AD8222HACPZ-RL [ADI]

Precision, Dual-Channel Instrumentation Amplifier; 精密,双通道仪表放大器
AD8222HACPZ-RL
型号: AD8222HACPZ-RL
厂家: ADI    ADI
描述:

Precision, Dual-Channel Instrumentation Amplifier
精密,双通道仪表放大器

仪表放大器 放大器电路
文件: 总24页 (文件大小:417K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision, Dual-Channel  
Instrumentation Amplifier  
AD8222  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
Two channels in small 4 mm × 4 mm LFCSP  
Gain set with 1 resistor per amplifier (G = 1 to 10,000)  
Low noise  
16 15 14 13  
8 nV/√Hz at 1 kHz  
0.25 μV p-p (0.1 Hz to 10 Hz)  
AD8222  
1
2
3
4
12  
11  
10  
9
–IN1  
RG1  
RG1  
+IN1  
–IN2  
RG2  
RG2  
+IN2  
High accuracy dc performance (B grade)  
60 μV maximum input offset voltage  
0.3 μV/°C maximum input offset drift  
1.0 nA maximum input bias current  
126 dB minimum CMRR (G = 100)  
Excellent ac performance  
5
6
7
8
140 kHz bandwidth (G = 100)  
13 μs settling time to 0.001%  
Differential output option (single channel)  
Fully specified  
Adjustable common-mode output  
Supply range: 2.3 V to 18 V  
Figure 1. 4 mm × 4 mm LFCSP  
Table 1. Instrumentation Amplifiers by Category1  
General  
Purpose  
Zero  
Drift  
Military  
Grade  
Low  
Power  
High Speed  
PGA  
AD8220  
AD8221  
AD8222  
AD8224  
AD8228  
AD8295  
AD8231  
AD8290  
AD8293  
AD8553  
AD8556  
AD8557  
AD620  
AD621  
AD524  
AD526  
AD624  
AD8235  
AD8236  
AD627  
AD8250  
AD8251  
AD8253  
APPLICATIONS  
Multichannel data acquisition for  
ECG and medical instrumentation  
Industrial process controls  
Wheatstone bridge sensors  
Differential drives for  
AD623  
AD8223  
AD8226  
AD8227  
1 See www.analog.com for the latest selection of instrumentation amplifiers.  
High resolution input ADCs  
Remote sensors  
GENERAL DESCRIPTION  
The AD8222 maintains a minimum CMRR of 80 dB to 4 kHz  
for all grades at G = 1. High CMRR over frequency allows the  
AD8222 to reject wideband interference and line harmonics,  
greatly simplifying filter requirements. The AD8222 also has a  
typical CMRR drift over temperature of just 0.07 μV/V/°C at G = 1.  
The AD8222 is a dual-channel, high performance instrumentation  
amplifier that requires only one external resistor per amplifier  
to set gains of 1 to 10,000.  
The AD8222 is the first dual-instrumentation amplifier in the  
small 4 mm × 4mm LFCSP. It requires the same board area as a  
typical single instrumentation amplifier. The smaller package  
allows a 2× increase in channel density and a lower cost per  
channel, all with no compromise in performance.  
The AD8222 operates on both single and dual supplies and only  
requires 2.2 mA maximum supply current for both amplifiers.  
It is specified over the industrial temperature range of −40°C to  
+85°C and is fully RoHS compliant.  
The AD8222 can also be configured as a single-channel, differen-  
tial output instrumentation amplifier. Differential outputs provide  
high noise immunity, which can be useful when the output  
signal must travel through a noisy environment, such as with  
remote sensors. The configuration can also be used to drive  
differential input ADCs.  
For a single-channel version, see the AD8221.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2006–2010 Analog Devices, Inc. All rights reserved.  
 
 
 
 
AD8222  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Package Considerations............................................................. 16  
Layout .......................................................................................... 16  
Input Bias Current Return Path ............................................... 17  
Input Protection ......................................................................... 18  
RF Interference ........................................................................... 18  
Common-Mode Input Voltage Range..................................... 18  
Applications Information.............................................................. 19  
Differential Output .................................................................... 19  
Driving a Differential Input ADC............................................ 20  
Precision Strain Gage................................................................. 20  
Driving Cabling.......................................................................... 21  
Outline Dimensions....................................................................... 22  
Ordering Guide .......................................................................... 23  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
Theory of Operation ...................................................................... 15  
Amplifier Architecture .............................................................. 15  
Gain Selection............................................................................. 15  
Reference Terminal .................................................................... 16  
REVISION HISTORY  
2/10—Rev. 0 to Rev. A  
Changes to Reference Terminal Section, Figure 45, and Package  
Considerations Section.................................................................. 16  
Deleted Thermal Pad Section ....................................................... 16  
Added Package Without Thermal Pad and Package with  
Thermal Pad Sections .................................................................... 16  
Changes to Figure 46...................................................................... 17  
Deleted Solder Wash Section........................................................ 17  
Changes to RFI and Antialising Filter Section ........................... 20  
Updated Outline Dimensions....................................................... 22  
Changes to Ordering Guide.......................................................... 23  
Added LFCSP_VQ, CP-16-13 Package............................Universal  
Changes to Features Section and Table 1 ...................................... 1  
Changed VIN+ to V+IN, VIN− to V−IN, and T to TA Throughout..... 3  
Change to Reference Input Parameter, Table 2............................. 4  
Changed Output Short-Circuit Current to Output Short-Circuit  
Duration, Table 5 .............................................................................. 6  
Changes to Thermal Resistance Section and Table 6................... 6  
Changes to Figure 2.......................................................................... 7  
Changes to Figure 19...................................................................... 10  
Changes to Figure 43...................................................................... 14  
7/06—Revision 0: Initial Version  
Rev. A | Page 2 of 24  
 
AD8222  
SPECIFICATIONS  
VS = 15 V, VREF = 0 V, TA = 25°C, G = 1, RL = 2 kΩ, unless otherwise noted.  
Table 2. Single-Ended and Differential1 Output Configuration  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
Conditions  
CM = –10 V to +10 V  
Min  
Max  
Min  
Max  
Unit  
COMMON-MODE REJECTION  
RATIO (CMRR)  
V
CMRR DC to 60 Hz  
G = 1  
G = 10  
G = 100  
G = 1000  
1 kΩ source imbalance  
80  
86  
dB  
dB  
dB  
dB  
100  
120  
130  
106  
126  
140  
CMRR at 4 kHz  
G = 1  
80  
80  
dB  
G = 10  
G = 100  
G = 1000  
90  
100  
100  
100  
110  
110  
dB  
dB  
dB  
CMRR Drift  
NOISE  
TA = −40°C to +85°C, G = 1  
0.07  
0.07  
μV/V/°C  
Voltage Noise, 1 kHz  
Input Voltage Noise, eNI  
Output Voltage Noise, eNO  
RTI  
RTI noise = √(eNI2 + (eNO/G)2)  
V+IN, V−IN, VREF = 0 V  
V+IN, V−IN, VREF = 0 V  
8
75  
8
75  
nV/√Hz  
nV/√Hz  
f = 0.1 Hz to 10 Hz  
G = 1  
G = 10  
G = 100 to 1000  
Current Noise  
2
2
μV p-p  
μV p-p  
μV p-p  
fA/√Hz  
pA p-p  
0.5  
0.25  
40  
6
0.5  
0.25  
40  
6
f = 1 kHz  
f = 0.1 Hz to 10 Hz  
RTI VOS = (VOSI) + (VOSO/G)  
VS = 5 V to 15 V  
TA = −40°C to +85°C  
VOLTAGE OFFSET  
Input Offset, VOSI  
Over Temperature  
Average TC  
Output Offset, VOSO  
Over Temperature  
Average TC  
120  
150  
0.4  
500  
0.8  
9
60  
80  
0.3  
350  
0.5  
5
μV  
μV  
μV/°C  
μV  
mV  
VS = 5 V to 15 V  
TA = −40°C to +85°C  
μV/°C  
Offset RTI vs. Supply (PSR)  
G = 1  
G = 10  
G = 100  
G = 1000  
VS = 2.3 V to 18 V  
90  
110  
120  
130  
140  
94  
110  
130  
140  
150  
dB  
dB  
dB  
dB  
110  
124  
130  
114  
130  
140  
INPUT CURRENT (PER CHANNEL)  
Input Bias Current, IBIAS  
Over Temperature  
Average TC  
Input Offset Current, IOFFSET  
Over Temperature  
Average TC  
0.5  
2.0  
3.0  
0.2  
1.0  
1.5  
nA  
nA  
pA/°C  
nA  
nA  
TA = −40°C to +85°C  
TA = −40°C to +85°C  
1
0.2  
1
0.1  
1
1.5  
0.5  
0.6  
2
1
0.5  
pA/°C  
Rev. A | Page 3 of 24  
 
 
AD8222  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
Conditions  
Min  
−VS  
1
Max  
Min  
−VS  
1
Max  
Unit  
REFERENCE INPUT  
RIN  
IIN  
Voltage Range  
Reference Gain to Output  
Reference Gain Error  
GAIN  
20  
50  
20  
50  
kΩ  
μA  
V
V/V  
%
V+IN, V−IN, VREF = 0 V  
60  
+VS  
60  
+VS  
1
0.01  
1
0.01  
G = 1 + (49.4 kΩ/RG)  
VOUT 10 V  
Gain Range  
Gain Error  
10000  
10000  
V/V  
G = 1  
G = 10  
G = 100  
G = 1000  
0.05  
0.3  
0.3  
0.02  
0.15  
0.15  
0.15  
%
%
%
%
0.3  
Gain Nonlinearity  
G = 1  
G = 10  
VOUT = –10 V to +10 V  
3
7
7
10  
20  
20  
1
7
7
5
20  
20  
ppm  
ppm  
ppm  
G = 100  
Gain vs. Temperature  
G = 1  
G > 12  
3
10  
−50  
2
5
−50  
ppm/°C  
ppm/°C  
INPUT  
Input Impedance  
Differential  
100||2  
100||2  
100||2  
100||2  
GΩ||pF  
GΩ||pF  
V
V
V
V
Common Mode  
Input Operating Voltage Range3  
Over Temperature  
Input Operating Voltage Range3  
Over Temperature  
OUTPUT  
VS = 2.3 V to 5 V  
TA = −40°C to +85°C  
VS = 5 V to 18 V  
TA = −40°C to +85°C  
RL = 10 kΩ  
−VS + 1.9  
−VS + 2.0  
−VS + 1.9  
−VS + 2.0  
+VS − 1.1 −VS + 1.9  
+VS − 1.2 −VS + 2.0  
+VS − 1.2 −VS + 1.9  
+VS − 1.2 −VS + 2.0  
+VS − 1.1  
+VS − 1.2  
+VS − 1.2  
+VS − 1.2  
Output Swing  
Over Temperature  
Output Swing  
Over Temperature  
Short-Circuit Current  
POWER SUPPLY  
Operating Range  
Quiescent Current (per Amplifier)  
Over Temperature  
TEMPERATURE RANGE  
Specified Performance  
Operational4  
VS = 2.3 V to 5 V  
TA = −40°C to +85°C  
VS = 5 V to 18 V  
TA = −40°C to +85°C  
−VS + 1.1  
−VS + 1.4  
−VS + 1.2  
−VS + 1.6  
+VS − 1.2 −VS + 1.1  
+VS − 1.3 −VS + 1.4  
+VS − 1.4 −VS + 1.2  
+VS − 1.5 −VS + 1.6  
+VS − 1.2  
+VS − 1.3  
+VS − 1.4  
+VS − 1.5  
V
V
V
V
18  
18  
mA  
VS = 2.3 V to 18 V  
TA = −40°C to +85°C  
2.3  
18  
1.1  
2.3  
18  
1.1  
1.2  
V
mA  
mA  
0.9  
1
0.9  
1
1.2  
−40  
−40  
+85  
+125  
−40  
−40  
+85  
+125  
°C  
°C  
1 Refers to differential configuration shown in Figure 49.  
2 Does not include the effects of external resistor, RG.  
3 One input grounded. G = 1.  
4 See the Typical Performance Characteristics section for expected operation between 85°C and 125°C.  
Rev. A | Page 4 of 24  
AD8222  
VS = 15 V, VREF = 0 V, TA = 25°C, RL = 2 kΩ, unless otherwise noted.  
Table 3. Single-Ended Output Configuration—Dynamic Performance (Both Amplifiers)  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Unit  
DYNAMIC RESPONSE  
Small Signal −3 dB Bandwidth  
G = 1  
1200  
750  
140  
15  
1200  
750  
140  
15  
kHz  
kHz  
kHz  
kHz  
G = 10  
G = 100  
G = 1000  
Settling Time 0.01%  
G = 1 to 100  
G = 1000  
Settling Time 0.001%  
G = 1 to 100  
G = 1000  
10 V step  
10 V step  
10  
80  
10  
80  
μs  
μs  
13  
110  
2
13  
110  
2
μs  
μs  
Slew Rate  
G = 1  
G = 5 to 1000  
1.5  
2
1.5  
2
V/μs  
V/μs  
2.5  
2.5  
Table 4. Differential Output Configuration1—Dynamic Performance  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Unit  
DYNAMIC RESPONSE  
Small Signal −3 dB Bandwidth  
G = 1  
1000  
650  
140  
15  
1000  
650  
140  
15  
kHz  
kHz  
kHz  
kHz  
G = 10  
G = 100  
G =1000  
Settling Time 0.01%  
G = 1 to 100  
G = 1000  
Settling Time 0.001%  
G = 1 to 100  
G = 1000  
10 V step  
10 V step  
15  
80  
15  
80  
μs  
μs  
18  
110  
2
18  
110  
2
μs  
μs  
Slew Rate  
G = 1  
G = 5 to 1000  
1.5  
2
1.5  
2
V/μs  
V/μs  
2.5  
2.5  
1 Refers to differential configuration shown in Figure 49.  
Rev. A | Page 5 of 24  
 
 
AD8222  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
THERMAL RESISTANCE  
Parameter  
Rating  
Table 6.  
Package  
Supply Voltage  
18 V  
Indefinite  
VS  
VS  
−65°C to +130°C  
−40°C to +125°C  
130°C  
θJA  
86  
48  
Unit  
°C/W  
°C/W  
Output Short-Circuit Current Duration  
Input Voltage (Common Mode)  
Differential Input Voltage  
Storage Temperature Range  
Operational Temperature Range  
Package Glass Transition Temperature (TG)  
ESD  
CP-16-19: LFCSP Without Thermal Pad  
CP-16-13: LFCSP with Thermal Pad  
The θJA values in Table 6 assume a 4-layer JEDEC standard  
board. For the LFCSP with thermal pad, it is assumed that the  
thermal pad is soldered to a landing on the PCB board, with the  
landing thermally connected to a heat dissipating power plane.  
θJC at the exposed pad is 4.4°C/W.  
Human Body Model  
Charge Device Model  
1 kV  
1 kV  
Maximum Power Dissipation  
The maximum safe power dissipation for the AD8222 is limited  
by the associated rise in junction temperature (TJ) on the die. At  
approximately 130C, which is the glass transition temperature,  
the plastic changes its properties. Even temporarily exceeding  
this temperature limit may change the stresses that the package  
exerts on the die, permanently shifting the parametric performance  
of the amplifiers. Exceeding a temperature of 130°C for an  
extended period can result in a loss of functionality.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions may affect device reliability.  
ESD CAUTION  
Rev. A | Page 6 of 24  
 
 
 
 
AD8222  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
12  
11  
10  
9
–IN1 1  
RG1 2  
RG1 3  
+IN1 4  
–IN2  
RG2  
RG2  
+IN2  
INDICATOR  
AD8222  
TOP VIEW  
NOTES  
1. THE AD8222 COMES IN TWO PACKAGE TYPES—EACH A 16 LEAD  
4mm × 4mm LFCSP. ONE PACKAGE TYPE HAS AN EXPOSED  
THERMAL PAD, WHICH IS CONNECTED TO –V . THE OTHER  
S
PACKAGE TYPE DOES NOT EXPOSE THE THERMAL PAD. SEE THE  
PACKAGE CONSIDERATIONS SECTION FOR MORE INFORMATION.  
Figure 2. Pin Configuration  
Table 7. Pin Function Descriptions  
Pin No  
Mnemonic  
−IN1  
RG1  
RG1  
+IN1  
+VS  
Description  
1
2
3
4
Negative Input In-Amp 1  
Gain Resistor In-Amp 1  
Gain Resistor In-Amp 1  
Positive Input In-Amp 1  
Positive Supply  
5
6
7
8
REF1  
REF2  
−VS  
Reference Adjust In-Amp 1  
Reference Adjust In-Amp 2  
Negative Supply  
9
+IN2  
RG2  
RG2  
−IN2  
−VS  
OUT2  
OUT1  
+VS  
Positive Input In-Amp 2  
Gain Resistor In-Amp 2  
Gain Resistor In-Amp 2  
Negative Input In-Amp 2  
Negative Supply  
Output In-Amp 2  
Output In-Amp 1  
Positive Supply  
10  
11  
12  
13  
14  
15  
16  
Rev. A | Page 7 of 24  
 
AD8222  
TYPICAL PERFORMANCE CHARACTERISTICS  
N = 1713  
500  
800  
600  
400  
200  
0
400  
300  
200  
100  
0
–50 –40 –30 –20 –10  
0
10  
20  
30  
40  
50  
–2.0  
–1.5  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
CMRR (µV/V)  
I
(nA)  
OFFSET  
Figure 6. Typical Distribution of Input Offset Current  
Figure 3. Typical Distribution for CMRR (G = 1)  
15  
10  
5
N = 1713  
300  
250  
200  
150  
100  
10  
V
= ±15V  
S
0
V
= ±5V  
S
–5  
–10  
–15  
0
–100 80  
60  
40  
20  
0
20  
40  
60  
80  
100  
–15  
–10  
–5  
0
5
10  
15  
V
(µV)  
OSI  
OUTPUT VOLTAGE (V)  
Figure 4. Typical Distribution of Input Offset Voltage  
Figure 7. Input Common-Mode Range vs. Output Voltage, G = 1  
15  
10  
N = 1713  
700  
600  
500  
400  
300  
200  
100  
0
V
= ±15V  
S
5
0
V
= ±5V  
S
–5  
–10  
–15  
–15  
–2.0  
–1.5  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
–10  
–5  
0
5
10  
15  
I
(nA)  
BIAS  
OUTPUT VOLTAGE (V)  
Figure 5. Typical Distribution of Input Bias Current  
Figure 8. Input Common-Mode Range vs. Output Voltage, G = 100  
Rev. A | Page 8 of 24  
 
 
 
AD8222  
200  
150  
100  
50  
160  
150  
140  
130  
120  
110  
100  
90  
BANDWIDTH  
LIMITED  
V
= ±15V  
= ±5V  
S
GAIN = 1000  
0
80  
GAIN = 100  
GAIN = 10  
GAIN = 1  
V
70  
S
–50  
–100  
–150  
–200  
60  
50  
40  
30  
20  
10  
0
–15  
–10  
–5  
0
5
10  
15  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
COMMON-MODE VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 12. Positive PSRR vs. Frequency, RTI (G = 1 to 1000)  
Figure 9. IBIAS vs. Common-Mode Voltage  
160  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
150  
140  
130  
120  
110  
100  
90  
GAIN = 1000  
GAIN = 100  
80  
70  
60  
50  
40  
GAIN = 10  
GAIN = 1  
30  
20  
10  
0
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
0
2
4
6
8
10  
FREQUENCY (Hz)  
WARM-UP TIME (Minutes)  
Figure 10. Change in Input Offset Voltage vs. Warm-Up Time  
Figure 13. Negative PSRR vs. Frequency, RTI (G = 1 to 1000)  
1000  
10k  
800  
600  
NEGATIVE  
1k  
100  
10  
400  
GAIN = 1  
GAIN = 10 GAIN = 100  
200  
POSITIVE  
0
OFFSET CURRENT  
–200  
–400  
–600  
–800  
–1000  
GAIN = 1000  
1
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
TEMPERATURE (°C)  
SOURCE RESISTANCE ()  
Figure 11. Input Bias Current and Offset Current vs. Temperature  
Figure 14. Total Drift vs. Source Resistance  
Rev. A | Page 9 of 24  
AD8222  
70  
20  
15  
GAIN = 1000  
60  
50  
GAIN = 100  
GAIN = 10  
GAIN = 1  
10  
40  
30  
5
EXAMPLE PART 1  
EXAMPLE PART 2  
20  
0
10  
–5  
0
–10  
–20  
–30  
–40  
–10  
–15  
–20  
100  
1k  
10k  
100k  
1M  
10M  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 15. Gain vs. Frequency  
Figure 18. ΔCMR vs. Temperature, G = 1  
160  
150  
140  
130  
120  
110  
100  
90  
+V –0  
S
GAIN = 1000  
GAIN = 100  
–0.4  
–0.8  
–1.2  
–1.6  
–2.0  
FROM +V  
S
GAIN = 10  
GAIN = 1  
BANDWIDTH  
LIMITED  
+2.0  
+1.6  
+1.2  
+0.8  
+0.4  
FROM –V  
S
80  
70  
60  
50  
–V +0  
S
40  
0.1  
2
6
10  
SUPPLY VOLTAGE (V)  
14  
18  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 16. CMRR vs. Frequency, RTI  
Figure 19. Input Voltage Limit vs. Supply Voltage, G = 1  
160  
150  
140  
130  
120  
110  
100  
90  
+V –0  
S
GAIN = 1000  
–0.4  
–0.8  
–1.2  
–1.6  
R
L
= 10k  
GAIN = 100  
GAIN = 10  
R
R
= 2kΩ  
= 2kΩ  
L
BANDWIDTH  
LIMITED  
+1.6  
+1.2  
+0.8  
+0.4  
L
80  
70  
GAIN = 1  
60  
R
L
= 10kΩ  
50  
–V +0  
S
40  
0.1  
2
6
10  
14  
18  
1
10  
100  
1k  
10k  
100k  
1M  
SUPPLY VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 17. CMRR vs. Frequency, RTI, 1 kΩ Source Imbalance  
Figure 20. Output Voltage Swing vs. Supply Voltage, G = 1  
Rev. A | Page 10 of 24  
AD8222  
30  
20  
10  
0
40  
30  
20  
2kLOAD  
10  
0
600LOAD  
–10  
–20  
–30  
–40  
10kLOAD  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
1
10  
100  
1k  
10k  
V
(V)  
LOAD RESISTANCE ()  
OUT  
Figure 24. Gain Nonlinearity, G = 100  
Figure 21. Output Voltage Swing vs. Load Resistance  
1k  
100  
10  
+V –0  
S
–1  
–2  
–3  
SOURCING  
GAIN = 1  
GAIN = 10  
GAIN = 100  
+3  
+2  
+1  
GAIN = 1000  
SINKING  
GAIN = 1000  
BW LIMIT  
1
–V +0  
S
1
10  
100  
1k  
10k  
100k  
0
1
2
3
4
5
6
7
8
9
10 11 12  
FREQUENCY (Hz)  
OUTPUT CURRENT (mA)  
Figure 25. Voltage Noise Spectral Density vs. Frequency (G = 1 to 1000)  
Figure 22. Output Voltage Swing vs. Output Current, G = 1  
4
3
2
1
10kLOAD  
0
2kLOAD  
–1  
600LOAD  
–2  
–3  
–4  
2µV/DIV  
1s/DIV  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
V
(V)  
OUT  
Figure 23. Gain Nonlinearity, G = 1  
Figure 26. 0.1 Hz to 10 Hz RTI Voltage Noise (G = 1)  
Rev. A | Page 11 of 24  
AD8222  
30  
25  
20  
15  
10  
5
GAIN = 10, 100, 1000  
GAIN = 1  
0
1k  
0.1µV/DIV  
1s/DIV  
10k  
100k  
FREQUENCY (Hz)  
1M  
Figure 27. 0.1 Hz to 10 Hz RTI Voltage Noise (G = 1000)  
Figure 30. Large Signal Frequency Response  
1k  
100  
10  
5V/DIV  
7.4µs TO 0.01%  
8.3µs TO 0.001%  
0.002%/DIV  
20µs/DIV  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 31. Large Signal Pulse Response and Settling Time (G = 1)  
Figure 28. Current Noise Spectral Density vs. Frequency  
5V/DIV  
4.8µs TO 0.01%  
6.6µs TO 0.001%  
0.002%/DIV  
20µs/DIV  
5pA/DIV  
1s/DIV  
Figure 32. Large Signal Pulse Response and Settling (G = 10)  
Figure 29. 0.1 Hz to 10 Hz Current Noise  
Rev. A | Page 12 of 24  
AD8222  
5V/DIV  
9.2µs TO 0.01%  
16.2µs TO 0.001%  
0.002%/DIV  
20mV/DIV  
4µs/DIV  
20µs/DIV  
Figure 33. Large Signal Pulse Response and Settling Time (G = 100)  
Figure 36. Small Signal Response, G = 10, RL = 2 kΩ, CL = 100 pF  
5V/DIV  
83µs TO 0.01%  
112µs TO 0.001%  
0.002%/DIV  
20mV/DIV  
10µs/DIV  
200µs/DIV  
Figure 34. Large Signal Pulse Response and Settling Time (G = 1000)  
Figure 37. Small Signal Response, G = 100, RL = 2 kΩ, CL = 100 pF  
20mV/DIV  
4µs/DIV  
20mV/DIV  
100µs/DIV  
Figure 38. Small Signal Response, G = 1000, RL = 2 kΩ, CL = 100 pF  
Figure 35. Small Signal Response, G = 1, RL = 2 kΩ, CL = 100 pF  
Rev. A | Page 13 of 24  
AD8222  
15  
60  
40  
GAIN = 1000  
GAIN = 100  
10  
20  
SETTLED TO 0.001%  
GAIN = 10  
GAIN = 1  
0
SETTLED TO 0.01%  
5
–20  
–40  
0
0
5
10  
15  
20  
100  
1k  
10k  
100k  
1M  
10M  
OUTPUT VOLTAGE STEP SIZE (V)  
FREQUENCY (Hz)  
Figure 39. Settling Time vs. Step Size (G = 1)  
Figure 42. Differential Output Configuration: Gain vs. Frequency  
1k  
100  
10  
100  
V
DIFF_OUT  
OUTPUT BALANCE = 20 log  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
CM_OUT  
LIMITED BY  
MEASUREMENT  
SYSTEM  
SETTLED TO 0.001%  
SETTLED TO 0.01%  
1
1
10  
100  
1k  
1
10  
100  
1k  
10k  
100k  
1M  
GAIN  
FREQUENCY (Hz)  
Figure 40. Settling Time vs. Gain for a 10 V Step  
Figure 43. Differential Output Configuration:  
Output Balance vs. Frequency  
200  
SOURCE  
= 20V p-p  
SOURCE V  
OUT  
SMALLER TO  
V
OUT  
AVOID SLEW  
RATE LIMIT  
180  
160  
140  
120  
100  
80  
GAIN = 1000  
THERMAL CROSSTALK  
VARIES WITH LOAD  
GAIN = 1  
60  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 41. Channel Separation vs. Frequency, RL = 2 kΩ, Source Channel at G = 1  
Rev. A | Page 14 of 24  
AD8222  
THEORY OF OPERATION  
V
I
I
B
A1  
A2  
I
COMPENSATION  
I
COMPENSATION  
B
B
10k  
C1  
C2  
+V  
–V  
S
10kΩ  
10kΩ  
OUTPUT  
A3  
+V  
–V  
S
+V  
S
+V  
–V  
R1 24.7kΩ  
R2 24.7kΩ  
+V  
S
S
400Ω  
+V  
400Ω  
S
S
Q2  
–IN  
Q1  
+IN  
REF  
10kΩ  
R
G
–V  
S
S
S
–V  
–V  
S
S
Figure 44. Simplified Schematic  
AMPLIFIER ARCHITECTURE  
GAIN SELECTION  
The two instrumentation amplifiers of the AD8222 are based  
on the classic 3-op-amp topology. Figure 44 shows a simplified  
schematic of one of the amplifiers. The input transistors, Q1  
and Q2, are biased at a fixed current. Any differential input  
signal forces the output voltages of A1 and A2 to change so that  
the differential voltage also appears across RG. The current that  
flows through RG must also flow through R1 and R2, resulting  
in a precisely amplified version of the differential input signal  
between the outputs of A1 and A2. Topologically, Q1 + A1 + R1  
and Q2 + A2 + R2 can be viewed as precision current feedback  
amplifiers. The common-mode signal and the amplified differen-  
tial signal are applied to a difference amplifier that rejects the  
common-mode voltage. The difference amplifier employs innova-  
tions that result in low output offset voltage as well as low output  
offset voltage drift.  
Placing a resistor across the RG terminals sets the gain of the  
AD8222, which can be calculated by referring to Table 8 or by  
using the following gain equation:  
49.4 kꢀ  
RG   
G 1  
Table 8. Gains Achieved Using 1% Resistors  
1% Standard Table Value of RG (Ω)  
Calculated Gain  
49.9 k  
12.4 k  
5.49 k  
2.61 k  
1.00 k  
499  
1.990  
4.984  
9.998  
19.93  
50.40  
100.0  
249  
199.4  
Because the input amplifiers employ a current feedback architec-  
ture, the gain-bandwidth product of the AD8222 increases  
with gain, resulting in a system that does not suffer from the  
expected bandwidth loss of voltage feedback architectures at  
higher gains.  
100  
49.9  
495.0  
991.0  
The AD8222 defaults to G = 1 when no gain resistor is used.  
The tolerance and gain drift of the RG resistor should be added  
to the AD8222’s specifications to determine the total gain  
accuracy of the system. When the gain resistor is not used,  
gain error and gain drift are kept to a minimum.  
The transfer function of the AD8222 is  
V
OUT = G(V+IN V−IN) + VREF  
where:  
49.4 kꢀ  
G 1   
RG  
Rev. A | Page 15 of 24  
 
 
 
 
 
AD8222  
Outline Dimensions section. This metal is connected to −VS  
through the part. Because of a possibility of a short, vias should  
not be placed underneath this exposed metal.  
REFERENCE TERMINAL  
The output voltage of an AD8222 channel is developed with  
respect to the potential on the corresponding reference terminal.  
Typically the reference terminal is connected to ground, but it  
can also be driven with a voltage to offset the output signal. For  
example, connect a voltage to the reference terminal to level-  
shift the output so that the AD8222 can drive a single-supply  
ADC. Both REF1 and REF2 are protected with ESD diodes and  
should not exceed either +VS or −VS by more than 0.3 V.  
Package with Thermal Pad  
This package is included primarily for legacy reasons. Because  
the AD8222 dissipates so little power, there is little need for the  
thermal pad.  
The thermal pad is connected internally to −VS. The pad can  
either be left unsoldered, soldered to an otherwise unconnected  
PCB landing, or soldered to a landing connected to the negative  
supply rail (−VS). If pin compatibility with the AD8224 is  
desired, the pad should not be electrically connected to any net,  
including −VS.  
For best performance, source impedance to a reference terminal  
should be kept below 1 ꢀ. As shown in Figure 44, the reference  
terminal is at one end of a 10 kꢀ resistor. Additional impedance  
at the reference terminal adds to this 10 kꢀ resistor and results  
in amplification of the signal connected to the positive input.  
The amplification from the additional RREF can be computed by  
The solder process can leave flux and other contaminants on  
the board. When these contaminants are between the AD8222  
leads and thermal pad, they can create leakage paths that are  
larger than the AD8222s bias currents. A thorough washing  
process removes these contaminants and restores the AD8222’s  
excellent bias current performance.  
2
10 kꢀ RREF  
20 kꢀ RREF  
Only the positive signal path is amplified; the negative path is  
unaffected. This uneven amplification degrades the amplifiers  
CMRR.  
LAYOUT  
INCORRECT  
CORRECT  
CORRECT  
The AD8222 is a high precision device. To ensure optimum  
performance at the PC board level, care must be taken in the  
design of the board layout. The AD8222 pinout is arranged in a  
logical manner to aid in this task.  
AD8222  
REF  
AD8222  
AD8222  
REF  
REF  
V
V
Common-Mode Rejection Over Frequency  
V
The AD8222 has a higher CMRR over frequency than typical  
in-amps, which gives it greater immunity to disturbances, such  
as line noise and its associated harmonics. A well-implemented  
layout is required to maintain this high performance. Input  
source impedances should be matched closely. Source resistance  
should be placed close to the inputs so that it interacts with as  
little parasitic capacitance as possible.  
+
+
AD8222  
OP2177  
Figure 45. Driving the Reference Pin  
PACKAGE CONSIDERATIONS  
The AD8222 comes in a 4 mm × 4 mm LFCSP. Beware of  
blindly copying the footprint from another 4 mm × 4 mm  
LFCSP part; the landing pattern may be different. Refer to  
the Outline Dimensions section to verify that the PCB symbol  
has the correct dimensions.  
Parasitics at the RGx pins can also affect CMRR over frequency.  
The PCB should be laid out so that the parasitic capacitances at  
each pin match. Traces from the gain setting resistor to the RGx  
pins should be kept short to minimize parasitic inductance.  
Reference  
The AD8222 comes in two package varieties, both with and  
without a thermal pad.  
Errors introduced at the reference terminal feed directly to the  
output. Care should be taken to tie REF to the appropriate local  
ground.  
Package Without Thermal Pad  
The AD8222 ships with a package that does not include a thermal  
pad; it is the preferred package for the AD8222. Unlike chip  
scale packages where the pad limits routing capability, the AD8222  
package allows routes and vias directly underneath the chip, so  
that the full space savings of the small LFCSP can be realized.  
Power Supplies  
A stable dc voltage should be used to power the instrumentation  
amplifier. Noise on the supply pins can adversely affect  
performance.  
The AD8222 has two positive supply pins (Pin 5 and Pin 16)  
and two negative supply pins (Pin 8 and Pin 13). Although the  
part functions with only one pin from each supply pair connected,  
Although the package has no metal in the center of the part, the  
manufacturing process does leave a very small section of exposed  
metal at each of the package corners, shown in Figure 55 in the  
Rev. A | Page 16 of 24  
 
 
 
AD8222  
both pins should be connected for specified performance and  
optimum reliability.  
INPUT BIAS CURRENT RETURN PATH  
The input bias current of the AD8222 must have a return path  
to common. When the source, such as a thermocouple, cannot  
provide a return current path, one should be created, as shown  
in Figure 47.  
The AD8222 should be decoupled with 0.1 μF bypass capacitors,  
one for each supply. The positive supply decoupling capacitor  
should be placed near Pin 16, and the negative supply decoupl-  
ing capacitor should be placed near Pin 8. Each supply should  
also be decoupled with a 10 μF tantalum capacitor. The tantalum  
capacitor can be placed further away from the AD8222 and can  
generally be shared by other precision integrated circuits. Figure  
46 shows an example layout.  
INCORRECT  
+V  
CORRECT  
+V  
S
S
AD8222  
AD8222  
REF  
REF  
REF  
REF  
–V  
–V  
S
S
0.1µF  
TRANSFORMER  
TRANSFORMER  
+V  
+V  
S
S
16  
15  
14  
13  
AD8222  
12  
11  
10  
9
AD8222  
AD8222  
1
2
3
4
REF  
R
R
G2  
G1  
10M  
–V  
–V  
S
S
THERMOCOUPLE  
THERMOCOUPLE  
+V  
+V  
S
S
5
6
7
8
C
C
C
R
R
1
fHIGH-PASS  
=
AD8222  
2πRC  
AD8222  
C
REF  
0.1µF  
–V  
–V  
S
S
CAPACITIVELY COUPLED  
CAPACITIVELY COUPLED  
Figure 46. Example Layout  
Figure 47. Creating an IBIAS Path  
Rev. A | Page 17 of 24  
 
 
 
AD8222  
+15V  
INPUT PROTECTION  
All terminals of the AD8222 are protected against ESD (1 kV,  
human body model). In addition, the input structure allows for  
dc overload conditions of about 2.5 V beyond the supplies.  
0.1µF  
10µF  
C
1nF  
C
R
+IN  
R1  
4.02k  
Input Voltages Beyond the Rails  
V
C
D
10nF  
OUT  
AD8222  
499Ω  
For larger input voltages, an external resistor should be used in  
series with each input to limit current during overload conditions.  
The AD8222 can safely handle a continuous 6 mA current. The  
limiting resistor can be computed from  
R
REF  
–IN  
4.02kΩ  
C
C
1nF  
0.1µF  
10µF  
VIN VSUPPLY  
RLIMIT  
400 ꢀ  
–15V  
6 mA  
Figure 48. RFI Suppression  
For applications in which the AD8222 encounters extreme over-  
load voltages, such as cardiac defibrillators, external series  
resistors and low leakage diode clamps, such as the BAV199L,  
the FJH1100, or the SP720, should be used.  
Figure 48 shows an example where the differential filter fre-  
quency is approximately 2 kHz, and the common-mode filter  
frequency is approximately 40 kHz.  
Values of R and CC should be chosen to minimize RFI. Mismatch  
between the R × CC at the positive input and the R × CC at  
negative input degrades the CMRR of the AD8222. By using a  
value of CD 10× larger than the value of CC, the effect of the  
mismatch is reduced and performance is improved.  
Differential Input Voltages at High Gains  
When operating at high gain, large differential input voltages  
can cause more than 6 mA of current to flow into the inputs.  
This condition occurs when the differential voltage exceeds  
the following critical voltage:  
COMMON-MODE INPUT VOLTAGE RANGE  
VCRITICAL = (400 + RG) × (6 mA)  
The 3-op-amp architecture of the AD8222 applies gain and then  
removes the common-mode voltage. Therefore, internal nodes  
in the AD8222 experience a combination of both the gained  
signal and the common-mode signal. This combined signal can  
be limited by the voltage supplies even when the individual  
input and output signals are not. Figure 7 and Figure 8 show the  
allowable common-mode input voltage ranges for various  
output voltages, supply voltages, and gains.  
This is true for differential voltages of either polarity.  
The maximum allowed differential voltage can be increased by  
adding an input protection resistor in series with each input.  
The value of each protection resistor should be  
R
PROTECT = (VDIFF_MAX VCRITICAL)/6 mA  
RF INTERFERENCE  
RF rectification is often a problem when amplifiers are used in  
applications where there are strong RF signals. The disturbance  
can appear as a small dc offset voltage. High frequency signals  
can be filtered with a low-pass, RC network placed at the input  
of the instrumentation amplifier, as shown in Figure 48. The  
filter limits the input signal bandwidth according to the  
following relationship:  
1
FilterFreqDiff   
2R(2CD CC)  
1
FilterFreqCM   
2RCC  
where CD ≥ 10CC.  
Rev. A | Page 18 of 24  
 
 
 
 
AD8222  
APPLICATIONS INFORMATION  
DIFFERENTIAL OUTPUT  
Setting the Common-Mode Voltage  
The output common-mode voltage is set by the average of +IN2  
and REF2. The transfer function is  
The differential configuration of the AD8222 has the same  
excellent dc precision specifications as the single-ended output  
configuration and is recommended for applications in the  
frequency range of dc to 100 kHz.  
V
CM_OUT = (V+OUT + V−OUT)/2 = (V+IN2 + VREF2)/2  
+IN2 and REF2 have different properties that allow the  
reference voltage to be easily set for a wide variety of applications.  
+IN2 has high impedance but cannot swing to the supply rails  
of the part. REF2 must be driven with a low impedance but can  
go 300 mV beyond the supply rails.  
The circuit configuration is shown in Figure 49. The differential  
output specifications in Table 2 and Table 4 refer to this configura-  
tion only. The circuit includes an RC filter that maintains the  
stability of the loop.  
The transfer function for the differential output is:  
A common application sets the common-mode output voltage  
to the midscale of a differential ADC. In this case, the ADC  
reference voltage is sent to the +IN2 terminal, and ground is  
connected to the REF2 terminal. This produces a common-mode  
output voltage of half the ADC reference voltage.  
VDIFF_OUT = V+OUT V−OUT = (V+IN V−IN) × G  
49.4 kꢀ  
where G 1   
RG  
2-Channel Differential Output Using a Dual Op Amp  
+IN  
R
+
Another differential output topology is shown in Figure 50.  
Instead of a second in-amp, ½ of a dual OP2177 op amp creates  
the inverted output. Because the OP2177 is packaged in an  
MSOP, this configuration allows the creation of a dual channel,  
precision differential output in-amp with little board area.  
+OUT  
AD8222  
G
10k  
–IN  
100pF  
AD8222  
+
+IN2  
Errors from the op amp are common to both outputs and are  
thus common mode. Errors from mismatched resistors also  
create a common-mode dc offset. Because these errors are  
common mode, they will likely be rejected by the next device  
in the signal chain.  
REF2  
–OUT  
Figure 49. Differential Circuit Schematic  
+IN  
+OUT  
AD8222  
–IN  
4.99kΩ  
REF  
V
REF  
+
4.99kΩ  
OP2177  
–OUT  
Figure 50. Differential Output Using Op Amp  
Rev. A | Page 19 of 24  
 
 
 
 
AD8222  
+12V  
+
10µF  
0.1µF  
+5V  
100pF  
NPO  
5%  
0.1µF  
1kΩ  
+IN  
–IN  
1kΩ  
1kΩ  
VDD  
+OUT  
–OUT  
IN+  
IN–  
AD8222  
AD7688  
GND REF  
1000pF  
(DIFF OUT)  
1kΩ  
2200pF  
2200pF  
REF2  
+IN2  
100pF  
NPO  
5%  
10µF  
X5R  
+12V  
+5V REF  
–12V  
0.1µF  
10µF  
0.1µF  
+
V
IN  
V
+5V REF  
OUT  
0.1µF  
ADR435  
GND  
Figure 51. Driving a Differential ADC  
The 1 kΩ resistors can also protect an ADC from overvoltages.  
Because the AD8222 runs on wider supply voltages than a  
typical ADC, there is a possibility of overdriving the ADC. This  
is not an issue with a PulSAR® converter, such as the AD7688.  
Its input can handle a 130 mA overdrive, which is much higher  
than the short-circuit limit of the AD8222. However, other conver-  
ters have less robust inputs and may need the added protection.  
DRIVING A DIFFERENTIAL INPUT ADC  
The AD8222 can be configured in differential output mode  
to drive a differential analog-to-digital converter. Figure 51  
illustrates several of the concepts.  
RFI and Antialiasing Filter  
The 1 kΩ resistors, 1000 pF capacitor, and 100 pF capacitors in  
front of the in-amp form filter circuitry that performs many  
functions. The 1 kꢀ and 100 pF capacitors form common-mode  
filters that protect the amplifier from incoming radio frequency  
signals. Without the filtering, these RFI signals can be rectified  
in the in-amp. The 1 kꢀ resistors provide some overvoltage  
protection. The 1 kꢀ resistors and 1000 pF capacitor form a  
76 kHz antialiasing filter for the ADC.  
Reference  
The ADR435 supplies a reference voltage to both the ADC and  
the AD8222. Because REF2 on the AD8222 is grounded, the  
common-mode output voltage is precisely half the reference  
voltage, exactly where it needs to be for the ADC.  
PRECISION STRAIN GAGE  
Note that the 100 pF capacitors are 5% COG/NPO types. These  
capacitors match well over time and temperature, which keeps  
the system CMRR high over frequency.  
The low offset and high CMRR over frequency of the AD8222  
make it an excellent candidate for both ac and dc bridge measure-  
ments. As shown in Figure 52, the bridge can be connected to  
the inputs of the amplifier directly.  
Second Antialiasing Filter  
5V  
A 1 kΩ resistor and 2200 pF capacitor are placed between each  
AD8222 output and ADC input. They create a 72 kHz low-pass  
filter for another stage of antialiasing protection.  
10µF  
0.1µF  
350Ω  
350Ω  
350Ω  
350Ω  
+IN  
–IN  
+
These four elements also improve distortion performance. The  
2200 pF capacitor provides charge to the switched capacitor  
front end of the ADC, and the 1 kΩ resistor shields the AD8222  
from driving any sharp current changes. If the application  
requires a lower frequency antialiasing filter and is distortion  
sensitive, increase the value of the capacitor rather than the  
resistor.  
R
AD8222  
G
2.5V  
Figure 52. Precision Strain Gauge  
Rev. A | Page 20 of 24  
 
 
 
 
AD8222  
DRIVING CABLING  
AD8222  
All cables have a certain capacitance per unit length, which  
varies widely with cable type. The capacitive load from the cable  
may cause peaking in the AD8222s output response. To reduce  
the peaking, use a resistor between the AD8222 and the cable.  
Because cable capacitance and desired output response vary  
widely, this resistor is best determined empirically. A good  
starting point is 50 Ω.  
(DIFF OUT)  
AD8222  
(SINGLE OUT)  
The AD8222 operates at a low enough frequency that  
transmission line effects are rarely an issue; therefore, the  
resistor need not match the characteristic impedance of  
the cable.  
Figure 53. Driving a Cable  
Rev. A | Page 21 of 24  
 
AD8222  
OUTLINE DIMENSIONS  
0.50  
0.40  
0.30  
4.00  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
1
12  
13  
16  
PIN 1  
INDICATOR  
2.65  
2.50 SQ  
2.35  
3.75  
BSC SQ  
EXPOSED  
PAD  
4
8
5
0.65  
BSC  
9
0.25 MIN  
TOP VIEW  
1.95 BCS  
BOTTOM VIEW  
12° MAX  
0.80 MAX  
0.65 TYP  
1.00  
0.85  
0.80  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
SEATING  
PLANE  
SECTION OF THIS DATA SHEET.  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VGGC.  
Figure 54. 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
4 mm × 4 mm Body, Very Thin Quad  
(CP-16-13)  
Dimensions are shown in millimeters  
0.60 MAX  
4.00  
BSC SQ  
0.60 MAX  
13  
12  
16  
5
1
4
0.65  
BSC  
PIN 1  
INDICATOR  
3.75  
BCS SQ  
1.95 REF  
SQ  
9
8
0.75  
0.60  
0.50  
TOP VIEW  
BOTTOM VIEW  
0.80 MAX  
0.65 TYP  
12° MAX  
1.00  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
0.20 REF  
0.35  
0.30  
0.25  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-263-VBBC  
Figure 55. 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
4 mm × 4 mm Body, Very Thin Quad, with Hidden Paddle  
CP-16-19  
Dimensions shown in millimeters  
Rev. A | Page 22 of 24  
 
 
AD8222  
ORDERING GUIDE  
Temperature  
Package  
Option  
Model1  
Range  
Product Description  
Package Description  
AD8222ACPZ-R7  
−40°C to +85°C  
Standard Grade with Thermal Pad  
16-Lead Lead Frame Chip Scale Package CP-16-13  
[LFCSP_VQ], 7“ Tape and Reel  
AD8222ACPZ-RL  
AD8222ACPZ-WP  
AD8222BCPZ-R7  
AD8222BCPZ-RL  
AD8222BCPZ-WP  
AD8222HACPZ-R7  
AD8222HACPZ-RL  
AD8222HACPZ-WP  
AD8222HBCPZ-R7  
AD8222HBCPZ-RL  
AD8222HBCPZ-WP  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Standard Grade with Thermal Pad  
16-Lead Lead Frame Chip Scale Package CP-16-13  
[LFCSP_VQ], 13“Tape and Reel  
16-Lead Lead Frame Chip Scale Package CP-16-13  
[LFCSP_VQ], Waffle Pack  
16-Lead Lead Frame Chip Scale Package CP-16-13  
[LFCSP_VQ], 7“ Tape and Reel  
16-Lead Lead Frame Chip Scale Package CP-16-13  
[LFCSP_VQ], 13” Tape and Reel  
16-Lead Lead Frame Chip Scale Package CP-16-13  
[LFCSP_VQ], Waffle Pack  
16-Lead Lead Frame Chip Scale Package CP-16-19  
[LFCSP_VQ], 7” Tape and Reel  
16-Lead Lead Frame Chip Scale Package CP-16-19  
[LFCSP_VQ], 13” Tape and Reel  
16-Lead Lead Frame Chip Scale Package CP-16-19  
[LFCSP_VQ], Waffle Pack  
Standard Grade with Thermal Pad  
High Performance Grade with Thermal Pad  
High Performance Grade with Thermal Pad  
High Performance Grade with Thermal Pad  
Standard Grade Without Thermal Pad  
Standard Grade Without Thermal Pad  
Standard Grade Without Thermal Pad  
High Performance Grade Without Thermal Pad  
High Performance Grade Without Thermal Pad  
High Performance Grade Without Thermal Pad  
16-Lead Lead Frame Chip Scale Package CP-16-19  
[LFCSP_VQ], 7” Tape and Reel  
16-Lead Lead Frame Chip Scale Package CP-16-19  
[LFCSP_VQ], 13” Tape and Reel  
16-Lead Lead Frame Chip Scale Package CP-16-19  
[LFCSP_VQ], Waffle Pack  
AD8222-EVALZ  
Evaluation Board  
1 Z = RoHS Compliant Part.  
Rev. A | Page 23 of 24  
 
AD8222  
NOTES  
©2006–2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05947-0-2/10(A)  
Rev. A | Page 24 of 24  

相关型号:

AD8222HACPZ-WP

Precision, Dual-Channel Instrumentation Amplifier
ADI

AD8222HBCPZ-R7

Precision, Dual-Channel Instrumentation Amplifier
ADI

AD8222HBCPZ-RL

Precision, Dual-Channel Instrumentation Amplifier
ADI

AD8222HBCPZ-WP

Precision, Dual-Channel Instrumentation Amplifier
ADI

AD8223

Single Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier
ADI

AD8223AR

Single Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier
ADI

AD8223AR-R7

Single Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier
ADI

AD8223AR-RL

Single Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier
ADI

AD8223ARM

Single Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier
ADI

AD8223ARM-R7

Single Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier
ADI

AD8223ARM-RL

Single Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier
ADI

AD8223ARMZ

Single Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier
ADI