AD818 [ADI]

Low Cost, Low Power Video Op Amp; 低成本,低功耗视频运算放大器
AD818
型号: AD818
厂家: ADI    ADI
描述:

Low Cost, Low Power Video Op Amp
低成本,低功耗视频运算放大器

运算放大器
文件: 总16页 (文件大小:927K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Cost, Low Power  
Video Op Amp  
AD818  
FEATURES  
CONNECTION DIAGRAM  
Low Cost  
8-Lead Plastic Mini-DIP (N) and SOIC (R) Packages  
Excellent Video Performance  
55 MHz 0.1 dB Bandwidth (Gain = +2)  
0.01% and 0.05؇ Differential Gain and Phase Errors  
High Speed  
130 MHz Bandwidth (3 dB, G = +2)  
100 MHz Bandwidth (3 dB, G+ = –1)  
500 V/s Slew Rate  
80 ns Settling Time to 0.01% (VO = 10 V Step)  
High Output Drive Capability  
50 mA Minimum Output Current  
Ideal for Driving Back Terminated Cables  
Flexible Power Supply  
NULL  
NULL  
8
7
6
5
1
2
3
4
AD818  
+V  
S
–IN  
+IN  
OUTPUT  
NC  
–V  
S
TOP VIEW  
NC = NO CONNECT  
any video application. The 130 MHz 3 dB bandwidth (G = +2)  
and 500 V/ms slew rate make the AD818 useful in many high speed  
applications including video monitors, CATV, color copiers,  
image scanners, and fax machines.  
Specified for Single (+5 V) and Dual (؎5 V to ؎15 V)  
Power Supplies  
Low Power: 7.5 mA Max Supply Current  
Available in 8-Lead SOIC and 8-Lead PDIP  
The AD818 is fully specified for operation with a single +5 V  
power supply and with dual supplies from ±5 V to ±15 V. This  
power supply flexibility, coupled with a very low supply current  
of 7.5 mA and excellent ac characteristics under all power sup-  
ply conditions, make the AD818 the ideal choice for many  
demanding yet power sensitive applications.  
GENERAL DESCRIPTION  
The AD818 is a low cost video op amp optimized for use in  
video applications that require gains equal to or greater than +2  
or –1. The AD818’s low differential gain and phase errors,  
single supply functionality, low power, and high output drive  
make it ideal for cable driving applications such as video  
cameras and professional video equipment.  
The AD818 is a voltage feedback op amp and excels as a gain  
stage in high speed and video systems (gain 2, or gain £ –1). It  
achieves a settling time of 45 ns to 0.1%, with a low input offset  
voltage of 2 mV max.  
With video specs like 0.1 dB flatness to 55 MHz and low differ-  
ential gain and phase errors of 0.01% and 0.05, along with  
50 mA of output current, the AD818 is an excellent choice for  
The AD818 is available in low cost, small 8-lead PDIP and  
SOIC packages.  
+15V  
0.02  
0.01F  
2.2F  
DIFF GAIN  
0.01  
R
BT  
75⍀  
V
IN  
75⍀  
AD818  
0.06  
0.05  
0.04  
0.03  
0.00  
R
75⍀  
T
DIFF PHASE  
0.1F  
2.2F  
–15V  
1k⍀  
5
10  
15  
1k⍀  
SUPPLY VOLTAGE (؎V)  
Figure 2. Differential Gain and Phase vs. Supply  
Figure 1. Video Line Driver  
REV. C  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
AD818–SPECIFICATIONS  
(@ TA = 25؇C, unless otherwise noted.)  
AD818A  
Typ  
