AD822BRZ-REEL [ADI]

Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp; 单电源,轨到轨低功耗FET输入运算放大器
AD822BRZ-REEL
型号: AD822BRZ-REEL
厂家: ADI    ADI
描述:

Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp
单电源,轨到轨低功耗FET输入运算放大器

运算放大器
文件: 总28页 (文件大小:597K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Single-Supply, Rail-to-Rail  
Low Power FET-Input Op Amp  
AD822  
FEATURES  
CONNECTION DIAGRAM  
True single-supply operation  
Output swings rail-to-rail  
Input voltage range extends below ground  
Single-supply capability from 3 V to 36 V  
Dual-supply capability from 1.ꢀ V to 18 V  
High load drive  
8
7
6
5
OUT1  
–IN1  
+IN1  
1
2
3
4
V+  
OUT2  
–IN2  
V–  
+IN2  
AD822  
Figure 1. 8-Lead PDIP (N Suffix); 8-Lead MSOP (RM Suffix);  
and 8-Lead SOIC (R Suffix)  
Capacitive load drive of 3ꢀ0 pF, G = +1  
Minimum output current of 1ꢀ mA  
Excellent ac performance for low power  
800 μA maximum quiescent current per amplifier  
Unity gain bandwidth: 1.8 MHz  
Slew rate of 3.0 V/ꢁs  
GENERAL DESCRIPTION  
The AD822 is a dual precision, low power FET input op amp  
that can operate from a single supply of 3.0 V to 36 V or dual  
supplies of ±±.ꢀ V to ±±8 V. It has true single-supply capability  
with an input voltage range extending below the negative rail,  
allowing the AD822 to accommodate input signals below  
ground in the single-supply mode. Output voltage swing  
extends to within ±0 mV of each rail, providing the maximum  
output dynamic range.  
Good dc performance  
800 μV maximum input offset voltage  
2 μV/°C typical offset voltage drift  
2ꢀ pA maximum input bias current  
Low noise  
13 nV/√Hz @ 10 kHz  
100  
10  
1
No phase inversion  
APPLICATIONS  
Battery-powered precision instrumentation  
Photodiode preamps  
Active filters  
12-bit to 14-bit data acquisition systems  
Medical instrumentation  
Low power references and regulators  
10  
100  
FREQUENCY (Hz)  
10k  
1k  
Figure 2. Input Voltage Noise vs. Frequency  
Offset voltage of 800 μV maximum, offset voltage drift of 2 μV/°C,  
input bias currents below 2ꢀ pA, and low input voltage noise  
provide dc precision with source impedances up to a gigaohm. The  
±.8 MHz unity gain bandwidth, –93 dB THD at ±0 kHz, and 3 V/μs  
slew rate are provided with a low supply current of 800 μA per  
amplifier.  
(continued on Page 3)  
Rev. G  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
AD822  
TABLE OF CONTENTS  
Features .............................................................................................. ±  
Applications....................................................................................... ±  
Functional Block Diagram .............................................................. ±  
General Description......................................................................... ±  
Revision History ............................................................................... 2  
Specifications..................................................................................... 4  
Absolute Maximum Ratings.......................................................... ±2  
Maximum Power Dissipation ................................................... ±2  
ESD Caution................................................................................ ±2  
Typical Performance Characteristics ........................................... ±3  
Application Notes ........................................................................... 20  
Input Characteristics.................................................................. 20  
Output Characteristics............................................................... 20  
Applications..................................................................................... 22  
Single-Supply Voltage-to-Frequency Converter .................... 22  
Single-Supply Programmable Gain Instrumentation  
Amplifier ..................................................................................... 22  
3 V, Single-Supply Stereo Headphone Driver......................... 23  
Low Dropout Bipolar Bridge Driver........................................ 23  
Outline Dimensions....................................................................... 24  
Ordering Guide............................................................................... 2ꢀ  
Edits to Ordering Guide ...................................................................6  
Updated SOIC Package Outline ................................................... ±7  
REVISION HISTORY  
6/06—Rev. F to Rev. G  
Changes to Features.......................................................................... ±  
Changes to Table 4.......................................................................... ±0  
Changes to Table ꢀ.......................................................................... ±2  
Changes to Table 6.......................................................................... 22  
8/02—Data sheet changed from Rev. B to Rev. C  
All Figures Updated ................................................................Global  
Edits to Features.................................................................................±  
Updated All Package Outlines...................................................... ±7  
10/05—Rev. E to Rev. F  
Updated Format..................................................................Universal  
Changes to Outline Dimensions................................................... 24  
Updated Ordering Guide............................................................... 24  
7/01—Data sheet changed from Rev. A to Rev. B  
All Figures Updated ................................................................Global  
CERDIP References Removed.......................................±, 6, and ±8  
Additions to Product Description...................................................±  
8-Lead SOIC and 8-Lead MSOP Diagrams Added ......................±  
Deletion of AD822S Column...........................................................2  
Edits to Absolute Maximum Ratings and Ordering Guide .........6  
Removed Metalization Photograph ................................................6  
1/03—Data sheet changed from Rev. D to Rev. E  
Edits to Specifications ...................................................................... 2  
Edits to Figure ±0............................................................................ ±6  
Updated Outline Dimensions....................................................... ±7  
10/02—Data sheet changed from Rev. C to Rev. D  
Edits to Features................................................................................ ±  
Rev. G | Page 2 of 28  
 
AD822  
GENERAL DESCRIPTION  
(continued from Page 1)  
The AD822 drives up to 3ꢀ0 pF of direct capacitive load as a  
follower and provides a minimum output current of ±ꢀ mA.  
This allows the amplifier to handle a wide range of load  
conditions. Its combination of ac and dc performance, plus the  
outstanding load drive capability, results in an exceptionally  
versatile amplifier for the single-supply user.  
1V  
. . . . . . . .  
20µs  
. . . . . . . . . . . .  
1V  
. . . .  
. . . . . . . . . . . . . . . .  
100  
90  
5V  
.
V
OUT  
The AD822 is available in two performance grades. The A grade  
and B grade are rated over the industrial temperature range of  
−40°C to +8ꢀ°C.  
10  
. . . . . . . .  
. . . .  
. . . . . . . . . . . .  
. . . . . . . . . . . . . . . .  
0%  
0V  
(GND)  
1V  
The AD822 is offered in three varieties of 8-lead packages:  
PDIP, MSOP, and SOIC.  
Figure 3. Gain-of-2 Amplifier; VS = 5, 0, VIN = 2.5 V Sine Centered at 1.25 V,  
RL = 100 Ω  
Rev. G | Page 3 of 28  
AD822  
SPECIFICATIONS  
VS = 0, ꢀ V @ TA = 2ꢀ°C, VCM = 0 V, VOUT = 0.2 V, unless otherwise noted.  
Table 1.  
AD822 A Grade  
AD822 B Grade  
Parameter  
Conditions  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
DC PERFORMANCE  
Initial Offset  
0.1  
0.5  
2
2
0.5  
2
0.8  
1.2  
0.1  
0.5  
2
2
0.5  
2
0.4  
0.9  
mV  
mV  
μV/°C  
pA  
nA  
pA  
Maximum Offset Over Temperature  
Offset Drift  
Input Bias Current  
at TMAX  
Input Offset Current  
at TMAX  
VCM = 0 V to 4 V  
25  
5
20  
10  
2.5  
10  
0.5  
0.5  
nA  
Open-Loop Gain  
VO = 0.2 V to 4 V  
RL = 100 kΩ  
500  
400  
80  
80  
15  
1000  
150  
30  
500  
400  
80  
80  
15  
1000  
150  
30  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
TMIN to TMAX  
TMIN to TMAX  
RL = 10 kΩ  
RL = 1 kΩ  
TMIN to TMAX  
10  
10  
NOISE/HARMONIC PERFORMANCE  
Input Voltage Noise  
0.1 Hz to 10 Hz  
2
2
μV p-p  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
f = 10 Hz  
f = 100 Hz  
f = 1 kHz  
f = 10 kHz  
25  
21  
16  
13  
25  
21  
16  
13  
Input Current Noise  
0.1 Hz to 10 Hz  
18  
18  
fA p-p  
f = 1 kHz  
0.8  
0.8  
fA/√Hz  
Harmonic Distortion  
f = 10 kHz  
RL = 10 kΩ to 2.5 V  
VO = 0.25 V to 4.75 V  
−93  
−93  
dB  
DYNAMIC PERFORMANCE  
Unity Gain Frequency  
Full Power Response  
Slew Rate  
1.8  
210  
3
1.8  
210  
3
MHz  
kHz  
V/μs  
VO p-p = 4.5 V  
Settling Time  
to 0.1%  
to 0.01%  
VO = 0.2 V to 4.5 V  
1.4  
1.8  
1.4  
1.8  
μs  
μs  
MATCHING CHARACTERISTICS  
Initial Offset  
1.0  
1.6  
0.5  
1.3  
mV  
mV  
μV/°C  
pA  
dB  
dB  
Maximum Offset Over Temperature  
Offset Drift  
Input Bias Current  
Crosstalk @ f = 1 kHz  
f = 100 kHz  
3
3
20  
10  
RL = 5 kΩ  
−130  
−93  
–130  
–93  
INPUT CHARACTERISTICS  
Input Voltage Range1  
TMIN to TMAX  
−0.2  
−0.2  
66  
+4  
+4  
−0.2  
−0.2  
69  
+4  
+4  
V
V
dB  
dB  
Common-Mode Rejection Ratio (CMRR)  
TMIN to TMAX  
VCM = 0 V to 2 V  
VCM = 0 V to 2 V  
80  
80  
66  
66  
Rev. G | Page 4 of 28  
 
AD822  
AD822 A Grade  
AD822 B Grade  
Parameter  
Input Impedance  
Conditions  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
Differential  
Common Mode  
OUTPUT CHARACTERISTICS  
Output Saturation Voltage2  
VOL − VEE  
1013||0.5  
1013||2.8  
1013||0.5  
1013||2.8  
Ω||pF  
Ω||pF  
ISINK = 20 μA  
ISOURCE = 20 μA  
ISINK = 2 mA  
5
7
10  
14  
20  
55  
80  
110  
160  
500  
1000  
1500  
1900  
5
7
10  
14  
20  
55  
80  
110  
160  
500  
1000  
1500  
1900  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mA  
mA  
pF  
TMIN to TMAX  
VCC − VOH  
TMIN to TMAX  
VOL − VEE  
TMIN to TMAX  
VCC − VOH  
TMIN to TMAX  
VOL – VEE  
TMIN to TMAX  
VCC − VOH  
TMIN to TMAX  
Operating Output Current  
TMIN to TMAX  
10  
40  
80  
300  
800  
10  
40  
80  
300  
800  
ISOURCE = 2 mA  
ISINK = 15 mA  
ISOURCE = 15 mA  
15  
12  
15  
12  
Capacitive Load Drive  
POWER SUPPLY  
Quiescent Current TMIN to TMAX  
Power Supply Rejection  
TMIN to TMAX  
350  
350  
1.24  
80  
1.6  
1.24  
80  
1.6  
mA  
dB  
dB  
VS+ = 5 V to 15 V  
66  
66  
70  
70  
1 This is a functional specification. Amplifier bandwidth decreases when the input common-mode voltage is driven in the range (+VS − 1 V) to +VS. Common-mode effort  
voltage is typically less than 5 mV with the common-mode voltage set at 1 V below the positive supply.  
2 VOL − VEE is defined as the difference between the lowest possible output voltage (VOL) and the negative voltage supply rail (VEE). VCC − VOH is defined as the difference  
between the highest possible output voltage (VOH) and the positive supply voltage (VCC).  
Rev. G | Page 5 of 28  
 
 
AD822  
VS = ±ꢀ V @ TA = 2ꢀ°C, VCM = 0 V, VOUT = 0 V, unless otherwise noted.  
Table 2.  
AD822 A Grade  
AD822 B Grade  
Parameter  
Conditions  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
DC PERFORMANCE  
Initial Offset  
0.1  
0.5  
2
2
0.5  
2
0.8  
1.5  
0.1  
0.5  
2
2
0.5  
2
0.4  
1
mV  
mV  
μV/°C  
pA  
nA  
pA  
Maximum Offset Over Temperature  
Offset Drift  
Input Bias Current  
at TMAX  
Input Offset Current  
at TMAX  
VCM = −5 V to +4 V  
25  
5
20  
10  
2.5  
10  
0.5  
0.5  
nA  
Open-Loop Gain  
VO = −4 V to +4 V  
RL = 100 kΩ  
400  
400  
80  
80  
20  
1000  
150  
30  
400  
400  
80  
80  
20  
1000  
150  
30  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
TMIN to TMAX  
TMIN to TMAX  
RL = 10 kΩ  
RL = 1 kΩ  
TMIN to TMAX  
10  
10  
NOISE/HARMONIC PERFORMANCE  
Input Voltage Noise  
0.1 Hz to 10 Hz  
2
2
μV p-p  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
f = 10 Hz  
f = 100 Hz  
f = 1 kHz  
f = 10 kHz  
25  
21  
16  
13  
25  
21  
16  
13  
Input Current Noise  
0.1 Hz to 10 Hz  
18  
18  
fA p-p  
f = 1 kHz  
0.8  
0.8  
fA/√Hz  
Harmonic Distortion  
f = 10 kHz  
RL = 10 kΩ  
VO = 4.5 V  
−93  
−93  
dB  
DYNAMIC PERFORMANCE  
Unity Gain Frequency  
Full Power Response  
Slew Rate  
1.9  
105  
3
1.9  
105  
3
MHz  
kHz  
V/μs  
VO p-p = 9 V  
Settling Time  
to 0.1%  
to 0.01%  
VO = 0 V to 4.5 V  
1.4  
1.8  
1.4  
1.8  
μs  
μs  
MATCHING CHARACTERISTICS  
Initial Offset  
1.0  
3
0.5  
2
mV  
mV  
μV/°C  
pA  
dB  
dB  
Maximum Offset Over Temperature  
Offset Drift  
Input Bias Current  
Crosstalk @ f = 1 kHz  
f = 100 kHz  
3
3
25  
10  
RL = 5 kΩ  
−130  
−93  
−130  
−93  
INPUT CHARACTERISTICS  
Input Voltage Range1  
TMIN to TMAX  
−5.2  
−5.2  
66  
+4  
+4  
−5.2  
−5.2  
69  
+4  
+4  
V
V
dB  
dB  
Common-Mode Rejection Ratio (CMRR)  
TMIN to TMAX  
VCM = –5 V to +2 V  
VCM = –5 V to +2 V  
80  
80  
66  
66  
Input Impedance  
Differential  
Common Mode  
1013||0.5  
1013||2.8  
1013||0.5  
1013||2.8  
Ω||pF  
Ω||pF  
Rev. G | Page 6 of 28  
AD822  
AD822 A Grade  
AD822 B Grade  
Parameter  
Conditions  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
OUTPUT CHARACTERISTICS  
Output Saturation Voltage2  
VOL − VEE  
ISINK = 20 μA  
ISOURCE = 20 μA  
ISINK = 2 mA  
5
7
10  
14  
20  
55  
80  
110  
160  
500  
1000  
1500  
1900  
5
7
10  
14  
20  
55  
80  
110  
160  
500  
1000  
1500  
1900  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mA  
mA  
pF  
TMIN to TMAX  
VCC − VOH  
TMIN to TMAX  
VOL − VEE  
TMIN to TMAX  
VCC − VOH  
TMIN to TMAX  
VOL − VEE  
TMIN to TMAX  
VCC − VOH  
TMIN to TMAX  
Operating Output Current  
TMIN to TMAX  
10  
40  
80  
300  
800  
10  
40  
80  
300  
800  
ISOURCE = 2 mA  
ISINK = 15 mA  
ISOURCE = 15 mA  
15  
12  
15  
12  
Capacitive Load Drive  
POWER SUPPLY  
Quiescent Current TMIN to TMAX  
Power Supply Rejection  
TMIN to TMAX  
350  
350  
1.3  
80  
1.6  
1.3  
80  
1.6  
mA  
dB  
dB  
VS+ = 5 V to 15 V  
66  
66  
70  
70  
1 This is a functional specification. Amplifier bandwidth decreases when the input common-mode voltage is driven in the range (+VS − 1 V) to +VS. Common-mode effort  
voltage is typically less than 5 mV with the common-mode voltage set at 1 V below the positive supply.  
2 VOL − VEE is defined as the difference between the lowest possible output voltage (VOL) and the negative voltage supply rail (VEE). VCC − VOH is defined as the difference  
between the highest possible output voltage (VOH) and the positive supply voltage (VCC).  
Rev. G | Page 7 of 28  
 
AD822  
VS = ±±ꢀ V @ TA = 2ꢀ°C, VCM = 0 V, VOUT = 0 V, unless otherwise noted.  
Table 3.  
AD822 A Grade  
Typ  
AD822 B Grade  
Parameter  
Conditions  
Min  
Max  
Min  
Typ  
Max  
Unit  
DC PERFORMANCE  
Initial Offset  
0.4  
0.5  
2
2
3
0.3  
0.5  
2
1.5  
2.5  
mV  
mV  
μV/°C  
pA  
Maximum Offset Over Temperature  
Offset Drift  
Input Bias Current  
VCM = 0 V  
2
25  
2
12  
VCM = −10 V  
VCM = 0 V  
40  
0.5  
2
40  
0.5  
2
pA  
nA  
pA  
nA  
at TMAX  
Input Offset Current  
at TMAX  
5
20  
2.5  
12  
0.5  
0.5  
Open-Loop Gain  
VO = +10 V to −10 V  
RL = 100 kΩ  
500  
500  
100  
100  
30  
2000  
500  
45  
500  
500  
100  
100  
30  
2000  
500  
45  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
TMIN to TMAX  
TMIN to TMAX  
RL = 10 kΩ  
RL = 1 kΩ  
TMIN to TMAX  
20  
20  
NOISE/HARMONIC PERFORMANCE  
Input Voltage Noise  
0.1 Hz to 10 Hz  
2
2
μV p-p  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
f = 10 Hz  
f = 100 Hz  
f = 1 kHz  
f = 10 kHz  
25  
21  
16  
13  
25  
21  
16  
13  
Input Current Noise  
0.1 Hz to 10 Hz  
18  
18  
fA p-p  
f = 1 kHz  
0.8  
0.8  
fA/√Hz  
Harmonic Distortion  
f = 10 kHz  
RL = 10 kΩ  
VO = 10 V  
−85  
−85  
dB  
DYNAMIC PERFORMANCE  
Unity Gain Frequency  
Full Power Response  
Slew Rate  
1.9  
45  
3
1.9  
45  
3
MHz  
kHz  
V/μs  
VO p-p = 20 V  
Settling Time  
to 0.1%  
to 0.01%  
VO = 0 V to 10 V  
4.1  
4.5  
4.1  
4.5  
μs  
μs  
MATCHING CHARACTERISTICS  
Initial Offset  
3
4
2
2.5  
mV  
mV  
μV/°C  
pA  
dB  
dB  
Maximum Offset Over Temperature  
Offset Drift  
Input Bias Current  
Crosstalk @ f = 1 kHz  
f = 100 kHz  
3
3
25  
12  
RL = 5 kΩ  
−130  
−93  
−130  
−93  
INPUT CHARACTERISTICS  
Input Voltage Range1  
TMIN to TMAX  
−15.2  
−15.2  
70  
+14  
+14  
−15.2  
−15.2  
74  
+4  
+4  
V
V
dB  
dB  
Common-Mode Rejection Ratio (CMRR)  
TMIN to TMAX  
VCM = −15 V to +12 V  
VCM = −15 V to +12 V  
80  
90  
70  
74  
Rev. G | Page 8 of 28  
AD822  
AD822 A Grade  
Typ  
AD822 B Grade  
Parameter  
Input Impedance  
Conditions  
Min  
Max  
Min  
Typ  
Max  
Unit  
Differential  
Common Mode  
OUTPUT CHARACTERISTICS  
Output Saturation Voltage2  
VOL − VEE  
1013||0.5  
1013||2.8  
1013||0.5  
1013||2.8  
Ω||pF  
Ω||pF  
ISINK = 20 μA  
ISOURCE = 20 μA  
ISINK = 2 mA  
5
7
10  
14  
20  
55  
80  
110  
160  
500  
1000  
1500  
1900  
5
7
10  
14  
20  
55  
80  
110  
160  
500  
1000  
1500  
1900  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mA  
mA  
pF  
TMIN to TMAX  
VCC − VOH  
TMIN to TMAX  
VOL − VEE  
TMIN to TMAX  
VCC − VOH  
TMIN to TMAX  
VOL − VEE  
TMIN to TMAX  
VCC − VOH  
TMIN to TMAX  
Operating Output Current  
TMIN to TMAX  
10  
40  
80  
300  
800  
10  
40  
80  
300  
800  
ISOURCE = 2 mA  
ISINK = 15 mA  
ISOURCE = 15 mA  
20  
15  
20  
15  
Capacitive Load Drive  
POWER SUPPLY  
Quiescent Current TMIN to TMAX  
Power Supply Rejection  
TMIN to TMAX  
350  
350  
1.4  
80  
1.8  
1.4  
80  
1.8  
mA  
dB  
dB  
VS+ = 5 V to 15 V  
70  
70  
70  
70  
1 This is a functional specification. Amplifier bandwidth decreases when the input common-mode voltage is driven in the range (+VS − 1 V) to +VS. Common-mode effort  
voltage is typically less than 5 mV with the common-mode voltage set at 1 V below the positive supply.  
2 VOL − VEE is defined as the difference between the lowest possible output voltage (VOL) and the negative voltage supply rail (VEE). VCC − VOH is defined as the difference  
between the highest possible output voltage (VOH) and the positive supply voltage (VCC).  
Rev. G | Page 9 of 28  
 
