AD8210WYRZ-RL [ADI]

High Voltage, Bidirectional Current Shunt Monitor; 高电压,双向电流分流监控器
AD8210WYRZ-RL
型号: AD8210WYRZ-RL
厂家: ADI    ADI
描述:

High Voltage, Bidirectional Current Shunt Monitor
高电压,双向电流分流监控器

监控
文件: 总16页 (文件大小:293K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Voltage, Bidirectional  
Current Shunt Monitor  
Data Sheet  
AD8210  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
V
SUPPLY  
4000 V HBM ESD  
I
S
High common-mode voltage range  
−2 V to +65 V operating  
R
S
−5 V to +68 V survival  
Buffered output voltage  
+IN  
–IN  
V+  
5 mA output drive capability  
Wide operating temperature range: −40°C to +125°C  
Ratiometric half-scale output offset  
Excellent ac and dc performance  
1 µV/°C typical offset drift  
V
S
AD8210  
LOAD  
10 ppm/°C typical gain drift  
120 dB typical CMRR at dc  
V
1
REF  
80 dB typical CMRR at 100 kHz  
Available in 8-lead SOIC  
G = +20  
VOUT  
V
2
REF  
APPLICATIONS  
Current sensing  
Motor controls  
GND  
Transmission controls  
Diesel injection controls  
Engine management  
Suspension controls  
Vehicle dynamic controls  
DC-to-dc converters  
Figure 1.  
GENERAL DESCRIPTION  
The AD8210 is a single-supply, difference amplifier ideal for  
amplifying small differential voltages in the presence of large  
common-mode voltages. The operating input common-mode  
voltage range extends from −2 V to +65 V. The typical supply  
voltage is 5 V.  
The output offset can be adjusted from 0.05 V to 4.9 V with  
a 5 V supply by using the VREF1 pin and the VREF2 pin. With the  
V
REF1 pin attached to the V+ pin and the VREF2 pin attached to  
the GND pin, the output is set at half scale. Attaching both VREF1  
and VREF2 to GND causes the output to be unipolar, starting  
near ground. Attaching both VREF1 and VREF2 to V+ causes the  
output to be unipolar, starting near V+. Other offsets can be  
obtained by applying an external voltage to VREF1 and VREF2.  
The AD8210 is offered in a SOIC package. The operating  
temperature range is −40°C to +125°C.  
Excellent ac and dc performance over temperature keep errors  
in the measurement loop to a minimum. Offset drift and gain  
drift are guaranteed to a maximum of 8 µV/°C and 20 ppm/°C,  
respectively.  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2006–2012 Analog Devices, Inc. All rights reserved.  
 
 
 
 
AD8210  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Modes of Operation ....................................................................... 11  
Unidirectional Operation.......................................................... 11  
Bidirectional Operation............................................................. 11  
Input Filtering ................................................................................. 13  
Applications Information .............................................................. 14  
High-Side Current Sense with a Low-Side Switch................. 14  
High-Side Current Sense with a High-Side Switch ............... 14  
H-Bridge Motor Control ........................................................... 14  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 15  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Typical Performance Characteristics ............................................. 6  
Theory of Operation ...................................................................... 10  
REVISION HISTORY  
2/12—Rev. B to Rev. C  
Changes to Ordering Guide .......................................................... 15  
5/09—Rev. A to Rev. B  
Changes to Ordering Guide .......................................................... 15  
4/07—Rev. 0 to Rev. A  
Changes to Features.......................................................................... 1  
Changes to Input Section................................................................. 3  
Updated Outline Dimensions....................................................... 15  
4/06—Revision 0: Initial Version  
Rev. C | Page 2 of 16  
 
Data Sheet  
AD8210  
SPECIFICATIONS  
TA = operating temperature range, VS = 5 V, unless otherwise noted.  
Table 1.  
AD8210 SOIC1  
Typ Max  
Parameter  
GAIN  
Min  
Unit  
Conditions  
Initial  
Accuracy  
Accuracy Over Temperature  
Gain Drift  
20  
V/V  
%
%
0.5  
0.7  
20  
25°C, VO ≥ 0.1 V dc  
TA  
ppm/°C  
VOLTAGE OFFSET  
Offset Voltage (RTI)  
Over Temperature (RTI)  
Offset Drift  
1.0  
1.8  
8.0  
mV  
mV  
µV/°C  
25°C  
TA  
INPUT  
Input Impedance  
Differential  
Common Mode  
2
5
1.5  
kΩ  
MΩ  
kΩ  
V
mV  
dB  
dB  
dB  
dB  
V common mode > 5 V  
V common mode < 5 V  
Common mode, continuous  
Differential2  
Common-Mode Input Voltage Range  
Differential Input Voltage Range  
Common-Mode Rejection  
−2  
+65  
250  
120  
95  
100  
80  
TA, f = dc, VCM > 5 V  
TA, f = dc to 100 kHz3, VCM < 5 V  
TA, f = 100 kHz3, VCM > 5 V  
TA, f = 40 kHz3, VCM > 5 V  
80  
80  
OUTPUT  
Output Voltage Range  
Output Impedance  
0.05  
4.9  
V
RL = 25 kΩ  
2
DYNAMIC RESPONSE  
Small Signal −3 dB Bandwidth  
Slew Rate  
450  
3
kHz  
V/µs  
NOISE  
0.1 Hz to 10 Hz, RTI  
7
µV p-p  
Spectral Density, 1 kHz, RTI  
OFFSET ADJUSTMENT  
Ratiometric Accuracy4  
Accuracy, RTO  
Output Offset Adjustment Range  
VREF Input Voltage Range  
VREF Divider Resistor Values  
POWER SUPPLY, VS  
70  
nV/√Hz  
0.499  
0.501  
0.6  
4.9  
VS  
V/V  
mV/V  
V
V
kΩ  
Divider to supplies  
Voltage applied to VREF1 and VREF2 in parallel  
VS = 5 V  
0.05  
0.0  
24  
32  
40  
Operating Range  
4.5  
80  
5.0  
5.5  
2
V
mA  
dB  
Quiescent Current Over Temperature  
Power Supply Rejection Ratio  
TEMPERATURE RANGE  
For Specified Performance  
VCM > 5 V5  
−40  
+125  
°C  
1 TMIN to TMAX = −40°C to +125°C.  
2 Differential input voltage range = 125 mV with half-scale output offset.  
3 Source imbalance < 2 Ω.  
4 The offset adjustment is ratiometric to the power supply when VREF1 and VREF2 are used as a divider between the supplies.  
5 When the input common mode is less than 5 V, the supply current increases. This can be calculated with the following formula: IS = −0.7 (VCM) + 4.2 (see Figure 21).  
Rev. C | Page 3 of 16  
 
 
 
 
 
 
 
AD8210  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Parameter  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
Supply Voltage  
12.5 V  
−5 V to +68 V  
0.3 V  
Continuous Input Voltage (VCM  
Reverse Supply Voltage  
ESD Rating  
)
HBM (Human Body Model)  
4000 V  
1000 V  
−40°C to +125°C  
−65°C to +150°C  
Indefinite  
CDM (Charged Device Model)  
Operating Temperature Range  
Storage Temperature Range  
Output Short-Circuit Duration  
ESD CAUTION  
Rev. C | Page 4 of 16  
 
 
Data Sheet  
AD8210  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
8
7
2
–IN  
1
2
3
4
8
7
6
5
+IN  
AD8210  
GND  
V
1
REF  
V
2
V+  
TOP VIEW  
(Not to Scale)  
REF  
NC  
OUT  
NC = NO CONNECT  
6
Figure 2. Pin Configuration  
3
5
Table 3. Pin Function Descriptions  
Figure 3. Metallization Diagram  
Pin No.  
Mnemonic  
X
Y
1
2
3
4
5
6
7
8
−IN  
GND  
−443  
−479  
−466  
+584  
+428  
−469  
VREF2  
NC  
OUT  
V+  
+466  
+501  
+475  
+443  
−537  
−95  
+477  
+584  
VREF1  
+IN  
Rev. C | Page 5 of 16  
 
AD8210  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
200  
180  
160  
140  
120  
100  
80  
2000  
1600  
1200  
800  
60  
40  
400  
20  
0
0
–20  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
–200  
–400  
–800  
–1200  
–1600  
–2000  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–30  
–10  
10  
30  
50  
70  
90  
110  
–30  
–10  
10  
30  
50  
70  
90  
110  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 4. Typical Offset Drift  
Figure 7. Typical Gain Drift  
140  
130  
120  
110  
100  
90  
30  
25  
20  
15  
10  
5
0
+125°C  
+25°C  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–40°C  
80  
70  
60  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 5. CMRR vs. Frequency and Temperature  
(Common-Mode Voltage < 5 V)  
Figure 8. Typical Small Signal Bandwidth (VOUT = 200 mV p-p)  
140  
130  
120  
110  
100  
90  
100mV/DIV  
500mV/DIV  
+25°C  
–40°C  
+125°C  
80  
70  
60  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
400ns/DIV  
Figure 9. Fall Time  
Figure 6. CMRR vs. Frequency and Temperature  
(Common-Mode Voltage > 5 V)  
Rev. C | Page 6 of 16  
 
Data Sheet  
AD8210  
4V/DIV  
100mV/DIV  
0.02%/DIV  
500mV/DIV  
400ns/DIV  
4µs/DIV  
Figure 10. Rise Time  
Figure 13. Settling Time (Falling)  
200mV/DIV  
4V/DIV  
0.02%/DIV  
2V/DIV  
1µs/DIV  
4µs/DIV  
Figure 11. Differential Overload Recovery (Falling)  
Figure 14. Settling Time (Rising)  
50V/DIV  
200mV/DIV  
2V/DIV  
100mV/DIV  
1µs/DIV  
1µs/DIV  
Figure 12. Differential Overload Recovery (Rising)  
Figure 15. Common-Mode Response (Falling)  
Rev. C | Page 7 of 16  
AD8210  
Data Sheet  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
4.3  
4.2  
4.1  
4.0  
3.9  
3.8  
3.7  
3.6  
3.5  
50V/DIV  
100mV/DIV  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
OUTPUT SOURCE CURRENT (mA)  
1µs/DIV  
Figure 19. Output Voltage Range vs. Output Source Current  
Figure 16. Common-Mode Response (Rising)  
1.4  
8
7
6
5
4
3
2
1
0
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0
1
2
3
4
5
6
7
8
9
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
OUTPUT SINK CURRENT (mA)  
TEMPERATURE (°C)  
Figure 17. Output Sink Current vs. Temperature  
Figure 20. Output Voltage Range from GND vs. Output Sink Current  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
11  
10  
9
8
7
6
5
4
3
2
1
0
–40  
–2  
0
2
4
6
8
65  
–20  
0
20  
40  
60  
80  
100  
120  
140  
COMMON-MODE VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 21. Supply Current vs. Common-Mode Voltage  
Figure 18. Output Source Current vs. Temperature  
Rev. C | Page 8 of 16  
 
Data Sheet  
AD8210  
2100  
1800  
1500  
1200  
900  
+125°C  
+25°C  
–40°C  
4000  
3000  
2000  
1000  
0
600  
300  
0
–2.0  
–1.5  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
–10–9  
–6  
–3  
0
3
6
9 10  
V
(mV)  
OS  
V
DRIFT (µV/°C)  
OS  
Figure 22. Offset Drift Distribution (µV/°C), SOIC,  
Temperature Range = −40°C to +125°C  
Figure 24. Offset Distribution (µV), SOIC, VCM = 5 V  
3500  
3000  
2500  
2000  
1500  
1000  
500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
+125°C  
+25°C  
–40°C  
0
–2.0  
0
–1.5  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
0
3
6
9
12  
15  
18  
20  
V
(mV)  
GAIN DRIFT (ppm/°C)  
OS  
Figure 23. Gain Drift Distribution (ppm/°C), SOIC,  
Temperature = −40°C to +125°C  
Figure 25. Offset Distribution (µV), SOIC, VCM = 0 V  
Rev. C | Page 9 of 16  
AD8210  
Data Sheet  
THEORY OF OPERATION  
In typical applications, the AD8210 amplifies a small differential  
input voltage generated by the load current flowing through a  
shunt resistor. The AD8210 rejects high common-mode voltages  
(up to 65 V) and provides a ground referenced buffered output  
that interfaces with an analog-to-digital converter (ADC).  
Figure 26 shows a simplified schematic of the AD8210.  
The differential currents through Q1 and Q2 are converted  
into a differential voltage by R3 and R4. A2 is configured as an  
instrumentation amplifier. The differential voltage is converted  
into a single-ended output voltage by A2. The gain is internally  
set with precision-trimmed, thin film resistors to 20 V/V.  
The output reference voltage is easily adjusted by the VREF1 pin  
and the VREF2 pin. In a typical configuration, VREF1 is connected  
to VCC while VREF2 is connected to GND. In this case, the output  
is centered at VCC/2 when the input signal is 0 V.  
The AD8210 is comprised of two main blocks, a differential  
amplifier and an instrumentation amplifier. A load current  
flowing through the external shunt resistor produces a voltage  
at the input terminals of the AD8210. The input terminals are  
connected to the differential amplifier (A1) by R1 and R2. A1  
nulls the voltage appearing across its own input terminals by  
adjusting the current through R1 and R2 with Q1 and Q2.  
When the input signal to the AD8210 is 0 V, the currents in R1  
and R2 are equal. When the differential signal is nonzero, the  
current increases through one of the resistors and decreases in  
the other. The current difference is proportional to the size and  
polarity of the input signal.  
I
SHUNT  
R
SHUNT  
R1  
R2  
V
S
AD8210  
A1  
V
1
REF  
Q1  
Q2  
V
= (I  
SHUNT  
× R ) × 20  
SHUNT  
OUT  
A2  
R3  
R4  
V
2
REF  
GND  
Figure 26. Simplified Schematic  
Rev. C | Page 10 of 16  
 
 
Data Sheet  
AD8210  
MODES OF OPERATION  
The AD8210 can be adjusted for unidirectional or bidirectional  
operation.  
V+ Referenced Output  
This mode is set when both reference pins are tied to the  
positive supply. It is typically used when the diagnostic scheme  
requires detection of the amplifier and wiring before power is  
applied to the load (see Figure 28 and Table 5).  
UNIDIRECTIONAL OPERATION  
Unidirectional operation allows the AD8210 to measure  
currents through a resistive shunt in one direction. The basic  
modes for unidirectional operation are ground referenced  
output mode and V+ referenced output mode.  
R
S
+I  
N
–IN  
In unidirectional operation, the output can be set at the negative  
rail (near ground) or at the positive rail (near V+) when the  
differential input is 0 V. The output moves to the opposite rail  
when a correct polarity differential input voltage is applied. In  
this case, full scale is approximately 250 mV. The required  
polarity of the differential input depends on the output voltage  
setting. If the output is set at ground, the polarity needs to be  
positive to move the output up (see Table 5). If the output is set  
at the positive rail, the input polarity needs to be negative to  
move the output down (see Table 6).  
V
S
AD8210  
0.1µF  
V
1
REF  
OUTPUT  
G = +20  
Ground Referenced Output  
V
2
REF  
When using the AD8210 in this mode, both reference inputs  
are tied to ground, which causes the output to sit at the negative  
rail when the differential input voltage is zero (see Figure 27  
and Table 4).  
GND  
R
S
Figure 28. V+ Referenced Output  
+IN  
–IN  
Table 5. V+ = 5 V  
VIN (Referred to −IN)  
VO  
V
S
0.1µF  
0 V  
4.9 V  
−250 mV  
0.05 V  
AD8210  
BIDIRECTIONAL OPERATION  
Bidirectional operation allows the AD8210 to measure currents  
through a resistive shunt in two directions. The output offset  
can be set anywhere within the output range. Typically, it is set  
at half scale for equal measurement range in both directions. In  
some cases, however, it is set at a voltage other than half scale  
when the bidirectional current is nonsymmetrical.  
V
1
REF  
OUTPUT  
G = +20  
V
2
REF  
Table 6. V+ = 5 V, VO = 2.5 V with VIN = 0 V  
VIN (Referred to –IN)  
GND  
VO  
+125 mV  
−125 mV  
4.9 V  
0.05 V  
Figure 27. Ground Referenced Output  
Adjusting the output can also be accomplished by applying  
voltage(s) to the reference inputs.  
Table 4. V+ = 5 V  
VIN (Referred to −IN)  
VO  
0 V  
250 mV  
0.05 V  
4.9 V  
Rev. C | Page 11 of 16  
 
 
 
 
 
 
 
AD8210  
Data Sheet  
External Referenced Output  
R
S
Tying both VREF pins together to an external reference produces  
an output offset at the reference voltage when there is no  
differential input (see Figure 29). When the input is negative  
relative to the −IN pin, the output moves down from the  
reference voltage. When the input is positive relative to the  
−IN pin, the output increases.  
+IN  
–IN  
V
S
0.1µF  
AD8210  
R
S
V
1
REF  
V
REF  
+IN  
–IN  
0V V  
V  
REF  
S
G = +20  
V
S
0.1µF  
OUTPUT  
AD8210  
V
2
REF  
V
REF  
GND  
0V V  
REF  
V  
S
V
1
REF  
OUTPUT  
G = +20  
Figure 30. Split External Reference  
Splitting the Supply  
V
2
By tying one reference pin to V+ and the other to the GND pin,  
the output is set at midsupply when there is no differential input  
(see Figure 31). This mode is beneficial because no external  
reference is required to offset the output for bidirectional  
current measurement. This creates a midscale offset that is  
ratiometric to the supply, meaning that if the supply increases  
or decreases, the output still remains at half scale. For example,  
if the supply is 5.0 V, the output is at half scale or 2.5 V. If the  
supply increases by 10% (to 5.5 V), the output also increases by  
10% (2.75 V).  
REF  
GND  
Figure 29. External Reference Output  
Splitting an External Reference  
In this case, an external reference is divided by two with  
an accuracy of approximately 0.2% by connecting one  
REF pin to ground and the other VREF pin to the reference  
voltage (see Figure 30).  
V
R
S
Note that Pin VREF1 and Pin VREF2 are tied to internal precision  
resistors that connect to an internal offset node. There is no  
operational difference between the pins.  
+IN  
–IN  
V
S
For proper operation, the AD8210 output offset should not be  
set with a resistor voltage divider. Any additional external  
resistance could create a gain error. A low impedance voltage  
source should be used to set the output offset of the AD8210.  
AD8210  
0.1µF  
V
1
REF  
OUTPUT  
G = +20  
V
2
REF  
GND  
Figure 31. Split Supply  
Rev. C | Page 12 of 16  
 
Data Sheet  
AD8210  
INPUT FILTERING  
In typical applications, such as motor and solenoid current  
sensing, filtering at the input of the AD8210 can be beneficial  
in reducing differential noise, as well as transients and current  
ripples flowing through the input shunt resistor. An input low-  
pass filter can be implemented as shown in Figure 32.  
Adding outside components, such as RFILTER and CFILTER  
,
introduces additional errors to the system. To minimize these  
errors as much as possible, it is recommended that RFILTER be  
10 Ω or lower. By adding the RFILTER in series with the 2 kΩ  
internal input resistors of the AD8210, a gain error is  
introduced. This can be calculated by  
The 3 dB frequency for this filter can be calculated by  
1
2kΩ  
(1)  
f _3 dB =  
Gain Error(%) =100 100×  
(2)  
2π× RFILTER ×CFILTER  
2kΩ RFILTER  
R
< R  
FILTER  
SHUNT  
R
10Ω  
R
10Ω  
FILTER  
C
FILTER  
FILTER  
+IN  
–IN  
V
S
0.1µF  
AD8210  
V
REF  
0V V  
REF  
V  
S
V
1
REF  
OUTPUT  
G = +20  
V
2
REF  
GND  
Figure 32. Input Low-Pass Filtering  
Rev. C | Page 13 of 16  
 
 
AD8210  
Data Sheet  
APPLICATIONS INFORMATION  
5V  
The AD8210 is ideal for high-side or low-side current sensing.  
Its accuracy and performance benefits applications, such as  
3-phase and H-bridge motor control, solenoid control, and  
power supply current monitoring.  
0.1µF  
SWITCH  
+IN  
–IN  
V
1
+V  
S
OUT  
NC  
BATTERY  
REF  
For solenoid control, two typical circuit configurations are used:  
high-side current sense with a low-side switch, and high-side  
current sense with a high-side switch.  
SHUNT  
AD8210  
GND  
V
2
REF  
CLAMP  
DIODE  
HIGH-SIDE CURRENT SENSE WITH A LOW-SIDE  
SWITCH  
INDUCTIVE  
LOAD  
In this case, the PWM control switch is ground referenced. An  
inductive load (solenoid) is tied to a power supply. A resistive  
shunt is placed between the switch and the load (see Figure 33).  
An advantage of placing the shunt on the high side is that the  
entire current, including the recirculation current, can be meas-  
ured because the shunt remains in the loop when the switch is  
off. In addition, diagnostics can be enhanced because short circuits  
to ground can be detected with the shunt on the high side.  
5V  
NC = NO CONNECT  
Figure 34. High-Side Switch  
Using a high-side switch connects the battery voltage to the  
load when the switch is closed. This causes the common-mode  
voltage to increase to the battery voltage. In this case, when the  
switch is opened, the voltage reversal across the inductive load  
causes the common-mode voltage to be held one diode drop  
below ground by the clamp diode.  
0.1µF  
INDUCTIVE  
LOAD  
H-BRIDGE MOTOR CONTROL  
CLAMP  
DIODE  
Another typical application for the AD8210 is as part of the  
control loop in H-bridge motor control. In this case, the AD8210  
is placed in the middle of the H-bridge (see Figure 35) so that it  
can accurately measure current in both directions by using the  
shunt available at the motor. This configuration is beneficial for  
measuring the recirculation current to further enhance the  
control loop diagnostics.  
+IN  
–IN  
V
1
+V  
OUT  
NC  
REF  
S
BATTERY  
SHUNT  
AD8210  
GND  
V
2
REF  
SWITCH  
5V  
NC = NO CONNECT  
0.1µF  
CONTROLLER  
Figure 33. Low-Side Switch  
In this circuit configuration, when the switch is closed, the  
common-mode voltage moves down to the negative rail. When  
the switch is opened, the voltage reversal across the inductive  
load causes the common-mode voltage to be held one diode  
drop above the battery by the clamp diode.  
MOTOR  
+IN  
–IN  
V
1
+V  
OUT  
NC  
REF  
S
AD8210  
SHUNT  
GND  
V
2
REF  
5V  
2.5V  
HIGH-SIDE CURRENT SENSE WITH A HIGH-SIDE  
SWITCH  
NC = NO CONNECT  
Figure 35. Motor Control Application  
This configuration minimizes the possibility of unexpected  
solenoid activation and excessive corrosion (see Figure 34). In  
this case, both the switch and the shunt are on the high side.  
When the switch is off, the battery is removed from the load,  
which prevents damage from potential short circuits to ground,  
while still allowing the recirculation current to be measured and  
diagnostics to be preformed. Removing the power supply from  
the load for the majority of the time minimizes the corrosive  
effects that could be caused by the differential voltage between  
the load and ground.  
The AD8210 measures current in both directions as the H-bridge  
switches and the motor changes direction. The output of the  
AD8210 is configured in an external reference bidirectional  
mode (see the Modes of Operation section).  
Rev. C | Page 14 of 16  
 
 
 
 
 
 
Data Sheet  
AD8210  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 36. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-8)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +125°C  
Package Description  
Package Option  
AD8210YRZ  
8-Lead SOIC_N  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
AD8210YRZ-REEL  
AD8210YRZ-REEL7  
AD8210WYRZ  
AD8210WYRZ-RL  
AD8210WYRZ-R7  
AD8210WYC-P3  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
8-Lead SOIC_N, 13Tape and Reel  
8-Lead SOIC_N, 7Tape and Reel  
8-Lead SOIC_N  
8-Lead SOIC_N, 13Tape and Reel  
8-Lead SOIC_N, 7Tape and Reel  
Die  
1 Z = RoHS Compliant Part.  
Rev. C | Page 15 of 16  
 
 
AD8210  
NOTES  
Data Sheet  
©2006–2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05147-0-2/12(C)  
Rev. C | Page 16 of 16  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY