AD82241 [ADI]

10 MHz, 20 V/レs, G = 1, 10, 100, 1000 i CMOS㈢ Programmable Gain Instrumentation Amplifier; 10兆赫, 20 V / μs的,G = 1 , 10 , 100 , 1000我CMOS®可编程增益仪表放大器
AD82241
型号: AD82241
厂家: ADI    ADI
描述:

10 MHz, 20 V/レs, G = 1, 10, 100, 1000 i CMOS㈢ Programmable Gain Instrumentation Amplifier
10兆赫, 20 V / μs的,G = 1 , 10 , 100 , 1000我CMOS®可编程增益仪表放大器

仪表放大器
文件: 总10页 (文件大小:217K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10 MHz, 20 V/μs, G = 1, 10, 100, 1000 iCMOS®  
Programmable Gain Instrumentation Amplifier  
Preliminary Technical Data  
AD8253  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
DGD  
Small package: 10-lead MSOP  
WR  
A1  
A0  
Programmable gains: 1, 10, 100, 1000  
Digital or pin-programmable gain setting  
Wide supply: 5 V to 15 V  
Logic  
-IN  
Excellent dc performance  
High CMRR 120 dB , G = 100  
Low gain drift: 10 ppm/°C  
Low offset drift: 1.2 μV/°C , G = 1000  
Excellent ac performance  
Fast settling time: 615 ns to 0.001%  
High slew rate: 20 V/ꢀs  
OUT  
+IN  
AD8253  
+VS  
-VS  
REF  
Low distortion:  
Figure 1.  
High CMRR over frequency: 80 dB to 50 kHz  
Low noise: 8 nV/√Hz, G = 1000  
Low power: 4 mA  
Table 1. Instrumentation and Difference Amplifiers by  
Category  
APPLICATIONS  
High  
Low  
High  
Mil  
Low  
Digital  
Gain  
Data acquisition  
Biomedical analysis  
Test and measurement  
Performance Cost  
Voltage Grade Power  
AD82201  
AD8221  
AD8222  
AD82241  
AD6231  
AD85531  
AD6271 AD82311  
AD628  
AD629  
AD620  
AD621  
AD524  
AD526  
AD624  
AD8250  
GENERAL DESCRIPTION  
AD8251  
AD85551  
AD85561  
AD85571  
The AD8253 is an instrumentation amplifier with digitally  
programmable gains that has GΩ input impedance, low output  
noise, and low distortion making it suitable for interfacing with  
sensors and driving high sample rate analog-to-digital converters  
(ADCs). It has high bandwidth of 10 MHz, low THD and fast  
settling time of 615 ns to 0.001%. Offset drift and gain drift are  
specified to 1.2 μV/°C and 10 ppm/°C, respectively for G = 1000.  
In addition to its wide input common voltage range, it boasts a  
high common-mode rejection of 80 dB at G = 1 from dc to  
50 kHz. The combination of precision dc performance coupled  
with high speed capabilities make the AD8253 an excellent  
candidate for data acquisition. Furthermore, this monolithic  
solution simplifies design and manufacturing, and boosts  
performance of instrumentation by maintaining a tight match  
of internal resistors and amplifiers.  
1 Rail-to-rail output.  
The AD8253 is available in a 10-lead MSOP package and is  
specified over the −40°C to +85°C temperature range, making it  
an excellent solution for applications where size and packing  
density are important considerations.  
The AD8253 user interface consists of a parallel port that allows  
users to set the gain in one of two different ways (see Figure 1  
for the functional block diagram). A 2-bit word sent via a bus  
WR  
can be latched using the  
input. An alternative is to use  
transparent gain mode where the state of logic levels at the gain  
port determines the gain.  
Rev. prA  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2007 Analog Devices, Inc. All rights reserved.  
AD8253  
Preliminary Technical Data  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Maximum Power Dissipation......................................................6  
ESD Caution...................................................................................6  
Pin Configuration and Function Descriptions..............................7  
Theory of Operation .........................................................................8  
Gain Selection................................................................................8  
Outline Dimensions....................................................................... 10  
Ordering Guide .......................................................................... 10  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Diagram ........................................................................... 5  
Absolute Maximum Ratings............................................................ 6  
REVISION HISTORY  
4/07—Revision 0: Initial Version  
Rev. prA | Page 2 of 10  
Preliminary Technical Data  
AD8253  
SPECIFICATIONS  
+VS = +15 V, VS = −15 V, VREF = 0 V @ TA = 25°C, G = 1, RL = 2 kΩ, unless otherwise noted.  