Parameter  
Conditions  
VS  
Min  
Max  
Unit  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth  
Gain = +2  
±5 V  
70  
100  
40  
50  
70  
30  
20  
40  
10  
18  
40  
10  
95  
130  
55  
70  
100  
50  
43  
55  
18  
34  
72  
19  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
±15 V  
0 V, +5 V  
±5 V  
Gain = –1  
±15 V  
0 V, +5 V  
±5 V  
Bandwidth for 0.1 dB Flatness  
Gain = +2  
CC = 2 pF  
±15 V  
0 V, +5 V  
±5 V  
Gain = –1  
CC = 2 pF  
±15 V  
0 V, +5 V  
Full Power Bandwidth*  
VOUT = 5 V p-p  
RLOAD = 500 W  
VOUT = 20 V p-p  
±5 V  
25.5  
MHz  
R
LOAD = 1 kW  
±15 V  
±5 V  
±15 V  
0 V, +5 V  
±5 V  
±15 V  
±5 V  
±15 V  
±15 V  
±15 V  
±5 V  
8.0  
MHz  
V/ms  
V/ms  
V/ms  
ns  
ns  
ns  
ns  
dB  
%
%
Slew Rate  
RLOAD = 1 kW  
Gain = –1  
350  
450  
250  
400  
500  
300  
45  
45  
80  
Settling Time to 0.1%  
Settling Time to 0.01%  
–2.5 V to +2.5 V  
0 V–10 V Step, AV = –1  
–2.5 V to +2.5 V  
0 V–10 V Step, AV = –1  
FC = 1 MHz  
80  
63  
Total Harmonic Distortion  
Differential Gain Error  
(RL = 150 W)  
NTSC  
Gain = +2  
0.005  
0.01  
0.08  
0.045  
0.06  
0.1  
0.01  
0.02  
0 V, +5 V  
±15 V  
±5 V  
%
Differential Phase Error  
(RL = 150 W)  
NTSC  
Gain = +2  
0.09  
0.09  
Degrees  
Degrees  
Degrees  
pF  
0 V, +5 V  
Cap Load Drive  
10  
INPUT OFFSET VOLTAGE  
±5 V to ±15 V  
±5 V, ±15 V  
±5 V, ±15 V  
±5 V  
0.5  
2
3
mV  
mV  
mV/C  
TMIN to TMAX  
Offset Drift  
10  
INPUT BIAS CURRENT  
3.3  
6.6  
10  
4.4  
mA  
mA  
mA  
TMIN  
TMAX  
INPUT OFFSET CURRENT  
25  
300  
500  
nA  
nA  
nA/C  
TMIN to TMAX  
Offset Current Drift  
OPEN-LOOP GAIN  
0.3  
VOUT = ±2.5 V  
R
LOAD = 500 W  
3
2
2
5
4
9
V/mV  
V/mV  
V/mV  
TMIN to TMAX  
RLOAD = 150 W  
V
OUT = ±10 V  
±15 V  
±15 V  
RLOAD = 1 kW  
TMIN to TMAX  
6
3
V/mV  
V/mV  
V
OUT = ±7.5 V  
RLOAD = 150 W  
(50 mA Output)  
3
5
V/mV  
COMMON-MODE REJECTION  
V
CM = ±2.5 V  
±5 V  
±15 V  
±15 V  
82  
86  
84  
100  
120  
100  
dB  
dB  
dB  
VCM = ±12 V  
TMIN to TMAX  
–2–  
REV. C  
AD818  
AD818A  
Typ  
Parameter  
Conditions  
VS  
Min  
Max  
Unit  
POWER SUPPLY REJECTION  
VS = ±5 V to ±15 V  
TMIN to TMAX  
80  
80  
90  
dB  
dB  
INPUT VOLTAGE NOISE  
INPUT CURRENT NOISE  
f = 10 kHz  
f = 10 kHz  
±5 V, ±15 V  
±5 V, ±15 V  
10  
nV/÷Hz  
pA/÷Hz  
1.5  
INPUT COMMON-MODE  
VOLTAGE RANGE  
±5 V  
+3.8  
–2.7  
+13  
–12  
+3.8  
+1.2  
+4.3  
–3.4  
+14.3  
–13.4  
+4.3  
+0.9  
V
V
V
V
V
V
±15 V  
0 V, +5 V  
OUTPUT VOLTAGE SWING  
Output Current  
R
LOAD = 500 W  
±5 V  
3.3  
3.2  
13.3  
12.8  
1.5, 3.5  
50  
3.8  
3.6  
13.7  
13.4  
±V  
±V  
±V  
±V  
V
mA  
mA  
mA  
mA  
RLOAD = 150 W  
±5 V  
RLOAD = 1 kW  
±15 V  
±15 V  
0 V, +5 V  
±15 V  
±5 V  
0 V, +5 V  
±15 V  
R
LOAD = 500 W  
RLOAD = 500 W  
50  
30  
Short-Circuit Current  
INPUT RESISTANCE  
INPUT CAPACITANCE  
OUTPUT RESISTANCE  
90  
300  
1.5  
8
kW  
pF  
W
Open Loop  
POWER SUPPLY  
Operating Range  
Dual Supply  
Single Supply  
±2.5  
+5  
±18  
+36  
7.5  
7.5  
7.5  
7.5  
V
V
mA  
mA  
mA  
mA  
Quiescent Current  
±5 V  
7.0  
7.0  
TMIN to TMAX  
TMIN to TMAX  
±5 V  
±15 V  
±15 V  
*Full power bandwidth = slew rate/(2p VPEAK).  
Specifications subject to change without notice.  
REV. C  
–3–  
AD818  
ABSOLUTE MAXIMUM RATINGS1  
2.0  
1.5  
1.0  
0.5  
0
T
= 150 C  
J
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
8-LEAD MINI-DIP PACKAGE  
Internal Power Dissipation2  
Plastic (N) . . . . . . . . . . . . . . . . . . . . . . See Derating Curves  
Small Outline (R) . . . . . . . . . . . . . . . . . See Derating Curves  
Input Voltage (Common Mode) . . . . . . . . . . . . . . . . . . . . ±VS  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . ±6 V  
Output Short-Circuit Duration . . . . . . . . See Derating Curves  
Storage Temperature Range (N, R) . . . . . . . . –65C to +125C  
Operating Temperature Range . . . . . . . . . . . . –40C to +85C  
Lead Temperature Range (Soldering 10 sec) . . . . . . . . . 300C  
8-LEAD SOIC PACKAGE  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2Specification is for device in free air: 8-lead plastic package, JA = 90C/W; 8-lead  
SOIC package, JA = 155C/W.  
–50 –40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
AMBIENT TEMPERATURE (؇C)  
Figure 3. Maximum Power Dissipation vs. Temperature  
for Different Package Types  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option  
AD818AN  
AD818AR  
AD818AR-REEL  
AD818AR-REEL7  
–40C to +85C  
–40C to +85C  
–40C to +85C  
–40C to +85C  
8-Lead Plastic PDIP  
8-Lead Plastic SOIC  
13" Tape and Reel  
7" Tape and Reel  
N-8  
R-8  
R-8  
R-8  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
AD818 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended  
to avoid performance degradation or loss of functionality.  
METALLIZATION PHOTOGRAPH  
Dimensions shown in inches and (mm)  
OFFSET OFFSET  
+V  
7
NULL  
1
NULL  
8
S
–INPUT  
+INPUT  
2
3
0.0523  
(1.33)  
6
OUTPUT  
4
–V  
S
0.0559 (1.42)  
–4–  
REV. C  
Typical Performance Characteristics–AD818  
20  
20  
15  
15  
10  
R
= 500  
L
+V  
CM  
10  
5
–V  
CM  
R
= 150⍀  
L
5
0
0
0
5
10  
SUPPLY VOLTAGE (؎V)  
15  
20  
0
5
10  
SUPPLY VOLTAGE (؎V)  
15  
20  
TPC 1. Common-Mode Voltage Range vs. Supply  
TPC 4. Output Voltage Swing vs. Supply  
30  
25  
8.0  
7.5  
7.0  
6.5  
6.0  
V
= ؎15V  
S
20  
+85؇C  
+25؇C  
15  
10  
–40؇C  
V
= ؎5V  
S
5
0
10  
100  
1k  
10k  
0
5
10  
SUPPLY VOLTAGE (؎V)  
15  
20  
LOAD RESISTANCE ()  
TPC 2. Output Voltage Swing vs. Load Resistance  
TPC 5. Quiescent Supply Current vs. Supply Voltage  
600  
100  
10  
500  
400  
300  
200  
1
0.1  
0.01  
0
5
10  
15  
20  
1k  
10k  
100k  
1M  
10M  
100M  
SUPPLY VOLTAGE (؎V)  
FREQUENCY (Hz)  
TPC 3. Slew Rate vs. Supply Voltage  
TPC 6. Closed-Loop Output Impedance vs. Frequency  
REV. C  
–5–  
AD818  
7
130  
110  
90  
6
5
4
3
2
1
SOURCE CURRENT  
SINK CURRENT  
70  
50  
30  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (؇C)  
TEMPERATURE (؇C)  
TPC 7. Input Bias Current vs. Temperature  
TPC 10. Short-Circuit Current vs. Temperature  
100  
100  
80  
60  
40  
20  
0
70  
60  
50  
95  
85  
75  
PHASE ؎5V OR  
؎15V SUPPLIES  
80  
60  
40  
20  
0
PHASEMARGIN  
؎15V SUPPLIES  
= 1k⍀  
R
L
؎5V SUPPLIES  
= 1k⍀  
R
L
GAIN/BANDWIDTH  
40  
30  
65  
55  
–20  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
FREQUENCY (Hz)  
TEMPERATURE (؇C)  
TPC 8. –3 dB Bandwidth and Phase Margin vs.  
Temperature, Gain = +2  
TPC 11. Open-Loop Gain and Phase Margin vs.  
Frequency  
9
100  
90  
؎15V  
8
80  
+SUPPLY  
7
70  
؎5V  
60  
6
5
4
3
–SUPPLY  
50  
40  
30  
20  
10  
100  
1k  
10k  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
LOAD RESISTANCE ()  
TPC 12. Power Supply Rejection vs. Frequency  
TPC 9. Open-Loop Gain vs. Load Resistance  
–6–  
REV. C  
AD818  
120  
30  
20  
10  
R
= 1k  
L
100  
80  
R
= 150⍀  
L
60  
0
100k  
40  
1M  
10M  
FREQUENCY (Hz)  
100M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
TPC 13. Common-Mode Rejection vs. Frequency  
TPC 16. Output Voltage vs. Frequency  
10  
8
–40  
–50  
–60  
–70  
–80  
–90  
–100  
R
= 150⍀  
L
2V p-p  
6
4
1%  
1%  
0.1%  
0.1%  
0.01%  
0.01%  
2
0
SECOND HARMONIC  
–2  
–4  
–6  
–8  
–10  
THIRD HARMONIC  
0
20  
40  
60  
80  
100  
120  
140  
160  
100  
1k  
10k  
100k  
1M  
10M  
SETTLING TIME (ns)  
FREQUENCY (Hz)  
TPC 14. Output Swing and Error vs. Settling Time  
TPC 17. Harmonic Distortion vs. Frequency  
50  
40  
650  
550  
450  
350  
250  
30  
20  
10  
0
1
10  
100  
1k  
10k  
100k  
1M  
10M  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
FREQUENCY (Hz)  
TEMPERATURE (؇C)  
TPC 15. Input Voltage Noise Spectral Density vs.  
Frequency  
TPC 18. Slew Rate vs. Temperature  
REV. C  
–7–  
AD818  
C
F
0.02  
0.01  
1k⍀  
DIFF GAIN  
+V  
S
3.3F  
0.00  
0.06  
0.01F  
HP  
V
IN  
PULSE (LS)  
OR FUNCTION  
(SS)  
1k⍀  
0.05  
0.04  
TEKTRONIX  
7A24  
PREAMP  
TEKTRONIX  
P6201 FET  
PROBE  
DIFF PHASE  
AD818  
GENERATOR  
50⍀  
V
OUT  
0.01F  
3.3F  
R
L
0.03  
5
10  
15  
SUPPLY VOLTAGE (؎V)  
–V  
S
TPC 19. Differential Gain and Phase vs. Supply Voltage  
TPC 22. Inverting Amplifier Connection  
C
C
0.1dB  
10  
9
V
C
FLATNESS  
2V  
50ns  
S
C
1k⍀  
1k⍀  
؎15V 2pF 55MHz  
؎5V 1pF 43MHz  
+5V 1pF 18MHz  
V
OUT  
100  
90  
AD818  
8
V
IN  
150⍀  
7
6
5
؎15V  
؎5V  
4
10  
3
0%  
+5V  
2
2V  
1
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
TPC 20. Closed-Loop Gain vs. Frequency (G = +2)  
TPC 23. Inverter Large Signal Pulse Response;  
VS = ±5 V, CF = 1 pF, RL = 1 kW  
10  
0.1dB  
FLATNESS  
2pF  
8
6
200mV  
10ns  
V
S
؎15V 72MHz  
1k⍀  
1k⍀  
100  
90  
؎5V  
+5V  
34MHz  
19MHz  
V
OUT  
AD818  
4
V
IN  
150⍀  
2
0
–2  
–4  
–6  
–8  
–10  
؎15V  
+5V  
10  
0%  
؎5V  
200mV  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
TPC 24. Inverter Small Signal Pulse Response;  
VS = ±5 V, CF = 1 pF, RL = 150 W  
TPC 21. Closed-Loop Gain vs. Frequency (G = –1)  
–8–  
REV. C  
AD818  
C
F
1k⍀  
1k⍀  
5V  
50ns  
+V  
S
3.3F  
100  
90  
0.01F  
TEKTRONIX  
TEKTRONIX  
P6201 FET  
PROBE  
7A24  
HP  
AD818  
V
IN  
PREAMP  
PULSE (LS)  
OR FUNCTION  
(SS)  
100⍀  
50⍀  
V
OUT  
10  
0%  
GENERATOR  
0.01F  
3.3F  
5V  
R
L
–V  
S
TPC 25. Inverter Large Signal Pulse Response;  
VS = ±15 V, CF = 1 pF, RL = 1 kW  
TPC 28. Noninverting Amplifier Connection  
200mV  
10ns  
1V  
50ns  
100  
90  
100  
90  
10  
10  
0%  
0%  
200mV  
2V  
TPC 26. Inverter Small Signal Pulse Response;  
VS = ±15 V, CF = 1 pF, RL = 150 W  
TPC 29. Noninverting Large Signal Pulse Response;  
VS = ±5 V, CF = 1 pF, RL = 1 kW  
200mV  
10ns  
100mV  
10ns  
100  
90  
100  
90  
10  
10  
0%  
0%  
200mV  
200mV  
TPC 27. Inverter Small Signal Pulse Response;  
VS = ±5 V, CF = 0 pF, RL = 150 W  
TPC 30. Noninverting Small Signal Pulse  
Response; VS = ±5 V, CF = 1 pF, RL = 150 W  
REV. C  
–9–  
AD818  
5V  
50ns  
100mV  
10ns  
100  
90  
100  
90  
10  
10  
0%  
0%  
5V  
200mV  
TPC 31. Noninverting Large Signal Pulse Response;  
TPC 33. Noninverting Small Signal Pulse Response;  
VS = ±15 V, CF = 1 pF, RL = 1 kW  
VS = ±5 V, CF = 0 pF, RL = 150 W  
100mV  
10ns  
100  
90  
10  
0%  
200mV  
TPC 32. Noninverting Small Signal Pulse Response;  
VS = ±15 V, CF = 1 pF, RL = 150 W  
–10–  
REV. C  
AD818  
+V  
S
may result in peaking. A small capacitance (1 pF–5 pF) may be  
used in parallel with the feedback resistor to neutralize this effect.  
Power supply leads should be bypassed to ground as close as  
possible to the amplifier pins. Ceramic disc capacitors of 0.1 mF  
are recommended.  
OUTPUT  
+V  
S
–IN  
+IN  
AD818  
10k  
V
ADJUST  
–V  
S
OS  
–V  
S
NULL 1  
NULL 8  
Figure 5. Offset Null Configuration  
OFFSET NULLING  
The input offset voltage of the AD818 is inherently very low.  
However, if additional nulling is required, the circuit shown  
in Figure 5 can be used. The null range of the AD818 in this  
configuration is ±10 mV.  
Figure 4. AD818 Simplified Schematic  
THEORY OF OPERATION  
The AD818 is a low cost video operational amplifier designed to  
excel in high performance, high output current video applications.  
The AD818 (Figure 4) consists of a degenerated NPN differen-  
tial pair driving matched PNPs in a folded-cascode gain stage.  
The output buffer stage employs emitter followers in a class  
AB amplifier that delivers the necessary current to the load, while  
maintaining low levels of distortion.  
SINGLE SUPPLY OPERATION  
Another exciting feature of the AD818 is its ability to perform  
well in a single supply configuration. The AD818 is ideally  
suited for applications that require low power dissipation and  
high output current.  
The AD818 will drive terminated cables and capacitive loads of  
10 pF or less. As the closed-loop gain is increased, the AD818  
will drive heavier capacitive loads without oscillating.  
Referring to Figure 6, careful consideration should be given to  
the proper selection of component values. The choices for this  
particular circuit are: R1 + R3ʈR2 combine with C1 to form a  
low frequency corner of approximately 10 kHz. C4 was inserted  
in series with R4 to maintain amplifier stability at high frequency.  
INPUT CONSIDERATIONS  
An input protection resistor (RIN in TPC 28) is required in  
circuits where the input to the AD818 will be subjected to tran-  
sients of continuous overload voltages exceeding the ±6 V  
maximum differential limit. This resistor provides protection for  
the input transistors by limiting their maximum base current.  
Combining R3 with C2 forms a low-pass filter with a corner  
frequency of approximately 500 Hz. This is needed to maintain  
amplifier PSRR, since the supply is connected to VIN through  
the input divider. The values for R2 and C2 were chosen to  
demonstrate the AD818’s exceptional output drive capability.  
In this configuration, the output is centered around 2.5 V. In  
order to eliminate the static dc current associated with this level,  
C3 was inserted in series with R L.  
For high performance circuits, it is recommended that a “bal-  
ancing” resistor be used to reduce the offset errors caused by  
bias current flowing through the input and feedback resistors.  
The balancing resistor equals the parallel combination of RIN  
and RF and thus provides a matched impedance at each input  
terminal. The offset voltage error will then be reduced by more  
than an order of magnitude.  
V
S
R3  
GROUNDING AND BYPASSING  
SELECT C1, R1, R2  
FOR DESIRED LOW  
FREQUENCY CORNER.  
100  
1k⍀  
R4  
3.3F  
When designing high frequency circuits, some special precautions  
are in order. Circuits must be built with short interconnect leads.  
When wiring components, care should be taken to provide a low  
resistance, low inductance path to ground. Sockets should be  
avoided, since their increased interlead capacitance can degrade  
circuit bandwidth.  
1k⍀  
C2  
3.3F  
C4  
0.001F  
0.01F  
R1  
3.3k⍀  
V
OUT  
C1  
0.01F  
AD818  
C3  
0.1F  
V
IN  
Feedback resistors should be of low enough value (£1 kW) to  
ensure that the time constant formed with the inherent stray  
capacitance at the amplifier’s summing junction will not limit  
performance. This parasitic capacitance, along with the parallel  
resistance of RFʈRIN, forms a pole in the loop transmission, which  
R2  
R
3.3k⍀  
L
150⍀  
Figure 6. Single-Supply Amplifier Configuration  
REV. C  
–11–  
AD818  
15pF  
1M  
2
؋
 
HP2835  
ERROR AMPLIFIER  
ERROR  
V
OUTPUT 
؋
 10  
SHORT, DIRECT CONNECTION  
TO TEKTRONIX TYPE 11402  
OSCILLOSCOPE PREAMP  
INPUT SECTION  
100⍀  
2
؋
 
HP2835  
ERROR  
SIGNAL  
OUTPUT  
AD829  
0.47F  
0.01F  
0.47F  
0 TO ؎10V  
POWER  
SUPPLY  
0.01F  
EI&S  
–V  
S
DL1A05GM  
MERCURY  
RELAY  
FALSE  
SUMMING  
NODE  
+V  
NULL  
S
1.9k⍀  
ADJUST  
1k⍀  
7, 8  
NOTE  
1k⍀  
100⍀  
100⍀  
500⍀  
USE CIRCUIT BOARD  
WITH GROUND PLANE  
TTL LEVEL  
SIGNAL  
GENERATOR  
50Hz  
OUTPUT  
50⍀  
COAX  
CABLE  
5pF–18pF  
DEVICE  
UNDER  
TEST  
1, 14  
500⍀  
50⍀  
TEKTRONIX P6201  
FET PROBE TO  
AD818  
TEKTRONIX TYPE 11402  
OSCILLOSCOPE  
PREAMP INPUT SECTION  
10pF  
SCOPE PROBE  
CAPACITANCE  
DIGITAL  
GROUND  
2.2F  
0.01F  
ANALOG  
GROUND  
–V  
S
0.01F  
2.2F  
+V  
S
Figure 7. Settling Time Test Circuit  
AD818 SETTLING TIME  
A High Performance Video Line Driver  
Settling time primarily comprises two regions. The first is the slew  
time in which the amplifier is overdriven, where the output voltage  
rate of change is at its maximum. The second is the linear time  
period required for the amplifier to settle to within a specified  
percentage of the final value.  
The buffer circuit shown in Figure 8 will drive a back-terminated  
75 W video line to standard video levels (1 V p-p) with 0.1 dB  
gain flatness to 55 MHz with only 0.05and 0.01% differential  
phase and gain at the 3.58 MHz NTSC subcarrier frequency.  
This level of performance, which meets the requirements for  
high definition video displays and test equipment, is achieved  
using only 7 mA quiescent current.  
Measuring the rapid settling time of the AD818 (45 ns to 0.1%  
and 80 ns to 0.01%—10 V step) requires applying an input pulse  
with a very fast edge and an extremely flat top. With the AD818  
configured in a gain of –1, a clamped false summing junction  
responds when the output error is within the sum of two diode  
voltages (approximately 1 V). The signal is then amplified 20 times  
by a clamped amplifier whose output is connected directly to a  
sampling oscilloscope.  
+15V  
0.01F  
2.2F  
R
BT  
75  
V
IN  
75⍀  
AD818  
R
75  
T
R
T
75⍀  
2.2F  
0.01F  
–15V  
1k  
1k  
Figure 8. Video Line Driver  
–12–  
REV. C  
AD818  
DIFFERENTIAL LINE RECEIVER  
A HIGH SPEED, 3-OP AMP IN AMP  
The differential receiver circuit of Figure 9 is useful for many  
applications—from audio to video. It allows extraction of a low  
level signal in the presence of common-mode noise, as shown in  
Figure 10.  
The circuit of Figure 11 uses three high speed op amps: two  
AD818s and an AD817. This high speed circuit lends itself well  
to CCD imaging and other video speed applications. It has the  
optional flexibility of both dc and ac trims for common-mode  
rejection, plus the ability to adjust for minimum settling time.  
2pF  
EACH AMPLIFIER  
PIN 7  
1k⍀  
1k⍀  
V
B
+15V  
+V  
EACH  
S
+5V  
AMPLIFIER  
0.1F  
0.1F  
1F  
10F  
10F  
0.01F  
2.2F  
2.2F  
COMMON  
–15V  
1F  
0.1F  
0.1F  
DIFFERENTIAL  
INPUT  
AD818  
OUTPUT  
PIN 4  
V
OUT  
–V  
EACH  
S
AMPLIFIER  
0.01F  
1k⍀  
–5V  
2pF  
–V  
IN  
SETTLING  
A1  
AD818  
1k⍀  
TIME AC  
CMR ADJUST  
2pF–8pF  
V
A
1k⍀  
1k⍀  
Figure 9. Differential Line Receiver  
1k⍀  
1k⍀  
V
OUT  
5pF  
5pF  
A3  
AD818  
R
2pF  
G
R
2k⍀  
L
3pF  
100  
90  
1k⍀  
970⍀  
20ns  
1V  
2V  
A2  
AD818  
50⍀  
DC CMR  
ADJUST  
V
A
+V  
IN  
BANDWIDTH, SETTLING TIME, AND TOTAL HARMONIC DISTORTION VS. GAIN  
10  
SMALL  
SETTLING THD + NOISE  
0%  
CADJ  
(pF)  
SIGNAL  
TIME  
BELOW INPUT LEVEL  
GAIN  
R
BANDWIDTH  
TO 0.1%  
@ 10kHz  
G
OUTPUT  
200ns  
370ns  
2.5s  
1k⍀  
222⍀  
20⍀  
14.7MHz  
4.5MHz  
960kHz  
3
10  
100  
2–8  
2–8  
2–8  
82dB  
81dB  
71dB  
Figure 10. Performance of Line Receiver, RL = 150 W,  
G = +2  
Figure 11. High Speed 3-Op Amp In Amp  
REV. C  
–13–  
AD818  
OUTLINE DIMENSIONS  
8-Lead Plastic Dual In-Line Package [PDIP]  
(N-8)  
Dimensions shown in inches and (millimeters)  
0.375 (9.53)  
0.365 (9.27)  
0.355 (9.02)  
8
1
5
0.295 (7.49)  
0.285 (7.24)  
0.275 (6.98)  
4
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.150 (3.81)  
0.135 (3.43)  
0.120 (3.05)  
0.015  
(0.38)  
MIN  
0.180  
(4.57)  
MAX  
0.015 (0.38)  
0.010 (0.25)  
0.008 (0.20)  
0.150 (3.81)  
0.130 (3.30)  
0.110 (2.79)  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
SEATING  
PLANE  
0.060 (1.52)  
0.050 (1.27)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MO-095AA  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
8-Lead Standard Small Outline Package [SOIC]  
(R-8)  
Dimensions shown in millimeters and (inches)  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
؋
 45؇  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8؇  
0.51 (0.0201)  
0.31 (0.0122)  
0؇ 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
–14–  
REV. C  
AD818  
Revision History  
Location  
Page  
5/03—Data Sheet changed from REV. B to REV. C.  
Renumbered Figures and TPCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Universal  
Changes to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Changes to Figures 9 and 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
REV. C  
–15–  
–16–  

相关型号:

AD8180

750 MHz, 3.8 mA 10 ns Switching Multiplexers
ADI

AD8180-EB

750 MHz, 3.8 mA 10 ns Switching Multiplexers
ADI

AD8180AN

750 MHz, 3.8 mA 10 ns Switching Multiplexers
ADI

AD8180ANZ

暂无描述
ADI

AD8180AR

750 MHz, 3.8 mA 10 ns Switching Multiplexers
ADI

AD8180AR-REEL

750 MHz, 3.8 mA 10 ns Switching Multiplexers
ADI

AD8180AR-REEL7

750 MHz, 3.8 mA 10 ns Switching Multiplexers
ADI

AD8180ARZ

750 MHz, 3.8 mA 10 ns Switching Multiplexers
ADI

AD8180ARZ-R7

2-CHANNEL, VIDEO MULTIPLEXER, PDSO8, PLASTIC, SOIC-8
ROCHESTER

AD8180ARZ-REEL

2-CHANNEL, VIDEO MULTIPLEXER, PDSO8, PLASTIC, SOIC-8
ADI

AD8180ARZ-REEL7

2-CHANNEL, VIDEO MULTIPLEXER, PDSO8, PLASTIC, SOIC-8
ADI

AD8180ARZ-RL

Single, 2:1 Buffered, 750 MHz, 3.8 mA 10 ns Switching Multiplexer
ADI