AD822  
VS = 0, 3 V @ TA = 2ꢀ°C, VCM = 0 V, VOUT = 0.2 V, unless otherwise noted.  
Table 4.  
Parameter  
Conditions  
Typ  
Unit  
DC PERFORMANCE  
Initial Offset  
0.2  
0.5  
1
2
0.5  
2
mV  
mV  
μV/°C  
pA  
nA  
pA  
Maximum Offset Over Temperature  
Offset Drift  
Input Bias Current  
at TMAX  
Input Offset Current  
at TMAX  
VCM = 0 V to 2 V  
0.5  
nA  
Open-Loop Gain  
TMIN to TMAX  
TMIN to TMAX  
VO = 0.2 V to 2 V  
RL = 100 kΩ  
RL = 10 kΩ  
1000  
150  
30  
V/mV  
V/mV  
V/mV  
TMIN to TMAX  
RL = 1 kΩ  
NOISE/HARMONIC PERFORMANCE  
Input Voltage Noise  
0.1 Hz to 10 Hz  
f = 10 Hz  
2
ꢀV p-p  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
25  
21  
16  
13  
f = 100 Hz  
f = 1 kHz  
f = 10 kHz  
Input Current Noise  
0.1 Hz to 10 Hz  
f = 1 kHz  
18  
0.8  
fA p-p  
fA/√Hz  
Harmonic Distortion  
f = 10 kHz  
RL = 10 kΩ to 1.5 V  
VO = 1.25 V  
−92  
dB  
DYNAMIC PERFORMANCE  
Unity Gain Frequency  
Full Power Response  
Slew Rate  
1.5  
240  
3
MHz  
kHz  
V/μs  
VO p-p = 2.5 V  
Settling Time  
to 0.1%  
to 0.01%  
VO = 0.2 V to 2.5 V  
1
1.4  
μs  
μs  
MATCHING CHARACTERISTICS  
Offset Drift  
2
μV/°C  
dB  
dB  
Crosstalk @ f = 1 kHz  
f = 100 kHz  
RL = 5 kΩ  
−130  
−93  
INPUT CHARACTERISTICS  
Common-Mode Rejection Ratio (CMRR)  
TMIN to TMAX  
VCM = 0 V to 1 V  
74  
dB  
Input Impedance  
Differential  
Common Mode  
1013||0.5  
1013||2.8  
Ω||pF  
Ω||pF  
Rev. G | Page 10 of 28  
AD822  
Parameter  
Conditions  
Typ  
Unit  
OUTPUT CHARACTERISTICS  
Output Saturation Voltage1  
VOL − VEE  
ISINK = 20 μA  
ISOURCE = 20 μA  
ISINK = 2 mA  
ISOURCE = 2 mA  
ISINK = 10 mA  
ISOURCE = 10 mA  
5
10  
40  
80  
200  
500  
350  
mV  
mV  
mV  
mV  
mV  
mV  
pF  
VCC − VOH  
VOL − VEE  
VCC − VOH  
VOL − VEE  
VCC − VOH  
Capacitive Load Drive  
POWER SUPPLY  
Quiescent Current  
TMIN to TMAX  
1.24  
80  
mA  
dB  
Power Supply Rejection  
TMIN to TMAX  
VS+ = 3 V to 15 V  
1 VOL − VEE is defined as the difference between the lowest possible output voltage (VOL) and the negative voltage supply rail (VEE). VCC − VOH is defined as the difference  
between the highest possible output voltage (VOH) and the positive supply voltage (VCC). Specifications are TMIN to TMAX  
.
Rev. G | Page 11 of 28  
 
AD822  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Supply Voltage  
Internal Power Dissipation1  
PDIP (N)  
18 V  
Observe derating curves  
Observe derating curves  
SOIC (R)  
Input Voltage  
(+VS + 0.2 V) to  
−(20 V + VS)  
Output Short Circuit Duration  
Differential Input Voltage  
Storage Temperature Range (N)  
Storage Temperature Range (R, RM)  
Operating Temperature Range  
AD822 A Grade and B Grade  
Indefinite  
30 V  
–65°C to +125°C  
–65°C to +150°C  
MAXIMUM POWER DISSIPATION  
The maximum power that can be safely dissipated by the  
AD822 is limited by the associated rise in junction temperature.  
For plastic packages, the maximum safe junction temperature is  
±4ꢀ°C. If these maximums are exceeded momentarily, proper  
circuit operation is restored as soon as the die temperature is  
reduced. Leaving the device in the overheated condition for an  
extended period can result in device burnout. To ensure proper  
operation, it is important to observe the derating curves shown  
in Figure 27.  
–40°C to +85°C  
260°C  
Lead Temperature Range  
(Soldering, 60 sec)  
1 8-lead PDIP package: θJA = 90°C/W.  
8-lead SOIC package: θJA = 160°C/W.  
8-lead MSOP package: θJA = 190°C/W.  
While the AD822 is internally short-circuit protected, this may  
not be sufficient to guarantee that the maximum junction  
temperature is not exceeded under all conditions. With power  
supplies ±±2 V (or less) at an ambient temperature of 2ꢀ°C or  
less, if the output node is shorted to a supply rail, then the  
amplifier is not destroyed, even if this condition persists for an  
extended period.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. G | Page 12 of 28  
 
 
AD822  
TYPICAL PERFORMANCE CHARACTERISTICS  
70  
5
V
= 0V, 5V  
S
60  
50  
40  
30  
20  
10  
0
V
= 0V, +5V AND ±5V  
S
V
= ±5V  
S
0
–5  
–5  
–0.5 –0.4 –0.3 –0.2 –0.1  
0
0.1  
0.2  
0.3  
0.4  
0.5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
COMMON-MODE VOLTAGE (V)  
OFFSET VOLTAGE (mV)  
Figure 7. Input Bias Current vs. Common-Mode Voltage; VS = 5 V, 0 V, and  
VS = 5 V  
Figure 4. Typical Distribution of Offset Voltage (390 Units)  
1k  
100  
10  
16  
14  
12  
10  
8
V
V
= ±5V  
= ±15V  
S
S
6
1
4
2
0.1  
–16  
0
–12  
–8  
–4  
0
4
8
12  
16  
–12 –10 –8  
–6  
–4  
–2  
0
2
4
6
8
10  
COMMON-MODE VOLTAGE (V)  
OFFSET VOLTAGE DRIFT (µV/°C)  
Figure 5. Typical Distribution of Offset Voltage Drift (100 Units)  
Figure 8. Input Bias Current vs. Common-Mode Voltage; VS = 15 V  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
100k  
10k  
1k  
100  
10  
1
0
0.1  
20  
0
1
2
3
4
5
6
7
8
9
10  
40  
60  
80  
100  
120  
140  
INPUT BIAS CURRENT (pA)  
TEMPERATURE (°C)  
Figure 6. Typical Distribution of Input Bias Current (213 Units)  
Figure 9. Input Bias Current vs. Temperature; VS = 5 V, VCM = 0  
Rev. G | Page 13 of 28  
 
 
AD822  
10M  
40  
20  
POS RAIL  
NEG RAIL  
R = 2k  
L
R
= 20kΩ  
L
V
= ±15V  
S
1M  
V
= 0V, +5V  
S
POS RAIL  
0
POS  
RAIL  
V
= 0V, +3V  
100k  
S
–20  
–40  
NEG RAIL  
NEG RAIL  
R
= 100kΩ  
L
10k  
100  
1k  
10k  
100k  
0
60  
120  
180  
240  
300  
LOAD RESISTANCE ()  
OUTPUT VOLTAGE FROM SUPPLY RAILS (mV)  
Figure 10. Open-Loop Gain vs. Load Resistance  
Figure 13. Input Effort Voltage with Output Voltage Within 300 mV of Either  
Supply Rail for Various Resistive Loads; VS = 5 V  
10M  
1M  
1k  
100  
10  
R
= 100k  
L
V
= ±15V  
S
V
= 0V, +5V  
S
V
= ±15V  
R
= 10kΩ  
S
L
V
= 0V, +5V  
S
100k  
10k  
V
= ±15V  
S
R
= 600Ω  
L
V
= 0V, +5V  
S
1
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
1
10  
100  
1k  
10k  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 11. Open-Loop Gain vs. Temperature  
Figure 14. Input Voltage Noise vs. Frequency  
300  
200  
100  
–40  
–50  
R
A
= 10k  
L
= –1  
CL  
–60  
R
= 10k  
L
R
= 100kΩ  
V
= 0V, +3V; V = 2.5V p-p  
OUT  
L
S
–70  
0
–100  
–200  
–80  
V
= ±15V; V = 20V p-p  
OUT  
S
–90  
V
= ±5V; V = 9V p-p  
OUT  
S
R
= 600Ω  
L
–100  
–110  
V
= 0V, +5V; V = 4.5V p-p  
OUT  
S
–300  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
–16  
–12  
–8  
–4  
0
4
8
12  
16  
OUTPUT VOLTAGE (V)  
Figure 12. Input Error Voltage vs. Output Voltage for Resistive Loads  
Figure 15. Total Harmonic Distortion (THD) vs. Frequency  
Rev. G | Page 14 of 28  
 
 
AD822  
100  
80  
60  
40  
20  
0
100  
80  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= ±15V  
S
PHASE  
60  
V
= 0V, +5V  
S
GAIN  
V
= 0V, +3V  
S
40  
20  
R
= 2kΩ  
L
0
C
= 100pF  
L
–20  
10M  
–20  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 16. Open-Loop Gain and Phase Margin vs. Frequency  
Figure 19. Common-Mode Rejection vs. Frequency  
1k  
5
A
= +1  
CL  
= ±15V  
V
S
NEGATIVE  
RAIL  
POSITIVE  
RAIL  
100  
10  
4
3
2
1
0
+25°C  
–55°C  
1
+125°C  
0.1  
0.01  
–55°C  
+125°C  
100  
1k  
10k  
100k  
1M  
10M  
–1  
0
1
2
3
FREQUENCY (Hz)  
COMMON-MODE VOLTAGE FROM SUPPLY RAILS (V)  
Figure 20. Absolute Common-Mode Error vs. Common-Mode Voltage from  
Figure 17. Output Impedance vs. Frequency  
Supply Rails (VS − VCM  
)
1000  
100  
10  
16  
12  
8
1%  
4
V
– V  
OH  
S
0.01%  
ERROR  
0.1%  
0
0.01%  
–4  
–8  
V
– V  
OL S  
1%  
–12  
–16  
0
0.001  
0.01  
0.1  
1
10  
100  
0
1
2
3
4
5
LOAD CURRENT (mA)  
SETTLING TIME (µs)  
Figure 18. Output Swing and Error vs. Settling Time  
Figure 21. Output Saturation Voltage vs. Load Current  
Rev. G | Page 15 of 28  
 
AD822  
1000  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
I
I
= 10mA  
SOURCE  
= 10mA  
SINK  
+PSRR  
100  
10  
1
I
= 1mA  
= 10µA  
SOURCE  
I
I
I
= 1mA  
SINK  
–PSRR  
SOURCE  
= 10µA  
SINK  
10  
100  
1k  
10k  
100k  
1M  
10M  
10M  
80  
60  
TEMPERATURE (°C)  
–60 –40 –20  
0
20  
40  
80  
100 120 140  
FREQUENCY (Hz)  
Figure 22. Output Saturation Voltage vs. Temperature  
Figure 25. Power Supply Rejection vs. Frequency  
80  
70  
60  
50  
40  
30  
20  
10  
0
30  
25  
20  
15  
10  
5
V
= ±15V  
R
= 2kΩ  
S
L
V
= ±15V  
S
–OUT  
+
V
= ±15V  
S
V
= 0V, +5V  
S
V
= 0V, +3V  
S
V
= 0V, +5V  
= 0V, +3V  
+
+
S
V
= 0V, +5V  
S
0
V
= 0V, +3V  
S
V
S
0
10k  
100k  
FREQUENCY (Hz)  
1M  
–60 –40 –20  
20  
40  
60  
80  
100 120 140  
TEMPERATURE (°C)  
Figure 23. Short Circuit Current Limit vs. Temperature  
Figure 26. Large Signal Frequency Response  
2.4  
2.2  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
T = +125°C  
T = +25°C  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
8-LEAD PDIP  
8-LEAD SOIC  
T = –55°C  
8-LEAD MSOP  
0
4
8
12  
16  
20  
24  
28  
32  
36  
–60  
–40  
–20  
0
20  
40  
60  
TOTAL SUPPLY VOLTAGE (V)  
AMBIENT TEMPERATURE (°C)  
Figure 27. Maximum Power Dissipation vs. Temperature for Packages  
Figure 24. Quiescent Current vs. Supply Voltage vs. Temperature  
Rev. G | Page 16 of 28  
 
AD822  
–70  
–80  
5V  
5µs  
100  
90  
–90  
–100  
–110  
–120  
10  
0%  
–130  
–140  
300  
1k  
3k  
10k  
30k  
100k  
300k  
1M  
Figure 32. Large Signal Response Unity Gain Follower; VS = 15 V, RL = 10 kΩ  
FREQUENCY (Hz)  
Figure 28. Crosstalk vs. Frequency  
10mV  
500ns  
+V  
S
0.01µF  
100  
90  
8
+
1/2  
V
IN  
AD822  
V
OUT  
100pF  
R
L
0.01µF  
4
10  
Figure 29. Unity Gain Follower  
0%  
5V  
10µs  
Figure 33. Small Signal Response Unity Gain Follower; VS = 15 V, RL = 10 kΩ  
100  
90  
1V  
2µs  
100  
90  
10  
0%  
10  
0%  
GND  
Figure 30. 20 V p-p, 25 kHz Sine Wave Input; Unity Gain Follower; VS = 15 V,  
RL = 600 Ω  
V
OUT  
Figure 34. VS = 5 V, 0 V; Unity Gain Follower Response to 0 V to 4 V Step  
+V  
s
20k  
2.2kΩ  
+V  
8
S
0.1µF  
1
1µF  
0.01µF  
8
2
3
6
5
1/2  
AD822  
1/2  
AD822  
7
5kΩ  
V
+
IN  
1/2  
AD822  
20V p-p  
+
+
5kΩ  
V
OUT  
100pF  
R
L
4
V
IN  
0.1µF  
1µF  
V
OUT  
CROSS TALK = 20 log  
Figure 35. Unity Gain Follower  
10V  
IN  
–V  
s
Figure 31. Crosstalk Test Circuit  
Rev. G | Page 17 of 28  
 
AD822  
10kΩ  
20kΩ  
V
IN  
10mV  
2µs  
V
+V  
8
OUT  
S
0.01µF  
100  
90  
1/2  
AD822  
+
100pF  
R
L
4
10  
Figure 36. Gain-of-T2 Inverter  
0%  
GND  
1V  
2µs  
Figure 39. VS = 5 V, 0 V; Gain-of-2 Inverter Response to 20 mV Step,  
Centered 20 mV below Ground, RL = 10 kΩ  
100  
90  
1V  
2µs  
100  
90  
10  
0%  
GND  
10  
Figure 37. VS = 5 V, 0 V; Unity Gain Follower Response to 0 V to 5 V Step  
0%  
GND  
Figure 40. VS = 5 V, 0 V; Gain-of-2 Inverter Response to 2.5 V Step,  
Centered −1.25 V below Ground, RL = 10 kΩ  
10mV  
2µs  
100  
90  
500mV  
10µs  
100  
90  
10  
0%  
GND  
10  
0%  
Figure 38. VS = 5 V, 0 V; Unity Gain Follower Response to 40 mV Step,  
Centered 40 mV above Ground, RL = 10 kΩ  
GND  
Figure 41. VS = 3 V, 0 V; Gain-of-2 Inverter, VIN = 1.25 V, 25 kHz, Sine Wave  
Centered at −0.75 V, RL = 600 Ω  
Rev. G | Page 18 of 28  
 
AD822  
1V  
10µs  
. . . .  
. . . . . . . .  
. . . . . . . . . . . . . . . .  
. . . . . . . . . . . .  
100  
90  
10  
. . . . . . . .  
. . . .  
. . . . . . . . . . . . . . . .  
. . . . . . . . . . . .  
0%  
GND  
1V  
(a)  
10µs  
1V  
1V  
. . . . . . . . . . .  
. . .  
. . . . . . . . . . . .  
. . . .  
100 . . . .  
. . . .  
+V  
s
90  
10  
. . . .  
0% . . . .  
. . . . . . . . . . . . . . . .  
. . . . . . . . . . . .  
. . . .  
GND  
1V  
(b)  
5V  
R
P
V
IN  
V
OUT  
Figure 42. (a) Response with RP = 0; VIN from 0 to +VS  
(b) VIN = 0 to +VS + 200 mV  
V
OUT = 0 to + VS  
RP = 49.9 kΩ  
Rev. G | Page 19 of 28  
 
AD822  
APPLICATION NOTES  
100k  
10k  
1k  
INPUT CHARACTERISTICS  
WHENEVER JOHNSON NOISE IS GREATER THAN  
AMPLIFIER NOISE, AMPLIFIER NOISE CAN BE  
CONSIDERED NEGLIGIBLE FOR APPLICATION.  
In the AD822, n-channel JFETs are used to provide a low offset,  
low noise, high impedance input stage. Minimum input  
common-mode voltage extends from 0.2 V below −VS to ± V  
less than +VS. Driving the input voltage closer to the positive  
rail causes a loss of amplifier bandwidth (as can be seen by  
comparing the large signal responses shown in Figure 34 and  
Figure 37) and increased common-mode voltage error as  
illustrated in Figure 20.  
1kHz  
RESISTOR JOHNSON  
NOISE  
100  
10  
10Hz  
1
The AD822 does not exhibit phase reversal for input voltages up  
to and including +VS. Figure 42 shows the response of an  
AD822 voltage follower to a 0 V to ꢀ V (+VS) square wave input.  
The input and output are superimposed. The output tracks the  
input up to +VS without phase reversal. The reduced bandwidth  
above a 4 V input causes the rounding of the output waveform.  
For input voltages greater than +VS, a resistor in series with the  
AD822s noninverting input prevents phase reversal, at the  
expense of greater input voltage noise. This is illustrated in  
Figure 42.  
AMPLIFIER-GENERATED  
NOISE  
0.1  
10k  
100k  
10M  
100M  
1G  
10G  
1M  
SOURCE IMPEDANCE ()  
Figure 43. Total Noise vs. Source Impedance  
OUTPUT CHARACTERISTICS  
The AD822s unique bipolar rail-to-rail output stage swings within  
ꢀ mV of the negative supply and ±0 mV of the positive supply with  
no external resistive load. The AD822s approximate output  
saturation resistance is 40 Ω sourcing and 20 Ω sinking. This can be  
used to estimate output saturation voltage when driving heavier  
current loads. For instance, when sourcing ꢀ mA, the saturation  
voltage to the positive supply rail is 200 mV; when sinking ꢀ mA,  
the saturation voltage to the negative rail is ±00 mV.  
Since the input stage uses n-channel JFETs, input current  
during normal operation is negative; the current flows out from  
the input terminals. If the input voltage is driven more positive  
than +VS – 0.4 V, then the input current reverses direction as  
internal device junctions become forward biased. This is  
illustrated in Figure 7.  
The amplifiers open-loop gain characteristic changes as a  
function of resistive load, as shown in Figure ±0 to Figure ±3.  
For load resistances over 20 kΩ, the AD822’s input error voltage  
is virtually unchanged until the output voltage is driven to  
±80 mV of either supply.  
A current limiting resistor should be used in series with the  
input of the AD822 if there is a possibility of the input voltage  
exceeding the positive supply by more than 300 mV, or if an  
input voltage is applied to the AD822 when ±VS = 0. The  
amplifier is damaged if left in that condition for more than  
±0 seconds. A ± kΩ resistor allows the amplifier to withstand up  
to ±0 V of continuous overvoltage and increases the input  
voltage noise by a negligible amount.  
If the AD822s output is overdriven so as to saturate either of  
the output devices, the amplifier recovers within 2 ꢁs of its  
input returning to the amplifier’s linear operating region.  
Direct capacitive loads interact with the amplifiers effective  
output impedance to form an additional pole in the amplifiers  
feedback loop, which can cause excessive peaking on the pulse  
response or loss of stability. Worst case is when the amplifier is  
used as a unity gain follower. Figure 44 shows the AD822s pulse  
response as a unity gain follower driving 3ꢀ0 pF. This amount of  
overshoot indicates approximately 20° of phase margin—the  
system is stable, but nearing the edge. Configurations with less  
loop gain, and as a result less loop bandwidth, are much less  
sensitive to capacitance load effects.  
Input voltages less than –VS are a completely different story. The  
amplifier can safely withstand input voltages 20 V below the  
negative supply voltage as long as the total voltage from the  
positive supply to the input terminal is less than 36 V. In  
addition, the input stage typically maintains picoampere (pA)  
level input currents across that input voltage range.  
The AD822 is designed for ±3 nV/√Hz wideband input voltage  
noise and maintains low noise performance to low frequencies  
(refer to Figure ±4). This noise performance, along with the  
AD822s low input current and current noise, means that the  
AD822 contributes negligible noise for applications with source  
resistances greater than ±0 kΩ and signal bandwidths greater  
than ± kHz. This is illustrated in Figure 43.  
Rev. G | Page 20 of 28  
 
 
AD822  
Figure 46 shows a method for extending capacitance load drive  
capability for a unity gain follower. With these component  
values, the circuit drives ꢀ000 pF with a ±0% overshoot.  
20mV  
. . . . . . . .  
2µs  
. . . .  
. . . . . . . . . . . . . . . .  
. . . . . . . . . . . .  
100  
90  
+V  
S
0.01µF  
8
+
1/2  
100  
V
IN  
AD822  
V
OUT  
0.01µF  
20pF  
C
10  
4
L
. . . . . . . .  
. . . .  
. . . . . . . . . . . .  
. . . . . . . . . . . . . . . .  
0%  
–V  
S
20kΩ  
Figure 44. Small Signal Response of AD822 as  
Unity Gain Follower Driving 350 pF  
Figure 46. Extending Unity Gain Follower Capacitive Load Capability  
Beyond 350 pF  
Figure 4ꢀ is a plot of capacitive load that results in a 20° phase  
margin vs. noise gain for the AD822. Noise gain is the inverse of  
the feedback attenuation factor provided by the feedback  
network in use.  
5
4
3
2
1
300  
1k  
3k  
10k  
30k  
CAPACITIVE LOAD FOR 20° PHASE MARGIN (pF)  
C
L
R
F
R1  
Figure 45. Capacitive Load Tolerance vs. Noise Gain  
Rev. G | Page 21 of 28  
 
 
 
AD822  
APPLICATIONS  
SINGLE-SUPPLY VOLTAGE-TO-FREQUENCY  
CONVERTER  
Table 6. In-Amp Performance  
Parameters  
VS = 3 V, 0 V  
VS = 5 V  
CMRR  
74 dB  
80 dB  
The circuit shown in Figure 47 uses the AD822 to drive a low  
power timer that produces a stable pulse of width t1. The  
positive going output pulse is integrated by R1 − C1 and used as  
one input to the AD822 that is connected as a differential  
integrator. The other input (nonloading) is the unknown  
voltage, VIN. The AD822 output drives the timer trigger input,  
closing the overall feedback loop.  
Common-Mode Voltage  
Range  
3 dB BW, G = 10  
G = 100  
−0.2 V to +2 V  
180 kHz  
18 kHz  
−5.2 V to +4 V  
180 kHz  
18 kHz  
tSETTLING  
2 V Step (VS = 0 V, 3 V)  
5 V (VS = 5 V)  
Noise @ f = 1 kHz, G = 10  
G = 100  
2 μs  
5 μs  
10V  
270 nV/√Hz  
2.2 μV/√Hz  
1.10 mA  
270 nV/√Hz  
2.2 μV/√Hz  
1.15 mA  
U4  
REF02  
= 5V  
C5  
0.1µF  
ISUPPLY (Total)  
V
REF  
2
4
6
5
CMOS  
74HCO4  
OUT2  
OUT1  
R
**  
C3  
0.1µF  
3
SCALE  
10k  
U3A  
2
U3B  
5µs  
3
1
4
U2  
CMOS 555  
100 . . . . . . . .  
. . . .  
. . . . . . . . . . . .  
. . . . . . . . . . .  
. . .  
R2  
499kΩ  
1%  
0.01µF, 2%  
C1  
90  
8
4
R3*  
116kΩ  
U1  
R
V+  
6
3
THR  
+
OUT  
CV  
R1  
1/2  
2
7
499kΩ  
1%  
TR  
AD822B  
5
V
DIS  
IN  
GND  
C2  
0.01µF  
2%  
1
10  
C4  
0.01µF  
. . . . . . . . . . . . . . . .  
. . . . . . . . . . . .  
. . . .  
. . . . . . . .  
0%  
0V TO 2.5V  
FULL SCALE  
1V  
NOTES  
1. f  
= V /(V × t ), t = 1.1 × R3 × C6.  
IN REF 1 1  
OUT  
= 25kHz F AS SHOWN.  
= 1% METAL FILM <50ppm/°C TC.  
= 10% 20T FILM <100ppm/°C TC.  
S
Figure 48. Pulse Response of In-Amp to a 500 mV p-p Input Signal; VS = 5 V,  
0 V; Gain = 0  
2. *  
3. **  
4. t  
= 33µF FOR f  
= 20kHz @ V = 2.0V.  
1
OUT  
IN  
Figure 47. Single-Supply Voltage-to-Frequency Converter  
OHMTEK  
PART # 1043  
R1  
90k  
R2  
9kΩ  
R3  
1kΩ  
R4  
1kΩ  
R5  
9kΩ  
R6  
90kΩ  
+
V
Typical AD822 bias currents of 2 pA allow MΩ range source  
impedances with negligible dc errors. Linearity errors on the  
order of 0.01% full scale can be achieved with this circuit. This  
performance is obtained with a 5 V single supply that delivers  
less than 1 mA to the entire circuit.  
REF  
G = 10  
G = 100  
G = 100  
G = 10  
+V  
S
0.1µF  
1
2
3
6
5
SINGLE-SUPPLY PROGRAMMABLE GAIN  
INSTRUMENTATION AMPLIFIER  
1/2  
AD822  
1/2  
7
+
R
P
AD822  
1kΩ  
+
+
V
OUT  
V
V
IN1  
4
R
P
1kΩ  
The AD822 can be configured as a single-supply instrumenta-  
tion amplifier that is able to operate from single supplies down  
to 3 V or dual supplies up to 15 V. Using only one AD822  
rather than three separate op amps, this circuit is cost and  
power efficient. The AD822 FET inputs’ 2 pA bias currents  
minimize offset errors caused by high unbalanced source  
impedances.  
IN2  
R6  
(G = 10) V  
OUT  
= (V  
– V  
IN2  
)
+V  
1+  
IN1  
REF  
(
)
)
R4 + R5  
R5 + R6  
R4  
(G = 100) V  
OUT  
= (V  
IN1  
– V  
IN2  
)
+V  
REF  
1+  
(
Figure 49. A Single-Supply Programmable Instrumentation Amplifier  
An array of precision thin film resistors sets the in amp gain to be  
either 10 or 100. These resistors are laser trimmed to ratio match to  
0.01% and have a maximum differential TC of 5 ppm/°C.  
Rev. G | Page 22 of 28  
 
 
AD822  
that all signals in the audio frequency range (20 Hz to 20 kHz) are  
delivered to the headphones.  
3 V, SINGLE-SUPPLY STEREO HEADPHONE  
DRIVER  
The AD822 exhibits good current drive and THD + N  
performance, even at 3 V single supplies. At ± kHz, total  
harmonic distortion plus noise (THD + N) equals –62 dB  
(0.079%) for a 300 mV p-p output signal. This is comparable to  
other single-supply op amps that consume more power and  
cannot run on 3 V power supplies.  
LOW DROPOUT BIPOLAR BRIDGE DRIVER  
The AD822 can be used for driving a 3ꢀ0 Ω Wheatstone bridge.  
Figure ꢀ± shows one-half of the AD822 being used to buffer the  
ADꢀ89, a ±.23ꢀ V low power reference. The output of 4.ꢀ V can  
be used to drive an ADC converter front end. The other half of  
the AD822 is configured as a unity gain inverter and generates  
the other bridge input of −4.ꢀ V. Resistor R± and Resistor R2  
provide a constant current for bridge excitation. The AD620 low  
power instrumentation amplifier is used to condition the  
differential output voltage of the bridge. The gain of the AD620 is  
programmed using an external resistor RG and determined by  
3V  
+
1µF  
MYLAR  
0.1µF  
0.1µF  
95.3kΩ  
47.5kΩ  
8
3
2
CHANNEL 1  
+
1/2  
AD822  
1
500µF  
4.99kΩ  
49.9 kΩ  
G =  
+±  
L
RG  
95.3kΩ  
10kΩ  
HEADPHONES  
32Ω IMPEDANCE  
+V  
S
10kΩ  
49.9kΩ  
8
R
R1  
20Ω  
4.99kΩ  
+1.235V  
3
2
+
1/2  
AD822  
+
1
TO A/D CONVERTER  
REFERENCE INPUT  
6
5
AD589  
1/2  
1µF  
MYLAR  
7
47.5kΩ  
AD822  
+V  
S
+
25.4k1%  
500µF  
CHANNEL 2  
10k1%  
4
350Ω  
7
350Ω  
350Ω  
3
6
Figure 50. 3 V Single-Supply Stereo Headphone Driver  
R
AD820  
350Ω  
G
+
5
2
In Figure ꢀ0, each channel’s input signal is coupled via a ± μF  
Mylar capacitor. Resistor dividers set the dc voltage at the non-  
inverting inputs so that the output voltage is midway between the  
power supplies (±.ꢀ V). The gain is ±.ꢀ. Each half of the AD822  
can then be used to drive a headphone channel. A ꢀ Hz high-pass  
filter is realized by the ꢀ00 μF capacitors and the headphones that  
can be modeled as 32 Ω load resistors to ground. This ensures  
4
10k1%  
V
REF  
–V  
S
6
5
1/2  
7
10k1%  
+V  
S
+5V  
–5V  
–4.5V  
+
+
+
AD822  
0.1µF  
GND  
0.1µF  
1µF  
1µF  
+
4
R2  
20Ω  
+
–V  
S
–V  
S
Figure 51. Low Dropout Bipolar Bridge Driver  
Rev. G | Page 23 of 28  
 
 
 
AD822  
OUTLINE DIMENSIONS  
0.400 (10.16)  
0.365 (9.27)  
0.355 (9.02)  
8
5
4
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
1
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
PIN 1  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210  
(5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001-BA  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 52. 8-Lead Plastic Dual In-Line Package [PDIP]  
Narrow Body  
(N-8)  
Dimensions shown in inches and (millimeters)  
3.20  
3.00  
2.80  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
PIN 1  
0.25 (0.0098)  
0.65 BSC  
0.10 (0.0040)  
0.95  
0.85  
0.75  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
1.10 MAX  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
SEATING  
PLANE  
COPLANARITY  
0.10  
Figure 53. 8-Lead Standard Small Outline Package [SOIC_N]  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
Figure 54. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
Rev. G | Page 24 of 28  
 
AD822  
ORDERING GUIDE  
Model  
Temperature Range  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
Package Description  
8-Lead PDIP  
8-Lead PDIP  
Package Option  
Branding  
AD822AN  
AD822ANZ1  
AD822AR  
N-8  
N-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
RM-8  
RM-8  
RM-8  
RM-8  
R-8  
R-8  
R-8  
R-8  
R-8  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
AD822AR-REEL  
AD822AR-REEL7  
AD822ARZ1  
AD822ARZ-REEL1  
AD822ARZ-REEL71  
AD822ARM-R2  
AD822ARM-REEL  
AD822ARMZ-R21  
AD822ARMZ-REEL1  
AD822BR  
AD822BR-REEL  
AD822BR-REEL7  
AD822BRZ1  
AD822BRZ-REEL1  
AD822BRZ-REEL71  
B4A  
B4A  
#B4A  
#B4A  
R-8  
1 Z = Pb-free part, # denotes lead-free product may be top or bottom marked.  
SPICE model is available at www.analog.com.  
Rev. G | Page 25 of 28  
 
 
 
AD822  
NOTES  
Rev. G | Page 26 of 28  
AD822  
NOTES  
Rev. G | Page 27 of 28  
AD822  
NOTES  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C00874-0-6/06(G)  
Rev. G | Page 28 of 28  

相关型号:

AD822BRZ-REEL7

Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp
ADI

AD822SQ/883B

Voltage-Feedback Operational Amplifier
ETC

AD822TRZ-EP

Sinle-Supply, Rail-to-Rail Low Power FET-Input Op Amp
ADI

AD822TRZ-EP-R7

Sinle-Supply, Rail-to-Rail Low Power FET-Input Op Amp
ADI

AD822_06

Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp
ADI

AD823

Dual, 16 MHz, Rail-to-Rail FET Input Amplifier
ADI

AD8230

16 V Rail-to-Rail, Zero-Drift, Precision Instrumentation Amplifier
ADI

AD8230-EVAL

16 V Rail-to-Rail, Zero-Drift, Precision Instrumentation Amplifier
ADI

AD8230YRZ

16 V Rail-to-Rail, Zero-Drift, Precision Instrumentation Amplifier
ADI

AD8230YRZ-REEL

16 V Rail-to-Rail, Zero-Drift, Precision Instrumentation Amplifier
ADI

AD8230YRZ-REEL1

16 V Rail-to-Rail, Zero-Drift, Precision Instrumentation Amplifier
ADI

AD8230YRZ-REEL7

16 V Rail-to-Rail, Zero-Drift, Precision Instrumentation Amplifier
ADI