Table 2.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
COMMON-MODE REJECTION RATIO (CMRR)  
CMRR to 60 Hz with 1 kΩ Source Imbalance  
+IN = −IN = −10 V to +10 V  
G = 1  
G = 10  
G = 100  
G = 1000  
80  
dB  
dB  
dB  
dB  
100  
120  
120  
CMRR to 50 kHz  
G = 1  
G = 10  
G = 100  
G = 1000  
+IN = −IN = −10 V to +10 V  
80  
dB  
dB  
dB  
dB  
NOISE  
Voltage Noise, 1 kHz, RTI  
G = 1  
G = 10  
G = 100  
G = 1000  
40  
9
8
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
8
0.1 Hz to 10 Hz, RTI  
G = 1  
G = 10  
G = 100  
G = 1000  
Current Noise, 1 kHz  
Current Noise, 0.1 Hz to 10 Hz  
VOLTAGE OFFSET  
Offset RTI VOS  
Over Temperature  
Average TC  
Offset Referred to the Input vs. Supply (PSR)  
INPUT CURRENT  
Input Bias Current  
Over Temperature  
Average TC  
2.5  
2.5  
μV p-p  
μV p-p  
μV p-p  
μV p-p  
pA/√Hz  
pA p-p  
5
60  
G = 1, 10, 100, 1000  
T = −40°C to +85°C  
T = −40°C to +85°C  
VS = 5 V to 15 V  
200 + 600/G  
260 + 900/G  
1.2 + 5/G  
μV  
μV  
μV/°C  
μV/V  
6 + 20/G  
5
5
30  
40  
400  
30  
30  
nA  
nA  
pA/°C  
nA  
nA  
T = −40°C to +85°C  
T = −40°C to +85°C  
Input Offset Current  
Over Temperature  
Average TC  
160  
pA/°C  
DYNAMIC RESPONSE  
Small Signal −3 dB Bandwidth  
G = 1  
10  
6
3
MHz  
MHz  
MHz  
MHz  
G = 10  
G = 100  
G = 1000  
0.3  
Settling Time 0.01%  
G = 1  
G = 10  
G = 100  
G = 1000  
ΔOUT = 10 V step  
585  
648  
ns  
ns  
ns  
ns  
Rev. prA | Page 3 of 10  
AD8253  
Preliminary Technical Data  
Parameter  
Settling Time 0.001%  
G = 1  
Conditions  
Min  
Typ  
Max  
Unit  
ΔOUT = 10 V step  
615  
685  
ns  
ns  
ns  
ns  
G = 10  
G = 100  
G = 1000  
Slew Rate  
G = 1  
G = 10  
G = 100  
G = 1000  
20  
25  
25  
25  
V/μs  
V/μs  
V/μs  
V/μs  
dB  
Total Harmonic Distortion  
GAIN  
f = 1 kHz, RL = 10 kΩ, G = 1  
Gain Range  
Gain Error  
G = 1, 10, 100, 1000  
OUT = 10 V  
1
1000  
V/V  
G = 1  
G = 10  
G = 100  
G = 1000  
0.03  
0.04  
%
%
%
%
Gain Nonlinearity  
G = 1  
G = 10  
G = 100  
G = 1000  
OUT = −10 V to +10 V  
RL = 10 kΩ, 2 kΩ, 600 Ω  
RL = 10 kΩ, 2 kΩ, 600 Ω  
RL = 10 kΩ, 2 kΩ, 600 Ω  
RL = 10 kΩ, 2 kΩ, 600 Ω  
All gains  
6
10  
ppm  
ppm  
ppm  
ppm  
Gain vs. Temperature  
INPUT  
10  
ppm/°C  
Input Impedance  
Differential  
Common Mode  
Input Operating Voltage Range  
Over Temperature  
OUTPUT  
1
||pF  
1
||pF  
V
V
VS = 5 V to 15 V  
T = −40°C to +85°C  
−VS + 1.0  
−VS + 1.1  
+VS − 1.1  
+VS − 1.4  
Output Swing  
Over Temperature  
Short-Circuit Current  
REFERENCE INPUT  
RIN  
−13.5  
−13.5  
+13.5  
+13.5  
V
V
mA  
T = −40°C to +85°C  
+IN, −IN, REF = 0  
37  
20  
kΩ  
μA  
V
IIN  
1
+VS  
Voltage Range  
Gain to Output  
−VS  
V/V  
1
0
0.0001  
DIGITAL LOGIC  
Digital Ground Voltage, DGND  
Digital Input Voltage Low  
Digital Input Voltage High  
Digital Input Current  
Gain Switching Time1  
tSU  
Referred to GND  
Referred to GND  
Referred to GND  
−VS + 4.25  
DGND  
2.8  
+VS − 2.7  
2.1  
+VS  
V
V
V
μA  
ns  
ns  
ns  
ns  
ns  
1
325  
See Figure 2 timing diagram  
20  
10  
20  
40  
tHD  
t WR -LOW  
t WR -HIGH  
Rev. prA | Page 4 of 10  
Preliminary Technical Data  
AD8253  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
POWER SUPPLY  
Operating Range  
Quiescent Current, +IS  
Quiescent Current, −IS  
Over Temperature  
TEMPERATURE RANGE  
Specified Performance  
5
15  
4.5  
4.5  
4.5  
V
4.1  
3.7  
mA  
mA  
mA  
T = −40°C to +85°C  
−40  
+85  
°C  
1 Add time for the output to slew and settle to calculate the total time for a gain change.  
TIMING DIAGRAM  
tWR-HIGH  
tWR-LOW  
WR  
tSU  
tHD  
A0, A1  
Figure 2. Timing Diagram for Latched Gain Mode (See the Timing for Latched Gain Mode Section)  
Rev. prA | Page 5 of 10  
AD8253  
Preliminary Technical Data  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
package due to the load drive for all outputs. The quiescent  
power is the voltage between the supply pins (VS) times the  
quiescent current (IS). Assuming the load (RL) is referenced to  
midsupply, the total drive power is VS/2 × IOUT, some of which is  
dissipated in the package and some in the load (VOUT × IOUT).  
Parameter  
Rating  
17 V  
Supply Voltage  
Power Dissipation  
See Figure 3  
Indefinite1  
VS  
VS  
VS  
Output Short-Circuit Current  
Common-Mode Input Voltage  
Differential Input Voltage  
Digital Logic Inputs  
The difference between the total drive power and the load  
power is the drive power dissipated in the package.  
PD = Quiescent Power + (Total Drive Power Load Power)  
Storage Temperature Range  
Operating Temperature Range2  
Lead Temperature (Soldering 10 sec)  
Junction Temperature  
–65°C to +125°C  
–40°C to +85°C  
300°C  
2
VS VOUT  
VOUT  
RL  
PD =  
(
VS ×IS  
)
+
×
2
RL  
140°C  
In single-supply operation with RL referenced to −VS, worst case  
is VOUT = VS/2.  
θJA (4-Layer JEDEC Standard Board)  
Package GlassTransitionTemperature  
112°C/W  
140°C  
Airflow increases heat dissipation, effectively reducing θJA. In  
addition, more metal directly in contact with the package leads  
from metal traces, through holes, ground, and power planes  
reduces the θJA.  
1 Assumes the load is referenced to mid supply.  
2 Temperature for specified performance is −40°C to +85°C. For performance  
to +125°C, see the Error! Reference source not found. section.  
Figure 3 shows the maximum safe power dissipation in the  
package vs. the ambient temperature on a 4-layer JEDEC  
standard board.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
MAXIMUM POWER DISSIPATION  
The maximum safe power dissipation in the AD8253 package is  
limited by the associated rise in junction temperature (TJ) on  
the die. The plastic encapsulating the die locally reaches the  
junction temperature. At approximately 140°C, which is the  
glass transition temperature, the plastic changes its properties.  
Even temporarily exceeding this temperature limit may change  
the stresses that the package exerts on the die, permanently  
shifting the parametric performance of the AD8253. Exceeding  
a junction temperature of 140°C for an extended period can  
result in changes in silicon devices, potentially causing failure.  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
AMBIENT TEMPERATURE (°C)  
Figure 3. Maximum Power Dissipation vs. Ambient Temperature  
ESD CAUTION  
The still-air thermal properties of the package and PCB (θJA),  
the ambient temperature (TA), and the total power dissipated in  
the package (PD) determine the junction temperature of the die.  
The junction temperature is calculated as  
TJ =TA +  
(
PD × θJA  
)
The power dissipated in the package (PD) is the sum of the  
quiescent power dissipation and the power dissipated in the  
Rev. prA | Page 6 of 10  
Preliminary Technical Data  
AD8253  
differential input.  
Digital Ground.  
Negative Supply Terminal.  
Gain Setting Pin (LSB).  
Gain Setting Pin (MSB).  
Write Enable.  
PIN CONFIGURATION AND FUNCTION  
DESCRIPTIONS  
2
3
4
5
DGND  
−VS  
A0  
A1  
WR  
6
-IN  
DGND  
-VS  
1
2
3
4
5
10 +IN  
7
8
9
10  
OUT  
+VS  
REF  
+IN  
Output Terminal.  
Positive Supply Terminal.  
Reference Voltage Terminal.  
Noninverting Input Terminal. True  
differential input.  
9
8
7
6
VREF  
AD8253  
+VS  
TOP VIEW  
(Not to Scale)  
A0  
VOUT  
WR  
A1  
NC = NO CONNECT  
Figure 4. 10-Lead MSOP (RM-10) Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Name  
Description  
1
−IN  
Inverting Input Terminal. True  
Rev. prA | Page 7 of 10  
AD8253  
Preliminary Technical Data  
THEORY OF OPERATION  
+V  
–V  
+V  
–V  
S
S
A0  
A1  
2.2k  
+V  
–V  
S
S
S
2.2kΩ  
–IN  
10kΩ  
10kΩ  
A1  
S
+V  
S
DIGITAL  
GAIN  
CONTROL  
OUTPUT  
A3  
–V  
+V  
S
S
+V  
–V  
S
10kΩ  
10kΩ  
A2  
REF  
+IN  
2.2kΩ  
–V  
S
+V  
–V  
+V  
S
S
S
2.2kΩ  
DGND  
WR  
–V  
S
S
Figure 5. Simplified Schematic  
The AD8253 is a monolithic instrumentation amplifier based  
on the classic, three op amp topology as shown in Figure 5.  
It is fabricated on the Analog Devices, Inc. proprietary iCMOS  
process that provides precision, linear performance ,and a robust  
digital interface. A parallel interface allows users to digitally  
program gains of 1, 10, 100, and 1000. Gain control is achieved  
by switching resistors in an internal, precision, resistor array (as  
shown in Figure 5). Although the AD8253 has a voltage feed-  
back topology, gain bandwidth product increases for gains of 1,  
10, and 100 because each gain has its own frequency  
compensation. This results in maximum bandwidth at higher  
gains.  
Transparent Gain Mode  
The easiest way to set the gain is to program it directly via a  
logic high or logic low voltage applied to A0 and A1. Figure 6  
shows an example of this gain setting method, referred to through-  
WR  
out the data sheet as transparent gain mode. Tie  
to the  
negative supply to engage transparent gain mode. In this mode,  
any change in voltage applied to A0 and A1 from logic low to  
logic high, or vice versa, immediately results in a gain change.  
Table 5 is the truth table for transparent gain mode and Figure 6  
shows the AD8253 configured in transparent gain mode.  
All internal amplifiers employ distortion cancellation circuitry  
and achieve high linearity and ultralow THD. Laser trimmed  
resistors allow for a maximum gain error of less than 0.03% for  
G = 1, and minimum CMRR of 120 dB for G = 1000. A pinout  
optimized for high CMRR over frequency enables the AD8253  
to offer CMRR over frequency of 80 dB at 50 kHz (G = 1). The  
balanced input reduces the parasitics that, in the past, had  
adversely affected CMRR performance.  
GAIN SELECTION  
This section shows users how to configure the AD8253 for basic  
operation. Logic low and Logic high voltage limits are listed in  
the Specifications section. Typically, logic low is 0 V and  
logic high is 5 V; both voltages are measured with respect  
to DGND. Refer to the specifications table (Table 2) for  
the permissible voltage range of DGND. The gain of the  
AD8253 can be set using two methods.  
Figure 6. Transparent Gain Mode, A0 and A1 = High, G = 1000  
Rev. prA | Page 8 of 10  
Preliminary Technical Data  
AD8253  
Table 5. Truth Table Logic Levels for Transparent Gain Mode  
Table 6. Truth Table Logic Levels for Latched Gain Mode  
WR  
A1  
A0  
Gain  
WR  
A1  
A0  
Gain  
−VS  
−VS  
−VS  
−VS  
Low  
Low  
High  
High  
Low  
High  
Low  
High  
1
10  
100  
1000  
High to Low  
High to Low  
High to Low  
High to Low  
Low to Low  
Low to High  
High to High  
Low  
Low  
High  
High  
X1  
Low  
High  
Low  
High  
X1  
Change to 1  
Change to 10  
Change to 100  
Change to 1000  
No Change  
X1  
X1  
No Change  
No Change  
Latched Gain Mode  
X1  
X1  
Some applications have multiple programmable devices such as  
multiplexers or other programmable gain instrumentation  
amplifiers on the same PCB. In such cases, devices can share a  
data bus. The gain of the AD8253 can be set using  
allowing other devices to share A0 and A1. Figure 7 shows a  
schematic using this method, known as latched gain mode. The  
1 X = don’t care.  
Upon power-up, the AD8253 defaults to a gain of 1 when in  
latched gain mode. In contrast, if the AD8253 is configured in  
transparent gain mode, it starts at the gain indicated by the  
voltage levels on A0 and A1 upon power-up.  
WR  
as a latch,  
WR  
AD8253 is in this mode when  
low, typically 5 V and 0 V, respectively. The voltages on A0 and  
WR  
is held at logic high or logic  
Timing for Latched Gain Mode  
A1 are read on the downward edge of the  
signal as it  
In latched gain mode, logic levels at A0 and A1 have to be held  
for a minimum setup time, tSU, before the downward edge of  
transitions from logic high to logic low. This latches in the logic  
levels on A0 and A1, resulting in a gain change. See the truth  
table listing in Table 6 for more on these gain changes.  
WR  
latches in the gain. Similarly, they must be held for a  
WR  
minimum hold time of tHD after the downward edge of  
to  
ensure that the gain is latched in correctly. After tHD, A0 and A1  
may change logic levels but the gain does not change (until the  
WR  
WR  
next downward edge of  
can be held high is t WR-HIGH, and t WR-LOW is the minimum  
). The minimum duration that  
WR  
duration that  
can be held low. Digital timing specifications  
are listed in Table 2. The time required for a gain change is  
dominated by the settling time of the amplifier. A timing  
diagram is shown in Figure 8.  
When sharing a data bus with other devices, logic levels applied  
to those devices can potentially feed through to the output of  
the AD8253. Feedthrough can be minimized by decreasing the  
edge rate of the logic signals. Furthermore, careful layout of the  
PCB also reduces coupling between the digital and analog  
portions of the board.  
Figure 7. Latched Gain Mode, G = 1000  
tWR-HIGH  
tWR-LOW  
WR  
tSU  
tHD  
A0, A1  
Figure 8. Timing Diagram for Latched Gain Mode  
Rev. prA | Page 9 of 10  
AD8253  
Preliminary Technical Data  
OUTLINE DIMENSIONS  
3.10  
3.00  
2.90  
10  
6
5.15  
4.90  
4.65  
3.10  
3.00  
2.90  
1
5
PIN 1  
0.50 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.05  
0.33  
0.17  
SEATING  
PLANE  
0.23  
0.08  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-BA  
Figure 9. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD8253ARMZ1  
AD8253ARMZ-RL1  
AD8253ARMZ-R71  
AD8253-EVALZ1  
Temperature Range  
–40°C to +85°C  
–40°C to +85°C  
Package Description  
Package Option  
RM-10  
RM-10  
RM-10  
Branding  
Y0K  
Y0K  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
Evaluation Board  
–40°C to +85°C  
Y0K  
1 Z = RoHS compliant part.  
Rev. PrA | Page 10 of 10  
PR06983-0-9/07(PrA)  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY