AD8211WYRJZ-R7 [ADI]

High Voltage Current Shunt Monitor; 高压电流分流监控器
AD8211WYRJZ-R7
型号: AD8211WYRJZ-R7
厂家: ADI    ADI
描述:

High Voltage Current Shunt Monitor
高压电流分流监控器

运算放大器 放大器电路 光电二极管 监控 高压
文件: 总16页 (文件大小:309K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Voltage  
Current Shunt Monitor  
AD8211  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
V
V
IN–  
IN+  
Qualified for automotive applications  
4000 V HBM ESD  
High common-mode voltage range  
−2 V to +65 V operating  
−3 V to +68 V survival  
V+  
A1  
Buffered output voltage  
PROPRIETARY  
OFFSET  
CIRCUITRY  
Wide operating temperature range  
5-lead SOT: −40°C to +125°C  
Excellent ac and dc performance  
5 μV/°C typical offset drift  
−13 ppm/°C typical gain drift  
120 dB typical CMRR at dc  
OUT  
G = +20  
AD8211  
GND  
Figure 1.  
APPLICATIONS  
High-side current sensing  
Motor controls  
Transmission controls  
Engine management  
Suspension controls  
Vehicle dynamic controls  
DC-to-dc converters  
GENERAL DESCRIPTION  
The AD8211 is a high voltage, precision current shunt amplifier.  
It features a set gain of 20 V/V, with a typical 0.35% gain error  
over the entire temperature range. The buffered output voltage  
directly interfaces with any typical converter. Excellent common-  
mode rejection from −2 V to +65 V is independent of the 5 V  
supply. The AD8211 performs unidirectional current measure-  
ments across a shunt resistor in a variety of industrial and  
automotive applications, such as motor control, solenoid  
control, or battery management.  
Special circuitry is devoted to output linearity being maintained  
throughout the input differential voltage range of 0 mV to 250 mV,  
regardless of the common-mode voltage present. The AD8211  
has an operating temperature range of −40°C to +125°C and is  
offered in a small 5-lead SOT package.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2007-2011 Analog Devices, Inc. All rights reserved.  
 
 
 
 
AD8211  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 10  
Application Notes........................................................................... 11  
Output Linearity......................................................................... 11  
Applications Information .............................................................. 12  
High-Side Current Sense with a Low-Side Switch................. 12  
High-Side Current Sensing ....................................................... 12  
Low-Side Current Sensing ........................................................ 12  
Outline Dimensions....................................................................... 13  
Ordering Guide .......................................................................... 13  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Typical Performance Characteristics ............................................. 6  
REVISION HISTORY  
3/11—Rev. 0 to Rev. A  
Added Automotive Products Information................. Throughout  
Changes to General Description, Gain Error Percentage ........... 1  
Changes to Table 1............................................................................ 3  
Changes to Table 2............................................................................ 4  
Updated Outline Dimensions....................................................... 13  
Changes to Ordering Guide .......................................................... 13  
7/07—Revision 0: Initial Version  
Rev. A | Page 2 of 16  
 
AD8211  
SPECIFICATIONS  
TOPR = −40°C to +125°C, TA = 25°C, VS = 5 V, RL = 25 kΩ (RL is the output load resistor), unless otherwise noted.  
Table 1.  
Y GRADE  
Typ  
W GRADE  
Typ  
Parameter  
GAIN  
Min  
Max  
Min  
Max  
Unit  
Conditions  
Initial  
Accuracy  
20  
20  
V/V  
%
0.2ꢀ  
0.2ꢀ  
VO ≥ 0.1 V dc  
Accuracy Over Temperature  
Gain vs. Temperature  
0.3ꢀ  
−13  
0.ꢁ  
%
TOPR  
1
−13  
ppm/°C TOPR  
VOLTAGE OFFSET  
Offset Voltage (RTI)  
Over Temperature (RTI)  
Offset Drift  
1
1
2.ꢀ  
mV  
mV  
μV/°C  
2ꢀ°C  
TOPR  
TOPR  
2.2  
2
INPUT  
Input Impedance  
Differential  
Common Mode  
3.ꢀ  
3.ꢀ  
kΩ  
MΩ  
kΩ  
V
Common-mode voltage > ꢀ V  
Common-mode voltage < ꢀ V  
Common-mode continuous  
Common-Mode Input Voltage  
Range  
−2  
+6ꢀ  
−2  
+6ꢀ  
Differential Input Voltage Range  
Common-Mode Rejection  
2ꢀ0  
120  
2ꢀ0  
120  
mV  
dB  
Differential input voltage  
TOPR, f = dc, VCM > ꢀ V, see  
Figure ꢀ  
TOPR, f = dc, VCM < ꢀ V, see  
Figure ꢀ  
100  
80  
100  
80  
90  
90  
dB  
OUTPUT  
TOPR  
TOPR  
Output Voltage Range Low  
Output Voltage Range High  
Output Impedance  
0.1  
0.0ꢀ  
ꢁ.9ꢀ  
2
0.1  
0.0ꢀ  
ꢁ.9ꢀ  
2
V
V
Ω
ꢁ.9  
ꢁ.9  
DYNAMIC RESPONSE  
Small Signal −3 dB Bandwidth  
Slew Rate  
ꢀ00  
ꢁ.ꢀ  
ꢀ00  
ꢁ.ꢀ  
kHz  
V/μs  
NOISE  
0.1 Hz to 10 Hz, RTI  
7
7
μV p-p  
Spectral Density, 1 kHz, RTI  
POWER SUPPLY  
70  
70  
nV/√Hz  
Operating Range  
ꢁ.ꢀ  
76  
ꢀ.ꢀ  
2.0  
ꢁ.ꢀ  
76  
ꢀ.ꢀ  
2.0  
V
mA  
dB  
Quiescent Current OverTemperature  
Power Supply Rejection Ratio  
TEMPERATURE RANGE  
For Specified Performance  
1.2  
1.2  
VCM > ꢀ V3, see Figure 12  
−ꢁ0  
+12ꢀ  
−ꢁ0  
+12ꢀ °C  
1 The mean of the gain drift distribution is typically −13 ppm/°C, with a σ = 3 ppm/°C.  
2 The mean of the offset drift distribution is typically +ꢀ μV/°C, with a σ = 3 μV/°C.  
3 When the input common-mode voltage is less than ꢀ V, the supply current increases, which can be calculated by IS = −0.27ꢀ (VCM) + 2.ꢀ.  
Rev. A | Page 3 of 16  
 
 
 
AD8211  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Parameter  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
Supply Voltage  
Continuous Input Voltage  
Reverse Supply Voltage  
Differential Input Voltage  
HBM (Human Body Model) ESD Rating  
CDM (Charged Device Model) ESD Rating  
Operating Temperature Range  
Storage Temperature Range  
Output Short-Circuit Duration  
12.5 V  
−3 V to +68 V  
−0.3 V  
500 mV  
4000 V  
1000 V  
−40°C to +125°C  
−65°C to +150°C  
Indefinite  
ESD CAUTION  
Rev. A | Page 4 of 16  
 
 
AD8211  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
OUT  
GND  
1
2
3
5
4
V+  
AD8211  
TOP VIEW  
1
2
5
(Not to Scale)  
V
V
IN–  
IN+  
NC = NO CONNECT  
Figure 3. Pin Configuration  
3
4
Figure 2. Metallization Diagram  
Table 3. Pin Function Descriptions  
Pin No.  
Mnemonic  
X
Y
Description  
Buffered Output.  
Ground.  
Noninverting Input.  
Inverting Input.  
Supply.  
1
2
3
4
5
OUT  
GND  
VIN+  
VIN−  
V+  
−277  
−140  
−228  
+229  
+264  
+466  
+466  
−519  
−519  
+466  
Rev. A | Page 5 of 16  
 
AD8211  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.2  
1.0  
40  
30  
25  
0.8  
0.6  
20  
15  
0.4  
10  
0.2  
5
0
0
–5  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
TEMPERATURE (°C)  
Figure 4. Typical Offset vs. Temperature  
Figure 7. Typical Small Signal Bandwidth (VOUT = 200 mV p-p)  
140  
10  
9
8
7
6
5
4
3
2
1
0
130  
120  
110  
100  
90  
COMMON-MODE VOLTAGE > 5V  
COMMON-MODE VOLTAGE < 5V  
80  
70  
60  
10  
100  
1k  
10k  
100k  
1M  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 250  
DIFFERENTIAL INPUT VOLTAGE (mV)  
FREQUNCY (Hz)  
Figure 5. Typical CMRR vs. Frequency  
Figure 8. Total Output Error vs. Differential Input Voltage  
2500  
2000  
1500  
1000  
500  
–510  
–515  
–520  
–525  
–530  
–535  
–540  
–545  
–550  
–555  
–560  
–565  
–570  
V
IN+  
0
–500  
–1000  
–1500  
–2000  
–2500  
V
IN–  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
0
25  
50  
75  
100 125 150 175 200 225 250  
TEMPERATURE (°C)  
DIFFERENTIAL INPUT VOLTAGE (mV)  
Figure 6. Typical Gain Error vs. Temperature  
Figure 9. Input Bias Current vs. Differential Input Voltage,  
CM = 0 V  
V
Rev. A | Page 6 of 16  
 
 
AD8211  
110  
100  
90  
100mV/DIV  
1V/DIV  
INPUT  
V
V
IN+  
80  
70  
60  
OUTPUT  
IN–  
50  
40  
0
25  
50  
75  
100 125 150 175 200 225 250  
TIME (500ns/DIV)  
DIFFERENTIAL INPUT VOLTAGE (mV)  
Figure 10. Input Bias Current vs. Differential Input Voltage,  
CM = 5 V  
Figure 13. Fall Time  
V
0.8  
0.4  
INPUT  
0
100mV/DIV  
1V/DIV  
OUTPUT  
–0.4  
–0.8  
–1.2  
–1.6  
–2.0  
–2.4  
–5  
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
INPUT COMMON-MODE VOLTAGE (V)  
TIME (500ns/DIV)  
Figure 11. Input Bias Current vs. Input Common-Mode Voltage  
Figure 14. Rise Time  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
200mV/DIV  
INPUT  
2V/DIV  
OUTPUT  
–4  
–2  
0
2
4
6
8
65  
TIME (1µs/DIV)  
COMMON-MODE VOLTAGE (V)  
Figure 12. Supply Current vs. Common-Mode Voltage  
Figure 15. Differential Overload Recovery (Falling)  
Rev. A | Page 7 of 16  
 
AD8211  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
INPUT  
200mV/DIV  
9.0  
8.5  
8.0  
7.5  
OUTPUT  
7.0  
6.5  
2V/DIV  
6.0  
5.5  
5.0  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
TEMPERATURE (°C)  
TIME (1µs/DIV)  
Figure 16. Differential Overload Recovery (Rising)  
Figure 19. Maximum Output Sink Current vs. Temperature  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
2V/DIV  
0.01/DIV  
TIME 5µs/DIV)  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
TEMPERATURE (°C)  
Figure 20. Maximum Output Source Current vs. Temperature  
Figure 17. Settling Time (Falling)  
5.0  
4.6  
4.2  
3.8  
3.4  
3.0  
2.6  
2.2  
1.8  
1.4  
1.0  
2V/DIV  
0.01/DIV  
TIME 5µs/DIV)  
0
1
2
3
4
5
6
7
8
9
OUTPUT SOURCE CURRENT (mA)  
Figure 21. Output Voltage Range vs. Output Source Current  
Figure 18. Settling Time (Rising)  
Rev. A | Page 8 of 16  
AD8211  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0
1
2
3
4
5
6
7
8
9
10 11 12  
OUTPUT SINK CURRENT (mA)  
Figure 22. Output Voltage Range from GND vs. Output Sink Current  
Rev. A | Page 9 of 16  
AD8211  
THEORY OF OPERATION  
In typical applications, the AD8211 amplifies a small differential  
input voltage generated by the load current flowing through  
a shunt resistor. The AD8211 rejects high common-mode  
voltages (up to 65 V) and provides a ground-referenced,  
buffered output that interfaces with an analog-to-digital converter  
(ADC). Figure 23 shows a simplified schematic of the AD8211.  
A load current flowing through the external shunt resistor  
produces a voltage at the input terminals of the AD8211. The  
input terminals are connected to Amplifier A1 by Resistor R  
and Resistor R1. The inverting terminal, which has very high  
input impedance is held to  
(VCM) − (ISHUNT × RSHUNT  
)
I
SHUNT  
because negligible current flows through Resistor R. Amplifier  
A1 forces the noninverting input to the same potential. Therefore,  
the current that flows through Resistor R1, is equal to  
R
SHUNT  
I
IN  
R1  
R
IIN = (ISHUNT × RSHUNT)/R1  
This current (IIN) is converted back to a voltage via ROUT. The  
output buffer amplifier has a gain of 20 V/V and offers excellent  
accuracy as the internal gain setting resistors are precision trimmed  
to within 0.01% matching. The resulting output voltage is equal to  
V+  
A1  
PROPRIETARY  
OFFSET  
CIRCUITRY  
Q1  
VOUT = (ISHUNT × RSHUNT) × 20  
V
= (I  
SHUNT  
× R ) × 20  
SHUNT  
OUT  
G = +20  
R
OUT  
AD8211  
GND  
Figure 23. Simplified Schematic  
Rev. A | Page 10 of 16  
 
 
AD8211  
APPLICATION NOTES  
OUTPUT LINEARITY  
Regardless of the common mode, the AD8211 provides a  
correct output voltage when the input differential is at least  
2 mV, which is due to the voltage range of the output amplifier  
that can go as low as 33 mV typical. The specified minimum  
output amplifier voltage is 100 mV to provide sufficient guard-  
bands. The ability of the AD8211 to work with very small  
differential inputs, regardless of the common-mode voltage,  
allows for more dynamic range, accuracy, and flexibility in any  
current sensing application.  
In all current sensing applications, and especially in automotive  
and industrial environments where the common-mode voltage  
can vary significantly, it is important that the current sensor  
maintain the specified output linearity, regardless of the input  
differential or common-mode voltage. The AD8211 contains  
specific circuitry on the input stage, which ensures that even  
when the differential input voltage is very small, and the  
common-mode voltage is also low (below the 5 V supply),  
the input-to-output linearity is maintained. Figure 24 shows  
the input differential voltage vs. the corresponding output  
voltage at different common modes.  
200  
180  
160  
140  
120  
100  
80  
60  
40  
IDEAL V  
OUT  
(mV)  
V
V
(mV) @ V  
(mV) @ V  
= 0V  
= 65V  
OUT  
OUT  
CM  
CM  
20  
0
0
1
2
3
4
5
6
7
8
9
10  
DIFFERENTIAL INPUT VOLTAGE (mV)  
Figure 24. Gain Linearity Due to Differential and Common-Mode Voltage  
Rev. A | Page 11 of 16  
 
 
 
AD8211  
APPLICATIONS INFORMATION  
HIGH-SIDE CURRENT SENSE WITH A LOW-SIDE  
SWITCH  
OVERCURRENT  
DETECTION (<100ns)  
5
6
7
8
OUT GND  
NC  
–IN  
In such load control configurations, the PWM-controlled  
switch is ground referenced. An inductive load (solenoid) is tied  
to a power supply. A resistive shunt is placed between the switch  
and the load (see Figure 25). An advantage of placing the shunt on  
the high side is that the entire current, including the recirculation  
current, can be measured because the shunt remains in the loop  
when the switch is off. In addition, diagnostics can be enhanced  
because shorts to ground can be detected with the shunt on the  
high side. In this circuit configuration, when the switch is  
closed, the common-mode voltage moves down to near the  
negative rail. When the switch is opened, the voltage reversal  
across the inductive load causes the common-mode voltage to  
be held one diode drop above the battery by the clamp diode.  
AD8214  
NC  
4
V
+IN  
2
V
S
REG  
3
1
1
2
3  
OUT  
GND  
V
V
IN+  
SHUNT  
AD8211  
CLAMP  
DIODE  
V+  
5
IN–  
4  
INDUCTIVE  
LOAD  
BATTERY  
5V  
SWITCH  
INDUCTIVE  
LOAD  
1
2
3  
CLAMP  
DIODE  
OUT  
GND  
V
IN+  
SHUNT  
AD8211  
BATTERY  
Figure 26. Battery-Referenced Shunt Resistor  
V
V+  
5
IN–  
4  
LOW-SIDE CURRENT SENSING  
SWITCH  
In systems where low-side current sensing is preferred, the  
AD8211 provides an integrated solution with great accuracy.  
Ground noise is rejected, CMRR is typically higher than 90 dB,  
and output linearity is not compromised, regardless of the input  
differential voltage.  
5V  
Figure 25. Low-Side Switch  
HIGH-SIDE CURRENT SENSING  
In this configuration, the shunt resistor is referenced to the  
battery. High voltage is present at the inputs of the current sense  
amplifier. In this mode, the recirculation current is again measured  
and shorts to ground can be detected. When the shunt is battery  
referenced, the AD8211 produces a linear ground-referenced  
analog output. An AD8214 can also be used to provide an over-  
current detection signal in as little as 100 ns. This feature is  
useful in high current systems where fast shutdown in over-  
current conditions is essential.  
INDUCTIVE  
LOAD  
1
2
3  
CLAMP  
DIODE  
OUT  
GND  
V
IN+  
AD8211  
SWITCH  
BATTERY  
V
V+  
5
IN–  
4  
5V  
SHUNT  
Figure 27. Ground-Referenced Shunt Resistor  
Rev. A | Page 12 of 16  
 
 
 
 
 
AD8211  
OUTLINE DIMENSIONS  
3.00  
2.90  
2.80  
5
1
4
3
3.00  
2.80  
2.60  
1.70  
1.60  
1.50  
2
0.95 BSC  
1.90  
BSC  
1.30  
1.15  
0.90  
0.20 MAX  
0.08 MIN  
1.45 MAX  
0.95 MIN  
0.55  
0.45  
0.35  
0.15 MAX  
0.05 MIN  
10°  
5°  
0°  
SEATING  
PLANE  
0.60  
BSC  
0.50 MAX  
0.35 MIN  
COMPLIANT TO JEDEC STANDARDS MO-178-AA  
Figure 28. 5-Lead Small Outline Transistor Package [SOT-23]  
(RJ-5)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1, 2  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
Package Option  
Branding  
AD8211YRJZ-R2  
AD8211YRJZ-RL  
AD8211YRJZ-RL7  
AD8211WYRJZ-R7  
AD8211WYRJZ-RL  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
Y02  
Y02  
Y02  
Y3N  
Y3N  
1 Z = RoHS Compliant Part.  
2 W = Qualified for Automotive Applications.  
AUTOMOTIVE PRODUCTS  
The AD8211WYRJZ models are available with controlled manufacturing to support the quality and reliability requirements of automotive  
applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers  
should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in  
automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to  
obtain the specific Automotive Reliability reports for these models.  
Rev. A | Page 13 of 16  
 
 
 
AD8211  
NOTES  
Rev. A | Page 14 of 16  
AD8211  
NOTES  
Rev. A | Page 15 of 16  
AD8211  
NOTES  
©2007-2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06824-0-3/11(A)  
Rev. A | Page 16 of 16  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY