AD8221AC-P7 [ADI]

Precision Instrumentation Amplifier; 精密仪表放大器器
AD8221AC-P7
型号: AD8221AC-P7
厂家: ADI    ADI
描述:

Precision Instrumentation Amplifier
精密仪表放大器器

仪表放大器
文件: 总24页 (文件大小:512K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision Instrumentation Amplifier  
AD8221  
CONNECTION DIAGRAM  
FEATURES  
Easy to use  
1
2
3
4
8
7
6
5
+V  
V
–IN  
S
Available in space-saving MSOP  
Gain set with 1 external resistor (gain range 1 to 1000)  
Wide power supply range: 2.3 V to 18 V  
Temperature range for specified performance:  
−40°C to +85°C  
R
G
OUT  
R
REF  
–V  
G
+IN  
S
AD8221  
TOP VIEW  
Operational up to 125°C1  
Figure 1.  
120  
110  
100  
90  
Excellent AC specifications  
80 dB minimum CMRR to 10 kHz (G = 1)  
825 kHz, –3 dB bandwidth (G = 1)  
2 V/µs slew rate  
AD8221  
Low noise  
8 nV/√Hz, @ 1 kHz, maximum input voltage noise  
0.25 µV p-p input noise (0.1 Hz to 10 Hz)  
High accuracy dc performance (AD8221BR)  
90 dB minimum CMRR (G = 1)  
25 µV maximum input offset voltage  
0.3 µV/°C maximum input offset drift  
0.4 nA maximum input bias current  
COMPETITOR 1  
80  
70  
60  
COMPETITOR 2  
50  
40  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
APPLICATIONS  
Weigh scales  
Figure 2. Typical CMRR vs. Frequency for G = 1  
Industrial process controls  
Bridge amplifiers  
Precision data acquisition systems  
Medical instrumentation  
Strain gages  
Low voltage offset, low offset drift, low gain drift, high gain  
accuracy, and high CMRR make this part an excellent choice  
in applications that demand the best dc performance possible,  
such as bridge signal conditioning.  
Transducer interfaces  
Programmable gain affords the user design flexibility. A single  
resistor sets the gain from 1 to 1000. The AD8221 operates on  
both single and dual supplies and is well suited for applications  
where 10 V input voltages are encountered.  
GENERAL DESCRIPTION  
The AD8221 is a gain programmable, high performance  
instrumentation amplifier that delivers the industrys highest  
CMRR over frequency in its class. The CMRR of instrumentation  
amplifiers on the market today falls off at 200 Hz. In contrast,  
the AD8221 maintains a minimum CMRR of 80 dB to 10 kHz  
for all grades at G = 1. High CMRR over frequency allows the  
AD8221 to reject wideband interference and line harmonics,  
greatly simplifying filter requirements. Possible applications  
include precision data acquisition, biomedical analysis, and  
aerospace instrumentation.  
The AD8221 is available in a low cost 8-lead SOIC and 8-lead  
MSOP, both of which offer the industrys best performance. The  
MSOP requires half the board space of the SOIC, making it ideal  
for multichannel or space-constrained applications.  
Performance is specified over the entire industrial temperature  
range of −40°C to +85°C for all grades. Furthermore, the AD8221  
is operational from −40°C to +125°C1.  
1 See Typical Performance Characteristics for expected operation from  
85°C to 125°C.  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2003–2011 Analog Devices, Inc. All rights reserved.  
 
 
 
 
 
AD8221  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Layout .......................................................................................... 18  
Reference Terminal .................................................................... 19  
Power Supply Regulation and Bypassing ................................ 19  
Input Bias Current Return Path ............................................... 19  
Input Protection ......................................................................... 19  
RF Interference ........................................................................... 20  
Precision Strain Gage................................................................. 20  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Connection Diagram ....................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 8  
Thermal Characteristics .............................................................. 8  
ESD Caution.................................................................................. 8  
Pin Configuration and Function Descriptions............................. 9  
Typical Performance Characteristics ........................................... 10  
Theory of Operation ...................................................................... 17  
Gain Selection............................................................................. 18  
Conditioning 10 V Signals for a +5 V Differential Input  
ADC ............................................................................................. 20  
AC-Coupled Instrumentation Amplifier................................ 21  
Die Information.............................................................................. 22  
Outline Dimensions....................................................................... 23  
Ordering Guide .......................................................................... 24  
REVISION HISTORY  
3/11—Rev. B to Rev. C  
Added Pin Configuration and Function Descriptions Section.. 9  
Added Die Information Section ................................................... 22  
Updated Outline Dimensions....................................................... 23  
Changes to Ordering Guide .......................................................... 24  
9/07—Rev. A to Rev. B  
Changes to Features.......................................................................... 1  
Changes to Table 1 Layout............................................................... 3  
Changes to Table 2 Layout............................................................... 5  
Changes to Figure 15...................................................................... 11  
Changes to Figures 32 .................................................................... 13  
Changes to Figure 33, Figure 34, and Figure 35 ......................... 14  
Updated Outline Dimensions....................................................... 21  
Changes to Ordering Guide .......................................................... 22  
11/03—Rev. 0 to Rev. A  
Changes to Features.......................................................................... 1  
Changes to Specifications Section.................................................. 4  
Changes to Theory of Operation Section.................................... 13  
Changes to Gain Selection Section............................................... 14  
10/03—Revision 0: Initial Version  
Rev. C | Page 2 of 24  
 
AD8221  
SPECIFICATIONS  
VS = ±±1 V, VREF = 0 V, TA = 21°C, G = ±, RL = 2 kΩ, unless otherwise noted.  
Table 1.  
AR Grade  
BR Grade  
Parameter  
Conditions  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
COMMON-MODE REJECTION RATIO  
CMRR DC to 60 Hz with 1 kΩ  
Source Imbalance  
VCM = −10 V to +10 V  
G = 1  
G = 10  
G = 100  
G = 1000  
CMRR at 10 kHz  
G = 1  
80  
90  
dB  
dB  
dB  
dB  
100  
120  
130  
110  
130  
140  
VCM = −10 V to +10 V  
80  
90  
100  
100  
80  
dB  
dB  
dB  
dB  
G = 10  
100  
110  
110  
G = 100  
G = 1000  
NOISE  
RTI noise =  
eNI2 + (eNO/G)2  
Voltage Noise, 1 kHz  
Input Voltage Noise, eNI  
Output Voltage Noise, eNO  
RTI  
VIN+, VIN−, VREF = 0  
8
75  
8
75  
nV/√Hz  
nV/√Hz  
f = 0.1 Hz to 10 Hz  
G = 1  
G = 10  
G = 100 to 1000  
Current Noise  
2
2
μV p-p  
μV p-p  
μV p-p  
fA/√Hz  
pA p-p  
0.5  
0.25  
40  
6
0.5  
0.25  
40  
6
f = 1 kHz  
f = 0.1 Hz to 10 Hz  
VOLTAGE OFFSET1  
Input Offset, VOSI  
Over Temperature  
Average TC  
Output Offset, VOSO  
Over Temperature  
Average TC  
VS = 5 V to 15 V  
T = −40°C to +85°C  
60  
86  
0.4  
300  
0.66  
6
25  
45  
0.3  
200  
0.45  
5
μV  
μV  
μV/°C  
μV  
mV  
VS = 5 V to 15 V  
T = −40°C to +85°C  
μV/°C  
Offset RTI vs. Supply (PSR)  
G = 1  
G = 10  
G = 100  
G = 1000  
VS = 2.3 V to 18 V  
90  
110  
120  
130  
140  
94  
110  
130  
140  
150  
dB  
dB  
dB  
dB  
110  
124  
130  
114  
130  
140  
INPUT CURRENT  
Input Bias Current  
Over Temperature  
Average TC  
Input Offset Current  
Over Temperature  
Average TC  
0.5  
1.5  
2.0  
0.2  
0.4  
1
nA  
nA  
pA/°C  
nA  
nA  
T = −40°C to +85°C  
T = −40°C to +85°C  
1
0.2  
1
0.1  
0.6  
0.8  
0.4  
0.6  
1
1
pA/°C  
REFERENCE INPUT  
RIN  
IIN  
Voltage Range  
Gain to Output  
20  
50  
20  
50  
kΩ  
μA  
V
VIN+, VIN−, VREF = 0  
60  
+VS  
0.0001  
60  
+VS  
0.0001  
–VS  
–VS  
1
1
V/V  
Rev. C | Page 3 of 24  
 
AD8221  
AR Grade  
BR Grade  
Parameter  
Conditions  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
POWER SUPPLY  
Operating Range  
Quiescent Current  
Over Temperature  
DYNAMIC RESPONSE  
Small Signal −3 dB Bandwidth  
G = 1  
VS = 2.3 V to 18 V  
T = −40°C to +85°C  
2.3  
18  
2.3  
18  
V
mA  
mA  
0.9  
1
1
0.9  
1
1
1.2  
1.2  
825  
562  
100  
14.7  
825  
562  
100  
14.7  
kHz  
kHz  
kHz  
kHz  
G = 10  
G = 100  
G = 1000  
Settling Time 0.01%  
G = 1 to 100  
G = 1000  
Settling Time 0.001%  
G = 1 to 100  
G = 1000  
10 V step  
10 V step  
10  
80  
10  
80  
µs  
µs  
13  
110  
2
13  
110  
2
µs  
µs  
V/µs  
V/µs  
Slew Rate  
G = 1  
G = 5 to 100  
G = 1 + (49.4 kΩ/RG)  
1.5  
2
1.5  
2
2.5  
2.5  
GAIN  
Gain Range  
1
1000  
1
1000  
V/V  
Gain Error  
VOUT 10 V  
G = 1  
G = 10  
G = 100  
G = 1000  
0.03  
0.3  
0.3  
0.02  
0.15  
0.15  
0.15  
%
%
%
%
0.3  
Gain Nonlinearity  
G = 1 to 10  
G = 100  
VOUT = −10 V to +10 V  
RL = 10 kΩ  
RL = 10 kΩ  
RL = 10 kΩ  
RL = 2 kΩ  
3
5
10  
10  
10  
15  
40  
95  
3
5
10  
10  
10  
15  
40  
95  
ppm  
ppm  
ppm  
ppm  
G = 1000  
G = 1 to 100  
Gain vs. Temperature  
G = 1  
3
10  
–50  
2
5
–50  
ppm/°C  
ppm/°C  
G > 12  
INPUT  
Input Impedance  
Differential  
100||2  
100||2  
100||2  
100||2  
GΩ||pF  
GΩ||pF  
V
V
V
V
Common Mode  
Input Operating Voltage Range3  
Over Temperature  
Input Operating Voltage Range  
Over Temperature  
OUTPUT  
VS = 2.3 V to 5 V  
T = −40°C to +85°C  
VS = 5 V to 18 V  
T =−40°C to +85°C  
RL = 10 kΩ  
–VS + 1.9  
–VS + 2.0  
–VS + 1.9  
–VS + 2.0  
+VS − 1.1 –VS + 1.9  
+VS − 1.2 –VS + 2.0  
+VS − 1.2 –VS + 1.9  
+VS − 1.2 –VS + 2.0  
+VS − 1.1  
+VS − 1.2  
+VS − 1.2  
+VS − 1.2  
Output Swing  
Over Temperature  
Output Swing  
Over Temperature  
Short-Circuit Current  
VS = 2.3 V to 5 V  
T = −40°C to +85°C  
VS = 5 V to 18 V  
T = –40°C to +85°C  
–VS + 1.1  
–VS + 1.4  
–VS + 1.2  
–VS + 1.6  
+VS − 1.2 –VS + 1.1  
+Vs − 1.3 –VS + 1.4  
+VS − 1.4 –VS + 1.2  
+VS − 1.5 –VS + 1.6  
+VS − 1.2  
+VS − 1.3  
+VS − 1.4  
+VS − 1.5  
V
V
V
V
18  
18  
mA  
Rev. C | Page 4 of 24  
AD8221  
AR Grade  
Typ Max  
BR Grade  
Parameter  
Conditions  
Min  
Min  
Typ  
Max  
Unit  
TEMPERATURE RANGE  
Specified Performance  
Operating Range4  
–40  
–40  
+85  
+125  
–40  
–40  
+85  
+125  
°C  
°C  
1 Total RTI VOS = (VOSI) + (VOSO/G).  
2 Does not include the effects of external resistor RG.  
3 One input grounded. G = 1.  
4 See Typical Performance Characteristics for expected operation between 85°C to 125°C.  
Table 2.  
ARM Grade  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
COMMON-MODE REJECTION RATIO (CMRR)  
CMRR DC to 60 Hz with 1 kΩ Source Imbalance  
VCM = −10 V to +10 V  
G = 1  
G = 10  
G = 100  
G = 1000  
CMRR at 10 kHz  
G = 1  
G = 10  
G = 100  
G = 1000  
80  
dB  
dB  
dB  
dB  
100  
120  
130  
VCM = –10 V to +10 V  
80  
90  
100  
100  
dB  
dB  
dB  
dB  
NOISE  
eNI2 + (eNO/G)2  
RTI noise = √  
Voltage Noise, 1 kHz  
Input Voltage Noise, eNI  
Output Voltage Noise, eNO  
RTI  
VIN+, VIN−, VREF = 0  
8
75  
nV/√Hz  
nV/√Hz  
f = 0.1 Hz to 10 Hz  
G = 1  
G = 10  
G = 100 to 1000  
Current Noise  
2
µV p-p  
µV p-p  
µV p-p  
fA/√Hz  
pA p-p  
0.5  
0.25  
40  
6
f = 1 kHz  
f = 0.1 Hz to 10 Hz  
VOLTAGE OFFSET1  
Input Offset, VOSI  
Over Temperature  
Average TC  
Output Offset, VOSO  
Over Temperature  
Average TC  
VS = 5 V to 15 V  
T = −40°C to +85°C  
70  
µV  
µV  
µV/°C  
µV  
mV  
135  
0.9  
600  
1.00  
9
VS = 5 V to 15 V  
T = −40°C to +85°C  
µV/°C  
Offset RTI vs. Supply (PSR)  
G = 1  
G = 10  
G = 100  
G = 1000  
VS = 2.3 V to 18 V  
90  
100  
120  
140  
140  
dB  
dB  
dB  
dB  
100  
120  
120  
INPUT CURRENT  
Input Bias Current  
Over Temperature  
Average TC  
Input Offset Current  
Over Temperature  
Average TC  
0.5  
2
3
nA  
nA  
pA/°C  
nA  
nA  
T = −40°C to +85°C  
T = −40°C to +85°C  
Rev. C | Page 5 of 24  
3
0.3  
1
1.5  
3
pA/°C  
 
 
 
 
AD8221  
ARM Grade  
Typ  
Parameter  
Conditions  
Min  
Max  
Unit  
REFERENCE INPUT  
RIN  
IIN  
20  
50  
kΩ  
µA  
V
VIN+, VIN−, VREF = 0  
60  
+VS  
Voltage Range  
Gain to Output  
POWER SUPPLY  
Operating Range  
Quiescent Current  
Over Temperature  
DYNAMIC RESPONSE  
Small Signal –3 dB Bandwidth  
G = 1  
−VS  
2.3  
1
0.0001  
V/V  
VS = 2.3 V to 18 V  
T = −40°C to +85°C  
18  
1
1.2  
V
mA  
mA  
0.9  
1
825  
562  
100  
14.7  
kHz  
kHz  
kHz  
kHz  
G = 10  
G = 100  
G = 1000  
Settling Time 0.01%  
G = 1 to 100  
G = 1000  
Settling Time 0.001%  
G = 1 to 100  
G = 1000  
10 V step  
10 V step  
10  
80  
µs  
µs  
13  
110  
2
µs  
µs  
V/µs  
V/µs  
Slew Rate  
G = 1  
G = 5 to 100  
G = 1 + (49.4 kΩ/RG)  
1.5  
2
2.5  
GAIN  
Gain Range  
1
1000  
V/V  
Gain Error  
VOUT 10 V  
G = 1  
G = 10  
G = 100  
G = 1000  
0.1  
0.3  
0.3  
0.3  
%
%
%
%
Gain Nonlinearity  
G = 1 to 10  
G = 100  
G = 1000  
G = 1 to 100  
VOUT = −10 V to +10 V  
RL = 10 kΩ  
RL = 10 kΩ  
RL = 10 kΩ  
RL = 2 kΩ  
5
7
10  
15  
15  
20  
50  
100  
ppm  
ppm  
ppm  
ppm  
Gain vs. Temperature  
G = 1  
G > 12  
3
10  
–50  
ppm/°C  
ppm/°C  
INPUT  
Input Impedance  
Differential  
100||2  
100||2  
GΩ/pF  
GΩ/pF  
Common Mode  
Input Operating Voltage Range3  
Over Temperature  
Input Operating Voltage Range  
Over Temperature  
OUTPUT  
VS = 2.3 V to 5 V  
T = −40°C to +85°C  
VS = 5 V to 18 V  
T = −40°C to +85°C  
RL = 10 kΩ  
–VS + 1.9  
–VS + 2.0  
–VS + 1.9  
–VS + 2.0  
+VS − 1.1  
V
V
V
V
+VS − 1.2  
+VS − 1.2  
+VS − 1.2  
Output Swing  
Over Temperature  
Output Swing  
Over Temperature  
Short-Circuit Current  
VS = 2.3 V to 5 V  
T = −40°C to +85°C  
VS = 5 V to 18 V  
T = −40°C to +85°C  
–VS + 1.1  
–VS + 1.4  
–VS + 1.2  
–VS + 1.6  
+VS − 1.2  
+VS − 1.3  
+VS − 1.4  
+VS − 1.5  
V
V
V
V
18  
mA  
Rev. C | Page 6 of 24  
AD8221  
ARM Grade  
Typ  
Parameter  
Conditions  
Min  
Max  
Unit  
TEMPERATURE RANGE  
Specified Performance  
Operating Range4  
−40  
−40  
+85  
+125  
°C  
°C  
1 Total RTI VOS = (VOSI) + (VOSO/G).  
2 Does not include the effects of external resistor RG.  
3 One input grounded. G = 1.  
4 See Typical Performance Characteristics for expected operation between 85°C to 125°C.  
Rev. C | Page 7 of 24  
 
 
 
 
AD8221  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Supply Voltage  
18 V  
Internal Power Dissipation  
Output Short-Circuit Current  
Input Voltage (Common-Mode)  
Differential Input Voltage  
Storage Temperature Range  
Operating Temperature Range1  
200 mW  
Indefinite  
VS  
VS  
−65°C to +150°C  
−40°C to +125°C  
THERMAL CHARACTERISTICS  
Specification for a device in free air.  
1 Temperature range for specified performance is –40°C to +85°C. See Typical  
Performance Characteristics for expected operation from 85°C to 125°C.  
Table 4.  
Package  
θJA  
Unit  
°C/W  
°C/W  
8-Lead SOIC, 4-Layer JEDEC Board  
8-Lead MSOP, 4-Layer JEDEC Board  
121  
135  
ESD CAUTION  
Rev. C | Page 8 of 24  
 
 
 
 
AD8221  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
AD8221  
1
2
3
4
8
7
6
5
–IN  
+V  
S
R
R
V
OUT  
G
G
REF  
–V  
+IN  
S
TOP VIEW  
(Not to Scale)  
Figure 3. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
4
5
6
7
8
−IN  
RG  
RG  
+IN  
−VS  
REF  
VOUT  
+VS  
Negative Input Terminal.  
Gain Setting Terminal. Place resistor across the RG pins to set the gain. G = 1 + (49.4 kΩ/RG).  
Gain Setting Terminal. Place resistor across the RG pins to set the gain. G = 1 + (49.4 kΩ/RG).  
Positive Input Terminal.  
Negative Power Supply Terminal.  
Reference Voltage Terminal. Drive this terminal with a low impedance voltage source to level-shift the output.  
Output Terminal.  
Positive Power Supply Terminal.  
Rev. C | Page 9 of 24  
 
AD8221  
TYPICAL PERFORMANCE CHARACTERISTICS  
T = 25°C, VS = 15 V, RL = 10 kΩ, unless otherwise noted.  
1600  
3500  
3000  
2500  
2000  
1500  
1000  
500  
1400  
1200  
1000  
800  
600  
400  
200  
0
0
–0.9  
–150  
–100  
–50  
0
50  
100  
150  
–0.6  
–0.3  
0
0.3  
0.6  
0.9  
CMR (µV/V)  
INPUT OFFSET CURRENT (nA)  
Figure 4. Typical Distribution for CMR (G = 1)  
Figure 7. Typical Distribution of Input Offset Current  
2400  
15  
10  
5
2100  
1800  
1500  
1200  
900  
600  
300  
0
V
= ±15V  
S
0
V
= ±5V  
S
–5  
–10  
–15  
–15  
–60  
–40  
–20  
0
20  
40  
60  
–10  
–5  
0
5
10  
15  
INPUT OFFSET VOLTAGE (µV)  
OUTPUT VOLTAGE (V)  
Figure 5. Typical Distribution of Input Offset Voltage  
Figure 8. Input Common-Mode Range vs. Output Voltage, G = 1  
3000  
15  
10  
2500  
2000  
1500  
1000  
500  
V
= ±15V  
S
5
0
V
= ±5V  
S
–5  
–10  
–15  
0
–1.5  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
–15  
–10  
–5  
0
5
10  
15  
INPUT BIAS CURRENT (nA)  
OUTPUT VOLTAGE (V)  
Figure 6. Typical Distribution of Input Bias Current  
Figure 9. Input Common-Mode Range vs. Output Voltage, G = 100  
Rev. C | Page 10 of 24  
 
AD8221  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
180  
160  
140  
120  
100  
80  
GAIN = 1000  
GAIN = 100  
V
= ±15V  
S
GAIN = 10  
GAIN = 1  
GAIN = 1000  
V
= ±5V  
S
60  
40  
20  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
–15  
–10  
–5  
0
5
10  
15  
COMMON-MODE VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 10. IBIAS vs. CMV  
Figure 13. Positive PSRR vs. Frequency, RTI (G = 1 to 1000)  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
180  
160  
140  
120  
100  
80  
GAIN = 1000  
GAIN = 100  
GAIN = 10  
GAIN = 1  
60  
40  
20  
0.1  
0.01  
0.1  
1
10  
1
10  
100  
1k  
10k  
100k  
1M  
WARM-UP TIME (min)  
FREQUENCY (Hz)  
Figure 11. Change in Input Offset Voltage vs. Warm-Up Time  
Figure 14. Negative PSRR vs. Frequency, RTI (G = 1 to 1000)  
5
100k  
VS = ±15V  
4
3
2
1
10k  
1k  
BEST AVAILABLE FET  
INPUT IN-AMP GAIN = 1  
INPUT OFFSET CURRENT  
0
BEST AVAILABLE FET  
INPUT IN-AMP GAIN = 1000  
INPUT BIAS CURRENT  
–1  
–2  
–3  
–4  
–5  
AD8221 GAIN = 1  
100  
10  
AD8221 GAIN = 1000  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
10  
100  
1k  
10k  
100k  
1M  
10M  
TEMPERATURE (°C)  
SOURCE RESISTANCE (Ω)  
Figure 12. Input Bias Current and Offset Current vs. Temperature  
Figure 15. Total Drift vs. Source Resistance  
Rev. C | Page 11 of 24  
AD8221  
70  
100  
80  
GAIN = 1000  
60  
50  
60  
GAIN = 100  
GAIN = 10  
GAIN = 1  
40  
40  
30  
20  
20  
0
10  
–20  
–40  
–60  
–80  
–100  
0
–10  
–20  
–30  
100  
1k  
10k  
100k  
1M  
10M  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 16. Gain vs. Frequency  
Figure 19. CMR vs. Temperature  
160  
+V  
–0  
S
GAIN = 1000  
GAIN = 100  
GAIN = 10  
GAIN = 1  
–0.4  
–0.8  
–1.2  
–1.6  
–2.0  
–2.4  
140  
120  
100  
80  
+2.4  
+2.0  
+1.6  
+1.2  
+0.8  
+0.4  
+0  
60  
40  
0.1  
–V  
S
1
10  
100  
1k  
10k  
100k  
1M  
0
5
10  
15  
20  
FREQUENCY (Hz)  
SUPPLY VOLTAGE (±V)  
Figure 17. CMRR vs. Frequency, RTI  
Figure 20. Input Voltage Limit vs. Supply Voltage, G = 1  
160  
140  
120  
100  
80  
+V  
0  
S
GAIN = 1000  
–0.4  
–0.8  
–1.2  
–1.6  
–2.0  
GAIN = 100  
GAIN = 10  
GAIN = 1  
R
R
= 10k  
= 2kΩ  
L
L
+2.0  
+1.6  
+1.2  
+0.8  
+0.4  
+0  
R
R
= 2kΩ  
L
60  
= 10kΩ  
L
40  
0.1  
–V  
S
1
10  
100  
1k  
10k  
100k  
1M  
0
5
10  
SUPPLY VOLTAGE (±V)  
15  
20  
FREQUENCY (Hz)  
Figure 18. CMRR vs. Frequency, RTI, 1 kΩ Source Imbalance  
Figure 21. Output Voltage Swing vs. Supply Voltage, G = 1  
Rev. C | Page 12 of 24  
AD8221  
30  
20  
10  
0
V
= ±15V  
S
V
= ±15V  
S
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
1
10  
100  
1k  
10k  
OUTPUT VOLTAGE (V)  
LOAD RESISTANCE (Ω)  
Figure 25. Gain Nonlinearity, G = 100, RL = 10 kΩ  
Figure 22. Output Voltage Swing vs. Load Resistance  
+V –0  
S
V
= ±15V  
S
–1  
–2  
–3  
SOURCING  
+3  
+2  
+1  
SINKING  
–V +0  
S
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
0
1
2
3
4
5
6
7
8
9
10 11 12  
OUTPUT VOLTAGE (V)  
OUTPUT CURRENT (mA)  
Figure 23. Output Voltage Swing vs. Output Current, G = 1  
Figure 26. Gain Nonlinearity, G = 1000, RL = 10 kΩ  
1k  
V
= ±15V  
S
GAIN = 1  
100  
10  
1
GAIN = 10  
GAIN = 100  
GAIN = 1000  
GAIN = 1000  
BW LIMIT  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
1
10  
100  
1k  
10k  
100k  
OUTPUT VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 27. Voltage Noise Spectral Density vs. Frequency (G = 1 to 1000)  
Figure 24. Gain Nonlinearity, G = 1, RL = 10 kΩ  
Rev. C | Page 13 of 24  
AD8221  
2µV/DIV  
1s/DIV  
5pA/DIV  
1s/DIV  
Figure 28. 0.1 Hz to 10 Hz RTI Voltage Noise (G = 1)  
Figure 31. 0.1 Hz to 10 Hz Current Noise  
30  
25  
20  
15  
10  
5
V
= ±15V  
S
GAIN = 1  
GAIN = 10, 100, 1000  
0
1k  
10k  
100k  
1M  
0.1µV/DIV  
1s/DIV  
FREQUENCY (Hz)  
Figure 29. 0.1 Hz to 10 Hz RTI Voltage Noise (G = 1000)  
Figure 32. Large Signal Frequency Response  
1k  
100  
10  
5V/DIV  
7.9µs TO 0.01%  
8.5µs TO 0.001%  
0.002%/DIV  
1
10  
100  
1k  
10k  
20µs/DIV  
FREQUENCY (Hz)  
Figure 30. Current Noise Spectral Density vs. Frequency  
Figure 33. Large Signal Pulse Response and Settling Time (G = 1), 0.002%/DIV  
Rev. C | Page 14 of 24  
AD8221  
5V/DIV  
4.9µs TO 0.01%  
5.6µs TO 0.001%  
0.002%/DIV  
20mV/DIV  
20µs/DIV  
4µs/DIV  
Figure 34. Large Signal Pulse Response and Settling Time (G = 10),  
0.002%/DIV  
Figure 37. Small Signal Response, G = 1, RL = 2 kΩ, CL = 100 pF  
5V/DIV  
10.3µs TO 0.01%  
13.4µs TO 0.001%  
0.002%/DIV  
20mV/DIV  
20µs/DIV  
4µs/DIV  
Figure 35. Large Signal Pulse Response and Settling Time (G = 100),  
0.002%/DIV  
Figure 38. Small Signal Response, G = 10, RL = 2 kΩ, CL = 100 pF  
5V/DIV  
83µs TO 0.01%  
0.002%/DIV  
112µs TO 0.001%  
20mV/DIV  
200µs/DIV  
10µs/DIV  
Figure 36. Large Signal Pulse Response and Settling Time (G = 1000),  
0.002%/DIV  
Figure 39. Small Signal Response, G = 100, RL = 2 kΩ, CL = 100 pF  
Rev. C | Page 15 of 24  
AD8221  
1000  
100  
10  
2
SETTLED TO 0.001%  
SETTLED TO 0.01%  
20mV/DIV  
1
1
10  
100  
1000  
100µs/DIV  
GAIN  
Figure 42. Settling Time vs. Gain for a 10 V Step  
Figure 40. Small Signal Response, G = 1000, RL = 2 kΩ, CL = 100 pF  
15  
10  
SETTLED TO 0.001%  
SETTLED TO 0.01%  
5
0
0
5
10  
15  
20  
OUTPUT VOLTAGE STEP SIZE (V)  
Figure 41. Settling Time vs. Step Size (G = 1)  
Rev. C | Page 16 of 24  
AD8221  
THEORY OF OPERATION  
V
I
I
B
A1  
A2  
I
COMPENSATION  
I
COMPENSATION  
B
B
10k  
C1  
C2  
+V  
–V  
S
10kΩ  
10kΩ  
OUTPUT  
A3  
+V  
S
+V  
S
+V  
–V  
R1 24.7k  
R2  
+V  
24.7kΩ  
S
S
400Ω  
+V  
400Ω  
S
S
Q2  
–IN  
Q1  
+IN  
REF  
10kΩ  
R
G
–V  
–V  
S
S
S
–V  
–V  
S
S
Figure 43. Simplified Schematic  
The AD8221 is a monolithic instrumentation amplifier based  
on the classic 3-op amp topology. Input transistors Q1 and Q2  
are biased at a fixed current so that any differential input signal  
forces the output voltages of A1 and A2 to change accordingly.  
A signal applied to the input creates a current through RG, R1,  
and R2, such that the outputs of A1 and A2 deliver the correct  
voltage. Topologically, Q1, A1, R1 and Q2, A2, R2 can be  
viewed as precision current feedback amplifiers. The amplified  
differential and common-mode signals are applied to a  
difference amplifier that rejects the common-mode voltage  
but amplifies the differential voltage. The difference amplifier  
employs innovations that result in low output offset voltage as  
well as low output offset voltage drift. Laser-trimmed resistors  
allow for a highly accurate in-amp with gain error typically less  
than 20 ppm and CMRR that exceeds 90 dB (G = 1).  
Because the input amplifiers employ a current feedback  
architecture, the gain-bandwidth product of the AD8221  
increases with gain, resulting in a system that does not suffer  
from the expected bandwidth loss of voltage feedback  
architectures at higher gains.  
To maintain precision even at low input levels, special attention  
was given to the design and layout of the AD8221, resulting in  
an in-amp whose performance satisfies the most demanding  
applications.  
A unique pinout enables the AD8221 to meet a CMRR  
specification of 80 dB at 10 kHz (G = 1) and 110 dB at 1 kHz  
(G = 1000). The balanced pinout, shown in Figure 44, reduces  
the parasitics that had, in the past, adversely affected CMRR  
performance. In addition, the new pinout simplifies board  
layout because associated traces are grouped together. For  
example, the gain setting resistor pins are adjacent to the  
inputs, and the reference pin is next to the output.  
Using superbeta input transistors and an IB compensation  
scheme, the AD8221 offers extremely high input impedance,  
low IB, low IB drift, low IOS, low input bias current noise, and  
extremely low voltage noise of 8 nV/√Hz.  
1
2
3
4
8
7
6
5
+V  
V
–IN  
S
R
G
OUT  
The transfer function of the AD8221 is  
R
REF  
–V  
G
49.4 kΩ  
+IN  
S
G =1+  
AD8221  
RG  
TOP VIEW  
Users can easily and accurately set the gain using a single  
standard resistor.  
Figure 44. Pinout Diagram  
Rev. C | Page 17 of 24  
 
 
 
AD8221  
Grounding  
GAIN SELECTION  
The output voltage of the AD8221 is developed with respect to  
the potential on the reference terminal. Care should be taken to  
tie REF to the appropriate local ground.  
Placing a resistor across the RG terminals set the gain of  
AD8221, which can be calculated by referring to Table 6 or  
by using the gain equation.  
In mixed-signal environments, low level analog signals need to  
be isolated from the noisy digital environment. Many ADCs  
have separate analog and digital ground pins. Although it is  
convenient to tie both grounds to a single ground plane, the  
current traveling through the ground wires and PC board may  
cause hundreds of millivolts of error. Therefore, separate analog  
and digital ground returns should be used to minimize the  
current flow from sensitive points to the system ground. An  
example layout is shown in Figure 45 and Figure 46.  
49.4 kΩ  
R =  
G
G
1  
Table 6. Gains Achieved Using 1% Resistors  
1% Standard Table Value of RG (Ω)  
Calculated Gain  
49.9 k  
12.4 k  
5.49 k  
2.61 k  
1.00 k  
499  
1.990  
4.984  
9.998  
19.93  
50.40  
100.0  
199.4  
495.0  
991.0  
249  
100  
49.9  
The AD8221 defaults to G = 1 when no gain resistor is used.  
Gain accuracy is determined by the absolute tolerance of RG.  
The TC of the external gain resistor increases the gain drift of  
the instrumentation amplifier. Gain error and gain drift are kept  
to a minimum when the gain resistor is not used.  
LAYOUT  
Careful board layout maximizes system performance. Traces  
from the gain setting resistor to the RG pins should be kept as  
short as possible to minimize parasitic inductance. To ensure  
the most accurate output, the trace from the REF pin should  
either be connected to the local ground of the AD8221, as shown  
in Figure 47, or connected to a voltage that is referenced to the  
local ground of the AD8221.  
Figure 45. Top Layer of the AD8221-EVAL  
Common-Mode Rejection  
One benefit of the high CMRR over frequency of the AD8221 is  
that it has greater immunity to disturbances, such as line noise  
and its associated harmonics, than do typical instrumentation  
amplifiers. Typically, these amplifiers have CMRR fall-off at  
200 Hz; common-mode filters are often used to compensate for  
this shortcoming. The AD8221 is able to reject CMRR over a  
greater frequency range, reducing the need for filtering.  
A well implemented layout helps to maintain the high CMRR  
over frequency of the AD8221. Input source impedance and  
capacitance should be closely matched. In addition, source  
resistance and capacitance should be placed as close to the  
inputs as permissible.  
Figure 46. Bottom Layer of the AD8221-EVAL  
Rev. C | Page 18 of 24  
 
 
 
 
 
AD8221  
+V  
S
REFERENCE TERMINAL  
As shown in Figure 43, the reference terminal, REF, is at one  
end of a 10 kΩ resistor. The output of the instrumentation  
amplifier is referenced to the voltage on the REF terminal; this  
is useful when the output signal needs to be offset to a precise  
midsupply level. For example, a voltage source can be tied to the  
REF pin to level-shift the output so that the AD8221 can interface  
with an ADC. The allowable reference voltage range is a function  
of the gain, input, and supply voltage. The REF pin should not  
exceed either +VS or –VS by more than 0.5 V.  
AD8221  
REF  
REF  
REF  
–V  
S
TRANSFORMER  
+V  
S
For best performance, source impedance to the REF terminal  
should be kept low, because parasitic resistance can adversely  
affect CMRR and gain accuracy.  
AD8221  
POWER SUPPLY REGULATION AND BYPASSING  
A stable dc voltage should be used to power the instrumentation  
amplifier. Noise on the supply pins can adversely affect  
performance. Bypass capacitors should be used to decouple  
the amplifier.  
–V  
S
THERMOCOUPLE  
+V  
S
A 0.1 µF capacitor should be placed close to each supply pin.  
As shown in Figure 47, a 10 µF tantalum capacitor can be used  
further away from the part. In most cases, it can be shared by  
other precision integrated circuits.  
C
R
1
fHIGH-PASS  
=
2πRC  
AD8221  
+V  
C
S
R
0.1µF  
10µF  
–V  
S
+IN  
–IN  
CAPACITOR COUPLED  
V
Figure 48. Creating an IBIAS Path  
OUT  
AD8221  
LOAD  
INPUT PROTECTION  
REF  
All terminals of the AD8221 are protected against ESD, 1 kV  
Human Body Model. In addition, the input structure allows for  
dc overload conditions below the negative supply, −VS. The  
internal 400 Ω resistors limit current in the event of a negative  
fault condition. However, in the case of a dc overload voltage  
above the positive supply, +VS, a large current flows directly  
through the ESD diode to the positive rail. Therefore, an external  
resistor should be used in series with the input to limit current  
for voltages above +Vs. In either scenario, the AD8221 can  
safely handle a continuous 6 mA current, I = VIN/REXT for  
positive overvoltage and I = VIN/(400 Ω + REXT) for negative  
overvoltage.  
0.1µF  
10µF  
–V  
S
Figure 47. Supply Decoupling, REF, and Output Referred to Local Ground  
INPUT BIAS CURRENT RETURN PATH  
The input bias current of the AD8221 must have a return path  
to common. When the source, such as a thermocouple, cannot  
provide a return current path, one should be created, as shown  
in Figure 48.  
For applications where the AD8221 encounters extreme  
overload voltages, as in cardiac defibrillators, external series  
resistors, and low leakage diode clamps, such as BAV199Ls,  
FJH1100s, or SP720s should be used.  
Rev. C | Page 19 of 24  
 
 
 
 
 
 
AD8221  
CD affects the difference signal, and CC affects the common-  
mode signal. Values of R and CC should be chosen to minimize  
RFI. Mismatch between the R × CC at the positive input and the  
R × CC at the negative input degrades the CMRR of the AD8221.  
By using a value of CD one magnitude larger than CC, the effect  
of the mismatch is reduced, and therefore, performance is  
improved.  
RF INTERFERENCE  
RF rectification is often a problem when amplifiers are used in  
applications where there are strong RF signals. The disturbance  
can appear as a small dc offset voltage. High frequency signals  
can be filtered with a low-pass RC network placed at the input  
of the instrumentation amplifier, as shown in Figure 49. The  
filter limits the input signal bandwidth according to the following  
relationship:  
PRECISION STRAIN GAGE  
The low offset and high CMRR over frequency of the AD8221  
make it an excellent candidate for bridge measurements. As  
shown in Figure 50, the bridge can be directly connected to  
the inputs of the amplifier.  
1
FilterFreqDiff  
=
=
R(2C  
D
+C )  
C
1
FilterFreqCM  
RC  
C
+5V  
where CD 10CC.  
10µF  
0.1µF  
+15V  
350  
350Ω  
350Ω  
350Ω  
+IN  
–IN  
+
0.1µF  
10µF  
R
AD8221  
C
1nF  
C
R
4.02k  
C
+2.5V  
+IN  
R1  
V
OUT  
10nF  
1nF  
AD8221  
D
C
Figure 50. Precision Strain Gage  
499Ω  
R
REF  
–IN  
CONDITIONING 10 V SIGNALS FOR A +5 V  
DIFFERENTIAL INPUT ADC  
4.02kΩ  
C
There is a need in many applications to condition 10 V signals.  
However, many of today’s ADCs and digital ICs operate on  
much lower, single-supply voltages. Furthermore, new ADCs  
have differential inputs because they provide better common-  
mode rejection, noise immunity, and performance at low supply  
voltages. Interfacing a 10 V, single-ended instrumentation  
amplifier to a +5 V, differential ADC can be a challenge.  
Interfacing the instrumentation amplifier to the ADC requires  
attenuation and a level shift. A solution is shown in Figure 51.  
+12V  
0.1µF  
10µF  
–15V  
Figure 49. RFI Suppression  
+2.5V  
+12V  
R3  
1k  
0.1µF  
+5V  
10nF  
+5V  
R6  
27.4  
+12V  
10µF  
0.1µF  
AD8022  
C1  
470pF  
(½)  
0.1µF  
+IN  
–IN  
AV  
DD  
DV  
DD  
VIN(+)  
VIN(–)  
0.1µF  
–12V  
AD8221  
OP27  
R1  
C2  
220µF  
AD7723  
10kΩ  
REF  
R5  
+12V  
499Ω  
R2  
10kΩ  
0.1µF  
AGND DGND REF1 REF2  
0.1µF  
10µF  
0.1µF  
R7  
27.4Ω  
–12V  
AD8022  
–12V  
R4  
(½)  
1kΩ  
220nF  
10nF  
0.1µF  
–12V  
2.5V  
22µF  
+5V  
+V  
V
OUT  
IN  
10µF  
0.1µF  
AD780  
GND  
Figure 51. Interfacing to a Differential Input ADC  
Rev. C | Page 20 of 24  
 
 
 
 
 
 
AD8221  
In this topology, an OP27 sets the reference voltage of the  
AD8221. The output signal of the instrumentation amplifier is  
taken across the OUT pin and the REF pin. Two 1 kΩ resistors  
and a 499 Ω resistor attenuate the 10 V signal to +4 V. An  
optional capacitor, C1, can serve as an antialiasing filter. An  
AD8022 is used to drive the ADC.  
reduces the referred input noise of the amplifier to 8 nV/√Hz.  
Thus, smaller signals can be measured because the noise floor is  
lower. DC offsets that would have been gained by 100 are  
eliminated from the output of the AD8221 by the integrator  
feedback network.  
At low frequencies, the OP1177 forces the output of the AD8221 to  
0 V. Once a signal exceeds fHIGH-PASS, the AD8221 outputs the  
amplified input signal.  
This topology has five benefits. In addition to level-shifting and  
attenuation, very little noise is contributed to the system. Noise  
from R1 and R2 is common to both of the inputs of the ADC  
and is easily rejected. R5 adds a third of the dominant noise and  
therefore makes a negligible contribution to the noise of the  
system. The attenuator divides the noise from R3 and R4. Likewise,  
its noise contribution is negligible. The fourth benefit of this  
interface circuit is that the acquisition time of the AD8221 is  
reduced by a factor of 2. With the help of the OP27, the AD8221  
only needs to deliver one-half of the full swing; therefore, signals  
can settle more quickly. Lastly, the AD8022 settles quickly,  
which is helpful because the shorter the settling time, the  
more bits that can be resolved when the ADC acquires data.  
This configuration provides attenuation, a level-shift, and a  
convenient interface with a differential input ADC while  
maintaining performance.  
+V  
S
0.1µF  
+IN  
1
2πRC  
fHIGH-PASS  
=
R
499Ω  
AD8221  
R
REF  
C
1µF  
15.8k  
–IN  
+V  
S
0.1µF  
0.1µF  
–V  
S
OP1177  
AC-COUPLED INSTRUMENTATION AMPLIFIER  
+V  
–V  
S
S
Measuring small signals that are in the noise or offset of the  
amplifier can be a challenge. Figure 52 shows a circuit that can  
improve the resolution of small ac signals. The large gain  
10µF  
10µF  
0.1µF  
–V  
S
Figure 52. AC-Coupled Circuit  
Rev. C | Page 21 of 24  
 
 
AD8221  
DIE INFORMATION  
Die size: 1575 μm × 2230 μm  
Die thickness: 381 μm  
To minimize gain errors introduced by the bond wires, use Kelvin connections between the chip and the gain resistor, RG, by connecting  
Pad 2A and Pad 2B in parallel to one end of RG and Pad 3A and Pad 3B in parallel to the other end of RG. For unity gain applications  
where RG is not required, Pad 2A and Pad 2B must be bonded together as well as the Pad 3A and Pad 3B.  
1
2A  
8
2B  
3A  
7
3B  
6
4
5
LOGO  
Figure 53. Bond Pad Diagram  
Table 7. Bond Pad Information  
Pad Coordinates1  
Pad No.  
Mnemonic  
−IN  
RG  
RG  
RG  
X (μm)  
–379  
–446  
–615  
–619  
–490  
–621  
+635  
+649  
+612  
+636  
Y (μm)  
+951  
+826  
+474  
+211  
–190  
–622  
–823  
–339  
+84  
1
2A  
2B  
3A  
3B  
4
5
6
7
8
RG  
+IN  
−VS  
REF  
VOUT  
+VS  
+570  
1 The pad coordinates indicate the center of each pad, referenced to the center of the die. The die orientation is indicated by the logo, as shown in Figure 53.  
Rev. C | Page 22 of 24  
 
 
AD8221  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
IDENTIFIER  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.80  
0.55  
0.40  
0.15  
0.05  
0.23  
0.09  
6°  
0°  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 54. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 55. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
Rev. C | Page 23 of 24  
 
AD8221  
ORDERING GUIDE  
Temperature Range for  
Specified Performance  
Operating2  
Temperature Range  
Package  
Option  
Model1  
Package Description  
Branding  
AD8221AR  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
8-Lead SOIC_N  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
R-8  
R-8  
R-8  
R-8  
R-8  
AD8221AR-REEL  
AD8221AR-REEL7  
AD8221ARZ  
AD8221ARZ-R7  
AD8221ARZ-RL  
AD8221ARM  
AD8221ARM-REEL  
AD8221ARM REEL7  
AD8221ARMZ  
AD8221ARMZ-R7  
AD8221ARMZ-RL  
AD8221BR  
AD8221BR-REEL  
AD8221BR-REEL7  
AD8221BRZ  
8-Lead SOIC_N, 13" Tape and Reel  
8-Lead SOIC_N, 7" Tape and Reel  
8-Lead SOIC_N  
8-Lead SOIC_N, 7" Tape and Reel  
8-Lead SOIC_N, 13" Tape and Reel  
8-Lead MSOP  
8-Lead MSOP, 13" Tape and Reel  
8-Lead MSOP, 7" Tape and Reel  
8-Lead MSOP  
8-Lead MSOP, 7" Tape and Reel  
8-Lead MSOP, 13" Tape and Reel  
8-Lead SOIC_N  
8-Lead SOIC_N, 13" Tape and Reel  
8-Lead SOIC_N, 7" Tape and Reel  
8-Lead SOIC_N  
8-Lead SOIC_N, 7" Tape and Reel  
8-Lead SOIC_N, 13" Tape and Reel  
Die  
JLA  
JLA  
JLA  
JLA#  
JLA#  
JLA#  
AD8221BRZ-R7  
AD8221BRZ-RL  
AD8221AC-P7  
R-8  
1 Z = RoHS Compliant Part, # denotes RoHS compliant product may be top or bottom marked.  
2 See Typical Performance Characteristics for expected operation from 85°C to 125°C.  
©2003–2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D03149–0–3/11(C)  
Rev. C | Page 24 of 24  
 
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY