AD813ACHIPS [ADI]

Single Supply, Low Power Triple Video Amplifier; 单电源,低功耗三通道视频放大器
AD813ACHIPS
型号: AD813ACHIPS
厂家: ADI    ADI
描述:

Single Supply, Low Power Triple Video Amplifier
单电源,低功耗三通道视频放大器

视频放大器
文件: 总19页 (文件大小:552K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Single Supply, Low Power  
Triple Video Amplifier  
a
AD813  
PIN CONFIGURATION  
14-Lead DIP and SOIC  
FEATURES  
Low Cost  
Three Video Amplifiers in One Package  
Optimized for Driving Cables in Video Systems  
Excellent Video Specifications (RL = 150 )  
Gain Flatness 0.1 dB to 50 MHz  
0.03% Differential Gain Error  
0.06؇ Differential Phase Error  
Low Power  
Operates on Single +3 V to ؎15 V Power Supplies  
5.5 mA/Amplifier Max Power Supply Current  
High Speed  
OUT2  
–IN2  
+IN2  
DISABLE1  
DISABLE2  
DISABLE3  
14  
13  
1
2
3
4
5
6
7
12  
11  
10  
9
V +  
S
V –  
S
AD813  
+IN1  
–IN1  
+IN3  
–IN3  
OUT3  
OUT1  
8
125 MHz Unity Gain Bandwidth (–3 dB)  
500 V/s Slew Rate  
High Speed Disable Function per Channel  
Turn-Off Time 80 ns  
50 MHz while offering differential gain and phase error of  
0.03% and 0.06°. This makes the AD813 ideal for broadcast  
and consumer video electronics.  
Easy to Use  
50 mA Output Current  
Output Swing to 1 V of Rails  
The AD813 offers low power of 5.5 mA per amplifier max and  
runs on a single +3 V power supply. The outputs of each ampli-  
fier swing to within one volt of either supply rail to easily accom-  
modate video signals. While operating on a single +5 V supply  
the AD813 still achieves 0.1 dB flatness to 20 MHz and 0.05%  
& 0.05° of differential gain and phase performance. All this is  
offered in a small 14-lead plastic DIP or SOIC package. These  
features make this triple amplifier ideal for portable and battery  
powered applications where size and power are critical.  
APPLICATIONS  
Video Line Driver  
LCD Drivers  
Computer Video Plug-In Boards  
Ultrasound  
RGB Amplifier  
CCD Based Systems  
The outstanding bandwidth of 125 MHz along with 500 V/µs of  
slew rate make the AD813 useful in many general purpose, high  
speed applications where a single +3 V or dual power supplies  
up to ±15 V are needed. Furthermore the AD813 contains a  
high speed disable function for each amplifier in order to power  
down the amplifier or high impedance the output. This can then  
be used in video multiplexing applications. The AD813 is avail-  
able in the industrial temperature range of –40°C to +85°C in  
plastic DIP and SOIC packages as well as chips.  
PRODUCT DESCRIPTION  
The AD813 is a low power, single supply triple video amplifier.  
Each of the three current feedback amplifiers has 50 mA of output  
current, and is optimized for driving one back-terminated video  
load (150 ). The AD813 features gain flatness of 0.1 dB to  
G = +2  
R
= 150  
L
0.2  
0.1  
500mV  
500ns  
؎15V  
100  
90  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
؎5V  
3V  
5V  
10  
0%  
5V  
100k  
1M  
10M  
100M  
FREQUENCY – Hz  
Figure 1. Fine Scale Gain Flatness vs. Frequency,  
G = +2, RL = 150  
Figure 2. Channel Switching Characteristics for a 3:1 Mux  
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1998  
AD813–SPECIFICATIONS  
Dual Supply  
Model  
(@ TA = +25؇C, RL = 150 , unless otherwise noted)  
AD813A  
Typ  
Conditions  
VS  
Min  
Max  
Units  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth  
G = +2, No Peaking  
±5 V  
±15 V  
45  
75  
65  
100  
MHz  
MHz  
Bandwidth for 0.1 dB  
Flatness  
G = +2  
±5 V  
±15 V  
±5 V  
±15 V  
±5 V  
±15 V  
15  
25  
25  
50  
150  
250  
225  
450  
MHz  
MHz  
V/µs  
V/µs  
V/µs  
V/µs  
Slew Rate1  
G = +2, RL = 1 kΩ  
G = –1, RL = 1 kΩ  
150  
Settling Time to 0.1%  
G = –1, RL = 1 kΩ  
VO = 3 V Step  
±5 V  
±15 V  
50  
40  
ns  
ns  
VO = 10 V Step  
NOISE/HARMONIC PERFORMANCE  
Total Harmonic Distortion  
Input Voltage Noise  
fC = 1 MHz, RL = 1 kΩ  
f = 10 kHz  
f = 10 kHz, +In  
–In  
±15 V  
–90  
3.5  
1.5  
dBc  
±5 V, ±15 V  
±5 V, ±15 V  
±5 V, ±15 V  
±5 V  
±15 V  
±5 V  
nVHz  
pAHz  
pAHz  
%
%
Degrees  
Degrees  
Input Current Noise  
18  
Differential Gain Error  
Differential Phase Error  
NTSC, G = ±2, RL = 150 Ω  
0.08  
0.03  
0.13  
0.06  
0.09  
0.12  
±15 V  
DC PERFORMANCE  
Input Offset Voltage  
±5 V, ±15 V  
2
5
12  
mV  
mV  
µV/°C  
µA  
T
MIN–TMAX  
Offset Drift  
–Input Bias Current  
±5 V, ±15 V  
±5 V, ±15 V  
15  
5
30  
TMIN–TMAX  
35  
µA  
+Input Bias Current  
±5 V, ±15 V  
±5 V  
0.5  
76  
1.7  
2.5  
µA  
µA  
dB  
dB  
TMIN–TMAX  
VO = ±2.5 V, RL = 150 Ω  
TMIN–TMAX  
Open-Loop Voltage Gain  
69  
66  
VO = ±10 V, RL = 1 kΩ  
TMIN–TMAX  
±15 V  
73  
72  
82  
dB  
dB  
Open-Loop Transresistance  
VO = ±2.5 V, RL = 150 Ω  
±5 V  
300  
200  
400  
300  
500  
900  
kΩ  
kΩ  
kΩ  
kΩ  
T
MIN–TMAX  
VO = ±10 V, RL = 1 kΩ  
TMIN–TMAX  
±15 V  
INPUT CHARACTERISTICS  
Input Resistance  
+Input  
–Input  
+Input  
±15 V  
±15 V  
±15 V  
±5 V  
15  
65  
1.7  
±4.0  
±13.5  
MΩ  
pF  
V
Input Capacitance  
Input Common Mode  
Voltage Range  
±15 V  
V
Common-Mode Rejection Ratio  
Input Offset Voltage  
–Input Current  
±Input Current  
Input Offset Voltage  
–Input Current  
VCM = ±2.5 V  
VCM = ±10 V  
±5 V  
54  
57  
58  
2
0.07  
62  
1.5  
0.05  
dB  
3
0.15  
µA/V  
µA/V  
dB  
µA/V  
µA/V  
±15 V  
3.0  
0.1  
+Input Current  
REV. B  
–2–  
AD813  
Model  
AD813A  
Typ  
Conditions  
VS  
Min  
Max  
Units  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
RL = 150 , TMIN–TMAX  
RL = 1 k, TMIN–TMAX  
±5 V  
±15 V  
±5 V  
±15 V  
±15 V  
3.5  
13.6  
25  
3.8  
14.0  
40  
50  
100  
±V  
±V  
mA  
mA  
mA  
Output Current  
30  
Short Circuit Current  
G = +2, RF = 715 Ω  
VIN = 2 V  
MATCHING CHARACTERISTICS  
Dynamic  
Crosstalk  
Gain Flatness Match  
DC  
G = +2, f = 5 MHz  
G = +2, f = 40 MHz  
±5 V, ±15 V  
±15 V  
–65  
0.1  
dB  
dB  
Input Offset Voltage  
–Input Bias Current  
TMIN–TMAX  
TMIN–TMAX  
±5 V, ±15 V  
±5 V, ±15 V  
0.5  
2
3.5  
25  
mV  
µA  
POWER SUPPLY  
Operating Range  
Quiescent Current  
±1.2  
±18  
4.0  
5.5  
6.7  
0.65  
1.0  
V
Per Amplifier  
±5 V  
3.5  
4.5  
mA  
mA  
mA  
mA  
mA  
±15 V  
±15 V  
±5 V  
TMIN–TMAX  
Per Amplifier  
Quiescent Current, Powered Down  
0.5  
0.75  
±15 V  
Power Supply Rejection Ratio  
Input Offset Voltage  
–Input Current  
VS = ±1.5 V to ±15 V  
72  
80  
0.3  
0.005  
dB  
µA/V  
µA/V  
0.8  
0.05  
+Input Current  
DISABLE CHARACTERISTICS  
Off Isolation  
Off Output Impedance  
Channel-to-Channel  
Isolation  
f = 5 MHz  
G = +1  
2 or 3 Channels  
Mux, f = 5 MHz  
±5 V, ±15 V  
±5 V, ±15 V  
±5 V, ±15 V  
–57  
12.5  
–65  
dB  
pF  
dB  
Turn-On Time  
Turn-Off Time  
±5 V, ±15 V  
100  
80  
ns  
ns  
NOTES  
1Slew rate measurement is based on 10% to 90% rise time in the specified closed-loop gain.  
Specifications subject to change without notice.  
–3–  
REV. B  
AD813–SPECIFICATIONS  
Single Supply  
(@ TA = +25؇C, RL = 150 , unless otherwise noted)  
Model  
AD813A  
Typ  
Conditions  
VS  
Min  
Max  
Units  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth  
G = +2, No Peaking  
+5 V  
+3 V  
35  
25  
50  
40  
MHz  
MHz  
Bandwidth for 0.1 dB  
Flatness  
G = +2  
+5 V  
+3 V  
+5 V  
+3 V  
12  
8
20  
15  
100  
50  
MHz  
MHz  
V/µs  
Slew Rate1  
G = +2, RL = 1 kΩ  
V/µs  
NOISE/HARMONIC PERFORMANCE  
Input Voltage Noise  
Input Current Noise  
f = 10 kHz  
f = 10 kHz, +In  
–In  
NTSC, G = +2, RL = 150 Ω  
G = +1  
+5 V, +3 V  
+5 V, +3 V  
+5 V, +3 V  
+5 V  
+3 V  
+5 V  
3.5  
1.5  
18  
0.05  
0.2  
0.05  
0.2  
nVHz  
pAHz  
pAHz  
%
%
Degrees  
Degrees  
Differential Gain Error2  
Differential Phase Error2  
G = +2  
G = +1  
+3 V  
DC PERFORMANCE  
Input Offset Voltage  
+5 V, +3 V  
1.5  
5
10  
mV  
mV  
µV/°C  
µA  
T
MIN–TMAX  
Offset Drift  
–Input Bias Current  
+5 V, +3 V  
+5 V, +3 V  
7
7
30  
TMIN–TMAX  
40  
µA  
+Input Bias Current  
+5 V, +3 V  
0.5  
1.7  
2.5  
µA  
µA  
TMIN–TMAX  
Open-Loop Voltage Gain  
Open-Loop Transresistance  
VO = +2.5 V p-p  
VO = +0.7 V p-p  
VO = +3 V p-p  
VO = +1 V p-p  
+5 V  
+3 V  
+5 V  
+3 V  
65  
70  
69  
300  
225  
dB  
dB  
kΩ  
kΩ  
180  
INPUT CHARACTERISTICS  
Input Resistance  
+Input  
–Input  
+Input  
+5 V, +3 V  
+5 V  
15  
90  
2
MΩ  
pF  
V
Input Capacitance  
Input Common Mode  
Voltage Range  
+5 V  
+3 V  
1.0  
1.0  
4.0  
2.0  
V
Common-Mode Rejection Ratio  
Input Offset Voltage  
–Input Current  
+Input Current  
Input Offset Voltage  
–Input Current  
VCM = 1.25 V to 3.75 V  
VCM = 1 V to 2 V  
+5 V  
+3 V  
54  
58  
3
0.1  
56  
3.5  
0.1  
dB  
6.5  
0.2  
µA/V  
µA/V  
dB  
µA/V  
µA/V  
+Input Current  
OUTPUT CHARACTERISTICS  
Output Voltage Swing p-p  
RL = 150 , TMIN–TMAX  
+5 V  
+3 V  
+5 V  
+3 V  
+5 V  
3.0  
1.0  
20  
3.2  
1.3  
30  
25  
40  
±V p-p  
±V p-p  
mA  
mA  
mA  
Output Current  
15  
Short Circuit Current  
G = +2, RF = 715 Ω  
VIN = 1 V  
–4–  
REV. B  
AD813  
Model  
AD813A  
Typ  
Conditions  
VS  
Min  
Max  
Units  
MATCHING CHARACTERISTICS  
Dynamic  
Crosstalk  
Gain Flatness Match  
DC  
G = +2, f = 5 MHz  
G = +2, f = 20 MHz  
+5 V, +3 V  
+5 V, +3 V  
–65  
0.1  
dB  
dB  
Input Offset Voltage  
–Input Bias Current  
TMIN–TMAX  
TMIN–TMAX  
+5 V, +3 V  
+5 V, +3 V  
0.5  
2
3.5  
25  
mV  
µA  
POWER SUPPLY  
Operating Range  
Quiescent Current  
2.4  
36  
V
Per Amplifier  
+5 V  
+3 V  
+5 V  
+5 V  
+3 V  
3.2  
3.0  
4.0  
4.0  
5.0  
0.6  
0.5  
mA  
mA  
mA  
mA  
mA  
TMIN–TMAX  
Per Amplifier  
Quiescent Current, Powered Down  
0.4  
0.4  
Power Supply Rejection Ratio  
Input Offset Voltage  
–Input Current  
VS = +3.0 V to +30 V  
76  
0.3  
0.005  
dB  
µA/V  
µA/V  
+Input Current  
DISABLE CHARACTERISTICS  
Off Isolation  
Off Output Impedance  
Channel-to-Channel  
Isolation  
f = 5 MHz  
G = +1  
2 or 3 Channel  
Mux, f = 5 MHz  
+5 V, +3 V  
+5 V, +3 V  
+5 V, +3 V  
–55  
13  
–65  
dB  
pF  
dB  
Turn-On Time  
Turn-Off Time  
+5 V, +3 V  
100  
80  
ns  
ns  
TRANSISTOR COUNT  
NOTES  
111  
1Slew rate measurement is based on 10% to 90% rise time in the specified closed-loop gain.  
2Single supply differential gain and phase are measured with the ac coupled circuit of Figure 52.  
Specifications subject to change without notice.  
ABSOLUTE MAXIMUM RATINGS1  
ORDERING GUIDE  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
Internal Power Dissipation2  
Temperature  
Range  
Package  
Description  
Package  
Options  
Model  
Plastic (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6 Watts  
Small Outline (R) . . . . . . . . . . . . . . . . . . . . . . . . . 1.0 Watts  
Input Voltage (Common Mode) . . . . . . . . . . . . . . . . . . . ±VS  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . ±6 V  
Output Short Circuit Duration  
AD813AN  
AD813AR-14  
AD813ACHIPS  
AD813AR-REEL  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
14-Lead Plastic DIP N-14  
14-Lead Plastic SOIC R-14  
Die Form  
13" REEL  
7" REEL  
. . . . . . . . . . . . . . . . . . . . . . . Observe Power Derating Curves  
AD813AR-REEL7  
Storage Temperature Range N, R . . . . . . . . –65°C to +125°C  
5962-9559601M2A* –55°C to +125°C 20-Lead LCC  
Operating Temperature Range  
AD813A . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
*Refer to official DSCC drawing for tested specifications and pin configuration.  
Lead Temperature Range (Soldering 10 sec) . . . . . . . +300°C  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2Specification is for device in free air:  
14-Lead Plastic DIP Package: θJA = 75°C/W  
14-Lead SOIC Package: θJA = 120°C/W  
REV. B  
–5–  
AD813  
2.5  
Maximum Power Dissipation  
T
= +150 C  
J
The maximum power that can be safely dissipated by the  
AD813 is limited by the associated rise in junction temperature.  
The maximum safe junction temperature for the plastic encap-  
sulated parts is determined by the glass transition temperature  
of the plastic, about 150°C. Exceeding this limit temporarily  
may cause a shift in parametric performance due to a change in  
the stresses exerted on the die by the package. Exceeding a  
junction temperature of 175°C for an extended period can result  
in device failure.  
2.0  
1.5  
1.0  
0.5  
14-LEAD DIP PACKAGE  
14-LEAD SOIC  
While the AD813 is internally short circuit protected, this may  
not be enough to guarantee that the maximum junction tem-  
perature (150°C) is not exceeded under all conditions. To  
ensure proper operation, it is important to observe the derating  
curves.  
–50 –40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
AMBIENT TEMPERATURE –  
C
Figure 3. Maximum Power Dissipation vs. Ambient  
Temperature  
It must also be noted that in (noninverting) gain configurations  
(with low values of gain resistor), a high level of input overdrive  
can result in a large input error current, which may result in a  
significant power dissipation in the input stage. This power  
must be included when computing the junction temperature rise  
due to total internal power.  
METALIZATION PHOTO  
Dimensions shown in inches and (mm).  
0.124  
(3.15)  
V –  
S
11  
+IN2  
12  
V –  
S
11  
V –  
S
11  
+IN3  
10  
9
8
–IN3  
–IN2 13  
OUT3  
OUT2 14  
0.057  
(1.45)  
7
OUT1  
DISABLE1  
1
2
DISABLE2  
4
3
6
5
+IN1  
DISABLE3  
V +  
S
–IN1  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD813 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–6–  
REV. B  
AD813  
20  
20  
18  
16  
15  
10  
5
V
= ؎15V  
S
14  
12  
10  
8
V
= ؎5V  
S
0
0
5
10  
15  
20  
–60 –40 –20  
0
20  
40  
60  
80 100 120 140  
SUPPLY VOLTAGE – ؎Volts  
JUNCTION TEMPERATURE –  
C
Figure 4. Input Common-Mode Voltage Range vs.  
Supply Voltage  
Figure 7. Supply Current vs. Junction Temperature  
20  
13  
T
= +25 C  
A
12  
11  
10  
15  
NO LOAD  
10  
R
= 150  
L
5
0
9
8
0
5
10  
15  
20  
10  
SUPPLY VOLTAGE – ±Volts  
12  
14  
16  
0
2
4
6
8
SUPPLY VOLTAGE – ؎Volts  
Figure 8 Supply Current vs. Supply Voltage at Low  
Voltages  
Figure 5. Output Voltage Swing vs. Supply Voltage  
25  
20  
30  
؎15V SUPPLY  
25  
15  
10  
20  
15  
10  
–I , V = ؎5V  
B
S
5
0
+I , V = ؎5V, ؎15V  
B
S
–5  
–10  
–15  
–20  
–I , V = ؎15V  
B
S
؎5V SUPPLY  
5
–25  
0
10  
100  
1k  
10k  
–60 –40 –20  
0
20  
40  
60  
80 100 120 140  
LOAD RESISTANCE – ⍀  
JUNCTION TEMPERATURE –  
C
Figure 6. Output Voltage Swing vs. Load Resistance  
Figure 9. Input Bias Current vs. Junction Temperature  
REV. B  
–7–  
AD813  
4
70  
2
V
= ؎5V  
S
0
–2  
60  
50  
–4  
V
= ؎15V  
S
–6  
–8  
40  
30  
–10  
–12  
–14  
–16  
20  
–60 –40 –20  
0
20  
40  
60  
80 100 120 140  
0
5
10  
15  
20  
JUNCTION TEMPERATURE –  
C
SUPPLY VOLTAGE – ؎Volts  
Figure 10. Input Offset Voltage vs. Junction  
Temperature  
Figure 13. Linear Output Current vs. Supply Voltage  
160  
140  
120  
100  
80  
1k  
V
= ؎15V  
G = +2  
S
100  
10  
1
SINK  
SOURCE  
5V  
S
0.1  
60  
15V  
S
0.01  
40  
10k  
100k  
1M  
FREQUENCY – Hz  
10M  
100M  
–60 –40 –20  
0
20  
40  
60  
80 100 120 140  
JUNCTION TEMPERATURE –  
C
Figure 11. Short Circuit Current vs. Junction  
Temperature  
Figure 14. Closed-Loop Output Resistance vs.  
Frequency  
80  
70  
60  
50  
1M  
100k  
10k  
V
= ؎5V  
S
40  
30  
20  
1k  
V
= ؎15V  
S
100  
100M  
10M  
1M  
FREQUENCY – Hz  
–60 –40 –20  
0
20  
40  
60  
80 100 120 140  
100k  
JUNCTION TEMPERATURE –  
C
Figure 12. Linear Output Current vs. Junction  
Temperature  
Figure 15. Output Resistance vs. Frequency, Disabled  
State  
–8–  
REV. B  
AD813  
0
100  
100  
10  
1
120  
100  
–45  
V
= ؎15V  
PHASE  
S
–90  
–135  
–180  
INVERTING INPUT CURRENT NOISE  
GAIN  
V
V
= 3V  
S
10  
80  
60  
= ؎15V  
S
V
= 3V  
S
VOLTAGE NOISE  
NONINVERTING INPUT  
CURRENT NOISE  
1
100k  
40  
10k  
100k  
1M  
FREQUENCY – Hz  
10M  
100M  
10  
100  
1k  
FREQUENCY – Hz  
10k  
Figure 19. Open-Loop Transimpedance vs. Frequency  
(Relative to 1 )  
Figure 16. Input Current and Voltage Noise vs.  
Frequency  
90  
–30  
681  
G = +2  
80  
70  
60  
50  
40  
30  
20  
10  
681⍀  
681⍀  
V
V
V
= 2V p-p  
= ؎15V: R = 1k⍀  
= ؎5V: R = 150⍀  
O
S
S
V
V
IN  
OUT  
L
–50  
L
681⍀  
–70  
–90  
2ND HARMONIC  
= ؎5V  
V
S
V
= 3V  
S
3RD HARMONIC  
= ؎5V  
V
= ؎15V  
S
V
= ؎15V  
S
V
S
–110  
2ND  
3RD  
–130  
10k  
100k  
1M  
FREQUENCY – Hz  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY – Hz  
Figure 20. Harmonic Distortion vs. Frequency  
Figure 17. Common-Mode Rejection vs. Frequency  
10  
80  
70  
GAIN = –1  
8
V
= ؎15V  
S
؎15V  
6
4
2
60  
50  
؎1.5V  
0
1%  
0.1%  
0.025%  
40  
–2  
–4  
30  
20  
10  
0
–6  
–8  
–10  
100k  
1M  
10M  
100M  
20  
40  
60  
80  
10k  
FREQUENCY – Hz  
SETTLING TIME – ns  
Figure 21. Output Swing and Error vs. Settling Time  
Figure 18. Power Supply Rejection vs. Frequency  
REV. B  
–9–  
AD813  
700  
1000  
900  
V
R
= ؎15V  
= 500⍀  
S
L
600  
500  
800  
700  
600  
G = +10  
400  
300  
G = –1  
G = +10  
500  
400  
300  
200  
G = –1  
G = +2  
200  
100  
G = +2  
G = +1  
100  
G = +1  
0
0
0
0
1.5  
3.0  
4.5  
6.0  
7.5  
9.0 10.5 12.0 13.5 15.0  
1
2
3
4
5
6
7
8
9
10  
OUTPUT STEP SIZE – V p-p  
SUPPLY VOLTAGE – ؎Volts  
Figure 22. Slew Rate vs. Output Step Size  
Figure 25. Maximum Slew Rate vs. Supply Voltage  
2V  
500mV  
20ns  
50ns  
1 00  
90  
100  
V
IN  
90  
V
IN  
10  
10  
V
V
OUT  
OUT  
0 %  
0%  
500mV  
2V  
Figure 23. Large Signal Pulse Response, Gain = +1,  
Figure 26. Small Signal Pulse Response, Gain = +1,  
(RF = 750 , RL = 150 , VS = ±5 V)  
(RF = 750 , RL = 150 , VS = ±5 V)  
+90  
R
= 150⍀  
PHASE  
L
0
V
= ؎15V  
140  
S
–90  
–180  
–270  
3V  
؎5V  
120  
100  
5V  
+1  
0
GAIN  
V
= ؎15V  
R
= 866⍀  
S
R
= 750⍀  
F
80  
60  
F
–1  
3V  
5V  
–2  
–3  
–4  
–5  
R
= 1k⍀  
F
؎5V  
40  
–6  
2
4
6
8
10  
12  
14  
16  
1
10  
100  
1000  
SUPPLY VOLTAGE – ؎Volts  
FREQUENCY – MHz  
Figure 24. Closed-Loop Gain and Phase vs. Frequency,  
G = +1  
Figure 27. –3 dB Bandwidth vs. Supply Voltage, G = +1  
–10–  
REV. B  
AD813  
20ns  
50mV  
50ns  
500mV  
100  
90  
100  
90  
V
IN  
V
IN  
10  
10  
V
OUT  
V
OUT  
0%  
0%  
500mV  
500mV  
Figure 31. Small Signal Pulse Response, Gain = +10,  
(RF = 357 , RL = 150 , VS = ±5 V)  
Figure 28. Large Signal Pulse Response, Gain = +10,  
(RF = 357 , RL = 500 , VS = ±15 V)  
G = +10  
= 150⍀  
PHASE  
GAIN  
PHASE  
GAIN  
G = +10  
= 1k⍀  
V
= ؎15V  
S
V
= ؎15V  
؎5V  
0
0
R
S
L
R
L
–90  
–90  
؎5V  
3V  
5V  
+1  
–180  
–270  
+1  
–180  
–270  
5V  
3V  
0
0
–1  
V
= ؎15V  
؎5V  
–1  
–360  
S
V
= ؎15V  
S
5V  
3V  
5V  
3V  
–2  
–2  
–3  
–4  
–3  
–4  
؎5V  
–5  
–6  
–5  
–6  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 32. Closed-Loop Gain and Phase vs. Frequency,  
Figure 29. Closed-Loop Gain and Phase vs. Frequency,  
G = +10, RL = 1 kΩ  
G = +10, RL = 150 Ω  
G = +10  
G = +10  
R
= 150⍀  
R
= 1k⍀  
L
L
80  
70  
60  
90  
80  
70  
R
= 357⍀  
F
R
= 357⍀  
= 649⍀  
PEAKING 1dB  
= 154⍀  
F
R
F
50  
40  
30  
20  
60  
50  
40  
30  
R
R
= 649⍀  
F
F
R
= 154⍀  
F
20  
2
4
6
8
10  
12  
14  
16  
2
4
6
8
10  
12  
14  
16  
SUPPLY VOLTAGE – ؎Volts  
SUPPLY VOLTAGE – ؎Volts  
Figure 30. –3 dB Bandwidth vs. Supply Voltage,  
Figure 33. –3 dB Bandwidth vs. Supply Voltage,  
G = +10, RL = 150 Ω  
G = +10, RL = 1 kΩ  
REV. B  
–11–  
AD813  
500mV  
20ns  
2V  
50ns  
100  
90  
100  
90  
10  
10  
0%  
0%  
2V  
500mV  
Figure 34. Large Signal Pulse Response, Gain = –1,  
Figure 37. Small Signal Pulse Response, Gain = –1,  
(RF = 750 , RL = 150 , VS = ±5 V)  
(RF = 750 , RL = 150 , VS = ±5 V)  
V
= ؎15V  
G = –1  
= 150⍀  
G = –10  
R = 1k⍀  
L
PHASE  
GAIN  
PHASE  
GAIN  
S
V
= ؎15V  
S
0
0
R
L
؎5V  
–90  
–90  
؎5V  
3V  
3V  
5V  
+1  
–180  
–270  
+1  
–180  
–270  
5V  
0
0
V
= ؎15V  
S
–1  
–1  
V
= ؎15V  
S
3V  
–2  
–2  
3V  
؎5V  
–3  
–4  
–3  
–4  
؎5V  
5V  
5V  
–5  
–6  
–5  
–6  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 38. Closed-Loop Gain and Phase vs. Frequency,  
Figure 35. Closed-Loop Gain and Phase vs. Frequency,  
G = –10, RL = 1 kΩ  
G = –1, RL = 150 Ω  
G = –1  
G = –10  
R
= 150⍀  
R
= 1k⍀  
L
L
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
R
R
= 357⍀  
= 649⍀  
PEAKING 1.0dB  
= 681⍀  
F
R
F
R
= 154⍀  
F
80  
70  
60  
50  
PEAKING 0.2dB  
R
= 715⍀  
F
F
40  
2
4
6
8
10  
12  
14  
16  
2
4
6
8
10  
12  
14  
16  
SUPPLY VOLTAGE – ؎Volts  
SUPPLY VOLTAGE – ؎Volts  
Figure 36. –3 dB Bandwidth vs. Supply Voltage, G = –1,  
RL = 150 Ω  
Figure 39. –3 dB Bandwidth vs. Supply Voltage,  
G = –10, RL = 1 kΩ  
–12–  
REV. B  
AD813  
General Consideration  
To estimate the –3 dB bandwidth for closed-loop gains or feed-  
back resistors not listed in the above table, the following two  
pole model for the AD813 may be used:  
The AD813 is a wide bandwidth, triple video amplifier that  
offers a high level of performance on less than 5.5 mA per am-  
plifier of quiescent supply current. With its fast acting power  
down switch, it is designed to offer outstanding functionality  
and performance at closed-loop inverting or noninverting gains  
of one or greater.  
G
ACL  
=
(RF +GrIN)CT  
2 π f2  
S2  
+S (RF + GrIN )CT +1  
Built on a low cost, complementary bipolar process, and achiev-  
ing bandwidth in excess of 100 MHz, differential gain and phase  
errors of better than 0.1% and 0.1° (into 150 ), and output  
current greater than 40 mA, the AD813 is an exceptionally  
efficient video amplifier. Using a conventional current feedback  
architecture, its high performance is achieved through careful  
attention to design details.  
where:  
A
G
CL= closed-loop gain from “transcapacitance”  
= 1 + RF/RG  
rIN = input resistance of the inverting input  
CT = “transcapacitance,” which forms the  
open-loop dominant pole with the  
transresistance  
RF = feedback resistor  
RG = gain resistor  
f2 = frequency of second (nondominant) pole  
Choice of Feedback & Gain Resistors  
Because it is a current feedback amplifier, the closed-loop band-  
width of the AD813 depends on the value of the feedback resis-  
tor. The bandwidth also depends on the supply voltage. In  
addition, attenuation of the open-loop response when driving  
load resistors less than about 250 will also affect the band-  
width. Table I contains data showing typical bandwidths at  
different supply voltages for some useful closed-loop gains when  
driving a load of 150 . (Bandwidths will be about 20% greater  
for load resistances above a few hundred ohms.)  
s
= 2 πj f  
Appropriate values for the model parameters at different supply  
voltages are listed in Table II. Reasonable approximations for  
these values at supply voltages not found in the table can be  
obtained by a simple linear interpolation between those tabu-  
lated values which ‘bracket’ the desired condition.  
Table II. Two Pole Model Parameters at Various Supplies  
Table I. –3 dB Bandwidth vs. Closed-Loop Gain and  
Feedback Resistor , (RL = 150 )  
VS (V)  
rIN ()  
CT (pF)  
f2 (MHz)  
±15  
±5  
+5  
85  
90  
105  
115  
2.5  
3.8  
4.8  
5.5  
150  
125  
105  
95  
VS (V)  
Gain  
RF ()  
BW (MHz)  
±15  
+1  
+2  
+10  
–1  
–10  
866  
681  
357  
681  
357  
125  
100  
60  
100  
55  
+3  
As discussed in many amplifier and electronics textbooks (such  
as Roberge’s Operational Amplifiers: Theory and Practice), the  
–3 dB bandwidth for the 2-pole model can be obtained as:  
±5  
+5  
+3  
+1  
+2  
+10  
–1  
–10  
750  
649  
154  
649  
154  
75  
65  
40  
70  
40  
1/2  
1/2  
f
= f 1 2d2 +(2 4d2 + 4d 4  
)
[
]
3
n
1/2  
f2  
f
=
n
where:  
and:  
(RF + Gr IN ) CT  
+1  
+2  
+10  
–1  
–10  
715  
619  
154  
619  
154  
60  
50  
30  
50  
30  
1/2  
1
d =  
f (RF +GrIN ) CT  
2
[
]
2
This model will predict –3 dB bandwidth within about 10% to  
15% of the correct value when the load is 150 . However, it is  
not accurate enough to predict either the phase behavior or the  
frequency response peaking of the AD813.  
+1  
+2  
+10  
–1  
–10  
681  
619  
154  
619  
154  
50  
40  
25  
40  
20  
The choice of feedback resistor is not critical unless it is impor-  
tant to maintain the widest, flattest frequency response. The  
resistors recommended in the table are those (metal film values)  
that will result in the widest 0.1 dB bandwidth. In those appli-  
cations where the best control of the bandwidth is desired, 1%  
metal film resistors are adequate. Wider bandwidths can be  
attained by reducing the magnitude of the feedback resistor (at  
the expense of increased peaking), while peaking can be reduced  
by increasing the magnitude of the feedback resistor.  
REV. B  
–13–  
AD813  
Printed Circuit Board Layout Guidelines  
A carefully laid-out PC board should be able to achieve the level  
of crosstalk shown in the figure. The most significant contribu-  
tors to difficulty in achieving low crosstalk are inadequate power  
supply bypassing, overlapped input and/or output signal paths,  
and capacitive coupling between critical nodes.  
As with all wideband amplifiers, printed circuit board parasitics  
can affect the overall closed-loop performance. Most important  
for controlling the 0.1 dB bandwidth are stray capacitances at  
the output and inverting input nodes. Increasing the space be-  
tween signal lines and ground plane will minimize the coupling.  
Also, signal lines connecting the feedback and gain resistors  
should be kept short enough that their associated inductance  
does not cause high frequency gain errors.  
The bypass capacitors must be connected to the ground plane at  
a point close to and between the ground reference points for the  
loads. (The bypass of the negative power supply is particularly  
important in this regard.) This requires careful planning as  
there are three amplifiers in the package, and low impedance  
signal return paths must be provided for each load. (Using a  
parallel combination of 1 µF, 0.1 µF, and 0.01 µF bypass ca-  
pacitors will help to achieve optimal crosstalk.)  
Power Supply Bypassing  
Adequate power supply bypassing can be very important when  
optimizing the performance of high speed circuits. Inductance  
in the supply leads can (for example) contribute to resonant  
circuits that produce peaking in the amplifier’s response. In  
addition, if large current transients must be delivered to a load,  
then large (greater than 1 µF) bypass capacitors are required to  
produce the best settling time and lowest distortion. Although  
0.1 µF capacitors may be adequate in some applications, more  
elaborate bypassing is required in other cases.  
The input and output signal return paths (to the bypass caps)  
must also be kept from overlapping. Since ground connections  
are not of perfectly zero impedance, current in one ground  
return path can produce a voltage drop in another ground re-  
turn path if they are allowed to overlap.  
Electric field coupling external to (and across) the package can  
be reduced by arranging for a narrow strip of ground plane to be  
run between the pins (parallel to the pin rows). Doing this on  
both sides of the board can reduce the high frequency crosstalk  
by about 5 dB or 6 dB.  
When multiple bypass capacitors are connected in parallel, it is  
important to be sure that the capacitors themselves do not form  
resonant circuits. A small (say 5 ) resistor may be required in  
series with one of the capacitors to minimize this possibility.  
As discussed below, power supply bypassing can have a signifi-  
cant impact on crosstalk performance.  
Driving Capacitive Loads  
When used with the appropriate output series resistor, any load  
capacitance can be driven without peaking or oscillation. In  
most cases, less than 50 is all that is needed to achieve an  
extremely flat frequency response. As illustrated in Figure 44,  
the AD813 can be very attractive for driving large capacitive  
loads. In this case, the AD813’s high output short circuit cur-  
rent allows for a 150 V/µs slew rate when driving a 510 pF  
capacitor.  
Achieving Low Crosstalk  
Measured crosstalk from the output of Amplifier 2 to the input  
of Amplifier 1 of the AD813 is shown in Figure 40. All other  
crosstalk combinations, (from the output of one amplifier to the  
input of another), are a few dB better than this due to the addi-  
tional distance between critical signal nodes.  
–10  
R
= 150⍀  
L
R
F
–20  
–30  
–40  
–50  
–60  
0.1F  
1.0F  
+V  
S
R
G
4
R
S
–70  
–80  
–90  
V
AD813  
11  
O
V
R
C
IN  
L
L
1.0F  
0.1F  
R
T
–100  
–110  
–V  
S
100k  
1M  
10M  
100M  
FREQUENCY – Hz  
Figure 41. Circuit for Driving a Capacitive Load  
Figure 40. Worst Case Crosstalk vs. Frequency  
–14–  
REV. B  
AD813  
Overload Recovery  
V
= ؎5V  
S
There are three important overload conditions to consider.  
They are due to: input common-mode voltage overdrive, out-  
put voltage overdrive, and input current overdrive. When the  
amplifier is configured for low closed-loop gains, and the input  
common-mode voltage range is exceeded, the recovery time will  
be very fast, typically under 30 ns. When configured for a  
higher gain, and overloaded at the output, the recovery time will  
also be short. For example, in a gain of +10, with 6 dB of  
input overdrive, the recovery time of the AD813 is about 25 ns  
(see Figure 45).  
G = +2  
R
R
C
= 750⍀  
= 1k⍀  
= 10pF  
F
L
L
9
6
R
= 0  
S
3
0
R
= 30⍀  
S
R
= 50⍀  
S
–3  
1V  
50ns  
1
10  
100  
1000  
100  
90  
FREQUENCY – MHz  
Figure 42. Response to a Small Load Capacitor at  
VS = ±5 V  
V
= ؎15V  
S
G = +2  
10  
R
R
= 750⍀  
= 1k⍀  
F
L
0%  
2V  
9
6
Figure 45. 6 dB Overload Recovery, G = +10,  
(RL = 500 , RF = 357 , VS = ±5 V)  
C
= 150pF, R = 30⍀  
L
S
3
0
In the case of high gains with very high levels of input overdrive,  
a longer recovery time will occur. For example, if the input  
common-mode voltage range is exceeded in the gain of +10, the  
recovery time will be on the order of 100 ns. This is primarily  
due to current overloading of the input stage.  
C
= 510pF, R = 15⍀  
L
S
–3  
1
10  
100  
1000  
As noted in the warning under Maximum Power Dissipation, a  
high level of input overdrive in a high noninverting gain circuit  
can result in a large current flow in the input stage. Though this  
current is internally limited to about 40 mA, its effect on the  
total power dissipation may be significant.  
FREQUENCY – MHz  
Figure 43. Response to a Large Load Capacitor at  
VS = ±15 V  
5V  
100ns  
100  
90  
100  
10  
0%  
5V  
Figure 44. Circuit of Figure 38 Driving a 510 pF Load  
Capacitor, VS = ±15 V (RL = 1 k, RF = RG = 750 ,  
RS =15 )  
REV. B  
–15–  
AD813  
High Performance Video Line Driver  
Figures 50 and 51 show the worst case matching; the match  
between amplifiers 2 and 3 is typically much better than this.  
At a gain of +2, the AD813 makes an excellent driver for a back  
terminated 75 video line. Low differential gain and phase  
errors and wide 0.1 dB bandwidth can be realized over a wide  
range of power supply voltage. Excellent gain and group delay  
matching are also attainable over the full operating supply volt-  
age range.  
G = +2  
R
= 150⍀  
L
0.2  
0.1  
؎15V  
R
R
G
F
0
+V  
S
0.1F  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
؎5V  
3V  
5V  
75⍀  
CABLE  
4
75⍀  
75⍀  
CABLE  
V
AD813  
11  
OUT  
V
75⍀  
IN  
0.1F  
75⍀  
100k  
1M  
10M  
100M  
–V  
S
FREQUENCY – Hz  
Figure 46. A Video Line Driver Operating at a Gain of  
+2 (RF = RG from Table I)  
Figure 49. Fine-Scale Gain (Normalized) vs. Frequency  
+90  
2.5  
PHASE  
G = +2  
= 150⍀  
G = +2  
R
0
R = 150⍀  
2.0  
1.5  
L
L
–90  
V
= ؎15V  
3V  
S
S
؎5V  
–180  
–270  
+1  
0
1.0  
0.5  
0
5V  
GAIN  
–1  
–2  
–3  
–4  
–5  
–6  
V
= ؎15V  
S
V
= ؎15V  
؎5V  
5V  
–0.5  
V
= 3V  
S
–1.0  
–1.5  
–2.0  
3V  
–2.5  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 50. Closed-Loop Gain Matching vs. Frequency  
Figure 47. Closed-Loop Gain & Phase vs. Frequency for  
the Line Driver  
10  
8
120  
R
R
R
= 590⍀  
= 681⍀  
= 750⍀  
110  
100  
V = 3V  
S
F
F
F
5V  
؎5V  
6
؎15V  
4
2
90  
80  
DELAY  
NO PEAKING  
70  
60  
50  
1.0  
V
= ؎15V  
0.5  
0
S
40  
30  
20  
3V  
–0.5  
DELAY MATCHING  
–1.0  
100k  
1M  
10M  
100M  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY – Hz  
SUPPLY VOLTAGE – Volts  
Figure 51. Group Delay and Group Delay Matching vs.  
Figure 48. –3 dB Bandwidth vs. Supply Voltage for  
Gain = +2, RL = 150 Ω  
Frequency, G = +2, RL = 150 Ω  
–16–  
REV. B  
AD813  
Disable Mode Operation  
Operation Using a Single Supply  
Pulling the voltage on any one of the Disable pins about 2.5 V  
down from the positive supply will put the corresponding ampli-  
fier into a disabled, powered down, state. In this condition, the  
amplifier’s quiescent supply current drops to about 0.5 mA, its  
output becomes a high impedance, and there is a high level of  
isolation from input to output. In the case of the gain of two  
line driver for example, the impedance at the output node will  
be about the same as for a 1.4 kresistor (the feedback plus  
gain resistors) in parallel with a 12.5 pF capacitor and the input  
to output isolation will be about 65 dB at 1 MHz.  
The AD813 will operate with total supply voltages from 36 V  
down to 2.4 V. With proper biasing (see Figure 52) it can  
make an outstanding single supply video amplifier. Since the  
input and output voltage ranges extend to within 1 V of the  
supply rails, it will handle a 1.3 V peak-to-peak signal on a  
single 3.3 V supply, or a 3 V peak-to-peak signal on a single  
5 V supply. The small signal 0.1 dB bandwidths will exceed  
10 MHz in either case, and the large signal bandwidths will  
exceed 6 MHz.  
The capacitively coupled cable driver in Figure 52 will achieve  
outstanding differential gain and phase errors of 0.05% and 0.05  
degrees respectively on a single 5 V supply. Resistor R2, in this  
circuit, is selected to optimize the differential gain and phase by  
biasing the amplifier in its most linear region.  
Leaving the Disable pin disconnected (floating) will leave the  
corresponding amplifier operational, in the enabled state. The  
input impedance of the disable pins is about 35 kin parallel  
with a few pF. When grounded, about 50 µA flows out of a  
disable pin on ±5 V supplies.  
619⍀  
619⍀  
Input voltages greater than about 1.5 V peak-to-peak will defeat  
the isolation. In addition, large signals (greater than 3 V peak-  
to-peak) applied to the output node will cause the output im-  
pedance to drop significantly.  
R3  
C3  
1k⍀  
30F  
+5V  
C2  
1F  
R1  
9k⍀  
C
47F  
OUT  
75⍀  
CABLE  
4
75⍀  
C1  
2F  
V
AD813  
OUT  
When the Disable pins are driven by complementary output  
CMOS logic (such as the 74HC04), the disable time is about  
80 ns (until the output goes high impedance) and the enable  
time is about 100 ns (to low impedance output) on ±15 V sup-  
plies. When operated on ±15 V supplies, the disable pins  
should be driven by open drain logic. In this case, pull-up resis-  
tors from the disable pins to the plus supply will ensure mini-  
mum switching time.  
75⍀  
V
IN  
11  
R2  
12.4k⍀  
Figure 52. Biasing for Single Supply Operation  
V
= 5V  
S
0
G = +2  
R
R
= 619  
= 150⍀  
PHASE  
F
L
–90  
–180  
–270  
0.5  
0
464  
590⍀  
+5V  
GAIN  
–0.5  
–1.0  
4
1
6
5
84⍀  
84⍀  
84⍀  
7
14  
8
–1.5  
–2.0  
V
1
IN  
75⍀  
–2.5  
–3.0  
–3.5  
SELECT1  
464⍀  
590⍀  
1
10  
100  
1000  
FREQUENCY – MHz  
Figure 53. Closed-Loop Gain and Phase vs. Frequency,  
Circuit of Figure 52  
75⍀  
CABLE  
13  
12  
V
OUT  
V
2
75⍀  
IN  
2
1V  
50ns  
75⍀  
100  
90  
V
SELECT2  
IN  
464⍀  
590⍀  
9
V
OUT  
10  
11  
3
V
3
10  
IN  
0%  
75⍀  
–5V  
500mV  
SELECT3  
Figure 54. Pulse Response for the Circuit of Figure 52  
with +VS = 5 V  
Figure 55. A Fast Switching 3:1 Video Mux  
(Supply Bypassing Not Shown)  
REV. B  
–17–  
AD813  
3:1 Video Multiplexer  
Single Supply Differential Line Driver  
Wiring the amplifier outputs together will form a 3:1 mux with  
outstanding gain flatness. Figure 55 shows a recommended  
configuration which results in –0.1 dB bandwidth of 20 MHz  
and OFF channel isolation of 60 dB at 10 MHz on ±5 V sup-  
plies. The time to switch between channels is about 180 ns.  
Switching time is only slightly affected by signal level.  
Due to its outstanding overall performance on low supply volt-  
ages, the AD813 makes possible exceptional differential trans-  
mission on very low power. The circuit of Figure 59 will convert  
a single-ended, ground referenced signal to a differential signal  
whose common-mode reference is set to one half the supply  
voltage. This allows for a greater than 2 V peak-to-peak signal  
swing on a single 3 V power supply. A bandwidth over 30 MHz  
is achieved with 20 mA of output drive on only 30 mW of quies-  
cent power (excluding load current).  
500mV  
500ns  
100  
90  
715⍀  
1F  
715⍀  
V
+
OUT  
+3V  
R
L1  
4
2
+3V  
715⍀  
10  
1k⍀  
0%  
1F  
715⍀  
715⍀  
715⍀  
V
IN  
5V  
1F  
9k⍀  
1
715⍀  
1F  
Figure 56. Channel Switching Characteristic for the  
3:1 Mux  
10k⍀  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
3
V
OUT  
11  
R
L2  
715⍀  
715⍀  
Figure 59. Single 3 V Supply Differential Line Driver  
with 2 V Swing  
1V  
50ns  
V
100  
90  
IN  
100k  
1M  
10M  
100M  
FREQUENCY – Hz  
Figure 57. 3:1 Mux OFF Channel Feedthrough vs.  
Frequency  
+
0
10  
V
– V  
OUT  
OUT  
PHASE  
0%  
–45  
1V  
–90  
0.5  
–135  
–180  
0
–0.5  
–1.0  
Figure 60. Differential Driver Pulse Response (VS = 3 V,  
L1 = RL2 = 200 )  
GAIN  
R
–1.5  
–2.0  
–2.5  
–3.0  
1
10  
100  
FREQUENCY – MHz  
Figure 58. 3:1 Mux ON Channel Gain and Phase vs.  
Frequency  
–18–  
REV. B  
AD813  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
14-Lead Plastic DIP  
(N-14)  
0.795 (20.19)  
0.725 (18.42)  
14  
8
0.280 (7.11)  
0.240 (6.10)  
1
7
0.325 (8.25)  
0.300 (7.62)  
0.195 (4.95)  
0.115 (2.93)  
0.060 (1.52)  
0.015 (0.38)  
PIN 1  
0.210 (5.33)  
MAX  
0.130  
(3.30)  
MIN  
0.160 (4.06)  
0.115 (2.93)  
0.015 (0.381)  
0.008 (0.204)  
SEATING  
PLANE  
0.022 (0.558) 0.100 0.070 (1.77)  
(2.54)  
BSC  
0.014 (0.356)  
0.045 (1.15)  
14-Lead SOIC  
(R-14)  
0.3444 (8.75)  
0.3367 (8.55)  
14  
8
7
0.1574 (4.00)  
0.1497 (3.80)  
0.2440 (6.20)  
0.2284 (5.80)  
1
0.0688 (1.75)  
0.0532 (1.35)  
PIN 1  
0.0196 (0.50)  
0.0099 (0.25)  
x 45  
0.0098 (0.25)  
0.0040 (0.10)  
8
0
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
SEATING  
PLANE  
0.0500 (1.27)  
0.0160 (0.41)  
0.0099 (0.25)  
0.0075 (0.19)  
REV. B  
–19–  

相关型号:

AD813AN

Single Supply, Low Power Triple Video Amplifier
ADI

AD813ANZ

Single Supply, Low Power Triple Video Amplifier
ADI

AD813AR-14

Single Supply, Low Power Triple Video Amplifier
ADI

AD813AR-14-REEL

暂无描述
ADI

AD813AR-14-REEL7

3 CHANNEL, VIDEO AMPLIFIER, PDSO14, PLASTIC, SOIC-14
ADI

AD813AR-REEL

Single Supply, Low Power Triple Video Amplifier
ADI

AD813AR-REEL7

Single Supply, Low Power Triple Video Amplifier
ADI

AD813ARZ-14

Single Supply, Low Power Triple Video Amplifier
ADI

AD814

SILICON DUAL DIFFERNTIAL AMPLIFIER TRANSISTORS
ETC

AD8141

Low Cost, Triple Differential Drivers
ADI

AD8141ACPZ-R2

Low Cost, Triple Differential Drivers
ADI

AD8141ACPZ-R7

Low Cost, Triple Differential Drivers
ADI