
= 5V  
V
S
V
= 5V  
V
S
S
80  
86  
G = 20,  
G = 20,  
G = 20,  
= 5V  
V
= 5V  
V
= 12V  
V
S
S
S
84  
1
10  
FREQUENCY MHz  
40  
0.5  
1
10  
1
10  
40  
V
V p-p  
FREQUENCY MHz  
OUT  
TPC 46. AD8129 Second Harmonic  
Distortion vs. Frequency  
TPC 47. AD8129 Second Harmonic  
Distortion vs. Frequency  
TPC 48. AD8129 Second Harmonic  
Distortion vs. Output Voltage  
45  
54  
48  
V
= 1V p-p  
V
= 2V p-p  
OUT  
OUT  
G = 10,  
= 5V  
f
= 5MHz  
G = 10,  
= 12V  
C
G = 10,  
= 5V  
V
54  
V
S
60  
51  
57  
63  
69  
75  
81  
87  
V
S
S
G = 10,  
V
= 5V  
G = 10,  
= 12V  
60  
66  
72  
78  
84  
S
66  
72  
78  
84  
90  
96  
G = 10,  
= 12V  
V
S
V
S
G = 10,  
= 12V  
V
S
G = 20,  
= 5V  
V
S
G = 20,  
= 5V  
G = 20,  
= 5V  
V
S
G = 10,  
= 5V  
V
S
V
S
G = 20,  
= 12V  
90  
96  
G = 20,  
= 12V  
G = 20,  
= 12V  
V
S
V
V
S
S
1
10  
FREQUENCY MHz  
40  
1
10  
FREQUENCY MHz  
40  
0.5  
1
10  
V
V p-p  
OUT  
TPC 50. AD8129 Third Harmonic  
Distortion vs. Frequency  
TPC 49. AD8129 Third Harmonic  
Distortion vs. Frequency  
TPC 51. AD8129 Third Harmonic  
Distortion vs. Output Voltage  
42  
44  
50  
V
= 2.5V  
V
= 2.5V  
S
V
f
= 2.5V  
= 5MHz  
S
V
= 2V p-p  
S
OUT  
V
= 2V p-p  
48  
54  
60  
66  
72  
78  
84  
90  
OUT  
C
50  
56  
62  
68  
74  
80  
56  
62  
68  
74  
80  
86  
G = 20  
HD3  
G = 20  
HD2  
G = 20  
G = 10  
HD2  
V
= 1V p-p  
V
= 1V p-p  
G = 20  
OUT  
OUT  
G = 10  
G = 10  
HD3  
G = 10  
0
0.5  
1.0  
V
1.5  
V p-p  
2.0  
2.5  
3.0  
1
10  
FREQUENCY MHz  
40  
1
10  
FREQUENCY MHz  
40  
OUT  
TPC 53. AD8129 Third Harmonic  
Distortion vs. Frequency  
TPC 52. AD8129 Second Harmonic  
Distortion vs. Frequency  
TPC 54. AD8129 Harmonic Distor-  
tion vs. Output Voltage  
REV. 0  
–11–  
AD8129/AD8130  
61  
39  
50  
56  
62  
68  
74  
80  
86  
G = 1  
= 5MHz  
G = 1  
OUT  
V
= 1V p-p  
V
= 2V p-p  
G = 1  
= 5MHz  
OUT  
OUT  
f
C
V
= 2V p-p  
f
45  
51  
57  
63  
69  
75  
81  
87  
C
67  
73  
79  
V
= 5V  
S
HD2  
= 2.5V  
R
f
= 1kꢁ  
= 5MHz  
HD2  
= 2.5V  
L
V
S
V
S
C
HD2  
= 5V, 12V  
V
S
HD2  
= 5V, 12V  
HD3  
= 5V  
V
S
V
S
85  
91  
97  
HD2  
HD3  
= 12V  
V
HD3  
= 2.5V  
S
V
S
HD3  
HD3  
= 2.5V  
HD3  
= 5V, 12V  
V
S
V
S
100  
1k  
5 4 3 2 1  
0
1
2
3
4
5
100  
1k  
V
V  
R
ꢁ  
CM  
L
R
ꢁ  
L
TPC 57. AD8130 Harmonic Distortion  
vs. Load Resistance  
TPC 55. AD8130 Harmonic Distortion  
vs. Common-Mode Voltage  
TPC 56. AD8130 Harmonic Distortion  
vs. Load Resistance  
36  
44  
48  
G = 10  
C
G = 10  
G = 10  
C
V
= 2V p-p  
V
= 1V p-p  
OUT  
OUT  
f
= 5MHz  
V
= 2V p-p  
f = 5MHz  
OUT  
= 5V  
42  
48  
54  
60  
66  
72  
54  
V
50  
56  
62  
68  
74  
80  
S
R
= 1kꢁ  
V
V
V
= 2.5V  
= 12V  
= 5V  
V
V
V
= 2.5V  
= 12V  
= 5V  
L
S
S
S
S
60  
66  
72  
78  
84  
90  
fC = 5MHz  
S
S
HD2  
V
= 12V  
= 5V  
S
S
V
= 2.5V  
S
V
V
= 12V  
HD2  
S
HD3  
HD3  
HD3  
1
V
= 2.5V  
S
V
= 5V  
S
78  
5 4 3 2 1  
0
2
3
4
5
100  
1k  
100  
1k  
V
V  
R
ꢁ  
CM  
R
ꢁ  
L
L
TPC 58. AD8129 Harmonic Distortion  
vs. Common-Mode Voltage  
TPC 59. AD8129 Harmonic Distortion  
vs. Load Resistance  
TPC 60. AD8129 Harmonic Distortion  
vs. Load Resistance  
V
100  
10  
100  
CM  
200ꢁ  
1:2  
AD8130  
R
L
C
L
10  
R
R
F
G
AD8129  
1.0  
0.1  
G
R
R
G
F
1
2
10  
20  
0ꢁ  
499ꢁ  
2kꢁ  
2kꢁ  
MINI CIRCUITS:  
# T4 6T, fC Յ 10MHz  
# TC4 1W, fC Ͼ 10MHz  
499ꢁ  
221ꢁ  
105ꢁ  
1.0  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY Hz  
FREQUENCY Hz  
TPC 61. AD8129/AD8130 Basic Distor-  
tion Test Circuit, VCM = 0 V Unless  
Otherwise Noted  
TPC 62. AD8129/AD8130 Input  
Current Noise vs. Frequency  
TPC 63. AD8129/AD8130 Input  
Voltage Noise vs. Frequency  
–12–  
REV. 0  
AD8129/AD8130  
30  
40  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
50  
60  
70  
80  
V
= 2.5V  
V
= 2.5V  
S
90  
S
V
= 12V  
S
100  
110  
120  
V
S
= 5V, 12V  
V
= 5V  
S
V
= 2.5V  
V
= 12V  
V
= 5V  
S
S
S
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
FREQUENCY Hz  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY Hz  
FREQUENCY Hz  
TPC 65. AD8130 Positive Power  
Supply Rejection vs. Frequency  
TPC 64. AD8130 Common-Mode  
Rejection vs. Frequency  
TPC 66. AD8130 Negative Power  
Supply Rejection vs. Frequency  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
V
= 2.5V  
80  
90  
S
60  
70  
V
= 5V  
V
= 12V  
S
S
100  
110  
120  
80  
90  
V
= 2.5V  
V
= 12V  
S
S
V
= 5V, 12V  
S
V
= 2.5V  
V
= 5V  
S
S
100  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
FREQUENCY Hz  
1M  
10M  
100M  
FREQUENCY Hz  
FREQUENCY Hz  
TPC 67. AD8129 Common-Mode  
Rejection vs. Frequency  
TPC 69. AD8129 Negative Power  
Supply Rejection vs. Frequency  
TPC 68. AD8129 Positive Power  
Supply Rejection vs. Frequency  
100  
10  
80  
90  
80  
180  
70  
60  
50  
40  
30  
20  
10  
0
180  
135  
GAIN  
GAIN  
70  
V
= 5V  
S
60  
50  
135  
90  
1
AD8130, G = 1  
+
PHASE  
90  
40  
PHASE  
100m  
10m  
1m  
V
V
OUT  
OUT  
30  
+
2pF  
2pF  
1kꢁ  
1kꢁ  
20  
45  
0
45  
0
1kꢁ  
100ꢁ  
1kꢁ  
1kꢁ  
φ
= 56ꢃ  
M
10  
0
V
V
IN  
φ
= 58ꢃ  
IN  
M
AD8129, G = 10  
10  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M 100M 300M  
1k  
10k  
100k  
1M  
10M 100M 300M  
FREQUENCY Hz  
FREQUENCY Hz  
FREQUENCY Hz  
TPC 70. AD8130 Open Loop Gain  
and Phase vs. Frequency  
TPC 72. Closed-Loop Output  
Impedance vs. Frequency  
TPC 71. AD8129 Open Loop Gain  
and Phase vs. Frequency  
REV. 0  
–13–  
AD8129/AD8130  
AD8130 Transient Response Characteristics  
(G = 1, RL = 1 k, CL = 2 pF, VS = 5 V, TA = 25C, unless otherwise noted.)  
V
= 1V p-p  
V
= 1V p-p  
V
= 1V p-p  
OUT  
OUT  
OUT  
V
= 5V  
V
= 12V  
V
= 2.5V  
S
S
S
5.00ns  
250mV  
5.00ns  
5.00ns  
250mV  
250mV  
TPC 73. AD8130 Transient Response,  
VS = 2.5 V, VOUT = 1 V p-p  
TPC 74. AD8130 Transient Response,  
VS = 5 V, VOUT = 1 V p-p  
TPC 75. AD8130 Transient Response,  
VS = 12 V, VOUT = 1 V p-p  
V
= 2.5V  
V
= 2.5V  
S
S
V
= 1V p-p  
V
= 2V p-p  
V
= 0.2V p-p  
V = 2.5V  
S
OUT  
OUT  
OUT  
C
= 5pF  
V
= 5V  
C = 5pF  
V
= 5V  
L
S
L
S
V = 5V  
S
V = 12V  
S
V
= 12V  
S
V
= 12V  
S
5.00ns  
250mV  
5.00ns  
5.00ns  
500mV  
50mV  
TPC 77. AD8130 Transient Response  
vs. Supply, VOUT = 1 V p-p, CL = 5 pF  
TPC 76. AD8130 Transient Response  
vs. Supply, VOUT = 0.2 V p-p  
TPC 78. AD8130 Transient Response  
vs. Supply, VOUT = 2 V p-p, CL = 5 pF  
C
= 10pF  
V
= 0.2V  
p-p  
L
OUT  
C
C
= 5pF  
= 2pF  
L
2V p-p  
1V p-p  
4V p-p  
2V p-p  
L
1V p-p  
0.5V p-p  
10.0ns  
50mV  
5.00ns  
500mV  
5.00ns  
1.00V  
TPC 79. AD8130 Transient Response  
vs. Load Capacitance, VOUT = 0.2 V p-p  
TPC 80. AD8130 Transient Response  
vs. Output Amplitude,  
TPC 81. AD8130 Transient Response  
vs. Output Amplitude,  
VOUT = 0.5 V p-p, 1 V p-p, 2 V p-p  
VOUT = 1 V p-p, 2 V p-p, 4 V p-p  
–14–  
REV. 0  
AD8129/AD8130  
V
= 2V p-p  
V
G = 2  
= 1V p-p  
OUT  
G = 2  
G = 2  
= 5V  
V
= 8V p-p  
OUT  
OUT  
V
= 5V, C = 10pF  
L
V
S
V
= 5V  
S
S
C
= 10pF  
L
V
= 5V, C = 2pF  
L
V
= 12V  
S
S
C
= 2pF  
L
5.00ns  
5.00ns  
250mV  
500mV  
5.00ns  
2.00V  
TPC 82. AD8130 Transient Response  
vs. Load Capacitance, VOUT = 1 V p-p,  
G = 2  
TPC 83. AD8130 Transient Response  
vs. Supply, VOUT = 2 V p-p, G = 2  
TPC 84. AD8130 Transient Response  
vs. Load Capacitance, VOUT = 8 V p-p  
G = 2  
S
V
= 10V p-p  
V
= 12V  
OUT  
V
IN  
V
V
OUT  
OUT  
V
IN  
5.00ns  
1.00V  
5.00ns  
2.50V  
5.00ns  
1.00V  
TPC 87. AD8130 Transient Response,  
TPC 85. AD8130 Transient Response  
with +3 V Common-Mode Input  
TPC 86. AD8130 Transient Response  
with –3 V Common-Mode Input  
VOUT = 10 V p-p, G = 2, VS = 12 V  
G = 5  
S
G = 5  
S
V
= 20V p-p  
OUT  
G = 5  
S
V
= 8V p-p  
V
= 12V  
V
= 5V  
OUT  
V
= 5V  
4V p-p  
2V p-p  
C
= 10pF  
C
= 10pF  
L
L
C
= 10pF  
L
1V p-p  
10.0ns  
10.0ns  
5.00V  
10.0ns  
2.00V  
1.00V  
TPC 90. AD8130 Transient Response,  
OUT = 20 V p-p, G = 5, VS = 12 V  
TPC 88. AD8130 Transient Response  
vs. Output Amplitude  
TPC 89. AD8130 Transient Response,  
VOUT = 8 V p-p, G = 5, VS = 5 V  
V
REV. 0  
–15–  
AD8129/AD8130  
AD8129 Transient Response Characteristics  
(G = 10, RF = 2 k, RG = 221 , RL = 1 k, CL = 1 pF, VS = 5 V, TA = 25C, unless otherwise noted.)  
V
= 1V p-p  
V
= 12V  
V
= 1V p-p  
V
= 1V p-p  
V
= 5V  
V
= 2.5V  
OUT  
S
OUT  
OUT  
S
S
5.00ns  
250mV  
5.00ns  
5.00ns  
250mV  
250mV  
TPC 93. AD8129 Transient Response,  
VS = 12 V, VOUT = 1 V p-p  
TPC 91. AD8129 Transient Response,  
VS = 2.5 V, VOUT = 1 V p-p  
TPC 92. AD8129 Transient Response,  
VS = 5 V, VOUT = 1 V p-p  
V
= 5V  
V = 2.5V  
S
V
= 0.4V p-p  
V
C
= 1V p-p  
= 5pF  
V
= 5V  
V
C
= 2V p-p  
= 5pF  
S
OUT  
OUT  
S
OUT  
V = 5V  
V
= 2.5V  
S
S
V
= 2.5V  
L
L
S
V
= 12V  
V
= 12V  
V
= 12V  
S
S
S
5.00ns  
5.00ns  
100mV  
250mV  
5.00ns  
500mV  
TPC 94. AD8129 Transient Response  
vs. Supply, VOUT = 0.4 V p-p  
TPC 95. AD8129 Transient Response  
vs. Supply, VOUT = 1 V p-p, CL = 5 pF  
TPC 96. AD8129 Transient Response  
vs. Supply, VOUT = 2 V p-p, CL = 5 pF  
C
= 5pF  
V
= 0.4V p-p  
L
OUT  
V
= 2V p-p  
= 1V p-p  
V = 4V p-p  
O
O
C
= 10pF  
L
V
V
= 2V p-p  
O
O
C
= 2pF  
L
V
= 0.5V p-p  
V
= 1V p-p  
O
O
5.00ns  
5.00ns  
100mV  
500mV  
5.00ns  
1.00V  
TPC 97. AD8129 Transient Response  
vs. Load Capacitance, VOUT = 0.4 V p-p  
TPC 98. AD8129 Transient Response  
vs. Output Amplitude,  
TPC 99. AD8129 Transient Response  
vs. Output Amplitude,  
VOUT = 0.5 V p-p, 1 V p-p, 2 V p-p  
VOUT = 1 V p-p, 2 V p-p, 4 V p-p  
–16–  
REV. 0  
AD8129/AD8130  
V
= 2V p-p  
V
= 1V p-p  
V
= 8V p-p  
G = 20  
= 20pF  
G = 20  
= 20pF  
OUT  
OUT  
G = 20  
= 20pF  
OUT  
C
C
C
L
L
L
5.00ns  
500mV  
5.00ns  
5.00ns  
250mV  
2.00V  
TPC 101. AD8129 Transient Response,  
VOUT = 2 V p-p, VS = 5 V  
TPC 100. AD8129 Transient Response,  
TPC 102. AD8129 Transient Response,  
OUT = 8 V p-p, VS = 5 V  
VOUT = 1 V p-p, VS = 2.5 V to 12 V  
V
V
= 10V p-p  
G = 20  
S
OUT  
V
V
= 12V  
IN  
C
= 20pF  
L
V
OUT  
V
OUT  
V
IN  
5.00ns  
5.00ns  
1.00V  
2.50V  
TPC 104. AD8129 Transient Response  
with –3.5 V Common-Mode Input  
TPC 103. AD8129 Transient Response  
with +3.5 V Common-Mode Input  
TPC105. AD8129TransientResponse,  
VOUT = 10 V p-p, G = 20  
V
= 8V p-p  
G = 50  
= 5V  
V
= 20V p-p  
G = 50  
= 12V  
G = 50  
S
OUT  
OUT  
V
V
V
= 5V  
S
S
4V p-p  
2V p-p  
C
= 20pF  
C
= 10pF  
C
= 20pF  
L
L
L
1V p-p  
12.5ns  
2.00V  
12.5ns  
12.5ns  
1.00V  
5.00V  
TPC 107. AD8129 Transient Response,  
VOUT = 8 V p-p, G = 50, VS = 5 V  
TPC 106. AD8129 Transient Response  
vs. Output Amplitude, VOUT = 1 V p-p,  
2 V p-p, 4 V p-p  
TPC108. AD8129TransientResponse,  
VOUT = 20 V p-p, G = 50, VS = 12 V  
REV. 0  
–17–  
AD8129/AD8130  
3.0  
2.0  
AD8130  
= 100mV AC @ 1kHz  
23  
20  
17  
14  
11  
37  
31  
25  
19  
13  
G = 1  
= 5V  
G = 10  
= 10V  
V
V
S
S
V
OUT  
1.0  
AD8129  
AD8130  
0.0  
1.0  
2.0  
3.0  
5 4 3 2 1  
0
1
2
3
4
5
1.0 0.8 0.6 0.4 0.2  
0
0.2 0.4 0.6 0.8 1.0  
DIFFERENTIAL INPUT V  
DIFFERENTIAL INPUT V  
50 35 20 5 10 25 40 55 70 85 100  
TEMPERATURE C  
TPC 109. AD8130 DC Power Supply  
Current vs. Differential Input Voltage  
TPC 111. AD8129/AD8130 Input  
Differential Voltage Range vs. Tem-  
perature, 1% Gain Compression  
TPC 110. AD8129 DC Power Supply  
Current vs. Differential Input Voltage  
4
3
G = 1  
G = 1  
V
= 5V  
= 1kꢁ  
S
V
= 5V  
= 1kꢁ  
S
V
= 5V  
R
S
L
R
L
2
1
0
1  
2  
3  
4  
1.0 0.8 0.6 0.4 0.2  
0
0.2 0.4 0.6 0.8 1.0  
2.5 2.0 1.5 1.0 0.5  
0
0.5 1.0 1.5 2.0 2.5  
5 4 3 2 1  
0
1
2
3
4
5
OUTPUTVOLTAGE V  
OUTPUTVOLTAGE V  
DIFFERENTIAL INPUT V  
TPC 112. AD8130 Gain Nonlinearity,  
VOUT = 2 V p-p  
TPC 113. AD8130 Gain Nonlinearity,  
VOUT = 5 V p-p  
TPC 114. AD8130 Differential Input  
Clipping Level  
8
6
G = 10  
G = 10  
V
= 5V  
= 1kꢁ  
V
= 12V  
= 1kꢁ  
S
S
V
= 10V  
R
R
S
L
L
4
2
0
2  
4  
6  
8  
1.0 0.8 0.6 0.4 0.2  
0
0.2 0.4 0.6 0.8 1.0  
1.0 0.8 0.6 0.4 0.2  
0
0.2 0.4 0.6 0.8 1.0  
5 4 3 2 1  
0
1
2
3
4
5
OUTPUTVOLTAGE V  
DIFFERENTIAL INPUT V  
OUTPUTVOLTAGE V  
TPC 116. AD8129 Gain Nonlinearity,  
VOUT = 10 V p-p  
TPC 115. AD8129 Gain Nonlinearity,  
VOUT = 2 V p-p  
TPC 117. AD8129 Differential Input  
Clipping Level  
–18–  
REV. 0  
AD8129/AD8130  
17  
16  
15  
14  
13  
0.60  
0.45  
0.30  
0.15  
40  
30  
20  
10  
15  
14  
13  
12  
11  
10  
9
V
= 12V  
I
S
B
V
= 5V  
S
I
OS  
12  
11  
10  
9
V
= 2.5V  
S
8
7
50 35 20 5 10 25 40 55 70 85 100  
TEMPERATURE C  
0
5
10  
15  
20  
25  
30  
50 35 20 5 10 25 40 55 70 85 100  
TEMPERATURE C  
TOTAL SUPPLYVOLTAGE V  
TPC 119. Quiescent Power Supply  
Current vs. Temperature  
TPC 118. Quiescent Power Supply  
Current vs. Total Supply Voltage  
TPC 120. Input Bias Current and  
Input Offset Current vs. Temperature  
4.00  
3.75  
4.00  
3.75  
11.0  
10.5  
AD8130  
AD8130  
3.50  
3.25  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
3.50  
3.25  
AD8130  
10.0  
AD8129  
= 5V  
V
= 12V  
S
9.5  
9.0  
AD8129  
V
S
V
= 5V  
AD8129  
= 100mV  
S
3.00  
V
= 100mV  
OUT  
V
OUT  
AC AT 1kHz  
V
= 100mV  
AC AT 1kHz  
2.75  
8.5  
OUT  
AC AT 1kHz  
3.00  
3.25  
3.50  
3.75  
4.00  
9.0  
9.5  
10.0  
10.5  
11.0  
AD8129  
AD8130  
AD8129  
AD8130  
AD8130  
AD8129  
50 35 20 5 10 25 40 55 70 85 100  
TEMPERATURE C  
50 35 20 5 10 25 40 55 70 85 100  
TEMPERATURE C  
50 35 20 5 10 25 40 55 70 85 100  
TEMPERATURE C  
TPC 121. Common-Mode Voltage  
Range vs. Temperature, Typical 1%  
Gain Compression  
TPC 122. Common-Mode Voltage  
Range vs. Temperature, Typical 1%  
Gain Compression  
TPC 123. Common-Mode Voltage  
Range vs. Temperature, Typical 1%  
Gain Compression  
11  
4.0  
4.0  
V
= 5V  
V
= 12V  
V
= 5V  
S
S
S
10  
9
3.5  
3.0  
3.5  
3.0  
SOURCING  
+100C 40C +25C  
+100C 40C +25C  
+100C 40C +25C  
9  
10  
11  
3.0  
3.5  
4.0  
2.0  
1.5  
1.0  
SINKING  
V
= 100mV  
V
= 100mV  
OUT  
V
= 100mV  
OUT  
OUT  
AC AT 1kHz  
AC AT 1kHz  
AC AT 1kHz  
0
5
10 15  
20  
25  
30  
35 40  
0
5
10 15  
20  
25  
30  
35 40  
0
5
10 15  
20  
25  
30  
35 40  
OUTPUT CURRENT mA  
OUTPUT CURRENT mA  
OUTPUT CURRENT mA  
TPC 125. Output Voltage Range vs.  
Output Current, Typical 1% Gain  
Compression  
TPC 124. Output Voltage Range vs.  
Output Current, Typical 1% Gain  
Compression  
TPC 126. Output Voltage Range vs.  
Output Current, Typical 1% Gain  
Compression  
REV. 0  
–19–  
AD8129/AD8130  
THEORY OF OPERATION  
Thus, the input dynamic ranges are limited to about 2.5 V for  
the AD8130 and 0.5 V for the AD8129 (see Specification  
section for more detail). For this and other reasons, it is not  
recommended to reverse the input and feedback stages of the  
AD8129/AD8130, even though some apparently normal func-  
tionality might be observed under some conditions.  
The AD8129/AD8130 use an architecture called active feed-  
back which differs from that of conventional op amps. The  
most obvious differentiating feature is the presence of two sepa-  
rate pairs of differential inputs compared to a conventional op  
amp’s single pair. Typically for the active-feedback architecture,  
one of these input pairs is driven by a differential input signal,  
while the other is used for the feedback. This active stage in the  
feedback path is where the term “active feedback” is derived.  
A few simple circuits can illustrate how the active feedback  
architecture of the AD8129/AD8130 operates.  
Op Amp Configuration  
The active feedback architecture offers several advantages over a  
conventional op amp in several types of applications. Among  
these are excellent common-mode rejection, wide input common-  
mode range and a pair of inputs that are high-impedance and  
totally balanced in a typical application. In addition, while an  
external feedback network establishes the gain response as  
in a conventional op amp, its separate path makes it totally  
independent of the signal input. This eliminates any interaction  
between the feedback and input circuits, which traditionally  
causes problems with CMRR in conventional differential-input  
op amp circuits.  
If only one of the input stages of the AD8129/AD8130 is used,  
it will function very much like a conventional op amp. (See  
Figure 4.) Classical inverting and noninverting op amps circuits  
can be created, and the basic governing equations will be the  
same as for a conventional op amp. The unused input pins form  
the second input and should be shorted together and tied to  
ground or some midsupply voltage when they are not used.  
+V  
0.1F  
10F  
Another advantage is the ability to change the polarity of the  
gain merely by switching the differential inputs. A high input-  
impedance inverting amplifier can be made. Besides a high  
input impedance, a unity-gain inverter with the AD8130 will  
have a noise gain of unity. This will produce lower output noise  
and higher bandwidth than op amps that have noise gain equal  
to 2 for a unity gain inverter.  
+
+
PD +V  
S
V
OUT  
V
IN  
V  
S
R
F
The two differential input stages of the AD8129/AD8130 are each  
transconductance stages that are well matched. These stages  
convert the respective differential input voltages to internal  
currents. The currents are then summed and converted to a  
voltage, which is buffered to drive the output. The compensa-  
tion capacitor is in the summing circuit.  
R
G
0.1F  
10F  
V  
Figure 4. With both inputs grounded, the feedback stage  
functions like an op amp: VOUT = VIN (1 + RF/RG). NOTE: This  
circuit is provided to demonstrate device operation. It is  
not suggested to use this circuit in place of an op amp.  
When the feedback path is closed around the part, the output  
will drive the feedback input to that voltage which causes the  
internal currents to sum to zero. This occurs when the two  
differential inputs are equal and opposite; that is, their algebraic  
sum is zero.  
With the unused pair of inputs shorted, there is no differential  
voltage between them. This dictates that the differential input  
voltage of the used inputs will also be zero for closed-loop  
applications. Since this is the governing principle of conven-  
tional op amp circuits, an active feedback amplifier can function  
as a conventional op amp under these conditions.  
In a closed-loop application, a conventional op amp will have its  
differential input voltage driven to near zero under nontransient  
conditions. The AD8129/AD8130 generally will have differential  
input voltages at each of its input pairs, even under equilibrium  
conditions. As a practical consideration, it is necessary to inter-  
nally limit the differential input voltage with a clamp circuit.  
Note that this circuit is presented only for illustration purposes,  
to show the similarities of the active feedback architecture func-  
tionality to conventional op amp functionality. If it is desired to  
design a circuit that can be created from a conventional op amp,  
it is recommended to choose a conventional op amp whose  
specifications are better suited to that application. These op amp  
principles are the basis for offsetting the output as described in  
the Output Offset/Level Translator section.  
–20–  
REV. 0  
AD8129/AD8130  
Twisted-Pair Cable, Composite Video Receiver with Equal-  
ization Using an AD8130  
APPLICATIONS  
Basic Gain Circuits  
The AD8130 has excellent common-mode rejection at its inputs.  
This makes it an ideal candidate for a receiver for signals that  
are transmitted over long distances on twisted-pair cables. Cat-  
egory 5 type cables are now very common in office settings and  
are extensively used for data transmission. These same cables  
can also be used for the analog transmission of signals like video.  
The gain of the AD8129/AD8130 can be set with a pair of feed-  
back resistors. The basic configuration is shown in Figure 5.  
The gain equation is the same as that of a conventional op amp:  
G = 1 + RF/RG. For unity gain applications using the AD8130,  
RF can be set to zero (short circuit), and RG can be removed.  
(See Figure 6.) The AD8129 is compensated to operate at gains  
of 10 and higher, so shorting the feedback path to obtain unity  
gain will cause oscillation.  
These long cables will pick up noise from the environment they  
pass through. This noise will not favor one conductor over an-  
other, and will therefore be a common-mode signal. A receiver  
that rejects the common-mode signal on the cable can greatly  
enhance the signal-to-noise ratio performance of the link.  
+V  
AD8129/  
AD8130  
0.1F  
10F  
The AD8130 is also very easy to use as a differential receiver,  
because the differential inputs and the feedback inputs are  
entirely separate. This means that there is no interaction of the  
feedback network and the termination network as there would  
be in conventional op amp-type receivers.  
+
+
+V  
S
PD  
V
IN  
V
OUT  
V  
S
Another issue to be dealt with on long cables is the attenuation  
of the signal at longer distances. This attenuation is a function of  
frequency and increases as roughly as the square root of frequency.  
R
F
R
G
0.1F  
10F  
For good fidelity of video circuits, the overall frequency response  
of the transmission channel should be flat versus frequency. Since  
the cable attenuates the high frequencies, a frequency-selective  
boost circuit can be used to undo this effect. These circuits  
are called equalizers.  
V  
Figure 5. Basic Gain Circuit: VOUT = VIN (1 + RF/RG)  
+V  
An equalizer uses frequency-dependent elements (Ls and Cs) in  
order to create a frequency response that is the opposite of the  
rest of the channel’s response in order to create an overall flat  
response. There are many ways to create such circuits, but a  
common technique is to put the frequency-selective elements in  
the feedback path of an op amp circuit. The AD8130 in particu-  
lar makes this easier than other circuits, because, once again, the  
feedback path is totally independent of the input path and there  
is no interaction.  
AD8130  
10F  
0.1F  
+
+
+V  
S
PD  
V
IN  
V
OUT  
V  
S
The circuit in Figure 7 was developed as a receiver/equalizer for  
transmitting composite video over 300 m of Category 5 cable. This  
cable has an attenuation of approximately 20 dB at 10 MHz  
for 300 m. At 100 MHz, the attenuation is approximately  
60 dB. (See Figure 8.)  
0.1F 10F  
V  
Figure 6. An AD8130 with Unity Gain  
The input signal can be applied either differentially or single-  
endedly—all that matters is the magnitude of the differential  
signal between the two inputs. For single-ended input applica-  
tions, applying the signal to the +IN with –IN grounded will  
create a noninverting gain, while reversing these connections  
will create an inverting gain. Since the two inputs are high-  
impedance and matched, both of these conditions will provide  
the same high input impedance. Thus, an advantage of the  
active feedback architecture is the ability to make a high-input-  
impedance, inverting op amp. If conventional op amps are used,  
a high impedance buffer followed by an inverting stage is needed.  
This requires two op amps.  
+V  
AD8130  
10F  
0.1F  
+
+
+V  
S
PD  
V
100ꢁ  
IN  
V
OUT  
V  
S
R
1kꢁ  
F
R1  
100ꢁ  
R
G
10F  
0.1F  
499ꢁ  
V  
C1  
200pF  
Figure 7. An Equalizer Circuit for Composite Video  
Transmission over 300 m of Category 5 Cable  
REV. 0  
–21–  
AD8129/AD8130  
20  
10  
20  
10  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
10  
20  
30  
40  
50  
60  
70  
80  
10k  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
10M  
100M  
FREQUENCY Hz  
FREQUENCY Hz  
Figure 10. Combined Response of Cable Plus Equalizer  
Figure 8. Transmission Response of 300 m of  
Category 5 Cable  
Output Offset/Level Translator  
The circuit in Figure 6 has the reference input (Pin 4) tied to  
ground, which produces a ground-referenced output signal. If it is  
desired to offset the output voltage from ground, the REF input  
can be used. (See Figure 11). The level VOFFSET appears at the  
output with unity gain.  
The feedback network is between Pins 6 and 5 and from Pin 5  
to ground. C1 and RF create a corner frequency of about 800 kHz.  
The gain increases to provide about 15 dB of boost at 8 MHz.  
The response of this circuit is shown in Figure 9.  
20  
10  
+V  
0
AD8130  
10F  
0.1F  
10  
20  
30  
40  
50  
60  
70  
80  
+
+
+V  
S
PD  
V
IN  
V
= V +V  
IN  
OUT  
OFFSET  
V
OFFSET  
V  
S
0.1F  
10F  
V  
10k  
100k  
1M  
10M  
100M  
Figure 11. The voltage applied to Pin 4 adds to the unity-  
gain output voltage produced by VIN.  
FREQUENCY Hz  
Figure 9. Frequency Response of Equalizer Circuit  
If the circuit has a gain higher than unity, the gain has to be  
factored in. If RG is connected to ground, the voltage applied to  
REF will be multiplied by the gain of the circuit and appear at  
the output; just like a noninverting conventional op amp, This  
situation is not always desirable and one may want VOFFSET to  
appear at the output with unity gain.  
It is difficult to come up with the exact component values via  
strictly mathematical means, because the equations for the cable  
attenuation are approximate and have functions that are not  
simply related to the responses of RC networks. The method  
used in this design was to approximate the required response via  
graphical means from the frequency response, and then select  
components that would approximate this response. The circuit  
was then built and measured, and finally adjusted to obtain an  
acceptable response—in this case flat to 9 MHz to within  
approximately 1 dB. (See Figure 10.)  
One way to accomplish this is to drive both REF and RG with  
the desired offset signal. (See Figure 12.) Superposition can be  
used to solve this circuit. First break the connection between  
VOFFSET and RG. With RG grounded the gain from Pin 4 to  
VOUT will be 1 + RF/RG. With Pin 4 grounded, the gain though  
RG to VOUT is –RF/RG. The sum of these is +1. If VREF is delivered  
from a low-impedance source, this will work fine. However, if  
the delivered offset voltage is derived from a high-impedance  
source, like a voltage divider, its impedance will affect the gain  
equation. This makes the circuit more complicated as it creates  
an interaction between the gain and offset voltage.  
–22–  
REV. 0  
AD8129/AD8130  
Summer  
+V  
+V  
A general summing circuit can be made by the above technique.  
A unity-gain configured AD8130 has one signal applied to +IN,  
while the other signal is applied to REF. The output will be the  
sum of the two input signals. (See Figure 15.)  
AD8129/  
AD8130  
10F  
0.1F  
+
+
PD  
S
V
IN  
+V  
V
V
=
OUT  
(1+ R /R ) +V  
OFFSET  
V
OFFSET  
IN  
F
G
V  
S
AD8130  
R
G
10F  
0.1F  
V1  
V2  
+
+
+V  
PD  
S
R
F
0.1F  
10F  
V
= V1 + V2  
OUT  
V  
V  
S
Figure 12. In this circuit, VOFFSET appears at the output  
with unity gain. This circuit works well if the VOFFSET  
Source Impedance is low.  
0.1F  
10F  
V  
A way around this is to apply the offset voltage to a voltage  
divider whose attenuation factor matches the gain of the ampli-  
fier, and then apply this voltage to the high-impedance REF  
input. This circuit will first divide the desired offset voltage by  
the gain, and the amplifier will multiply it back up to unity. (See  
Figure 13.)  
Figure 15. A Summing Circuit that is Noninverting with  
High Input Impedance  
This circuit offers several advantages over a conventional op  
amp inverting summing circuit. First, the inputs are both high-  
impedance and the circuit is noninverting. It would require  
significant additional circuitry to make an op amp summing  
circuit that has high input impedance and is noninverting.  
+V  
AD8129/  
AD8130  
Another advantage is that the AD8130 circuit still preserves the  
full bandwidth of the part. In a conventional summing circuit,  
the noise gain is increased for every additional input, so the  
bandwidth response decreases accordingly. By this technique,  
four signals can be summed by applying them to two AD8130s,  
and then summing the two outputs by a third AD8130.  
10F  
0.1F  
+
+
+V  
S
PD  
V
IN  
V
V
=
OUT  
R
F
V
(1+R /R ) + V  
OFFSET  
IN  
F
G
OFFSET  
V  
S
R
G
Cable-Tap Amplifier  
R
It is often desirable to have a video signal drive several different  
pieces of equipment. However, the cable should only be termi-  
nated once at its end point, so it is not appropriate to have a  
termination at each device. A “loop-through” connection allows  
a device to tap the video signal while not disturbing it by any  
excessive loading.  
F
R
G
0.1F  
10F  
V  
Figure 13. Adding an attenuator at the offset input causes  
it to appear at the output with unity gain.  
Resistorless Gain-of-Two  
Such a connection, also referred to as a cable-tap amplifier, can  
be simply made with an AD8130. (See Figure 16.) The circuit is  
configured with unity gain, and if no output offset is desired,  
the REF pin is grounded. The negative differential input is  
connected directly to the shield of the cable (or an associated  
connector) at the point at which it wants to be “tapped.”  
The voltage applied to the REF input (Pin 4) can also be a high  
bandwidth signal. If a unity-gain AD8130 has both +IN and  
REF driven with the same signal, there will be unity gain from  
VIN and unity gain from VREF. Thus, the circuit will have a gain  
of two, and requires no resistors. (See Figure 14.)  
+V  
+V  
AD8130  
AD8130  
75ꢁ  
10F  
0.1F  
10F  
0.1F  
+
+
+V  
PD  
S
V
+
+
+V  
IN  
PD  
S
V
OUT  
V
OUT  
V  
S
V  
S
VIDEO  
IN  
0.1F  
10F  
0.1F  
10F  
V  
V  
75ꢁ  
Figure 16. The AD8130 can tap the video signal at any  
point along the cable without loading the signal.  
Figure 14. Gain-of-Two Connections with No Resistors  
REV. 0  
–23–  
AD8129/AD8130  
+V  
+V  
The center conductor connects to the positive differential input  
of the AD8130. The amplitude of the video signal at this point  
is unity, because it is between the two termination resistors. The  
AD8130 provides a high impedance to this signal, so it does not  
disturb it. A buffered, unity-gain version of the video signal  
appears at the output.  
AD8130  
10F  
0.1F  
V
V
IN  
+
PD  
S
1N4148  
V
OUT  
+
Power-Down  
IN  
V  
S
The AD8129/AD8130 have a power-down pin that can be used  
to lower the quiescent current when the amplifier is not being  
used. A logic low level on the PD pin will cause the part to  
power down.  
0.1F  
10F  
V  
Since there is no “Ground” pin on the AD8129/AD8130, there  
is no logic reference to interface to standard logic levels. For  
this reason, the reference level for the PD input is +VS. If the  
AD8129/AD8130 are run with +VS = 5 V, there will be direct  
compatibility with logic families. However, if +VS is higher  
than this, a level-shift circuit will be needed to interface to con-  
ventional logic levels. A simple level-shifting circuit that is  
compatible with common logic families is presented in Figure 17.  
Figure 18. Clamping Diodes at the Input Limit the Input  
Swing Amplitude  
Another problem can occur with the AD8129 operating at supply  
voltage of greater than or equal to 12 V. The architecture  
causes the supply current to increase as the input differential  
voltage increases. If the AD8129 differential inputs are over-  
driven too far, excessive current can flow in the device and  
potentially cause permanent damage.  
+V  
S
A practical means to prevent this from occurring is to differentially  
clamp the inputs with a pair of antiparallel Schottky diodes.  
(See Figure 19.) These diodes have a lower forward voltage  
of approximately 0.4 V. If the differential voltage across the  
inputs is restricted to these conditions, no excess current will  
be drawn by the AD8129 under these operating conditions.  
7
+V  
1kꢁ  
S
3
PD  
4.99kꢁ  
2N2222  
OR EQ  
LOW=  
POWER-DOWN  
AD8129/  
AD8130  
If the supply voltage is restricted to less than 11 V, the internal  
clamping circuit will limit the differential voltage and excessive  
supply current will not be drawn. The external clamp circuit is  
not needed.  
Figure 17. Circuit that Shifts the Logic Level when +VS Is  
Not Equal to Approximately 5 V  
Extreme Operating Conditions  
The AD8129/AD8130 are designed to provide high perfor-  
mance over a wide range of supply voltages. However, there are  
some extremes of operating conditions that have been observed  
to produce non-optimal results. One of these conditions occurs  
when the AD8130 is operated at unity gain with low supply  
voltage—less than approximately 4 V.  
+V  
AD8129  
10F  
0.1F  
V
IN  
3
+
+
+V  
PD  
S
AGILENT  
HSMS 2822  
V
OUT  
1
2
V
At unity gain, the output drives FB directly. At supplies of VS  
less than approximately 4 V and unity gain, the voltage on FB  
can be driven by the output too close to the rail for the circuit to  
stay properly biased. This can lead to a parasitic oscillation.  
IN  
V  
S
A way to prevent this is to limit the input signal swing with  
clamp diodes. Common silicon junction signal diodes like the  
1N4148 have a forward bias of approximately 0.7 V when about  
1 mA of current flow through them. Two series pairs of such  
diodes connected antiparallel across the differential inputs can  
be used to clamp the input signal and prevent this condition. It  
should be noted that the REF input can also shift the output  
signal, so this technique will only work when REF is at ground  
or close to it. (See Figure 18.)  
0.1F  
10F  
V  
Figure 19. Schottky Diodes Across the Inputs Limits the  
Input Differential Voltage  
In both circuits, the input series resistors function to limit the  
current through the diodes when they are forward-biased. As a  
practical matter, these resistors need to be matched to the degree  
that the CMRR needs to be preserved at high frequency. These  
resistor will have minimal effect on the CMRR at low frequency.  
–24–  
REV. 0  
AD8129/AD8130  
Power Dissipation  
The load current will be 6 V/250 = 24 mA. This same current  
will flow through the output across a 6 V drop from +VS. This  
will dissipate 144 mW. For the Micro_SO-8 package, this causes a  
temperature rise of 20°C above ambient. Although this is a worst-  
case number, it is apparent that this can be a considerable  
additional amount of power dissipation.  
The AD8129/AD8130 can operate with supply voltages from  
+5 V to 12 V. The major reason for such a wide supply range  
is to provide a wide input common-mode range for systems  
that might require this. This would be encountered when sig-  
nificant common-mode noise couples into the input path. For  
applications that do not require a wide input or output dynamic  
range, it is recommended to operate with lower supply voltages.  
Several changes can be made to alleviate this. One is to use the  
standard SO-8 package. This will lower the thermal impedance  
to 121°C/W, which is a 15% improvement. Next is to use a  
lower supply voltage unless absolutely necessary.  
The AD8129/AD8130 is also available in a very small Micro_SO-8  
package. This has higher thermal impedance than larger packages  
and will operate at a higher temperature with the same amount  
of power dissipation. Certain operating conditions that are within  
the specification range of the parts can cause excess power dissi-  
pation. Caution should be exercised.  
Finally, do not use the AD8129/AD8130 to directly drive a  
heavy load when it is operating on high supply voltages. It is  
best to use a second op amp after the output stage. Some of the  
gain can be shifted to this stage so that the signal swing at the  
output of the AD8129/AD8130 is not too large.  
The power dissipation is a function of several operating condi-  
tions. These include the supply voltage, the input differential  
voltage, the output load and the signal frequency.  
Layout, Grounding and Bypassing  
The AD8129/AD8130 are very high-speed parts that can be  
sensitive to the PCB environment in which they have to oper-  
ate. Realizing their superior specifications requires attention  
to various details of standard high-speed PCB design practice.  
A basic starting point is to calculate the quiescent power dissipa-  
tion with no signal and no differential input voltage. This is just  
the product of the total supply voltage and the quiescent operat-  
ing current. The maximum operating supply voltage is 26.4 V  
and the quiescent current is 13 mA. This causes a quiescent  
power dissipation of 343 mW. For the Micro_SO package, the  
The first requirement is for a good solid ground plane that cov-  
ers as much of the board area around the AD8129/AD8130 as  
possible. The only exception to this is that the ground plane  
around the FB pin should be kept a few mm away, and ground  
should be removed from inner layers and the opposite side of  
the board under this pin. This will minimize the stray capaci-  
tance on this node and help preserve the gain flatness versus  
frequency.  
θ
JA specification is 142°C/W. So the quiescent power will cause  
about a 49°C rise above ambient in the Micro_SO package.  
The current consumption is also a function of the differential  
input voltage. (See TPCs 109 and 110.) This current should be  
added on to the quiescent current and then multiplied by the  
total supply voltage to calculate the power.  
The power supply pins should be bypassed as close as possible  
to the device to the nearby ground plane. Good high-frequency  
ceramic chip capacitors should be used. This bypassing should  
be done with a capacitance value of 0.01 µF to 0.1 µF for each  
supply. Further away, low frequency bypassing should be provided  
with 10 µF tantalum capacitors from each supply to ground.  
The AD8129/AD8130 can directly drive loads of as low as  
100 , such as a terminated 50 cable. The worst-case power  
dissipation in the output stage occurs when the output is at  
midsupply. As an example, for a 12 V supply and the output  
driving a 250 load to ground, the maximum power dissipation  
in the output will occur when the output voltage is 6 V.  
The signal routing should be short and direct in order to avoid  
parasitic effects. Where possible, signals should be run over  
ground planes to avoid radiating, or to avoid being susceptible  
to other radiation sources.  
REV. 0  
–25–  
AD8129/AD8130  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
8-Lead SOIC  
(SO-8)  
0.1968 (5.00)  
0.1890 (4.80)  
8
1
5
4
0.2440 (6.20)  
0.2284 (5.80)  
0.1574 (4.00)  
0.1497 (3.80)  
PIN 1  
0.0196 (0.50)  
0.0099 (0.25)  
0.0500 (1.27)  
BSC  
45ꢃ  
0.0688 (1.75)  
0.0532 (1.35)  
0.0098 (0.25)  
0.0040 (0.10)  
8ꢃ  
0ꢃ  
0.0500 (1.27)  
0.0160 (0.41)  
0.0192 (0.49)  
0.0138 (0.35)  
0.0098 (0.25)  
0.0075 (0.19)  
SEATING  
PLANE  
8-Lead Micro_SO  
(RM-8)  
0.122 (3.10)  
0.114 (2.90)  
8
5
4
0.122 (3.10)  
0.114 (2.90)  
0.199 (5.05)  
0.187 (4.75)  
1
PIN 1  
0.0256 (0.65) BSC  
0.120 (3.05)  
0.112 (2.84)  
0.120 (3.05)  
0.112 (2.84)  
0.043 (1.09)  
0.037 (0.94)  
0.006 (0.15)  
0.002 (0.05)  
33ꢃ  
0.018 (0.46)  
0.008 (0.20)  
27ꢃ  
0.028 (0.71)  
0.016 (0.41)  
0.011 (0.28)  
0.003 (0.08)  
SEATING  
PLANE  
–26–  
REV. 0  
–27–  
–28–  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY